JP6383128B1 - Method for estimating inductance electromotive force of motor and field position estimating method - Google Patents

Method for estimating inductance electromotive force of motor and field position estimating method Download PDF

Info

Publication number
JP6383128B1
JP6383128B1 JP2018088463A JP2018088463A JP6383128B1 JP 6383128 B1 JP6383128 B1 JP 6383128B1 JP 2018088463 A JP2018088463 A JP 2018088463A JP 2018088463 A JP2018088463 A JP 2018088463A JP 6383128 B1 JP6383128 B1 JP 6383128B1
Authority
JP
Japan
Prior art keywords
voltage
section
inductance
phase
energization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018088463A
Other languages
Japanese (ja)
Other versions
JP2019195241A (en
Inventor
山本 清
山本  清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuto Seigyo KK
Original Assignee
Hokuto Seigyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuto Seigyo KK filed Critical Hokuto Seigyo KK
Priority to JP2018088463A priority Critical patent/JP6383128B1/en
Application granted granted Critical
Publication of JP6383128B1 publication Critical patent/JP6383128B1/en
Publication of JP2019195241A publication Critical patent/JP2019195241A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】モータが零速から最高回転数まで同一プログラムでインダクタンス起電圧推定値VLrを推定する方法を提供し、該インダクタンス起電圧推定値VLrを用いてモータが零速から最高回転数まで界磁位置検出方式を切り替える必要がなく界磁位置検出誤差の低減とスムーズな回転を実現でき、界磁位置検出プログラムも単一で済みソフトウェア開発負荷の低減等を実現した電動機の界磁位置推定方法を提供する。【解決手段】MPU51は、インダクタンス起電圧VLは界磁位置に応じて変化しさらに有効電圧に比例するという性質を用いて、運転時のPWMデューティ比に応じてルックアップテーブル56から該当する静止時インダクタンス起電圧VLs値を選択して読み出し、読み出した静止時インダクタンス起電圧VLs値に有効電圧比を乗じて、所定回転角度におけるインダクタンス起電圧推定値VLrを推定する。【選択図】図8The present invention provides a method for estimating an inductance electromotive force estimated value VLr with the same program from zero speed to the maximum rotational speed, and using the inductance electromotive voltage estimated value VLr, the motor performs a field operation from zero speed to the maximum rotational speed. There is no need to switch the position detection method, field position detection error can be reduced and smooth rotation can be realized, and only a single field position detection program is required. provide. An MPU 51 uses a property that an inductance electromotive voltage VL changes according to a field position and is proportional to an effective voltage, and a corresponding stationary time from a look-up table 56 according to a PWM duty ratio during operation. The inductance electromotive voltage VLs value is selected and read, and the read inductance inductance electromotive voltage VLs value is multiplied by the effective voltage ratio to estimate the inductance electromotive voltage estimated value VLr at a predetermined rotation angle. [Selection] Figure 8

Description

本開示は、ブラシレスDCモータなどの電動機のインダクタンス起電圧の推定方法及び界磁位置推定方法に関する。   The present disclosure relates to a method for estimating an inductance electromotive voltage and a field position estimating method for a motor such as a brushless DC motor.

従来、小型直流モータはブラシ付きDCモータが用いられてきたが、ブラシ音・電気ノイズ・耐久性等に問題がありブラシレスDCモータが登場した。さらに最近では小型軽量化・堅牢化・ローコスト化等の観点から位置センサを持たないセンサレスモータが注目され、まず情報機器分野のハードディスクドライブ等に採用されたがベクトル制御技術の発展により家電・車載分野でも採用され始めた。   Conventionally, DC motors with brushes have been used as small DC motors, but brushless DC motors have appeared due to problems with brush sound, electrical noise, durability, and the like. Recently, sensorless motors that do not have a position sensor have attracted attention from the viewpoints of miniaturization, weight reduction, cost reduction, etc., and were first adopted for hard disk drives in the information equipment field. But it started to be adopted.

図10に位置センサを備えないセンサレスモータの一例として3相ブラシレス直流(DC)モータの構成を示す。回転子軸1を中心に回転する回転子2にはS極とN極で一対の永久磁石3が設けられている。永久磁石界磁の磁極構造(IPM,SPM)あるいは極数等は様々である。固定子4には120°位相差で設けられた極歯に電機子巻線(コイル)U,V,Wが配置され、中性点(コモン)Cを介してスター結線されている。   FIG. 10 shows a configuration of a three-phase brushless direct current (DC) motor as an example of a sensorless motor not provided with a position sensor. A rotor 2 that rotates about the rotor shaft 1 is provided with a pair of permanent magnets 3 of S and N poles. The magnetic pole structure (IPM, SPM) or the number of poles of the permanent magnet field varies. In the stator 4, armature windings (coils) U, V, W are arranged on pole teeth provided with a phase difference of 120 °, and are star-connected through a neutral point (common) C.

図11に従来のセンサレス駆動回路例のブロックダイアグラムを示す。MOTORは3相センサレスモータである。MPU51はマイクロコントローラ(制御部)である。INV52は、3相ハーフブリッジ構成のインバータ回路(出力部)である。ZEROはゼロクロスコンパレータ54とダミーコモン生成部55である。なお実際の駆動回路には、このほかに電源部、ホストインターフェース部等が必要であるが煩雑化を避けるため省略してある。   FIG. 11 shows a block diagram of a conventional sensorless driving circuit example. MOTOR is a three-phase sensorless motor. The MPU 51 is a microcontroller (control unit). INV 52 is an inverter circuit (output unit) having a three-phase half-bridge configuration. ZERO is a zero cross comparator 54 and a dummy common generator 55. Note that an actual drive circuit requires a power supply unit, a host interface unit, and the like in addition to this, but is omitted to avoid complication.

図12に3相ブラシレスDCモータの駆動方式の代表的な例として120°通電のタイミングチャートを示す。区間1はU相からV相に、区間2はU相からW相に、区間3はV相からW相に、区間4はV相からU相に、区間5はW相からU相に、区間6はW相からV相に、矩形波通電される。破線は誘起電圧波形である。HU〜HWはモータに内蔵されるホールセンサの出力波形であり、従来の位置センサ付きブラシレスDCモータはこの信号に基づいて励磁切り替えが行われる。   FIG. 12 shows a timing chart of 120 ° energization as a typical example of the driving method of the three-phase brushless DC motor. Section 1 is from U phase to V phase, Section 2 is from U phase to W phase, Section 3 is from V phase to W phase, Section 4 is from V phase to U phase, Section 5 is from W phase to U phase, In the section 6, rectangular wave energization is performed from the W phase to the V phase. A broken line is an induced voltage waveform. HU to HW are output waveforms of a hall sensor built in the motor, and a conventional brushless DC motor with a position sensor performs excitation switching based on this signal.

例示した120°通電のセンサレス駆動方式は誘起電圧ゼロクロス点を検出して界磁位置を検出して駆動されるが、零速では誘起電圧が発生しないことから界磁位置を検出できない。そこで零速及び低速回転領域では2相パルス駆動し通電相間のインダクタンス偏差により発生する起電圧を開放相端子から読み取り界磁位置を推定する方法が知られており先行技術として以下の文献がある。   The illustrated sensorless driving method with 120 ° energization is driven by detecting the induced voltage zero cross point to detect the field position, but the induced voltage is not generated at zero speed, so the field position cannot be detected. Therefore, a method for estimating the field position by reading the electromotive voltage generated by the inductance deviation between the energized phases from the open phase terminal in the zero speed and low speed rotation regions is known, and the following documents are available as prior art.

特許第5634963号公報Japanese Patent No. 5634963

上述した特許文献1は、120°通電方式にてパルス駆動するものであり、零速及び低速域では通電2相間のインダクタンス偏差により発生する起電圧(以下、VL)を検出して位置推定しているが、回転時のVL値の変化及び誘起電圧について対応しておらず零速から回転数が上昇するにつれて誤差が大きくなり中高速域には適用できない。
そこで最高回転数の概ね10%程度で、前述のVL検出方式を止め鎖交磁束により開放相に発生する誘起電圧(以下、VE)を検出する方式に切り替えて中高速運転を行っている。切り替え後の界磁位置検出に関してはVL=0とみなしVE検出のみとしているが、中高速回転時においてもVLは発生しておりそれを0としていることからやはり界磁位置検出誤差が発生している。
Patent Document 1 described above is pulse-driven by a 120 ° energization method, and detects an electromotive voltage (hereinafter referred to as VL) generated by an inductance deviation between energized two phases in the zero speed and low speed regions to estimate the position. However, it does not correspond to the change of the VL value and the induced voltage at the time of rotation, and the error increases as the rotational speed increases from zero speed, and cannot be applied to the medium-high speed range.
Therefore, at about 10% of the maximum rotation speed, the above-described VL detection method is switched to a method of detecting an induced voltage (hereinafter referred to as VE) generated in the open phase by the linkage magnetic flux, and medium / high speed operation is performed. Regarding the field position detection after switching, VL = 0 is considered and only VE detection is performed. However, VL is generated even during the middle / high-speed rotation, and since it is set to 0, a field position detection error also occurs. Yes.

従って、低速域では回転しているにも関わらず静止時のVL値を用いることから、また中高速域ではVL値が発生しているにも関わらず0としていることから零速を除く全速度域で界磁位置検出誤差が発生するという課題がある。
そればかりか検出方式切り替え回転数付近では特に誤差が大きく、切り替え時に制御特性が大きく変化し好ましくなく、また界磁位置検出プログラムを低速用と中高速用と複数用意しなければならず、さらに切り替え時の振動防止のため回転数も上昇時と下降時の2値を設定し切り替え動作にヒステリシス特性を持たせる必要がある、など制御ソフトが煩雑化するといった課題もある。
Therefore, since the VL value at rest is used in spite of the rotation in the low speed range, and in the middle and high speed range, it is set to 0 despite the occurrence of the VL value. There is a problem that field position detection errors occur in the region.
In addition, the error is particularly large near the detection method switching speed, and the control characteristics change greatly at the time of switching, which is not preferable. In addition, multiple field position detection programs must be prepared for low speed and medium / high speed. There is also a problem that the control software becomes complicated, for example, it is necessary to set a binary value at the time of increase and decrease to prevent vibration at the time and to give a hysteresis characteristic to the switching operation.

以下に述べるいくつかの実施形態に適用される開示は、上記課題を解決すべくなされたものであり、その目的とするところは、モータが零速から最高回転数まで同一プログラムでインダクタンス起電圧VL値を推定する方法を提供し、該インダクタンス起電圧推定値VLrを用いてモータが零速から最高回転数まで界磁位置検出方式を切り替える必要がなく界磁位置検出誤差の低減とスムーズな回転を実現することができ、界磁位置検出プログラムも単一で済みソフトウェア開発負荷の低減等を実現した電動機の界磁位置推定方法を提供することにある。   Disclosures applied to some embodiments described below are made to solve the above-described problems, and the purpose of the disclosure is to generate an inductance electromotive voltage VL with the same program from the zero speed to the maximum rotational speed. A method for estimating the value is provided, and it is not necessary for the motor to switch the field position detection method from zero speed to the maximum rotational speed by using the inductance electromotive voltage estimated value VLr, thereby reducing field position detection error and smooth rotation. It is an object of the present invention to provide a field position estimation method for an electric motor that can be realized, requires only a single field position detection program, and realizes reduction of software development load.

永久磁石界磁を有する回転子と三相コイルを有する固定子を備え、定電圧直流電源を供給してパルス幅変調方式にて120°通電により始動する電動機のインダクタンス起電圧の推定方法であって、ハーフブリッジ型インバータ回路を介してコイルに双方向通電する出力部と、コイル電圧をA/D変換して制御部に送出する測定部と、上位コントローラからの指令によりコイル出力をPWM制御し、連続回転が可能な60°通電区間単位の通電角度情報と通電パターン情報とを記憶し、それに基づいて前記出力部をスイッチング制御して通電状態を切り替え、前記測定部から測定値が入力され前記60°通電区間における界磁位置を判定する前記制御部と、を備え、前記永久磁石界磁を予め通電区間内の所定角度に静止させ、所定電圧にてPWM通電したとき、通電2相のインダクタンス偏差により開放相端子に現れる通電相間電圧/2からの電位差をインダクタンス起電圧VLとして、PWMデューティ比に応じた静止時インダクタンス起電圧VLs値を実測により求め、前記PWMデューティ比に関連付けて前記制御部内の記憶部に記憶し、前記静止時インダクタンス起電圧VLs測定時の通電相間電圧を初期電圧として記憶し、誘起電圧定数を記憶する運転前準備ステップと、運転時に回転子の回転速度を検出し、回転数Nと誘起電圧定数KEから前記所定回転角度における通電2相の誘起電圧を求めその和を通電相誘起電圧VEとし、通電相間電圧VSを測定し、前記通電相間電圧VSと前記通電相誘起電圧VEの差分を前記初期電圧で除して有効電圧比を求めるステップと、を含み、前記制御部は、インダクタンス起電圧VLは界磁位置に応じて変化しさらに有効電圧に比例するという性質を用いて、運転時のPWMデューティ比に応じて前記記憶部から該当する静止時インダクタンス起電圧VLs値を選択して読み出し、読み出したインダクタンス起電圧VLs値に前記有効電圧比を乗じて、前記所定角度におけるインダクタンス起電圧VLr推定値を推定することを特徴とする。   A method of estimating an inductance electromotive force of an electric motor including a rotor having a permanent magnet field and a stator having a three-phase coil, which is supplied with a constant voltage DC power source and started by energization at 120 ° by a pulse width modulation method. , PWM control of the coil output in accordance with a command from the host controller, an output unit that bi-directionally energizes the coil via the half-bridge inverter circuit, a measurement unit that A / D converts the coil voltage and sends it to the control unit, The energization angle information and the energization pattern information in units of 60 ° energization sections capable of continuous rotation are stored, and based on this, the output unit is switched to switch the energization state, and the measurement value is input from the measurement unit. ° the control section for determining the field position in the energization section, the permanent magnet field is previously stopped at a predetermined angle in the energization section, and PW is applied at a predetermined voltage. When energized, the potential difference from the energized phase voltage / 2 that appears at the open phase terminal due to the inductance deviation between the energized two phases is set as the inductance electromotive voltage VL, and the static inductance electromotive voltage VLs value corresponding to the PWM duty ratio is obtained by actual measurement, Pre-operation preparatory step for storing in the storage unit in the control unit in association with the PWM duty ratio, storing the energization phase voltage at the time of measurement of the stationary inductance electromotive voltage VLs as an initial voltage, and storing the induced voltage constant; The rotational speed of the rotor is detected, the induced voltage of the energized two phases at the predetermined rotation angle is determined from the rotational speed N and the induced voltage constant KE, and the sum is set as the energized phase induced voltage VE, and the energized interphase voltage VS is measured. Dividing the difference between the energized phase voltage VS and the energized phase induced voltage VE by the initial voltage to obtain an effective voltage ratio; The control unit uses the property that the inductance electromotive voltage VL changes according to the field position and is proportional to the effective voltage, and from the storage unit according to the PWM duty ratio during operation, The inductance electromotive voltage VLs value is selected and read, and the inductance electromotive voltage VLr estimated value at the predetermined angle is estimated by multiplying the read inductance electromotive voltage VLs value by the effective voltage ratio.

三相コイルのうち開放相に現れる電圧は二つの起電圧からなり、ひとつは通電2相間のインダクタンス偏差による起電圧(以下、「インダクタンス起電圧VL」という)であり、それに開放相の誘起電圧(以下、「開放相誘起電圧VEz」という)が重畳する。インダクタンス起電圧VLは界磁位置に応じて変化しさらに有効電圧にほぼ比例する。ここで回転数に着目すると、有効電圧は[相間電圧−通電相誘起電圧]であり回転数が増加するに従い有効電圧は小さくなり従ってインダクタンス起電圧VLは減少する。一方、誘起電圧は回転数が上昇するに従い大きくなり従って開放相誘起電圧VEzは増加する。
このように、回転時のインダクタンス起電圧VLは界磁位置に応じて変化しさらに有効電圧に比例するという性質を用いて、インダクタンス起電圧VLの検出位置を120°通電方式の通電区間内の所定角度(例えば区間終点)に限定し、所定角度での静止時インダクタンス起電圧VLs値を基準値とし、回転速度を検出して通電相間電圧、回転数及びPWMデューティ比、に応じてインダクタンス起電圧推定値VLrを推定することができる。インダクタンス起電圧推定値VLrの推定過程で誘起電圧の演算が必要となるが、検出角度が決定していることから演算可能である。尚、インダクタンス起電圧推定値VLrの推定演算は通電区間始点等で回転数を検出した直後に行うことが望ましい。
尚、インダクタンス起電圧推定値VLr及び開放相誘起電圧VEz値は通電区間ごとに極性が反転するので通電区間ごとに正負を反転させ静止時インダクタンス起電圧VLs値と符号を整合させる必要がある。
Among the three-phase coils, the voltage appearing in the open phase is composed of two electromotive voltages, and one is an electromotive voltage due to an inductance deviation between energized two phases (hereinafter referred to as “inductance electromotive voltage VL”), and an open-phase induced voltage ( Hereinafter, “open phase induced voltage VEz”) is superimposed. The inductance electromotive voltage VL changes according to the field position and is substantially proportional to the effective voltage. When attention is paid to the rotational speed, the effective voltage is [interphase voltage-energized phase induced voltage]. As the rotational speed increases, the effective voltage decreases and the inductance electromotive voltage VL decreases. On the other hand, the induced voltage increases as the rotational speed increases, and therefore the open phase induced voltage VEz increases.
In this way, the inductance electromotive voltage VL during rotation changes in accordance with the field position and is further proportional to the effective voltage, so that the detection position of the inductance electromotive voltage VL is set to a predetermined value within the energization section of the 120 ° energization method. Limiting the angle to an angle (for example, the end point of the section), using the stationary inductance electromotive voltage VLs value at a predetermined angle as a reference value, detecting the rotation speed and estimating the inductance electromotive voltage according to the energized interphase voltage, the rotation speed, and the PWM duty ratio The value VLr can be estimated. Although the induced voltage needs to be calculated in the process of estimating the inductance induced voltage estimated value VLr, it can be calculated because the detection angle is determined. It should be noted that the estimation calculation of the inductance electromotive force estimated value VLr is preferably performed immediately after the rotation speed is detected at the starting point of the energization section.
In addition, since the polarity of the inductance electromotive force estimated value VLr and the open phase induced voltage VEz value is inverted for each energization interval, it is necessary to invert the sign for each energization interval to match the sign with the stationary inductance electromotive voltage VLs value.

上記回転時インダクタンス起電圧推定値VLrを用いて界磁位置を推定する電動機の界磁位置推定方法であって、運転時の所定通電区間の区間始点において前記回転子の回転数N及び誘起電圧定数KEから現在通電区間内の所定角度における開放相誘起電圧VEzを(式A)により演算で求めるステップと、VE=KE×N×SIN(θ)×1.5 ・・・(式A)(KE=誘起電圧定数、N=回転数、θ=励磁区間中間点を0°(または180°)としたときの界磁角度)前記インダクタンス起電圧推定値VLrに前記開放相誘起電圧VEzを(式B)により加算して得られる中性点電位に対する開放相電圧推定値を閾値Vthとして記憶するステップと、を含み、Vth=VLr+VEz ・・・(式B)前記制御部は、周期的に中性点電位に対する開放相電圧VZを測定して前記閾値Vthと大小比較し、前記閾値Vthを超えたら区間終点と判定し、励磁区間を切り替えることを特徴とする。
このように開放相誘起電圧VEz値及びインダクタンス起電圧推定値VLrの推定値演算は通電区間の始点等で回転数を検出した直後におこなうことが好ましく、これにより通電区間始点にて通電区間終点の開放相電圧を推定できる。従って、周期的(例えばPWM周期)に開放相電圧VZを測定し閾値Vthと大小比較することで区間終点を検出することができ、区間終点を検出したら次区間の通電パターンに励磁を切りかえれば連続回転することができる。
A method for estimating a field position of an electric motor that estimates a field position using the estimated inductance electromotive voltage value VLr during rotation, wherein the rotational speed N of the rotor and an induced voltage constant at a section start point of a predetermined energization section during operation. A step of obtaining an open-phase induced voltage VEz at a predetermined angle in the current energization section from KE by (Equation A), and VE = KE × N × SIN (θ) × 1.5 (Equation A) (KE = Induced voltage constant, N = Number of rotations, θ = Field angle when the excitation section intermediate point is 0 ° (or 180 °)) The open-phase induced voltage VEz is set to the inductance induced voltage estimated value VLr (formula B And Vth = VLr + VEz (Formula B) The control unit periodically generates neutral points. Against potential The comparison threshold Vth and magnitude measures the Hosho voltage VZ, the determining a section end point When exceeding the threshold value Vth, and switches the excitation interval.
Thus, it is preferable to perform the estimated value calculation of the open phase induced voltage VEz value and the inductance induced voltage estimated value VLr immediately after detecting the rotation speed at the starting point of the energizing section, etc. The open phase voltage can be estimated. Therefore, the end point of the section can be detected by measuring the open phase voltage VZ periodically (for example, PWM period) and comparing it with the threshold value Vth. If the section end point is detected, the excitation can be switched to the energization pattern of the next section. Can rotate continuously.

前記制御部に予めPWMデューティ比の使用範囲上限を設定しておき、運転時に使用範囲上限値より大きなPWMデューティ比が指定された場合はPWMデューティ比100%で通電制御し、インダクタンス起電圧推定値VLrを0とし、開放相電圧の測定周期をPWMキャリア周期とは非同期でPWMキャリア周期より短くするようにしてもよい。
パルス駆動は通常PWMデューティ比20%〜80%程度で行われるが、上限より大きな値を指定可能としておき、上限より大きなPWMデューティ比が指定された場合は100%通電とする。PWMデューティ比100%時はパルス駆動ではなく直流駆動となることからインダクタンス起電圧推定値VLrは発生せずVLr=0とする。従って閾値は開放相誘起電圧VEzとなり、開放相誘起電圧VEzのみにより界磁位置が検出されることになる。
その際三相コイルには連続的に通電されることからPWMキャリア周期に同期して開放相誘起電圧VEzを測定する必要はなく、測定周期をPWMキャリア周期より短くすればPWM駆動による回転数上限の制約を超えた高速回転が可能となる。測定時間を制限する要因はほぼA/Dコンバータの変換時間であり、高速なA/Dコンバータを用いれば制御的には最高回転数を数倍に高くできる。
例えば2極モータで100kmin−1時の区間当たりの通電時間は100usであり、PWMキャリア周波数を20kHzとすると1区間あたりPWMパルスは2パルスしかなくPWMによる通電制御は困難である。しかしPWMデューティを100%即ち直流駆動として例えば10us周期で開放相電圧測定を行えば1区間当たりの界磁位置検出回数は10回となり制御性が向上し200kmin−1といった高速回転も可能となる。さらに本方式はゼロクロス点を検出する必要がないことからこの点においても高速回転に有利である。当然ながら短時間でより多くコイル電流を流す必要があり電源電圧は高くしなければならない。
The upper limit of the duty range of the PWM duty ratio is set in the control unit in advance, and when a PWM duty ratio larger than the upper limit of the usage range is specified during operation, energization control is performed with a PWM duty ratio of 100%, and an estimated inductance electromotive force value VLr may be set to 0, and the open-phase voltage measurement period may be made asynchronous with the PWM carrier period and shorter than the PWM carrier period.
Pulse driving is normally performed at a PWM duty ratio of about 20% to 80%, but a value larger than the upper limit can be designated, and when a PWM duty ratio larger than the upper limit is designated, 100% energization is performed. When the PWM duty ratio is 100%, DC drive is used instead of pulse drive, so that an inductance electromotive voltage estimated value VLr is not generated and VLr = 0. Therefore, the threshold value is the open phase induced voltage VEz, and the field position is detected only by the open phase induced voltage VEz.
At that time, since the three-phase coil is energized continuously, there is no need to measure the open-phase induced voltage VEz in synchronization with the PWM carrier cycle. If the measurement cycle is shorter than the PWM carrier cycle, the upper limit of the rotation speed by PWM drive High-speed rotation that exceeds the limitations of The factor that limits the measurement time is almost the conversion time of the A / D converter. If a high-speed A / D converter is used, the maximum rotational speed can be increased several times in terms of control.
For example, in a 2-pole motor, the energization time per section at 100 kmin- 1 o'clock is 100 us, and if the PWM carrier frequency is 20 kHz, there are only two PWM pulses per section, and it is difficult to control energization by PWM. However, if the PWM duty is 100%, that is, DC drive is performed and the open-phase voltage is measured at a cycle of 10 us, for example, the number of field position detections per section is 10, and controllability is improved and high-speed rotation of 200 kmin −1 is possible. Furthermore, since this method does not require detection of the zero-cross point, this point is also advantageous for high-speed rotation. Naturally, it is necessary to flow more coil current in a short time, and the power supply voltage must be increased.

120°通電方式の通電シーケンス順に区間番号1〜6を割り当て、奇数区間又は偶数区間の静止時インダクタンス起電圧VLs値を基準値としてルックアップテーブルに記憶し、運転時にルックアップテーブルを読み出した際に偶数区間(または奇数区間)では静止時インダクタンス起電圧VLs値に適宜設定した補正係数を乗じて補正するか、あるいはルックアップテーブルを奇数区間用と偶数区間用の二つ用意し奇数区間と偶数区間のそれぞれで静止時インダクタンス起電圧VLs値を記憶し、運転時は通電区間ごとにルックアップテーブルを選択して奇数区間と偶数電区間とで異なるインダクタンス起電圧推定値VLrを推定してもよい。
インダクタンス起電圧VL値は区間ごとに極性が反転し、モータ特性によってはインダクタンス起電圧VL値が正側区間のほうが負側区間よりも小さくなる場合があり、負側区間と正側区間で同じインダクタンス起電圧推定値VLrを適用すると周期が短い区間と長い区間が交互に現れ2区間周期の微小振動が発生し好ましくない。
そこで2区間周期性の界磁位置検出誤差を減らし振動を抑制するために、負側区間(奇数区間)と正側区間(偶数区間)で異なるインダクタンス起電圧推定値VLrとしてもよい。補正方法は例えば負側区間のインダクタンス起電圧推定値VLrを基準として、正側区間のインダクタンス起電圧推定値VLrに補正係数を乗ずればよい。補正係数はモータ設計段階あるいは試作段階で決定できる。
あるいはルックアップテーブルを負側区間用と正側区間用の二つ用意し、負側区間と正側区間双方で静止時インダクタンス起電圧VLs値を測定しそれぞれのルックアップテーブルに記憶し、運転時は負側区間と正側区間とでルックアップテーブルを選択してもよい。
When the section numbers 1 to 6 are assigned in order of the 120 ° energization method energization sequence, and the static inductance electromotive voltage VLs value in the odd section or even section is stored as a reference value in the lookup table, and when the lookup table is read out during operation In the even section (or odd section), the static inductance electromotive voltage VLs value is corrected by multiplying the correction coefficient set appropriately, or two look-up tables are prepared for the odd section and the even section, and the odd section and the even section are prepared. May be stored, and during operation, a look-up table may be selected for each energizing section to estimate the estimated inductance electromotive voltage VLr that is different between the odd-numbered section and the even-numbered section.
The polarity of the inductance electromotive voltage VL value is reversed in each section, and depending on the motor characteristics, the inductance electromotive voltage VL value may be smaller in the positive section than in the negative section, and the same inductance in the negative section and the positive section. When the estimated electromotive voltage value VLr is applied, a section with a short period and a section with a long period appear alternately and a minute vibration with a period of two sections is generated, which is not preferable.
Therefore, in order to reduce the two-period periodic field position detection error and suppress the vibration, the inductance electromotive force estimated value VLr may be different between the negative section (odd section) and the positive section (even section). As a correction method, for example, the inductance electromotive force estimated value VLr in the positive side section may be multiplied by the correction coefficient with the inductance electromotive voltage estimated value VLr in the negative side section as a reference. The correction coefficient can be determined at the motor design stage or the prototype stage.
Alternatively, two lookup tables are prepared for the negative section and the positive section, and the static inductance electromotive voltage VLs values are measured in both the negative section and the positive section and stored in the respective lookup tables. May select a look-up table for the negative interval and the positive interval.

上述した電動機のインダクタンス起電圧の推定方法を用いれば、モータが零速から最高回転数まで同一プログラムでインダクタンス起電圧推定値VLrを推定することができる。また、インダクタンス起電圧推定値VLrを用いて、モータが零速から最高回転数まで界磁位置検出方式を切り替える必要がなく界磁位置検出誤差の低減を図り、界磁位置検出方式の切り替え動作の無いスムーズな回転を実現でき、界磁位置検出プログラムも単一で済みソフトウェア開発負荷の低減等を実現した電動機の界磁位置推定方法を提供することができる。
また、電動機のインダクタンス起電圧の推定方法並びに界磁位置推定方法は、IPMモータ/SPMモータを問わず使用でき適用範囲が広い。
また、通電区間始点にて区間終点の開放相誘起電圧VEzを推定するためゼロクロス点検出が不要となり高速回転にも適する。
また、モータの全速度領域で正確に界磁位置検出できることから高効率化・静音化される。
更には、制御部における演算負荷が少なく低速CPUで高速処理でき、低コスト・低消費電力となる。
If the above-described method for estimating the inductance electromotive voltage of the electric motor is used, the inductance electromotive voltage estimated value VLr can be estimated by the same program from the zero speed to the maximum rotational speed of the motor. In addition, it is not necessary for the motor to switch the field position detection method from zero speed to the maximum number of rotations using the estimated inductance electromotive voltage VLr, so that the field position detection error can be reduced and the field position detection method can be switched. Thus, it is possible to provide a field position estimation method for an electric motor that can realize a smooth rotation with no need for a single field position detection program and can reduce a software development load.
In addition, the method for estimating the inductance electromotive force of the electric motor and the method for estimating the field position can be used regardless of the IPM motor / SPM motor and have a wide range of applications.
In addition, since the open phase induced voltage VEz at the end point of the section is estimated at the start point of the energized section, detection of the zero cross point is not necessary, which is suitable for high speed rotation.
Further, since the field position can be accurately detected in the entire speed range of the motor, the efficiency and the noise are reduced.
Furthermore, the calculation load on the control unit is small and high-speed processing can be performed with a low-speed CPU, resulting in low cost and low power consumption.

回転数に対するインダクタンス起電圧VLと開放相誘起電圧VEzの説明図である。It is explanatory drawing of the inductance electromotive voltage VL with respect to rotation speed, and the open phase induced voltage VEz. 回転子静止時の1電気角6区間のインダクタンス起電圧VLs近似波形の一例である。It is an example of the inductance electromotive voltage VLs approximate waveform of 1 electrical angle 6 section at the time of a rotor stationary. 磁気飽和量を変化させたときのインダクタンス起電圧VL近似波形の例である。It is an example of an inductance electromotive voltage VL approximate waveform when changing the amount of magnetic saturation. IPMモータのインダクタンス起電圧VL実測波形である。It is an inductance electromotive voltage VL measurement waveform of an IPM motor. SPMモータのインダクタンス起電圧VL実測波形である。It is an inductance electromotive voltage VL measured waveform of the SPM motor. 電源電圧を変化させたときのインダクタンス起電圧VL実測例である。It is an example of actual measurement of inductance electromotive voltage VL when the power supply voltage is changed. モータ駆動回路のブロック構成図である。It is a block block diagram of a motor drive circuit. インダクタンス起電圧VLを推定する運転準備工程のフローチャートである。It is a flowchart of the operation preparation process which estimates the inductance electromotive voltage VL. モータ始動後の運転工程のフローチャートである。It is a flowchart of the driving | running process after a motor start. センサレスモータの構成図である。It is a block diagram of a sensorless motor. 従来のモータ駆動回路のブロック構成図である。It is a block block diagram of the conventional motor drive circuit. 120°通電タイミングチャートである。It is a 120 degree electricity supply timing chart.

以下、電動機の界磁位置検出方法の実施形態について、添付図面を参照しながら説明する。本願発明は、電動機の一例として、回転子に永久磁石界磁を備え、固定子に巻き線を120°位相差で配置してスター結線し、相端がモータ出力部に接続されたセンサレスモータを用いて説明する。   Hereinafter, an embodiment of a field position detection method for an electric motor will be described with reference to the accompanying drawings. As an example of an electric motor, the present invention provides a sensorless motor having a permanent magnet field in a rotor, windings arranged in a stator with a 120 ° phase difference, star-connected, and phase ends connected to a motor output unit. It explains using.

以下では、一例として3相DCブラシレスモータをセンサレス駆動するセンサレスモータのインダクタンス起電圧の推定方法及び永久磁石界磁位置検出方法について、センサレスモータ駆動装置の構成と共に説明する。図10を参照して本発明に係る3相ブラシレスDCモータの一実施例を示す。一例として2極永久磁石ロータと3スロットを設けた固定子4を備えた3相ブラシレスDCモータを例示する。モータはインナーロータ型でもアウターロータ型でもいずれでもよい。また、永久磁石型界磁としては永久磁石埋め込み型(IPM型)モータや表面永久磁石型(SPM型)モータのいずれであってもよい。   Hereinafter, as an example, a method for estimating an inductance electromotive voltage and a method for detecting a permanent magnet field position of a sensorless motor that sensorlessly drives a three-phase DC brushless motor will be described together with the configuration of the sensorless motor driving device. An embodiment of a three-phase brushless DC motor according to the present invention will be described with reference to FIG. As an example, a three-phase brushless DC motor including a stator 4 having a two-pole permanent magnet rotor and three slots is illustrated. The motor may be either an inner rotor type or an outer rotor type. The permanent magnet type field may be any of a permanent magnet embedded type (IPM type) motor and a surface permanent magnet type (SPM type) motor.

図10において、回転子軸1には回転子2が一体に設けられ、界磁として2極の永久磁石3が設けられている。固定子4には120°位相差で極歯U,V,Wが永久磁石3に対向して配置されている。固定子4の各極歯U,V,Wに巻線u,v,wを設けて相間をコモンCでスター結線して後述するモータ駆動装置に配線された3相ブラシレスDCモータとなっている。尚、コモン線は、不要であるので省略されている。   In FIG. 10, a rotor 2 is integrally provided on a rotor shaft 1, and a two-pole permanent magnet 3 is provided as a field magnet. In the stator 4, pole teeth U, V, W are arranged to face the permanent magnet 3 with a 120 ° phase difference. A three-phase brushless DC motor is provided in which windings u, v, and w are provided on the pole teeth U, V, and W of the stator 4 and the phases are star-connected with a common C and wired to a motor driving device described later. . The common line is omitted because it is unnecessary.

次に、図7を参照して三相センサレスモータ駆動回路の一例を示す。
駆動方式としては120°通電バイポーラ矩形波励磁を想定している。
MOTORは三相センサレスモータである。MPU51はマイクロコントローラ(制御部)である。MPU51は、三相コイル(U,V,W)に対する6通りの通電パターンと各通電パターンに対応する120°通電の励磁切り替え区間(区間1〜区間6)を指定する界磁位置情報を記憶し、上位コントローラ50からの回転指令RUNに応じて出力部をスイッチング制御して励磁状態を任意に切り替える。
Next, an example of a three-phase sensorless motor drive circuit is shown with reference to FIG.
As a driving method, 120 ° energization bipolar rectangular wave excitation is assumed.
MOTOR is a three-phase sensorless motor. The MPU 51 is a microcontroller (control unit). The MPU 51 stores field position information for designating six energization patterns for the three-phase coil (U, V, W) and 120 ° energization excitation switching sections (section 1 to section 6) corresponding to the respective energization patterns. In accordance with the rotation command RUN from the host controller 50, the output unit is switched to arbitrarily switch the excitation state.

インバータ回路52(INV:出力部)は、三相コイルに通電し、モータトルクを制御するために励磁相切り替えあるいはPWM制御などのスイッチング動作を行う。インバータ回路52は、スイッチング素子に逆並列に接続されるダイオードを備え、正極電源ライン及び接地電源ラインに任意に接続可能なハーフブリッジ型スイッチング回路が3相分設けられている。
A/D変換回路53(ADC:測定部)は、コイル出力端子U,V,Wが接続され、MPU51からの変換開始信号により三相それぞれのコイル電圧を同時サンプリングし、順次アナログ・デジタル変換し、変換結果をMPU51に送出する。通常ADC53はMPU51に内蔵されており、内蔵ADC53を利用する場合は最大入力電圧が低いため抵抗による分圧回路57を設けることが望ましい。このように本案によればモータ駆動回路は非常にシンプルに構成できる。
ルックアップテーブル56(LUT:記憶部)は、後述するように、実測により求められた静止時インダクタンス起電圧VLs値をPWMデューティ比に関連付けて記憶し、静止時インダクタンス起電圧VLs測定時の通電相間電圧VSを初期電圧として記憶し、誘起電圧定数KEを記憶する。
The inverter circuit 52 (INV: output unit) energizes the three-phase coil and performs switching operation such as excitation phase switching or PWM control in order to control the motor torque. The inverter circuit 52 includes a diode connected in reverse parallel to the switching element, and half-bridge switching circuits that can be arbitrarily connected to the positive power supply line and the ground power supply line are provided for three phases.
The A / D conversion circuit 53 (ADC: measurement unit) is connected to the coil output terminals U, V, W, and simultaneously samples the coil voltages of the three phases by the conversion start signal from the MPU 51, and sequentially performs analog / digital conversion. The conversion result is sent to the MPU 51. Normally, the ADC 53 is built in the MPU 51. When the built-in ADC 53 is used, it is desirable to provide a voltage dividing circuit 57 using a resistor because the maximum input voltage is low. Thus, according to this proposal, the motor drive circuit can be configured very simply.
As will be described later, the lookup table 56 (LUT: storage unit) stores a static inductance electromotive voltage VLs value obtained by actual measurement in association with a PWM duty ratio, and between energized phases when measuring the static inductance electromotive voltage VLs. The voltage VS is stored as the initial voltage, and the induced voltage constant KE is stored.

(インダクタンス起電圧の説明)
三相コイルのうち、通電相でない開放相に現れる電圧は二つの起電圧からなり、ひとつは通電2相間のインダクタンス偏差によるインダクタンス起電圧VLであり、それに開放相誘起電圧VEzが重畳する。インダクタンス起電圧VLは界磁位置に応じて変化しさらに有効電圧にほぼ比例する。ここで回転数に着目すると、有効電圧は[相間電圧−通電相誘起電圧]であり回転数が増加するに従い有効電圧は小さくなり従ってインダクタンス起電圧VLは減少する。一方、誘起電圧は回転数が上昇するに従い大きくなり従って開放相誘起電圧VEzは増加する。
(Description of inductance electromotive voltage)
Of the three-phase coils, the voltage appearing in the open phase that is not the energized phase is composed of two electromotive voltages, one is the inductance electromotive voltage VL due to the inductance deviation between the energized two phases, and the open phase induced voltage VEz is superimposed on it. The inductance electromotive voltage VL changes according to the field position and is substantially proportional to the effective voltage. When attention is paid to the rotational speed, the effective voltage is [interphase voltage-energized phase induced voltage]. As the rotational speed increases, the effective voltage decreases and the inductance electromotive voltage VL decreases. On the other hand, the induced voltage increases as the rotational speed increases, and therefore the open phase induced voltage VEz increases.

図1に通電区間内の所定角度(例えば区間終点)における、回転数RPMとインダクタンス起電圧VL及び開放相誘起電圧VEzの関係を示す。両者を加算したものが開放相電圧VZ推定値であり太い実線で示す。また従来方式(低速域はVLのみ、中高速域はVEのみ)の開放相電圧VZ′推定値を破線で示す。VZ(太い実線)とVZ′(破線)の差が従来方式の誤差と考えられ、切り替え点N′付近で誤差が大きくなっている。
インダクタンス起電圧VLについてコイル電流方程式を使って説明する。
I(t)=(V/R)・(1−e−t・R/L) ・・・(式1)
ここでI=コイル電流、t=パルス通電時間、V=コイル電圧、R=コイル抵抗、L=コイルインダクタンス。上式(1)よりI(t)が一定の時、Lが変化すればVも変化する。
FIG. 1 shows the relationship between the rotational speed RPM, the inductance electromotive voltage VL, and the open phase induced voltage VEz at a predetermined angle (for example, the end point of the section) in the energization section. The sum of both is the estimated open phase voltage VZ, which is indicated by a thick solid line. In addition, an estimated value of the open phase voltage VZ ′ of the conventional method (low speed region is VL only, middle high speed region is VE only) is indicated by a broken line. The difference between VZ (thick solid line) and VZ ′ (broken line) is considered to be an error in the conventional method, and the error is large near the switching point N ′.
The inductance electromotive voltage VL will be described using a coil current equation.
I (t) = (V / R) · (1-e −t · R / L ) (Formula 1)
Here, I = coil current, t = pulse energization time, V = coil voltage, R = coil resistance, L = coil inductance. From the above equation (1), when I (t) is constant, V changes as L changes.

一方、コイルインダクタンスLは界磁位相角に応じて変化し、理想状態の電圧変化ΔVを下式で近似できる。
ΔV=cos(2θ)−m・sin(θ) ・・・(式2)
ここでθ=界磁位相角、m=磁気飽和係数。右辺第1項は空間高調波成分であり、右辺第2項は磁気飽和成分である。
各相は120°位相差で配置されていることから通電2相間にはインダクタンス偏差が発生し、従って相電圧に差が生じコモン電位(共通接続点電圧)は中性点電位(相間電圧/2)からシフトする。このシフト電位差が相互誘導作用により開放相に現れたものがインダクタンス起電圧VLと考えられる。
各相の120°位相差と、逆方向通電による180°位相差により電圧変化ΔVは6パターンとなる。2相通電時のインダクタンス起電圧VLは通電2相のそれぞれの電圧変化ΔVが合成されたものであり、6通りの通電パターンに応じてインダクタンス起電圧VL波形も6パターンあり60°通電区間ごとに切り替わる。
On the other hand, the coil inductance L changes according to the field phase angle, and the voltage change ΔV in the ideal state can be approximated by the following equation.
ΔV = cos (2θ) −m · sin (θ) (Formula 2)
Where θ = field phase angle, m = magnetic saturation coefficient. The first term on the right side is a spatial harmonic component, and the second term on the right side is a magnetic saturation component.
Since each phase is arranged with a phase difference of 120 °, an inductance deviation occurs between the two energized phases. Therefore, a difference occurs in the phase voltage, and the common potential (common connection point voltage) is neutral point potential (interphase voltage / 2). ). It is considered that this shift potential difference appears in the open phase due to the mutual induction action as an inductance electromotive voltage VL.
The voltage change ΔV becomes 6 patterns due to the 120 ° phase difference of each phase and the 180 ° phase difference due to reverse energization. The inductance electromotive voltage VL at the time of two-phase energization is a combination of the voltage changes ΔV of the two energization phases, and there are six patterns of the inductance electromotive voltage VL depending on the six energization patterns. Switch.

図2に1電気角6区間の静止時インダクタンス起電圧VLsの近似波形の一例を示す。区間ごとに対応する通電パターンにて励磁したときのインダクタンス起電圧VL近似波形であり、区間1はU−V通電、区間2はU−W通電、区間3はV−W通電、区間4はV−U通電、区間5はW−U通電、区間6はW−V通電である。図2から判るようにインダクタンス起電圧VL値は区間ごとに正負が反転する。   FIG. 2 shows an example of an approximate waveform of the static inductance electromotive voltage VLs in one electrical angle 6 section. Inductance electromotive voltage VL approximate waveform when energized with a corresponding energization pattern for each section, section 1 is U-V energization, section 2 is U-W energization, section 3 is V-W energization, and section 4 is V- -U energization, section 5 is W-U energization, and section 6 is W-V energization. As can be seen from FIG. 2, the value of the inductance electromotive voltage VL is reversed between the sections.

前述した(式2)の右辺第2項で表される1周期性変化は磁気飽和量を反映していると考えられ、係数mを変えることで電圧変化ΔV近似波形は2周期性から1周期性へと変化し、様々な特性のモータを近似できる。
図3に通電パターンを区間1に対応するU−V通電に固定し、m値を0〜3に変えた場合の1電気角分の静止時インダクタンス起電圧VLs近似波形を示す。U−V通電であることからVL値の検出範囲は30°から90°の60°区間である。
永久磁石埋め込み型(IPM)モータは磁気飽和量が少なくm=0に相当する。表面永久磁石型(SPM)モータは比較的磁気飽和量が多くm=3に相当する。図からm=1の波形はインダクタンス起電圧VLによりゼロクロス点位相が60°からシフトし、さらにm=2〜3となると通電区間内ではゼロクロス点が存在しなくなることが判る。つまりSPMモータは零速から低速時にかけてインダクタンス起電圧VLの影響でゼロクロス点を検出できない場合が多いと考えられ、ゼロクロス点検出方式を採用した場合はかなりの大きさの誘起電圧が発生する回転数までオープンループ制御で回転させる必要があることが理解できる。
The one-periodic change represented by the second term on the right side of (Equation 2) described above is considered to reflect the amount of magnetic saturation. By changing the coefficient m, the voltage change ΔV approximate waveform changes from two-periodic to one period. It is possible to approximate motors with various characteristics.
FIG. 3 shows an approximate waveform of the quiescent inductance electromotive voltage VLs for one electrical angle when the energization pattern is fixed to the U-V energization corresponding to the section 1 and the m value is changed to 0-3. Since it is UV energization, the detection range of the VL value is a 60 ° section from 30 ° to 90 °.
A permanent magnet embedded (IPM) motor has a small amount of magnetic saturation and corresponds to m = 0. A surface permanent magnet (SPM) motor has a relatively large amount of magnetic saturation and corresponds to m = 3. From the figure, it can be seen that the waveform of m = 1 shifts the phase of the zero cross point from 60 ° due to the inductance electromotive voltage VL, and when m = 2 to 3, the zero cross point does not exist in the energized section. In other words, it is considered that the SPM motor often cannot detect the zero cross point from the zero speed to the low speed due to the influence of the inductance electromotive voltage VL, and when the zero cross point detection method is adopted, the rotational speed at which a considerable induced voltage is generated. It can be understood that it is necessary to rotate by open loop control.

図4にロボット用のIPMモータのインダクタンス起電圧VL実測波形を示す。PWM通電にてU−V励磁しながら1°ステップで回転させては開放相電圧を測定し、1電気角分360データをプロットしたものである。
図5にハードディスクドライブ用のSPMモータのインダクタンス起電圧VL実測波形を示す。測定方法は図4と同様である。概ね1周期性で通電区間内ではゼロクロス点が発生しないことが判る。
FIG. 4 shows an actually measured waveform of the inductance electromotive force VL of the IPM motor for the robot. It is a plot of 360 electrical data for one electrical angle measured by rotating in 1 ° steps while applying U-V excitation with PWM energization and measuring the open phase voltage.
FIG. 5 shows a measured waveform of an inductance electromotive voltage VL of an SPM motor for a hard disk drive. The measurement method is the same as in FIG. It can be seen that the zero-cross point does not occur in the energized section with approximately one periodicity.

図3〜図5からインダクタンス起電圧VL近似波形は静止時においてさえ勾配やゼロクロス点位相が様々であり、これに回転時の誘起電圧が重畳することになり、汎用性と安定性の高い界磁位置検出は容易ではないことが判る。実用的な界磁位置検出のためにはインダクタンス起電圧VLの変動要因を把握し補正することが不可欠であり、引き続きインダクタンス起電圧VLの変動要因について述べる。   From FIG. 3 to FIG. 5, the inductance electromotive voltage VL approximate waveform has various gradients and zero-cross point phases even at rest, and the induced voltage at the time of rotation is superimposed on this, so that the field is highly versatile and stable. It turns out that position detection is not easy. In order to detect a practical field position, it is indispensable to grasp and correct the variation factor of the inductance electromotive voltage VL. Next, the variation factor of the inductance electromotive voltage VL will be described.

(インダクタンス起電圧の変動要因)
VL値の変動要因としてはまず有効電圧があげられ、インダクタンス起電圧VL値は有効電圧に比例する。図6に静止状態にてPWMデューティ比及び温度を一定にして電源電圧Vdd(≒有効電圧)を変化させたときのインダクタンス起電圧VL実測波形を示す。インダクタンス起電圧VLは電源電圧Vdd(≒有効電圧)に比例していることが判る。
回転時の有効電圧は相間電圧と誘起電圧との差分(相間電圧−誘起電圧)である。従って回転数を検出し、前記所定角度における誘起電圧を演算し、相間電圧から減算すれば有効電圧が得られる。予め運転前に静止時インダクタンス起電圧VLsの測定などを行う運転準備工程は静止状態が条件であるから、静止時インダクタンス起電圧VLs値が得られ、誘起電圧は発生していないことから相間電圧がそのまま有効電圧となりインダクタンス起電圧VLは最大値となる。
運転時は、運転準備工程時と運転行程時の有効電圧の比率(有効電圧比)を静止時インダクタンス起電圧VLs値に乗ずれば有効電圧によるインダクタンス起電圧VLの変動について補正することができる。即ち、通電相間電圧を測定し、(通電相間電圧−通電相誘起電圧)/(前記初期電圧)を演算により算出して有効電圧比を求める。例えば、運転準備工程時は12Vで測定し、運転工程時は6Vであった場合、運転時のインダクタンス起電圧推定値VLrは静止時インダクタンス起電圧VLs値の6/12と推定することができる。
(Inductance voltage fluctuation factor)
The effective voltage is first mentioned as a factor of fluctuation of the VL value, and the inductance electromotive voltage VL value is proportional to the effective voltage. FIG. 6 shows a measured waveform of the inductance electromotive voltage VL when the power supply voltage Vdd (≈effective voltage) is changed while the PWM duty ratio and temperature are kept constant in a stationary state. It can be seen that the inductance electromotive voltage VL is proportional to the power supply voltage Vdd (≈effective voltage).
The effective voltage at the time of rotation is the difference between the interphase voltage and the induced voltage (interphase voltage-induced voltage). Therefore, an effective voltage can be obtained by detecting the rotation speed, calculating the induced voltage at the predetermined angle, and subtracting it from the interphase voltage. Since the operation preparation process for measuring the inductance electromotive voltage VLs at rest before operation, etc., is in a stationary state, the inductance electromotive voltage VLs value at rest can be obtained, and no induced voltage is generated. The effective voltage remains as it is, and the inductance electromotive voltage VL becomes the maximum value.
During operation, if the ratio of the effective voltage during the operation preparation process and the operation stroke (effective voltage ratio) is multiplied by the inductance electromotive voltage VLs value at rest, fluctuations in the inductance electromotive voltage VL due to the effective voltage can be corrected. That is, the voltage between energized phases is measured, and the effective voltage ratio is obtained by calculating (energized phase voltage−energized phase induced voltage) / (the initial voltage) by calculation. For example, when the measurement is performed at 12 V during the operation preparation process and 6 V during the operation process, the estimated inductance electromotive voltage VLr during operation can be estimated as 6/12 of the static inductance electromotive voltage VLs value.

また、インダクタンス起電圧VLの値はPWMデューティ比により複雑に変動する。これに対し初期測定時に複数のPWMデューティ比による静止時インダクタンス起電圧VLs値をルックアップテーブル(LUT:記憶部)に保存しておき、運転時はPWMデューティ比に応じてルックアップテーブルから該当する静止時インダクタンス起電圧VLs値を読み出せばPWMデューティ比の変動を反映したインダクタンス起電圧推定値VLrが得られる。尚、測定するPWMデューティ比の区間幅は例えば10%刻みとすれば20%、30%、40%、50%、60%、70%、80%の7データとわずかで済み初期測定の時間短縮とメモリーの節約ができる。
あるいはPWMデューティ比に応じてインダクタンス起電圧推定値VLrを求める数式モデルを作り、運転準備工程にて静止時インダクタンス起電圧VLsをPWMデューティ比を変えて1〜2点実測しパラメータを特定し数式モデルを実機に対応させれば、運転行程時は、任意のPWMデューティ比のインダクタンス起電圧推定値VLrを演算により求めることもできる。数式モデルを簡略化すればSIN関数等を用いることなく整数演算のみでインダクタンス起電圧VL値を求めることができ演算時間を数us以下に短縮できる。
尚、コイル温度は雰囲気温度や通電電流・通電時間等により変化しコイル抵抗値も大きく変動するが、構造的にコイル間での温度抵抗偏差は小さく実測でも温度依存性は非常に少ないことを確認している。
以上により幅広い温度範囲で各種モータに対してインダクタンス起電圧推定値VLrを高精度に推定することができる。
Further, the value of the inductance electromotive voltage VL fluctuates in a complicated manner depending on the PWM duty ratio. On the other hand, the static inductance electromotive voltage VLs values based on a plurality of PWM duty ratios are stored in a lookup table (LUT: storage unit) at the time of initial measurement, and the operation corresponds to the lookup table according to the PWM duty ratio. By reading out the static inductance electromotive voltage VLs value, an inductance electromotive voltage estimated value VLr reflecting the fluctuation of the PWM duty ratio can be obtained. For example, if the interval width of the PWM duty ratio to be measured is set to 10% increments, 7 data of 20%, 30%, 40%, 50%, 60%, 70%, and 80% can be as little as possible, and the initial measurement time can be shortened. And saves memory.
Alternatively, a mathematical model for obtaining the inductance electromotive force estimated value VLr according to the PWM duty ratio is created, and the static inductance electromotive voltage VLs is measured at one or two points by changing the PWM duty ratio in the operation preparation process, and the parameters are specified and the mathematical model. Can be obtained by calculating the inductance electromotive force estimated value VLr having an arbitrary PWM duty ratio during the operation stroke. If the mathematical model is simplified, the inductance electromotive voltage VL value can be obtained only by integer calculation without using a SIN function or the like, and the calculation time can be reduced to several us or less.
The coil temperature varies depending on the ambient temperature, energizing current, energizing time, etc., and the coil resistance value varies greatly. However, the temperature resistance deviation between the coils is structurally small, and it is confirmed that the temperature dependence is very small even in actual measurement. doing.
As described above, the inductance electromotive force estimated value VLr can be estimated with high accuracy for various motors in a wide temperature range.

(回転動作の説明)
上述したインダクタンス起電圧推定値VLrに所定角度における開放相誘起電圧VEzを加算すれば、所定角度における開放相電圧VZを推定することができる。所定角度における開放相誘起電圧VEzは、
VEz=KE×N×SIN(θ)×1.5 ・・・(式A)
(KE=誘起電圧定数、N=回転数、θ=励磁区間中間点を0°(または180°)としたときの界磁角度)
を演算することで求められる。
また、インダクタンス起電圧推定値VLrに開放相誘起電圧VEzを(式B)
Vth=VLr+VEz ・・・(式B)
により加算して得られる中性点電位に対する開放相電圧を閾値Vthとして記憶しておく。
よって、例えば120°通電方式の区間終点における開放相誘起電圧VEzは、(式A)のθ=30°として、誘起電圧定数(既知)×回転数×SIN30°×1.5を演算することで求められる。そこで、区間始点にて区間終点の閾値Vthを演算しておき、PWM周期で繰り返し開放相電圧VZを測定し閾値Vthを超えたか判定すれば区間終点を検出でき、次区間の励磁パターンに切り替えて連続回転することができる。
(Explanation of rotation operation)
By adding the open phase induced voltage VEz at a predetermined angle to the above-described inductance electromotive voltage estimated value VLr, the open phase voltage VZ at the predetermined angle can be estimated. The open phase induced voltage VEz at a predetermined angle is
VEz = KE × N × SIN (θ) × 1.5 (Formula A)
(KE = induced voltage constant, N = rotational speed, θ = field angle when the excitation section midpoint is 0 ° (or 180 °))
It is calculated by computing.
Further, the open-phase induced voltage VEz is added to the inductance induced voltage estimated value VLr (formula B).
Vth = VLr + VEz (Formula B)
The open-phase voltage with respect to the neutral point potential obtained by the addition is stored as the threshold value Vth.
Therefore, for example, the open phase induced voltage VEz at the end point of the 120 ° energization method section is calculated by calculating the induced voltage constant (known) × the number of rotations × SIN 30 ° × 1.5 with θ = 30 ° in (Formula A). Desired. Therefore, if the threshold Vth of the section end point is calculated at the section start point, the open phase voltage VZ is repeatedly measured at the PWM cycle, and it is determined whether the threshold value Vth is exceeded, the section end point can be detected, and the excitation pattern of the next section is switched. Can rotate continuously.

上述した電動機の界磁位置推定方法によれば、インダクタンス起電圧推定値VLrは回転数に応じて推定され、誘起電圧も回転数に応じて一義的に推定できることから、界磁位置検出誤差を解消でき零速から最高回転数まで同一アルゴリズムで高精度な界磁位置検出が可能である。
さらに従来のゼロクロス点検出方式ではゼロクロス点検出行程が必要で検出に時間がかかっていたが、本方式はゼロクロス点を検出する必要がなく区間始点にて瞬時に区間終点の開放相電圧を推定できることから、PWMデューティ比を100%とし開放相電圧をPWM周期よりも短周期で読み出せば超高速回転が可能である。なおPWMデューティ比100%時はパルスアンプリチュード変調(PAM)制御により速度調整できる。
According to the motor field position estimation method described above, the inductance electromotive voltage estimated value VLr is estimated according to the rotational speed, and the induced voltage can be uniquely estimated according to the rotational speed, so that the field position detection error is eliminated. Highly accurate field position detection is possible with the same algorithm from zero speed to the maximum speed.
Furthermore, the conventional zero-cross point detection method requires a zero-cross point detection process and takes a long time to detect, but this method does not need to detect the zero-cross point and can instantaneously estimate the open phase voltage at the end point of the zone at the start point of the zone. Therefore, if the PWM duty ratio is set to 100% and the open phase voltage is read out in a cycle shorter than the PWM cycle, ultra-high speed rotation is possible. When the PWM duty ratio is 100%, the speed can be adjusted by pulse amplitude modulation (PAM) control.

以下、図7に示すモータ駆動回路を用いた動作手順の一例を説明する。区間終点を検出するものとし、通電区間内では電源電圧及びPWMデューティ比は一定とする。動作モードは二つあり、予め運転前に静止時インダクタンス起電圧VLsの測定などを行う運転準備工程と、始動後に連続回転をする運転行程があり、それぞれの行程についてフローチャートを使って説明する。   Hereinafter, an example of an operation procedure using the motor drive circuit shown in FIG. 7 will be described. The section end point is detected, and the power supply voltage and the PWM duty ratio are constant in the energization section. There are two operation modes. There are an operation preparation step for measuring the inductance electromotive voltage VLs at rest before the operation in advance and an operation step for continuous rotation after starting, and each step will be described with reference to a flowchart.

図8はインダクタンス起電圧VLを推定する運転準備工程のフローチャートである。永久磁石界磁を通電区間始点に位置決め停止させる。例えばU相を+、V相をGNDに接続して150°に自励停止させる。あるいは外力で区間始点に停止させるなどの方法がある(STEP1)。   FIG. 8 is a flowchart of an operation preparation process for estimating the inductance electromotive voltage VL. The permanent magnet field is positioned and stopped at the starting point of the energizing section. For example, the U phase is connected to +, the V phase is connected to GND, and self-excitation is stopped at 150 °. Alternatively, there is a method of stopping at the start point of the section by external force (STEP 1).

MPU51のPWMデュ−ティ比を使用範囲の下限値にセットする(STEP2)。次いで、停止させた通電区間始点に対応する通電パターンにて数サイクル(例えば10サイクル程度)のPWM通電をする(STEP3)。最終PWM通電サイクルのオンサイクル終了時に3相のコイル電圧を測定する(STEP4)。そして、界磁位置ずれ防止のため短時間(例えば100ms程度)の自励停止を行い再度区間始点に停止するように位置決めする(STEP5)。   The PWM duty ratio of the MPU 51 is set to the lower limit value of the use range (STEP 2). Next, PWM energization is performed for several cycles (for example, about 10 cycles) with an energization pattern corresponding to the start point of the energized section that has been stopped (STEP 3). At the end of the on-cycle of the final PWM energization cycle, the three-phase coil voltage is measured (STEP 4). Then, self-excitation is stopped for a short time (for example, about 100 ms) to prevent the field position shift, and positioning is performed so as to stop again at the section start point (STEP 5).

次に、MPU51は、静止時インダクタンス起電圧VLs値を算出する。
静止時インダクタンス起電圧VLs=VZ(開放相電圧)−(VS(通電相間電圧)/2)により算出される(STEP6)。
算出された静止時インダクタンス起電圧VLsを、PWMデューティ比に関連付けてルックアップテーブル(LUT)56に保存する(STEP7)。次いで、PWMデューティ比を所定のステップ幅(例えば10%増)で大きく設定しなおす(STEP8)。
ここで、設定し直したPWMデューティ比が使用範囲上限を超えているか否か判定し(STEP9)、使用範囲上限以下ならSTEP3へ戻る。STEP9でPWMデューティ比が使用範囲上限より大なら通電相間電圧VSを初期電圧として記憶する(STEP10)。また、誘起電圧定数KEを記憶する(設計試作段階で既知である:STEP11)。
Next, the MPU 51 calculates a static inductance electromotive voltage VLs value.
The static inductance voltage VLs = VZ (open phase voltage) − (VS (energized phase voltage) / 2) is calculated (STEP 6).
The calculated static inductance electromotive voltage VLs is stored in a lookup table (LUT) 56 in association with the PWM duty ratio (STEP 7). Next, the PWM duty ratio is set to a larger value with a predetermined step width (for example, an increase of 10%) (STEP 8).
Here, it is determined whether or not the reset PWM duty ratio exceeds the use range upper limit (STEP 9), and if it is less than the use range upper limit, the process returns to STEP 3. If the PWM duty ratio is larger than the upper limit of the use range in STEP 9, the energized inter-phase voltage VS is stored as an initial voltage (STEP 10). Also, the induced voltage constant KE is stored (known at the design trial stage: STEP11).

なお、必要に応じて奇数区間と偶数区間の双方の静止時インダクタンス起電圧VLsを記憶させてもよい。その際は、ルックアップテーブル56を2個用意し、上記測定が完了したら次の区間始点へ位置決めし同様の測定を行えばよい。以後、モータ運転動作に移行することができる。   In addition, you may memorize | store the static inductance electromotive voltage VLs of both the odd-numbered area and the even-numbered area as needed. In that case, two look-up tables 56 may be prepared, and when the above measurement is completed, positioning to the start point of the next section and the same measurement may be performed. Thereafter, it is possible to shift to motor operation.

図9はモータ始動後の運転工程のフローチャートである。
先ずモータ始動後、励磁切り替え時に、前回区間時間等から回転数を演算する(STEP21)。そして当該通電区間終点における通電2相の誘起電圧を演算し2相の誘起電圧を加算したものを通電相誘起電圧VEとする(STEP22)。通電相誘起電圧VEは、(式A)でθ=30°としてKE×N×0.5×1.5×2相で求められる。同様に、区間終点における開放相の誘起電圧を演算し開放相誘起電圧VEzとする。開放相誘起電圧VEzは、(式A)でθ=30°としてKE×N×0.5×1.5即ち通電2相の誘起電圧を1/2すれば求められる(STEP23)。
FIG. 9 is a flowchart of the operation process after starting the motor.
First, after the motor is started, when the excitation is switched, the rotation speed is calculated from the previous section time or the like (STEP 21). Then, the energized phase induced voltage VE is calculated by calculating the induced voltage of the energized two phases at the end of the energized section and adding the induced voltages of the two phases (STEP 22). The energized phase induced voltage VE is obtained as KE × N × 0.5 × 1.5 × 2 phase with θ = 30 ° in (Formula A). Similarly, the induced voltage of the open phase at the end point of the section is calculated and set as the open phase induced voltage VEz. The open-phase induced voltage VEz can be obtained by setting KE × N × 0.5 × 1.5, that is, the induced voltage of the energized two phases by 1/2, with θ = 30 ° in (Formula A) (STEP 23).

次に、STEP24に進行して通電2相の相間電圧を測定する。次いで、測定した通電相間電圧VSを用いて有効電圧比を演算する。有効電圧比=(通電相間電圧VS−通電相誘起電圧VE)/初期電圧により算出する(STEP25)。次いで、MUP51は、ルックアップテーブル56から現PWMデューティ比に応じて静止時インダクタンス起電圧VLsの値を読み出す(STEP26)。そして、読み出した静止時インダクタンス起電圧VLsの値に有効電圧比を乗じてインダクタンス起電圧推定値VLrとする(STEP27)。インダクタンス起電圧推定値VLrと開放相誘起電圧VEzを加算して閾値Vthとして記憶する(STEP28)。   Next, it progresses to STEP24 and the phase voltage of energized two phases is measured. Next, the effective voltage ratio is calculated using the measured energized interphase voltage VS. Effective voltage ratio = (energized phase voltage VS−energized phase induced voltage VE) / initial voltage is calculated (STEP 25). Next, the MUP 51 reads the value of the static inductance electromotive voltage VLs from the lookup table 56 according to the current PWM duty ratio (STEP 26). Then, the read value of the static inductance electromotive voltage VLs is multiplied by the effective voltage ratio to obtain an inductance electromotive voltage estimated value VLr (STEP 27). The inductance induced voltage estimated value VLr and the open phase induced voltage VEz are added and stored as the threshold value Vth (STEP 28).

次に、STEP29に進行して、PWMオンサイクルごとに3相のコイル電圧を測定する。尚、このとき相間電圧が変動しなければ、開放相の電圧測定だけでもよい。次に、中性点電位(通電相電圧/2)に対する開放相電圧を演算し、開放相電圧VZとする(STEP30)。ここで、開放相電圧VZが閾値Vthを超えたか否かを判定し(STEP31)、開放相電圧VZが閾値Vth未満ならSTEP29へ戻る。STEP31で、開放相電圧VZが閾値Vth以上なら当該通電区間終点と判定する(STEP32)。通電区間終点を検出したらMPU51は励磁切り替えしインバータ回路52を通じて次区間の通電パターンを出力して連続回転する。   Next, proceeding to STEP 29, a three-phase coil voltage is measured for each PWM ON cycle. If the interphase voltage does not fluctuate at this time, only the voltage measurement of the open phase may be performed. Next, the open phase voltage with respect to the neutral point potential (energized phase voltage / 2) is calculated and set as the open phase voltage VZ (STEP 30). Here, it is determined whether or not the open phase voltage VZ exceeds the threshold value Vth (STEP 31). If the open phase voltage VZ is less than the threshold value Vth, the process returns to STEP 29. If the open phase voltage VZ is greater than or equal to the threshold value Vth in STEP 31, it is determined that the current-carrying section end point (STEP 32). When detecting the end point of the energization section, the MPU 51 switches the excitation, outputs the energization pattern of the next section through the inverter circuit 52, and continuously rotates.

高速回転時はPWMデューティ比を100%として駆動することもでき、即ち直流通電時はインダクタンス起電圧VL=0であるからVL演算を省略できる。従って界磁位置検出動作は、通電区間終点における開放相誘起電圧VEz推定値を演算したのち、開放相電圧VZの測定と開放相誘起電圧VEz推定値との大小比較を周期的に繰り返すだけで可能となる。以上の界磁位置検出に要する時間はPWMキャリア周期よりも短いから界磁位置検出のスループットをあげることができ高速回転が可能となる。なお、PWMデューティ比100%時の速度制御はPAM制御により実現することができる(PAM制御の詳細説明は本方式とは直接関係しないので省略する)。   During high speed rotation, the PWM duty ratio can be set to 100%, that is, when the DC current is applied, the inductance electromotive voltage VL = 0, so that the VL calculation can be omitted. Therefore, the field position detection operation can be performed by calculating the open phase induced voltage VEz estimated value at the end point of the energization section and then periodically repeating the measurement of the open phase voltage VZ and the open phase induced voltage VEz estimated value. It becomes. Since the time required for the above field position detection is shorter than the PWM carrier cycle, the field position detection throughput can be increased and high-speed rotation is possible. Note that speed control when the PWM duty ratio is 100% can be realized by PAM control (detailed description of PAM control is not directly related to the present method and is omitted).

PWMデューティ比が100%時の手順を以下に説明する。
運転時は通電区間の切り替え時のスパイク期間に以下の演算を行う。前回の通電区間時間から回転数を演算し、回転数と誘起電圧定数から区間終点における開放相誘起電圧VEzを演算して閾値とする。その後の励磁区間では開放相電圧VZを測定し、得られた開放相電圧VZが閾値と一致または超えるまで測定を繰り返し、閾値を超えたら区間終点と判定する。
The procedure when the PWM duty ratio is 100% will be described below.
During operation, the following calculation is performed during the spike period when switching the energized section. The rotational speed is calculated from the previous energizing section time, and the open phase induced voltage VEz at the end point of the section is calculated from the rotational speed and the induced voltage constant to obtain a threshold value. In the subsequent excitation interval, the open phase voltage VZ is measured, and the measurement is repeated until the obtained open phase voltage VZ matches or exceeds the threshold value.

さらに磁気飽和量が大きく低速回転時にゼロクロス点の発生しないモータで区間中間点を検出しなければならない場合は、所定角度として区間中間点即ち始点から30°位相の位置を指定すればよい。本方式によれば区間中間点のインダクタンス起電圧推定値VLrの値を推定し検出できるので例え低速回転時にゼロクロス点が発生しないモータであっても正しくゼロクロス点を検出できる。実施の手順は上述の区間終点検出動作の場合と同様である。   Furthermore, when the section intermediate point must be detected by a motor that has a large magnetic saturation and does not generate a zero cross point during low-speed rotation, the section intermediate point, that is, the position of the 30 ° phase from the start point may be designated as the predetermined angle. According to this method, since the value of the inductance electromotive voltage estimated value VLr at the midpoint of the section can be estimated and detected, the zero cross point can be correctly detected even if the motor does not generate a zero cross point during low speed rotation. The implementation procedure is the same as that in the section end point detection operation described above.

上述した電動機のインダクタンス起電圧推定方法及び界磁位置推定方法によれば、モータが零速から最高回転数まで同一プログラムでインダクタンス起電圧推定値VLrを推定することができる。また、インダクタンス起電圧推定値VLrを用いて、モータが零速から最高回転数まで界磁位置検出方式を切り替える必要がなく界磁位置検出誤差の低減とスムーズな回転を実現でき、界磁位置検出プログラムも単一で済みソフトウェア開発負荷の低減等を実現することができる。   According to the above-described method for estimating the inductance electromotive force and the method for estimating the magnetic field position of the motor, it is possible to estimate the inductance electromotive force estimated value VLr with the same program from the zero speed to the maximum rotational speed of the motor. In addition, using the estimated inductance voltage VLr, it is not necessary for the motor to switch the field position detection method from zero speed to the maximum number of rotations, and field position detection errors can be reduced and smooth rotation can be realized. A single program is sufficient, and the software development load can be reduced.

なお、モータ駆動回路の構成や制御プログラム構成は様々考えられ、本実施例に開示された態様に限定されるものではなく、本案主旨を逸脱しない範囲で電子回路技術者あるいはプログラマー(当業者)であれば当然なし得る回路構成の変更やプログラム構成の変更も含まれる。   Various configurations of the motor drive circuit and control program are conceivable, and the present invention is not limited to the mode disclosed in the present embodiment, and an electronic circuit engineer or a programmer (a person skilled in the art) does not depart from the scope of the present invention. The change of the circuit configuration and the change of the program configuration, which can be naturally performed if there are, are included.

1 回転子軸 2 回転子 3 永久磁石 4 固定子 50 上位コントローラ 51 MPU 52 インバータ回路(INV) 53 A/Dコンバータ(ADC)56 ルックアップテーブル(LUT) 57 分圧回路 VE 通電相誘起電圧 VEz 開放相誘起電圧 VL インダクタンス起電圧 VLs 静止時インダクタンス起電圧 VLr インダクタンス起電圧推定値 VS 通電相間電圧 VZ 開放相電圧 Vth 閾値   DESCRIPTION OF SYMBOLS 1 Rotor shaft 2 Rotor 3 Permanent magnet 4 Stator 50 Host controller 51 MPU 52 Inverter circuit (INV) 53 A / D converter (ADC) 56 Look-up table (LUT) 57 Voltage divider circuit VE Energized phase induced voltage VEz Open Phase induced voltage VL Inductance voltage VLs Inductive voltage at rest VLr Estimated value of inductance voltage VS Interphase voltage VZ Open phase voltage Vth threshold

Claims (4)

永久磁石界磁を有する回転子と三相コイルを有する固定子を備え、定電圧直流電源を供給してパルス幅変調(PWM)方式にて120°通電により始動する電動機のインダクタンス起電圧の推定方法であって、ハーフブリッジ型インバータ回路を介してコイルに双方向通電する出力部と、コイル電圧をA/D変換して制御部に送出する測定部と、上位コントローラからの指令によりコイル出力をPWM制御し、連続回転が可能な60°通電区間単位の通電角度情報と通電パターン情報とを記憶部に記憶し、それに基づいて前記出力部をスイッチング制御して通電状態を切り替え、前記測定部から測定値が入力され前記60°通電区間における界磁位置を判定する前記制御部と、を備え、
前記永久磁石界磁を予め通電区間内の所定角度に静止させ、所定電圧にてPWM通電したとき、通電2相のインダクタンス偏差により開放相端子に現れる通電相間電圧/2からの電位差をインダクタンス起電圧VLとして、PWMデューティ比に応じた静止時インダクタンス起電圧VLs値を実測により求め、前記PWMデューティ比に関連付けて前記記憶部に記憶し、前記静止時インダクタンス起電圧VLs測定時の通電相間電圧VSを初期電圧として記憶し、誘起電圧定数KEを記憶する運転前準備ステップと、
運転時に回転子の回転速度を検出し、回転数Nと誘起電圧定数KEから所定回転角度における通電2相の誘起電圧を求めその和を通電相誘起電圧VEとし、通電相間電圧VSを測定し、前記通電相間電圧VSと前記通電相誘起電圧VEの差分を前記初期電圧で除して有効電圧比を求めるステップと、を含み、
前記制御部は、インダクタンス起電圧VLは界磁位置に応じて変化しさらに有効電圧に比例するという性質を用いて、運転時のPWMデューティ比に応じて前記記憶部から該当する静止時インダクタンス起電圧VLs値を選択して読み出し、読み出したインダクタンス起電圧VLs値に前記有効電圧比を乗じて、前記所定角度におけるインダクタンス起電圧推定値VLrを推定することを特徴とする電動機のインダクタンス起電圧の推定方法。
Method for estimating inductance electromotive force of an electric motor including a rotor having a permanent magnet field and a stator having a three-phase coil and supplying a constant voltage DC power source and starting by energizing 120 ° in a pulse width modulation (PWM) method In addition, an output unit that bidirectionally energizes the coil via a half-bridge type inverter circuit, a measurement unit that performs A / D conversion of the coil voltage and sends the coil voltage to the control unit, and a coil output in accordance with a command from the host controller. The storage unit stores energization angle information and energization pattern information in units of 60 ° energization sections that can be controlled and continuously rotated, and based on this, the output unit is switched to switch the energization state, and measurement is performed from the measurement unit And a controller for determining a field position in the 60 ° energization section when a value is input,
When the permanent magnet field is previously stopped at a predetermined angle in the current-carrying section and PWM power is supplied at a predetermined voltage, the potential difference from the current-phase voltage / 2 that appears at the open-phase terminal due to the inductance deviation of the current-carrying two-phase is determined as the inductance voltage. As VL, a static inductance electromotive voltage VLs value corresponding to the PWM duty ratio is obtained by actual measurement, stored in the storage unit in association with the PWM duty ratio, and an energization phase voltage VS at the time of measuring the static inductance electromotive voltage VLs is obtained. A pre-operation preparation step of storing as an initial voltage and storing an induced voltage constant KE;
The rotational speed of the rotor is detected during operation, the induced voltage of the energized two phases at a predetermined rotation angle is determined from the rotational speed N and the induced voltage constant KE, and the sum is set as the energized phase induced voltage VE, and the energized interphase voltage VS is measured. Dividing the difference between the energized phase voltage VS and the energized phase induced voltage VE by the initial voltage to obtain an effective voltage ratio,
The control unit uses the property that the inductance electromotive voltage VL varies depending on the field position and is proportional to the effective voltage, and the corresponding static inductance electromotive voltage from the storage unit according to the PWM duty ratio during operation. A method for estimating an inductance electromotive force of a motor, wherein a VLs value is selected and read, and the inductance electromotive voltage estimated value VLr at the predetermined angle is estimated by multiplying the read inductance electromotive voltage VLs value by the effective voltage ratio. .
請求項1で求めた回転時インダクタンス起電圧推定値VLrを用いて界磁位置を推定する電動機の界磁位置推定方法であって、
運転時の所定通電区間の区間始点において前記回転子の回転数N及び誘起電圧定数KEから現在通電区間内の所定角度における開放相誘起電圧VEzを(式A)により演算で求めるステップと、
VEz=KE×N×SIN(θ)×1.5 ・・・(式A)
(KE=誘起電圧定数、N=回転数、θ=励磁区間中間点を0°(または180°)としたときの界磁角度)
前記回転時インダクタンス起電圧推定値VLrに前記開放相誘起電圧VEzを(式B)により加算して得られる中性点電位に対する開放相電圧推定値を閾値Vthとして記憶するステップと、を含み、
Vth=VLr+VEz ・・・(式B)
前記制御部は、所定通電区間始点にて所定通電区間終点の開放相電圧VZを推定しておき、周期的に中性点電位に対する開放相電圧VZを測定して前記閾値Vthと大小比較し、前記閾値Vthを超えたら区間終点と判定し、励磁区間を切り替えることを特徴とする電動機の界磁位置推定方法。
A field position estimation method for an electric motor that estimates a field position using the rotation inductance electromotive force estimated value VLr obtained in claim 1,
A step of obtaining an open phase induced voltage VEz at a predetermined angle in the current energization section by calculation according to (Equation A) from the rotational speed N of the rotor and the induced voltage constant KE at the section start point of the predetermined energization section during operation;
VEz = KE × N × SIN (θ) × 1.5 (Formula A)
(KE = induced voltage constant, N = rotational speed, θ = field angle when the excitation section midpoint is 0 ° (or 180 °))
Storing the open-phase voltage estimated value for the neutral point potential obtained by adding the open-phase induced voltage VEz to the rotational inductance electromotive voltage estimated value VLr by (Equation B) as a threshold value Vth,
Vth = VLr + VEz (Formula B)
The controller estimates an open phase voltage VZ at a predetermined energization interval end point at a predetermined energization interval start point, periodically measures the open phase voltage VZ with respect to the neutral point potential, and compares the open phase voltage VZ with the threshold value Vth. A field position estimation method for an electric motor, wherein when the threshold value Vth is exceeded, it is determined that the end point of the section is reached, and the excitation section is switched.
前記制御部に予め前記PWMデューティ比の使用範囲上限を設定しておき、
運転時に使用範囲上限値より大きなPWMデューティ比が指定された場合はPWMデューティ比100%で通電制御し、インダクタンス起電圧推定値VLrを0とし、
開放相電圧の測定周期をPWMキャリア周期とは非同期でPWMキャリア周期より短くする請求項2記載の電動機の界磁位置推定方法。
The upper limit of the PWM duty ratio is set in advance in the control unit,
When a PWM duty ratio larger than the upper limit of the use range is specified during operation, energization control is performed at a PWM duty ratio of 100%, the inductance electromotive voltage estimated value VLr is set to 0,
The field position estimation method for an electric motor according to claim 2, wherein the measurement period of the open phase voltage is made asynchronous with the PWM carrier period and shorter than the PWM carrier period.
120°通電方式の通電シーケンス順に区間番号1〜6を割り当て、奇数区間または偶数区間の静止時インダクタンス起電圧VLs値を基準値としてルックアップテーブルに記憶し、運転時にルックアップテーブルを読み出した際に偶数区間(または奇数区間)では静止時インダクタンス起電圧VLs値に適宜設定した補正係数を乗じて補正するか、あるいはルックアップテーブルを奇数区間用と偶数区間用の二つ用意し奇数区間と偶数区間のそれぞれで静止時インダクタンス起電圧VLs値を記憶し、運転時は通電区間ごとにルックアップテーブルを選択して奇数区間と偶数電区間とで異なるインダクタンス起電圧推定値VLrを推定する請求項2又は請求項3記載の電動機の界磁位置推定方法。   When section numbers 1 to 6 are assigned in order of the 120 ° energization sequence in the energization sequence, the inductance electromotive voltage VLs value at rest in the odd or even period is stored in the lookup table as a reference value, and the lookup table is read out during operation In the even section (or odd section), the static inductance electromotive voltage VLs value is corrected by multiplying the correction coefficient set appropriately, or two look-up tables are prepared for the odd section and the even section, and the odd section and the even section are prepared. The inductive electromotive voltage VLs value at rest is stored in each, and during operation, a look-up table is selected for each energizing section to estimate the estimated inductance electromotive force value VLr in the odd section and the even power section. The method for estimating a field position of an electric motor according to claim 3.
JP2018088463A 2018-05-01 2018-05-01 Method for estimating inductance electromotive force of motor and field position estimating method Active JP6383128B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018088463A JP6383128B1 (en) 2018-05-01 2018-05-01 Method for estimating inductance electromotive force of motor and field position estimating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018088463A JP6383128B1 (en) 2018-05-01 2018-05-01 Method for estimating inductance electromotive force of motor and field position estimating method

Publications (2)

Publication Number Publication Date
JP6383128B1 true JP6383128B1 (en) 2018-08-29
JP2019195241A JP2019195241A (en) 2019-11-07

Family

ID=63354770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018088463A Active JP6383128B1 (en) 2018-05-01 2018-05-01 Method for estimating inductance electromotive force of motor and field position estimating method

Country Status (1)

Country Link
JP (1) JP6383128B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110601606A (en) * 2019-09-17 2019-12-20 西北工业大学 High-dynamic internal power angle control method for brushless direct current motor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009189176A (en) * 2008-02-07 2009-08-20 Renesas Technology Corp Drive system for synchronous motor
US20090309530A1 (en) * 2008-06-16 2009-12-17 Gm Global Technology Operations, Inc. Method and apparatus for starter motor diagnosis and prognosis using parameter estimation algorithm
JP2010068581A (en) * 2008-09-09 2010-03-25 Panasonic Corp Electric motor drive unit
JP2012165547A (en) * 2011-02-07 2012-08-30 Panasonic Corp Motor drive device
US20140239860A1 (en) * 2013-02-26 2014-08-28 Steering Solutions Ip Holding Corporation Electric motor feedforward control utilizing dynamic motor model
JP2015213400A (en) * 2014-05-07 2015-11-26 パナソニックIpマネジメント株式会社 Electric motor driving device
JP2017143612A (en) * 2016-02-08 2017-08-17 北斗制御株式会社 Sensorless starting method for three-phase brushless motor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009189176A (en) * 2008-02-07 2009-08-20 Renesas Technology Corp Drive system for synchronous motor
US20090309530A1 (en) * 2008-06-16 2009-12-17 Gm Global Technology Operations, Inc. Method and apparatus for starter motor diagnosis and prognosis using parameter estimation algorithm
JP2010068581A (en) * 2008-09-09 2010-03-25 Panasonic Corp Electric motor drive unit
JP2012165547A (en) * 2011-02-07 2012-08-30 Panasonic Corp Motor drive device
US20140239860A1 (en) * 2013-02-26 2014-08-28 Steering Solutions Ip Holding Corporation Electric motor feedforward control utilizing dynamic motor model
JP2015213400A (en) * 2014-05-07 2015-11-26 パナソニックIpマネジメント株式会社 Electric motor driving device
JP2017143612A (en) * 2016-02-08 2017-08-17 北斗制御株式会社 Sensorless starting method for three-phase brushless motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110601606A (en) * 2019-09-17 2019-12-20 西北工业大学 High-dynamic internal power angle control method for brushless direct current motor
CN110601606B (en) * 2019-09-17 2020-09-22 西北工业大学 Internal power angle control method of brushless direct current motor

Also Published As

Publication number Publication date
JP2019195241A (en) 2019-11-07

Similar Documents

Publication Publication Date Title
TWI625038B (en) Method and system for determining the position of a synchronous motor's rotor
ES2208829T3 (en) PERMANENT SINGLE-PHASE MAGNET MOTOR.
JP3765287B2 (en) Energy converter control device
JP6050339B2 (en) Electric drive unit
JP2018508171A (en) BLDC adaptive zero crossing detection
KR100713776B1 (en) Detection method of excitation position of SRM by comparison of detected current and apparatus thereof
JPS59149780A (en) Drive device for motor
EP2486647A2 (en) Variable pulse width modulation for reduced zero-crossing granularity in sensorless brushless direct current motors
JP2009033928A (en) Motor starter and motor starting method
JP5668949B2 (en) Back electromotive force detection circuit, motor drive control device and motor using the same
CA2740401C (en) Predictive pulse width modulation for an open delta h-bridge driven high efficiency ironless permanent magnet machine
JP6321130B1 (en) Electric field position error correction method
US9906175B2 (en) Method of starting a three-phase BLDC motor and motor driver using same
CN110476348B (en) Method for detecting magnetic field position of motor
JP6383128B1 (en) Method for estimating inductance electromotive force of motor and field position estimating method
JP2017143612A (en) Sensorless starting method for three-phase brushless motor
JP4171612B2 (en) Inverter device, semiconductor integrated circuit device
JP5405224B2 (en) Motor driving device and method for determining relative position of rotor provided in motor
JP2017131000A (en) Sensorless drive method for three-phase brushless motor
JP2020202636A (en) Method for detecting field magnet position of dynamo-electric motor
KR20150031356A (en) Apparatus and method for compensating reference voltage in bldc motor control system
JP6402276B1 (en) Electric field position detection method
JP2018014773A (en) Sensorless motor rotor position detection method and sensorless motor driver
JP6951008B1 (en) Rotor position detection method for sensorless motor and sensorless motor drive method
JPH09154294A (en) Driving of brushless dc motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180530

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180530

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180802

R150 Certificate of patent or registration of utility model

Ref document number: 6383128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250