TWI695989B - 射頻定位系統 - Google Patents

射頻定位系統 Download PDF

Info

Publication number
TWI695989B
TWI695989B TW107142963A TW107142963A TWI695989B TW I695989 B TWI695989 B TW I695989B TW 107142963 A TW107142963 A TW 107142963A TW 107142963 A TW107142963 A TW 107142963A TW I695989 B TWI695989 B TW I695989B
Authority
TW
Taiwan
Prior art keywords
tag
positioning
circuit
antenna
transceiver
Prior art date
Application number
TW107142963A
Other languages
English (en)
Other versions
TW202022401A (zh
Inventor
安乃駿
林原誌
蔡修安
陳碩卿
林志隆
Original Assignee
財團法人金屬工業研究發展中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人金屬工業研究發展中心 filed Critical 財團法人金屬工業研究發展中心
Priority to TW107142963A priority Critical patent/TWI695989B/zh
Priority to CN201910813770.0A priority patent/CN111257831B/zh
Application granted granted Critical
Publication of TWI695989B publication Critical patent/TWI695989B/zh
Publication of TW202022401A publication Critical patent/TW202022401A/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/08Position of single direction-finder fixed by determining direction of a plurality of spaced sources of known location

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本發明為一種射頻定位系統,包含收發器、定位標籤、處理單元與運算主機,其中,一或複數個定位標籤供安裝在被定位的目標物上,當收發器產生及送出發射信號後,定位標籤上之標籤天線可截取發射信號並反射相對應之調變信號,該收發器截取調變信號並傳送至該處理單元,該處理單元獲得接收信號並根據該接收信號及發射信號而計算出頻率差,該運算主機係根據頻率差計算標籤天線之位置座標,並由複數個標籤天線之位置座標計算被定位目標物之方位。

Description

射頻定位系統
本發明為一種利用無線射頻信號雙向傳輸,從而定位出目標位置的射頻定位系統。
定位系統的應用相當廣泛,其中一種是應用在手術定位。手術定位技術包括機械式定位(mechanical positioning)、超音波定位(ultrasound positioning)、X光與CT定位、電磁定位(electromagnetic positioning)與光學定位(optical positioning)等。目前市面上應用於手術導航(surgical navigation)之定位技術產品,大多數都是基於紅外線(infrared)之光學定位系統。光學定位系統由光學探頭(optical probe)及嵌入反光球(reflective sphere)之參考框架(dynamic reference frame, DRF)組成,透過將參考框架安裝於患部及手術器械上,利用光學技術追蹤手術器械與患部的相對位置關係,並藉由手術導引軟體協助醫師精準操作器械,提升施術品質。臨床資料顯示,光學定位技術存在直視性(line of sight)遮蔽問題,且參考框架體積大,手術空間易受侷限,裝置普遍而言較為笨重,容易影響醫師操作器械手感。
本發明之主要目的是提供一種射頻定位系統,利用無線射頻之信號傳輸進行定位。
為達成前述目的,本發明的射頻定位系統係包含有複數個收發器、至少一定位標籤、至少一處理單元及一運算主機,其中: 各收發器包含:             一發射電路,連接一發射天線,該發射電路產生一發射信號,透過該發射天線將該發射信號對外傳輸;以及             一接收電路,連接一接收天線,該接收電路透過該接收天線截取該至少一定位標籤發出的一調變信號; 該至少一定位標籤包含:             至少一標籤電路與對應連接該標籤電路的一標籤天線,該標籤電路透過該標籤天線截取各收發器發出的該發射信號,以及在接收到的該發射信號中加入專屬於該標籤天線的一識別碼以產生該調變信號,透過該標籤天線將該調變信號對外傳輸; 該至少一處理單元連接各收發器,且包含有:             一識別電路,提供對應該標籤天線的該識別碼;             複數個處理電路,該處理電路的數目與該收發器的數目一致,其中,各處理電路根據該識別電路提供的該識別碼,從對應收發器傳送的該調變信號獲得一接收信號,並計算出同一收發器其發射信號與該接收信號的一頻率差; 該運算主機連接各該至少一處理單元,接收各處理電路計算出之頻率差,其中,該運算主機根據該頻率差計算出該標籤天線與各收發器之間的距離,並根據已知的各收發器其位置座標,計算出該標籤天線的位置座標。
請參考圖1所示,本發明包含有多個收發器10、定位標籤20、處理單元30及一運算主機40。
如圖2A所示,各收發器包含有一發射電路11、一發射天線12、一接收電路13及一接收天線14;該發射電路11連接發射天線12,用以產生一發射信號,透過該發射天線12將發射信號以電磁波的形式向外傳送;該接收天線14用以截取從定位標籤20反射回來的調變信號,該接收電路13連接該接收天線14,透過該接收天線14獲得該調變信號。在本發明定位系統中該發射信號採用頻率調變,為了能夠區別每個收發器10產生的發射電磁波,每個發射電路11所產生的發射信號會設計成不同的頻率調變區間,例如圖2B所示,若使用三個收發器10,則三組發射信號TX1~TX3可以是採用不同的頻率;又或者如圖2C所示,在具有四個收發器10之定位系統,四組發射信號TX1~TX4可以採用分時分頻的方式加以區分,舉例來說,在相同的頻率調變區間,亦可透過發射電路11在不同時段輪流產生發射信號TX1~TX4的方式,使得同時間的發射電磁波之頻率不會重疊,達到區隔識別之目的。該接收電路13會對截取到的調變信號進行濾波處理,以移除環境干擾雜訊,再將該濾波後的調變信號傳送至處理單元30。
請參考圖3所示,定位標籤20包含有至少一個標籤天線21與對應該標籤天線21的一標籤電路22,例如在同一個定位標籤20中包含多個標籤天線21與多個分別對應的標籤電路22。其中,各標籤天線21截取收發器10傳輸出來的發射信號,經標籤電路22混入對應該標籤天線21的一專屬識別碼後,產生該調變信號,並透過標籤天線21將該調變信號以電磁波的形式反射回收發器10。不同的標籤電路22分別具有不同的識別碼,根據該識別碼即可辨識出由哪一個標籤天線21反射出該調變信號。
請參考圖1及圖4A所示,處理單元30連接各收發器10,例如透過有線的方式連接,對來自收發器10的調變信號進行處理,獲得每個收發器10之發射信號從發射、由標籤天線21反射、再由收發器10截取到該調變信號後之頻率變化,供運算主機40根據頻率變化分析每個收發器10與標籤天線21之間的直線距離。每個處理單元30會負責處理一個標籤天線21所反射之調變信號,因此該處理單元30的總數量,等同於標籤天線21的總數量。各處理單元30包含有一識別電路31及複數個處理電路32,該識別電路31會提供其對應之標籤天線21的識別碼給處理電路32,供處理電路32移除所接收到之調變信號中的識別碼,得到一接收信號RX,每個處理單元30所需要的處理電路32數目等同於系統中之收發器10的總數目。請參考圖4B,各處理電路32會將該接收信號RX與發射信號TX互相比對,獲得對應每個收發器10之一頻率差Δf。
該運算主機40連接各處理單元30的輸出端,以獲得每個處理電路32計算出的頻率差Δf,可根據頻率差Δf計算出各收發器10與每一標籤天線21之間的距離d,該距離d的計算公式可採用下式:
Figure 02_image001
上式中的c代表電磁波速度、Δf代表頻率差、
Figure 02_image003
代表每單位時間的頻率變化量。
請參考圖5A及圖5B所示,該運算主機40進一步根據所有收發器10與標籤天線21之距離d,以及所有收發器10的位置座標,依據三角距離幾何原理計算出標籤天線21之位置座標。
在圖5A中,運算主機40可計算二維空間中一標籤天線21之位置座標(x A, y A),其根據3個收發器10的已知位置座標(x 1, y 1)、(x 2, y 2)、(x 3, y 3)為圓心,以各收發器10與該標籤天線21之間的相對距離d 1A、d 2A、d 3A為半徑,計算出3個圓的交點,該交點的座標即為該標籤天線21的位置座標(x A, y A)。在圖5B中,運算主機40可計算三維空間中一標籤天線21之位置座標(x A, y A, z A),其根據4個收發器10的已知位置座標(x 1, y 1, z 1)、(x 2, y 2, z 2)、(x 3, y 3, z 3)、(x 4, y 4, z 4)為球心,以各收發器10與該標籤天線21之間的相對距離d 1A、d 2A、d 3A、d 4A為球面半徑,計算出4個球面在空間中的交點,該交點的座標即為該標籤天線21的位置座標(x A, y A, z A)。
當運算主機40定位出各標籤天線21的座標後,可根據多個標籤天線21的座標計算出待測目標物之方位。
以下進一步以範例,說明上述系統的實際應用。請參考圖6所示,在環境空間中係固定設置有四個收發器10,該些收發器10的位置座標(x 1, y 1, z 1)、(x 2, y 2, z 2)、(x 3, y 3, z 3)、(x 4, y 4, z 4)為已知資訊,本發明是針對系統中之定位標籤20進行定位,計算並追蹤每個定位標籤20中的各標籤天線21之位置。其中一種應用是將定位標籤20安裝於欲被定位之目標上,例如安裝在病人患部以及手術器械上,而每個目標至少安裝一個定位標籤20,如此即可在手術中,即時確認患部與手術器械之相對位置關係,並搭配手術導航軟體,讓醫師依據術前規劃好的流程,精準操作器械,提升施術效率與品質。
請參考圖7A與圖7B所示,本實施例包含四個收發器10a~10d、兩個定位標籤(每個定位標籤中具有三個標籤天線)、六個處理單元30a~30f(每個處理單元中具有四個處理電路32a~32d)及一個運算主機40。為了方便說明以下的電路動作,在此特別將兩個定位標籤以T1、T2分別標示,第一個定位標籤T1中的三個標籤天線標示為T1A1~T1A3,第二個定位標籤T2中的三個標籤天線標示為T2A1~T2A3。
首先,四個收發器10a~10d中的發射電路11a~11d所產生之發射信號標示為S 1、S 2、S 3、S 4,透過四個收發器10a~10d的發射天線12a~12d對外傳輸的發射電磁波分別標示為E 1、E 2、E 3、E 4
發射電磁波E 1被第一個定位標籤T1上的第一個標籤天線T1A1截取而產生之調變電磁波標示為E 1T1A1,被第二、第三個標籤天線T1A2、T1A3截取而產生之調變電磁波標示為E 1T1A2、E 1T1A3。發射電磁波E 1被第二個定位標籤T2上第一個標籤天線T2A1截取而產生之調變電磁波標示為E 1T2A1,被第二、第三個標籤天線T2A2、T2A3截取而產生之調變電磁波標示為E 1T2A2、E 1T2A3
同理,發射電磁波E 2被第一個定位標籤T1上的第一個標籤天線T1A1截取而產生之調變電磁波標示為E 2T1A1,被第二、第三個標籤天線T1A2、T1A3截取而產生之調變電磁波標示為E 2T1A2、E 2T1A3;發射電磁波E 2被第二個定位標籤T2上的第一個標籤天線T2A1截取而產生之調變電磁波標示為E 2T2A1,被第二、第三個標籤天線截取而產生之調變電磁波標示為E 2T2A2、E 2T2A3。依此類推,發射電磁波E 3、E 4同樣被兩定位標籤T1、T2中的各標籤天線T1A1~T1A3、T2A1~T2A3截取並產生相對應的調變電磁波。
第一個收發器10a的接收天線14a至少會截取E 1T1A1、E 1T1A2、E 1T1A3、E 1T2A1、E 1T2A2、E 1T2A3等調變電磁波,並由接收電路13a進行濾波及轉換為對應的S 1T1A1、S 1T1A2、S 1T1A3、S 1T2A1、S 1T2A2、S 1T2A3等調變信號。第二個收發器10b的接收天線14b至少會截取E 2T1A1、E 2T1A2、E 2T1A3、E 2T2A1、E 2T2A2、E 2T2A3等調變電磁波,並由接收電路13b進行濾波及轉換為對應的S 2T1A1、S 2T1A2、S 2T1A3、S 2T2A1、S 2T2A2、S 2T2A3等調變信號。依此類推,第三收發器10c、第四收發器10d至少會各自截取到對應的調變電磁波,以及據其產生調變信號。
結合參考圖7B,在第一個處理單元30a中,第一個處理電路32a會接收識別電路31a提供對應第一個定位標籤T1上的第一個標籤天線T1A1之識別碼、接收第一個收發器10a之發射信號S 1以及接收包含至少S 1T1A1、S 1T1A2、S 1T1A3、S 1T2A1、S 1T2A2、S 1T2A3等調變信號,獲得第一個定位標籤T1上的第一個標籤天線T1A1之接收信號S 1T1A1’,且該第一個處理電路32a會根據該接收信號S 1T1A1’以及發射信號S 1而計算出頻率差S 1T1A1_Δf。同理,第一個處理單元30a中的第二個處理電路32b會接收識別電路31a提供對應第一個定位標籤T1上的第一個標籤天線T1A1之識別碼、接收第二個收發器10b之發射信號S 2以及接收包含至少S 2T1A1、S 2T1A2、S 2T1A3、S 2T2A1、S 2T2A2、S 2T2A3等調變信號,獲得第一個定位標籤T1上第一個標籤天線T1A1之接收訊號S 2T1A1’,且該第二個處理電路32b根據該接收信號S 2T1A1’以及發射信號S 2計算出頻率差S 2T1A1_Δf。依此類推,第一個處理單元30a上的第三個處理電路32c、第四個處理電路32d會分別計算出頻率差S 3T1A1_Δf、S 4T1A1_Δf。
在第二個處理單元30b中,其第一個處理電路32a會接收識別電路31b提供對應第一個定位標籤T1上的第二個標籤天線T1A2之識別碼、接收第一個收發器10a之發射信號S 1以及接收包含至少S 1T1A1、S 1T1A2、S 1T1A3、S 1T2A1、S 1T2A2、S 1T2A3等調變信號,獲得第一個定位標籤T1上的第二個標籤天線T1A2之接收信號S 1T1A2’,且該第一個處理電路32a會根據該接收信號S 1T1A2’以及發射信號S 1而計算出頻率差S 1T1A2_Δf。同理,第二個處理單元30b中的第二個處理電路32b會接收識別電路31b提供對應第一個定位標籤T1上的第二個標籤天線T1A2之識別碼、接收第二個收發器10b之發射信號S 2以及接收包含至少S 2T1A1、S 2T1A2、S 2T1A3、S 2T2A1、S 2T2A2、S 2T2A3等調變信號,獲得第一個定位標籤T1上之第二個標籤天線T1A2之接收訊號S 2T1A2’,且該第二個處理電路32b根據該接收信號S 2T1A2’以及發射信號S 2計算出頻率差S 2T1A2_Δf。依此類推,第二個處理單元30b上的第三個處理電路32c、第四個處理電路32d會分別計算出頻率差S 3T1A2_Δf、S 4T1A2_Δf。
同理,第三處理單元30c~第六處理單元30f會對應其它標籤天線T1A3、T2A1、T2A2、T2A3而計算出頻率差。
運算主機40接收第一個處理單元30a計算出來的四個頻率差S 1T1A1_Δf、S 2T1A1_Δf、S 3T1A1_Δf、S 4T1A1_Δf,先計算四個收發器10a~10d分別與第一個定位標籤T1上之第一個標籤天線T1A1之相對距離d 1T1A1、d 2T1A1、d 3T1A1、d 4T1A1,再根據四個收發器10a~10d已知的位置座標(x 1, y 1, z 1)、(x 2, y 2, z 2)、(x 3, y 3, z 3)、(x 4, y 4, z 4),計算第一個定位標籤T1上第一個標籤天線T1A1之位置座標(x T1A1, y T1A1, z T1A1)。
運算主機40接收第二個處理單元30b計算出來的四個頻率差S 1T1A2_Δf、S 2T1A2_Δf、S 3T1A2_Δf、S 4T1A2_Δf,先計算四個收發器10a~10d分別與第一個定位標籤T1上第二個標籤天線T1A2之相對距離d 1T1A2、d 2T1A2、d 3T1A2、d 4T1A2,再根據四個收發器10a~10d已知的位置座標(x 1, y 1, z 1)、(x 2, y 2, z 2)、(x 3, y 3, z 3)、(x 4, y 4, z 4),計算第一個定位標籤T1上第二個標籤天線T1A2之位置座標(x T1A2, y T1A2, z T1A2)。
依此類推,運算主機40接收第三處理單元30c~第六處理單元30f輸出的頻率差,再分別計算出其它標籤天線T1A3、T2A1、T2A2、T2A3的位置座標(x T1A3, y T1A3, z T1A3)、(x T2A1, y T 2 A1, z T2A1)、(x T2A2, y T2A2, z T2A2)、(x T2A3, y T2A3, z T2A3)。
在獲得每一個標籤天線的位置座標後,運算主機40可根據第一個定位標籤T1上的三個標籤天線T1A1~T1A3的位置座標(x T1A1, y T1A1, z T1A1)、(x T1A2, y T1A2, z T1A2)、(x T1A3, y T1A3, z T1A3),再進一步計算第一個定位標籤T1之方位(u T1, v T1, w T1);根據第二個定位標籤T2上三個標籤天線T2A1~T2A3之位置座標(x T2A1, y T2A1, z T2A1)、(x T2A2, y T2A2, z T2A2)、(x T2A3, y T2A3, z T2A3),計算第二個定位標籤T2之方位(u T2, v T2, w T2)。以計算第一個定位標籤T1的方位(u T1, v T1, w T1)為例,其計算方式如下式:
Figure 02_image005
Figure 02_image007
Figure 02_image009
Figure 02_image011
另一實施例包含四個收發器10a~10d、三個定位標籤T1、T2、T3(每個定位標籤中具有一個標籤天線,三個定位標籤的三個標籤天線分別以T1A1、T2A1、T3A1標示)、三個處理單元30a~30c(每個處理單元中具有四個處理電路32a~32d)及一個運算主機40。該三個定位標籤安裝於一欲被定位之目標物上。
該運算主機40接收該三個處理單元30a~30c輸出的頻率差,分別計算出該三個標籤天線T1A1、T2A1、T3A1的位置座標(x T1A1, y T1A1, z T1A1)、(x T2A1, y T2A1, z T2A1)、(x T3A1, y T3A1, z T3A1)。該運算主機40可再依下式進一步計算該目標物之方位(u, v, w)。
Figure 02_image013
Figure 02_image015
Figure 02_image017
Figure 02_image019
綜上所述,本發明可基於收發器與定位標籤之間的雙向信號傳輸,定位找出標籤天線的所在位置,再進一步求出該定位標籤的方位。當本發明應用於手術定位時,被定位之目標可以是病人患部及手術器械,如此即可確認患部與手術器械之相對位置關係,使醫師能更精準操作器械,提升施術品質。
相較於光學式定位技術探頭與反光球之間一旦被遮蔽,系統即無法進行定位,本發明基於射頻之無線信號,可有效完成定位,避免光學定位系統之直視性阻隔,提升醫用定位系統之抗遮蔽能力。
本發明透過收發器朝定位標籤發射訊號、並接收從定位標籤反射訊號之設計,藉此縮小定位標籤之電路與外形尺寸、減輕重量、降低電力消耗,提升定位標籤可連續操作時間,以利與手術器械及導航系統整合。
當手術器械進入人體,目前多是透過拍攝X光影像確認器械實際位置;透過選用適當波段之射頻訊號,本發明之射頻定位系統具備應用於體內手術定位之機會,可減少術中X光影像拍攝數量,降低醫護人員之游離輻射暴露劑量,避免輻射危害。
10、10a、10b、10c、10d:收發器 11、11a、11b、11c、11d:發射電路 12、12a、12b、12c、12d:發射天線 13、13a、13b、13c、13d:接收電路 14、14a、14b、14c、14d:接收天線 20、T1、T2、T3:定位標籤 21、T1A1、T1A2、T1A3、T2A1、T2A2、T2A3、T3A1:標籤天線 22:標籤電路 30、30a、30b、30c、30d、30e、30f:處理單元 31、31a、31b、31c、31d、31e、31f:識別電路 32、32a、32b、32c、32d:處理電路 40:運算主機 TX、TX1、TX2、TX3、TX4:發射信號 RX:接收信號
圖1:本發明射頻定位系統方塊圖。 圖2A:本發明收發器的電路方塊圖。 圖2B:不同頻率之發射信號的波形示意圖。 圖2C:不同頻率、不同時段之發射信號的波形示意圖。 圖3:本發明定位標籤的電路方塊圖。 圖4A:本發明處理單元的電路方塊圖。 圖4B:發射信號TX與接收信號RX之頻率差Δf的示意圖。 圖5A:運算主機計算二維空間中標籤天線之位置座標的示意圖。 圖5B:運算主機計算三維空間中標籤天線之位置座標的示意圖。 圖6:本發明應用於手術器械定位的示意圖。 圖7A:本發明應用在三維定位中,複數收發器與定位標籤之信號傳輸示意圖。 圖7B:配合圖7A之複數處理單元的信號傳輸示意圖。
10:收發器
20:定位標籤
30:處理單元
40:運算主機

Claims (6)

  1. 一種射頻定位系統,包含有複數個收發器、至少一定位標籤、複數個處理單元及一運算主機,其中:各收發器包含:一發射電路,連接一發射天線,該發射電路產生一發射信號,透過該發射天線將該發射信號對外傳輸;以及一接收電路,連接一接收天線,該接收電路透過該接收天線截取該至少一定位標籤發出的一調變信號;該至少一定位標籤包含:複數個標籤電路與分別對應連接該標籤電路的複數個標籤天線,該標籤天線的總數與該標籤電路的數目相同,該標籤電路透過該標籤天線截取各收發器發出的該發射信號,以及在接收到的該發射信號中加入專屬於該標籤天線的一識別碼以產生該調變信號,透過該標籤天線將該調變信號對外傳輸;各該處理單元連接各收發器,該複數個處理單元的數目與該標籤天線的總數相同,且各處理單元包含有:一識別電路,提供對應該標籤天線的該識別碼;複數個處理電路,該處理電路的數目與該收發器的數目一致,其中,各處理電路根據該識別電路提供的該識別碼,從對應收發器傳送的該調變信號獲得一接收信號,並計算出同一收發器其發射信號與該接收信號的一頻率差;該運算主機連接各該處理單元,接收各處理電路計算出之頻率差,其中,該運算主機根據該頻率差計算出該標籤天線與各收發器之間的距離,並根據已知的各收發器其位置座標,計算出該標籤天線的位置座標。
  2. 如請求項1所述之射頻定位系統,其中,該複數個收發器的複數發射電路,分別產生不同頻率的發射信號。
  3. 如請求項1所述之射頻定位系統,其中,該複數個收發器的複數發射電路,以分時分頻的方式產生該些發射信號,在同時間發出之發射信號的頻率不會重疊。
  4. 如請求項1所述之射頻定位系統,其中,該至少一定位標籤為複數個定位標籤。
  5. 如請求項1所述之射頻定位系統,其中,該運算主機根據該至少一定位標籤中的複數個標籤天線的位置座標,計算出該至少一定位標籤的方位。
  6. 如請求項4所述之射頻定位系統,其中,該運算主機根據各該複數個定位標籤的複數個標籤天線的位置座標,計算出複數個定位標籤的方位。
TW107142963A 2018-11-30 2018-11-30 射頻定位系統 TWI695989B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW107142963A TWI695989B (zh) 2018-11-30 2018-11-30 射頻定位系統
CN201910813770.0A CN111257831B (zh) 2018-11-30 2019-08-30 射频定位系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107142963A TWI695989B (zh) 2018-11-30 2018-11-30 射頻定位系統

Publications (2)

Publication Number Publication Date
TWI695989B true TWI695989B (zh) 2020-06-11
TW202022401A TW202022401A (zh) 2020-06-16

Family

ID=70944972

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107142963A TWI695989B (zh) 2018-11-30 2018-11-30 射頻定位系統

Country Status (2)

Country Link
CN (1) CN111257831B (zh)
TW (1) TWI695989B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI741821B (zh) * 2020-10-07 2021-10-01 廣達電腦股份有限公司 具有重力感測器輔助定位的電子裝置
TWI751790B (zh) * 2020-11-16 2022-01-01 財團法人金屬工業研究發展中心 射頻定位方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003098528A2 (en) 2002-05-16 2003-11-27 Ruth Raphaeli Method and system for distance determination of rf tags
TWI580987B (zh) * 2016-04-29 2017-05-01 Metal Ind Res & Dev Ct A positioning algorithm for calculating the positioning distance
TWI581754B (zh) * 2016-04-29 2017-05-11 Metal Ind Res & Dev Ct Regional positioning module
TWI593987B (zh) * 2016-04-29 2017-08-01 Metal Ind Res & Dev Ct FM radar transceiver
EP2188868B1 (en) * 2007-09-11 2018-07-11 RF Controls, LLC Radio frequency signal acquisition and source location system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2119699A1 (en) * 1993-08-19 1995-02-20 Keishi Matsuno Method of and apparatus for determining position of mobile object and mobile radio communication system using the same
US6252508B1 (en) * 1995-10-11 2001-06-26 Motorola, Inc. Radio frequency identification tag arranged for magnetically storing tag state information
ATE447160T1 (de) * 2006-03-31 2009-11-15 Research In Motion Ltd Verfahren und vorrichtung zur dynamischen kennzeichnung von kartenobjekten in visuell angezeigten karten mobiler kommunikationsvorrichtungen
US8072311B2 (en) * 2008-04-14 2011-12-06 Mojix, Inc. Radio frequency identification tag location estimation and tracking system and method
CN102279398B (zh) * 2010-06-09 2013-02-27 神基科技股份有限公司 射频标签定位系统及射频标签定位方法
US9151819B2 (en) * 2011-07-08 2015-10-06 Psion Inc. Antenna apparatus for determining the position of a radio-frequency transponder
CN103984971B (zh) * 2014-05-31 2017-09-12 范志广 基于天线阵列相位差测向射频识别的无线定位方法及系统
CN203894405U (zh) * 2014-06-13 2014-10-22 中国安全生产科学研究院 一种目标定位系统
CN104331727A (zh) * 2014-11-26 2015-02-04 上海爱信诺航芯电子科技有限公司 射频识别定位系统及其方法
CN104408500A (zh) * 2014-12-12 2015-03-11 深圳中科讯联科技有限公司 一种基于射频标签的轨迹定位系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003098528A2 (en) 2002-05-16 2003-11-27 Ruth Raphaeli Method and system for distance determination of rf tags
EP2188868B1 (en) * 2007-09-11 2018-07-11 RF Controls, LLC Radio frequency signal acquisition and source location system
TWI580987B (zh) * 2016-04-29 2017-05-01 Metal Ind Res & Dev Ct A positioning algorithm for calculating the positioning distance
TWI581754B (zh) * 2016-04-29 2017-05-11 Metal Ind Res & Dev Ct Regional positioning module
TWI593987B (zh) * 2016-04-29 2017-08-01 Metal Ind Res & Dev Ct FM radar transceiver

Also Published As

Publication number Publication date
CN111257831B (zh) 2022-03-25
CN111257831A (zh) 2020-06-09
TW202022401A (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
US11653848B2 (en) Vital sign detection and measurement
TWI695989B (zh) 射頻定位系統
EP3238649B1 (en) Self-localizing medical device
EP3680682A1 (en) High bandwidth and low latency hybrid communication techniques for a navigation system
JP2011514506A (ja) モーションキャプチャ方法
KR20110124263A (ko) 단일 및/또는 다중 장치의 감지, 방위 및/또는 배치 범위를 위한 장치 및 방법
CN103735312A (zh) 多模影像超声引导手术导航系统
US9986977B2 (en) Ultrasonic diagnostic apparatus and method of operating the same
US7640121B2 (en) System and method for disambiguating the phase of a field received from a transmitter in an electromagnetic tracking system
TWI736043B (zh) 多目標射頻定位系統、定位方法及初始距離量測方法
Peng et al. Recent advances in tracking devices for biomedical ultrasound imaging applications
TWI593987B (zh) FM radar transceiver
EP4265178A1 (en) Non-contact sensing of vital signs
TWI580987B (zh) A positioning algorithm for calculating the positioning distance
Simon Intra-operative position sensing and tracking devices
US20230123013A1 (en) Systems and methods for medical object tracking in obstructed environments
US10915718B2 (en) Radio frequency positioning system
KR100884712B1 (ko) 근접점 방법을 이용한 캡슐형 내시경의 위치측정 방법 및시스템
TW201737868A (zh) 區域型定位模組
TWI720711B (zh) 量測收發器位置的射頻定位方法
Wickramarachchi et al. Comparison of IR-UWB Radar SoC for Non-Contact Biomedical Application
AU2021341540B2 (en) System and method for medical object tracking
TWI751790B (zh) 射頻定位方法
Kardzhiev et al. New indoor positioning system using ultrasonic
US20030084909A1 (en) Apparatus and method for three dimensional spatial registration of surgical procedures using radio tagging