TWI693376B - 遠端校正系統及其遠端校正感測器的方法 - Google Patents

遠端校正系統及其遠端校正感測器的方法 Download PDF

Info

Publication number
TWI693376B
TWI693376B TW108109030A TW108109030A TWI693376B TW I693376 B TWI693376 B TW I693376B TW 108109030 A TW108109030 A TW 108109030A TW 108109030 A TW108109030 A TW 108109030A TW I693376 B TWI693376 B TW I693376B
Authority
TW
Taiwan
Prior art keywords
sensor
calibration
parameter
module
sensing
Prior art date
Application number
TW108109030A
Other languages
English (en)
Other versions
TW202035952A (zh
Inventor
吳緯迪
彭祥熙
謝源平
Original Assignee
台達電子工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司 filed Critical 台達電子工業股份有限公司
Priority to TW108109030A priority Critical patent/TWI693376B/zh
Priority to JP2020008149A priority patent/JP6850913B2/ja
Application granted granted Critical
Publication of TWI693376B publication Critical patent/TWI693376B/zh
Publication of TW202035952A publication Critical patent/TW202035952A/zh

Links

Images

Landscapes

  • Arrangements For Transmission Of Measured Signals (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

一種遠端校正系統,具有感測器及監控主機。感測器對環境進行感測以產生環境狀態訊號,依據環境狀態訊號及參考位準產生並上傳感測參數至監控主機。監控主機取得對應校正時機的標準參數,於判斷校正時機滿足時依據標準參數與感測參數計算偏差資料並產生發送更新資料至感測器,以使感測器依據更新資料校正參考位準。本發明經由自動遠端校正感測器,可延長感測器壽命、增進感測參數準確性並節省檢修時間與人力成本。

Description

遠端校正系統及其遠端校正感測器的方法
本發明涉及系統及方法,特別涉及遠端校正系統及其遠端校正感測器的方法。
目前已有許多基於物聯網技術的感測器被提出。前述感測器(如溫度計、溼度計或空氣品質感測器)通常被佈署於開放環境中(如辦公室、戶外或廠房),可感測所在環境的感測參數,並經由網路將所感測的感測參數自動上傳至遠端的監控主機。藉此,管理員可於監控主機遠端察看環境的狀態,而不需親臨現場。
由於佈署於開放環境,感測器容易受到破壞(如震動或碰撞)而失準,並導致所感測的感測參數錯誤。更進一步地,於前述狀況發生時,由於失準的感測器仍可正常上傳感測參數(但所上傳的感測參數可能是錯誤的),管理員無法經由監測主機得知感測器失準。
為降低感測參數錯誤所造成的影響,現有方式是由管理員定期地親臨現場來對各感測器進行檢查與校正。上述方式必須耗費檢修時間與人力 成本。並且,於進行人工檢修前,失準的感測器所上傳的錯誤感測參數將會造成管理員對於環境狀態的誤判。
有鑑於此,目前亟待一種可自動遠端校正感測器的方案被提出。
本發明提供一種遠端校正系統及其遠端校正感測器的方法,可適時地對感測器進行遠端校正。
於一實施例中,一種遠端校正感測器的方法,用於遠端校正系統,遠端校正系統包括感測器及監控主機,遠端校正感測器的方法包括以下步驟:於感測器對環境進行感測以產生環境狀態訊號時,依據環境狀態訊號及參考位準產生感測參數,並上傳感測參數至監控主機;於監控主機取得對應校正時機的標準參數;於判斷校正時機滿足時依據標準參數與感測參數計算偏差資料;依據偏差資料產生更新資料,並發送更新資料至感測器;及,於感測器依據更新資料校正參考位準。
於一實施例中,一種遠端校正系統,包括感測器即監控主機。感測器包括感測模組、傳輸模組及控制模組。感測模組用以對環境進行感測以產生環境狀態訊號。控制模組電性連接感測模組及傳輸模組,用以依據環境狀態訊號及參考位準產生感測參數,並經由傳輸模組對外傳輸感測參數,控制模組於收到更新資料時依據更新資料校正參考位準。監控主機與感測器的傳輸模組建立通訊連接,並經由通訊連接接收感測參數,監控主機取得對應校正時機的標準參數,於判斷校正時機滿足時依據標準參數與感測參數計算偏差資料,依據偏差資料產生更新資料,並發送更新資料至感測器。
本發明經由自動遠端校正感測器,可延長感測器壽命、增進感測參數準確性並節省檢修時間與人力成本。
10:感測器
100:控制模組
101:感測模組
102:儲存模組
103:傳輸模組
11:監控主機
110:處理裝置
111:傳輸裝置
112:儲存裝置
113:人機介面
12:網路
20:光源
21:光感測器
22:氣體室
30:偏差計算模組
31:標準取得模組
32:時機判斷模組
33:更新產生模組
34:記錄模組
35:監控模組
S10-S18:遠端校正步驟
S20-S23:更新產生步驟
S30-S36:監控步驟
圖1為本發明一實施態樣的遠端校正系統的架構圖;圖2為本發明一實施態樣的監控主機的架構圖;圖3為本發明一實施態樣的感測器的光學結構的架構圖;圖4為本發明一實施態樣的處理裝置的架構圖;圖5為本發明第一實施例的遠端校正感測器的方法的流程圖;圖6為本發明第二實施例的遠端校正感測器的方法的部分流程圖;及圖7為本發明第三實施例的遠端校正感測器的方法的部分流程圖。
下面結合圖式和具體實施例對本發明技術方案進行詳細的描述,以更進一步瞭解本發明的目的、方案及功效,但並非作為本發明所附申請專利範圍的限制。
本發明公開了一種遠端校正感測器技術,所述遠端校正感測器技術主要是經由遠端校正系統來執行一種遠端校正感測器方法(下面簡稱為校正方法),可於適當時機(即後述的校正時機)計算感測器的偏差,並產生用來校正此偏差的更新資料。藉此,感測器於執行此更新資料後自動完成參考位準的校正,並可提升感測參數的準確度。
首先,請同時參閱圖1及圖2,圖1為本發明一實施態樣的遠端校正系統的架構圖,圖2為本發明一實施態樣的監控主機的架構圖。
如圖所示,本發明的遠端校正系統1主要包括一或多個感測器10(多個感測器10可為相同或不同類型的感測器)及監控主機11。監控主機11可經由網路12(如區域網路或網際網路)連接各感測器10。
於一實施例中,遠端校正系統1還可包括一或多個閘道器(圖未標示),閘道器可經由短距離無線網路(如藍芽網路、Zigbee網路或紅外線傳輸)連接感測器10,並可經由長距離傳輸網路(如乙太網、Wi-Fi或網際網路)連接監控主機11。
各感測器10用來對所在環境進行感測以產生對應的感測參數。於一實施例中,感測器10可包括感測模組101(如溫度計、溼度計或空氣品質感測器等等)、儲存模組102、傳輸模組103及電性連接上述模組的控制模組100。感測模組101用來對所在環境進行感測以產生對應的環境狀態訊號。儲存模組102用來儲存有一組參考位準。傳輸模組103用來對外收發資料。控制模組100用來控制感測器10。
具體而言,控制模組100可依據感測模組101所產生的環境狀態訊號及儲存模組102所預存的參考位準來產生感測參數,並經由傳輸模組103對外發送(如上傳至監控主機11)所產生的感測參數。並且,控制模組100可被設定為(自監控主機11)於收到更新資料時依據更新資料校正參考位準。
監控主機11用來自各感測器10收集感測參數,並用來提供更新資料。於一實施例中,監控主機11可包括傳輸裝置111、儲存裝置112、人機介面113及電性連接上述裝置的處理裝置110。
傳輸裝置111用來對外進行資料傳輸,如與各感測器10的傳輸模組103分別建立通訊連接,並經由所建立的通訊連接接收各感測器10的感測參 數,或者發送更新資料至各感測器10。儲存裝置112用來儲存資料,如儲存對應校正時機的標準參數。人機介面113(如螢幕、喇叭、按鍵、指示燈或其他輸出入元件的任意組合)用來輸出/輸入資訊。處理裝置110用來控制監控主機11。
具體而言,處理裝置110可判斷預設的校正時機是否滿足,於判斷預設的校正時機滿足時依據儲存裝置112所預存的標準參數與自感測器10所收到的感測參數計算一組偏差資料,依據此偏差資料產生更新資料,並經由傳輸模組103發送更新資料至感測器10,以校正感測器10的參考位準。
請一併參閱圖3,為本發明一實施態樣的感測器的光學結構的架構圖。於本實施例中,感測器10為空氣品質感測器(如二氧化碳濃度感測器、甲醛濃度感測器或PM2.5濃度感測器),並且是經由光學技術來進行空氣品質的感測。
具體而言,感測器10的感測模組101可包括與圖3的相同或相似原理的光學結構。光學結構包括光源20(如紅外線LED)、容納環境的空氣的氣體室22及光感測器21。當進行感測時,感測器10被設定來控制光源20照射氣體室22的空氣,而使光源20所發出的光束穿透氣體室22的空氣並照射於光感測器21。接著,光感測器21可感測透射空氣後的光能來產生對應的環境狀態訊號(如所接收的光能的能量強度,所接收的光能會隨空氣品質變化)。藉此,控制模組100可比較環境狀態訊號與參考位準來量化空氣品質狀態為感測參數。
以感測器10是二氧化碳感測器為例,於光源20所發出的紅外線光束穿透氣體室22的空氣的過程中,若空氣中的二氧化碳濃度越高,則所吸收的紅外線光束的能量也越多(即照射至光感測器21上的紅外線光束的能量越弱),反之亦然。經由上述原理,本發明的感測器10可使用光學技術來感測空氣品質。
值得一提的是,由於光學結構相當精密,一旦遭遇震動或搖動可能使元件(如感測器)位置發生偏移,而使光徑發生變化,進而造成感測參數的錯誤。
對此,本發明所提出的校正方法可校正參考位準,使參考位準是對應變化後的光徑,來補償位置偏移,進而使感測器10恢復正常的準確度。
於一實施例中,監控主機11的儲存裝置112包括非暫態電腦可讀取媒體,前述非暫態電腦可讀取媒體記錄有電腦程式,電腦程式包括電腦可讀取程式碼。當處理裝置110執行前述電腦可讀取程式碼時,可進一步實現本發明的校正方法。
續請一併參閱圖4,為本發明一實施態樣的處理裝置110的架構圖。處理裝置110可包括多個功能模組,前述各功能模組可為軟體模組(如前述電腦可讀取程式碼或數位電路模組)或硬體模組(如電子電路模組)。具體而言,處理裝置110可包括以下功能模組。
1.偏差計算模組30:用來於校正時機滿足時依據標準參數與各感測器10的感測參數計算各感測器10的偏差資料。
2.標準取得模組31:用來於校正時機滿足時依據多個感測器10最近上傳的多個感測參數計算標準參數。
於一實施例中,標準取得模組31可輪替選擇多個感測器10的其中之一,並依據未選擇的其他感測器10的感測參數計算所選擇的感測器10的標準參數。
3.時機判斷模組32:用來判斷校正時機是否滿足。
4.更新產生模組33:用來判斷偏差資料是否偏差過大(如偏差資料大於偏差臨界值或超出偏差容許範圍),並於判斷偏差過大時計算位準校正 量,依據位準校正量產生更新資料,並發送更新資料至感測器10。前述更新資料可包括用來將參考位準校正位準校正量的軟體更新。
5.記錄模組34:用來記錄監控主機11對各感測器10的每次校正。
6.監控模組35:用來判斷各感測器10是否發生異常校正的情況(如任一感測器10的校正頻率高於臨界頻率、校正次數高於臨界次數或多次校正的多個校正幅度皆超過臨界幅度),於異常校正時發出警示,並可進一步將此感測器10加入監控清單以註記此感測器10。更進一步地,還可用來於監控清單中的任一感測器10的異常校正排除時(如校正頻率不高於臨界頻率、校正次數不高於臨界次數或多次校正的多個校正幅度皆不超過臨界幅度),將感測器10移出監控清單以解除註記此感測器10。
經由執行前述功能模組30-35,處理裝置110可實現感測器10的遠端校正與監控。
續請一併參閱圖5,為本發明第一實施例的遠端校正感測器的方法的流程圖。本發明各實施例的校正方法可由圖1至圖4所示遠端校正系統1來加以實現。具體而言,本實施例的校正方法包括以下步驟。
步驟S10:感測器10的控制模組100經由感測模組101對所在環境進行感測以產生對應的環境狀態訊號。
於一實施例中,感測器10是空氣品質感測器,並經由感測模組101的光學結構對所在環境的空氣進行感測以產生環境狀態訊號。
步驟S11:控制模組100依據環境狀態訊號及預存的參考位準產生感測參數。於一實施例中,參考位準是對應一組預設參數(如400ppm),控制模組100可計算環境狀態訊號與參考位準之間的差距,依據差距來增加或減少預設參數,並將調整後的參數作為感測參數。
步驟S12:控制模組100經由傳輸模組103透過網路12上傳所產生的感測參數至監控主機11。
於一實施例中,控制模組100是於判斷預設的上傳條件(如間隔預設時間才進行一次上傳,累積預設數量的感測參數才進行上傳,僅於指定時段進行上傳等等)滿足時才上傳所產生的感測參數至監控主機11。
步驟S13:監控主機11的處理裝置110經由時機判斷模組32判斷預設的校正時機是否滿足。
若處理裝置110判斷校正時機滿足,則執行步驟S14。否則,處理裝置110再次執行步驟S13以持續判斷校正時機是否滿足。
於一實施例中,校正時機為當前時間符合校正時段(如每天晚上10時至12時)。
於一實施例中,校正時機為同一感測器10於多個臨近時間點所上傳的多個感測參數呈現穩定狀態。以二氧化碳感測器為例,如連續10分鐘的感測參數之間的變化量小於30ppm,即表示感測器10所在環境的狀態已呈現穩定,而可排除非移動物體(如人員)所帶來的干擾。
於一實施例中,校正時機是計時預設的校正時間(如48小時)經過。
於一實施例中,校正時機為當前時間符合校正時段且同一感測器10於多個臨近時間點所上傳的多個感測參數呈現穩定狀態,或者為計時預設的校正時間經過且同一感測器10於多個臨近時間點所上傳的多個感測參數呈現穩定狀態。
步驟S14:處理裝置110經由標準取得模組31取得對應前述校正時機的標準參數。
於一實施例中,當校正時機包括當前時間符合預設的校正時段時,標準參數可為所在環境於校正時段的常態參數。前述的常態參數可為管理員於相同時段於相同環境使用其他相同類型感測器所測得的感測參數,或者為過往歷史感測參數的統計結果(如所在環境於校正時段的空氣品質標準值或溫溼度標準值)。
於一實施例中,當同一環境中僅有一組感測器10時,監控主機11於校正時機滿足時可自儲存裝置112中讀取預存的標準參數。
於一實施例中,當同一環境中設置有多個感測器10時,監控主機11於校正時機滿足時可依據多個感測器10最近上傳的多組感測參數計算標準參數(如多組感測參數的平均值、對多組感測參數執行迴歸分析所獲得數值、或基於機器學習技術使用預測模型及多組感測參數所預測的數值)。
更進一步地,監控主機11可於校正時機滿足時分別計算各感測器10的標準參數。具體而言,監控主機11可輪替選擇多個感測器10的其中之一,並依據未選擇的其他感測器10的感測參數計算所選擇的感測器10的標準參數(如以前段所述方式進行計算)。
步驟S15:處理裝置110經由偏差計算模組30依據所取得的標準參數與自感測器10收到的感測參數計算偏差資料。
於一實施例中,處理裝置110計算標準參數與感測參數之間的差值並做為偏差資料。
於一實施例中,當同一環境中設置有多個感測器10時,監控主機11可於校正時機滿足且取得各感測器10的標準參數時,輪替選擇各感測器10,並分別依據各感測器10的標準參數與感測參數計算各感測器10的偏差資料。
步驟S16:處理裝置110經由更新產生模組33依據各感測器10的偏差資料產生此感測器10的更新資料,並經由傳輸裝置111及網路12發送更新資料至此感測器10。
步驟S17:感測器10的控制模組100依據所到的更新資料校正參考位準。
值得一提的是,本發明主要是採用軟體升級方式來達成感測器10的參考位準的校正。具體而言,前述更新資料可為軟體,如感測器10的修補程式(patch)、韌體(firmware)更新程式、設定檔(Configuration File)或其他電腦檔案,感測器10的控制模組100是經由執行前述電腦檔案來升級變更自身的軟體或設定,以達成校正參考位準的目的。
步驟S18:監控主機11的處理裝置110判斷是否停止遠端校正,如管理員是否關閉遠端校正功能、或者感測器10是否離線(如故障或被移除)等等。
若處理裝置110判斷不需停止遠端校正,則再次執行步驟S10。否則,處理裝置110執行結束校正方法。
值得一提的是,圖5所示的步驟S10-S12及步驟S13-S18可同時執行或先後執行,不加以限定。
於一實施例中,感測器10是不斷重複地執行步驟S10-S12,並且,監控主機11是同時不斷地執行步驟S13-S18。
本發明經由自動遠端校正感測器10,可延長感測器10的壽命、增進感測參數準確性並節省檢修時間與人力成本。
續請一併參閱圖5及圖6,圖6為本發明第二實施例的遠端校正感測器的方法的部分流程圖。相較於圖5所示的校正方法,本實施例的校正方法的步驟S16進一步包括以下步驟。
步驟S20:監控主機11的處理裝置110於計算出偏差資料後,經由更新產生模組33判斷此感測器10的偏差是否過大。
於一實施例中,處理裝置110是判斷偏差資料(可為數值)是否大於偏差臨界值或超出偏差容許範圍。
於一實施例中,前述偏差臨界值及偏差容許範圍可由管理員任意設定。
於一實施例中,前述偏差臨界值可為標準參數的指定倍率,偏差容許範圍可為標準參數增減指定數值後所構成的範圍。前述的指定倍率與指定數值可由管理員任意設定。
舉例來說,若標準參數為400ppm,偏差臨界值可為480ppm(即1.2倍的標準參數),偏差容許範圍可為380ppm(即標準參數-20)至420ppm(即標準參數+20)。
若處理裝置110判斷感測器10的偏差過大,則執行步驟S21。否則,處理裝置110執行步驟S18。
步驟S21:處理裝置110經由更新產生模組33計算位準校正量。
於一實施例中,處理裝置110是將標準參數與感測參數之間的全部或部分差值(如差值的50%)作為位準校正量。
於一實施例中,處理裝置110是將同一感測器10(同一時段)的歷史感測參數與感測參數之間的全部或部分差值(如差值的30%)作為位準校正量。
於一實施例中,處理裝置110是對偏差資料執行校正量計算,再將計算結果作為位準校正量。舉例來說,前述校正量計算可為計算同一感測器10的多個連續的偏差資料之間的平均值或部分平均值。
值得一提的是,當本發明將部分差值作為位準校正量時,可有效降低感測器偏差,並可有效避免過度校正,並降低校正錯誤所帶來的影響。
步驟S22:處理裝置110經由更新產生模組33依據所算出的位準校正量產生更新資料。
於一實施例中,前述更新資料可包括用來將參考位準校正位準校正量的軟體更新(如電腦檔案)。
步驟S23:處理裝置110經由更新產生模組33透過傳輸裝置111及網路12發送所產生的更新資料至感測器10。
藉此,感測器10於安裝軟體更新後可將參考位準調升或調降前述位準校正量。
本發明可正確計算感測器10的參考位準的修正量,並可有效產生可更新感測器10的參考位準的更新資料。
續請一併參閱圖5及圖7,圖7為本發明第三實施例的遠端校正感測器的方法的部分流程圖。本實施例的校正方法進一步提供一種監控功能,可持續監控各感測器10的校正狀態,並將可能異常的感測器10加入監控清單以進行進一步列管或隔離。
具體而言,相較於圖5所示的校正方法,本實施例的校正方法進一步包括以下用以實現監控功能的步驟。
步驟S30:監控主機11的處理裝置110經由記錄模組34於監控主機11每次對感測器10的進行校正時執行記錄,如記錄校正量或校正時間等等。
步驟S31:處理裝置110經由監控模組35依據記錄判斷感測器10是否發生異常校正,即判斷感測器10是否有發生異常而導致不正常的校正行為。
於一實施例中,處理裝置110於判斷任一感測器10的校正頻率高於預設的臨界頻率(如一個月20次)、累積的校正次數高於預設的臨界次數(如10次)或多次校正的多個校正幅度皆超過臨界幅度(如連續3次皆超過50%)時,判斷感測器10發生異常校正。
若處理裝置110判斷感測器10發生異常校正,則執行步驟S32。否則,處理裝置110執行步驟S35。
步驟S32:處理裝置110經由監控模組35透過人機介面113發出警示(如發出警示訊息或警示音)。
步驟S33:處理裝置110經由監控模組35將發生異常校正的感測器10加入監控清單。
於一實施例中,監控主機11於輸出(如顯示或列印)感測器10的感測參數時,會對監控清單內的感測器10的感測參數特別進行標記,以提示管理員這些感測參數可能是不準確的。
於一實施例中,監控主機11會對監控清單內的感測器10採用不同的校正時機(如更密集的校正時機)進行校正,以使感測器10盡量維持在準確狀態。
於一實施例中,當監控主機11對多個感測參數執行運算時(如依據多個感測參數計算標準參數),會自動排除監控清單內的感測器10的感測參數,以提高計算結果的正確性。
步驟S34:處理裝置110經由監控模組35判斷是否結束監測(如管理員關閉監測功能,或者監測清單內沒有任何感測器10)。
若處理裝置110判斷結束監測,則結束方法。否則,處理裝置再次執行步驟S30以持續記錄與監測。
若於步驟S31中,處理裝置110判斷感測器10未發生異常校正(如校正頻率不高於臨界頻率、校正次數不高於臨界次數或多次校正的多個校正幅度皆不超過臨界幅度等等),則執行步驟S35:處理裝置110經由監控模組35判斷此感測器10是否已被列於監控清單中。
若處理裝置110判斷此感測器10已被列於監控清單中,則執行步驟S36。否則,處理裝置110執行步驟S34。
步驟S36:處理裝置110經由監控模組35將感測器10移出監控清單以停止監控此感測器是否異常。
於一實施例中,處理裝置110可於感測器10持續一段時間(如一個月)皆沒有發生異常校正時,才將感測器10移出監控清單。
本發明經由將可能或即將故障的感測器10加入監控監控清單進行監控,可方便使用者管理,並避免可能或即將故障的感測器10的錯誤的感測參數影響記錄的正確性。
本發明經由僅監控監控清單中的感測器10,可減少所監控的感測器10的數量,而可減少所需監控資源。
當然,本發明還可有其它多種實施例,在不背離本發明精神及其實質的情況下,本發明所屬技術領域中具有通常知識者當可根據本發明作出各種相應的改變和變形,但這些相應的改變和變形都應屬於本發明所附的申請專利範圍。
S10-S18:遠端校正步驟

Claims (20)

  1. 一種遠端校正感測器的方法,用於一遠端校正系統,該遠端校正系統包括一感測器及一監控主機,該遠端校正感測器的方法包括以下步驟:a)於該感測器對一環境進行感測以產生一環境狀態訊號時,依據該環境狀態訊號及一參考位準之間的差距及該參考位準所對應的一預設參數產生一感測參數,並上傳該感測參數至該監控主機;b)於該監控主機取得於一校正時機滿足時所在環境的一標準參數;c)於判斷該校正時機滿足時依據該標準參數與該感測參數計算一偏差資料;d)依據該偏差資料產生一更新資料,並發送該更新資料至該感測器;及e)於該感測器依據該更新資料校正該參考位準。
  2. 如請求項1所述的遠端校正感測器的方法,其中該校正時機是當前時間符合一校正時段,該標準參數是該環境於該校正時段的一常態參數。
  3. 如請求項2所述的遠端校正感測器的方法,其中該校正時機是當前時間符合該校正時段且同一該感測器於多個臨近時間點所上傳的該多個感測參數呈現一穩定狀態。
  4. 如請求項1所述的遠端校正感測器的方法,其中該遠端校正系統包括設置於該環境的該多個感測器,該校正時機是計時一校正時間經過;該步驟b)是於該校正時機滿足時,依據該多個感測器最近上傳的該多個感測參數計算該標準參數;該步驟c)是於該校正時機滿足時,依據該標準參數與各該感測器的該感測參數計算各該感測器的該偏差資料。
  5. 如請求項4所述的遠端校正感測器的方法,其中該步驟b)是輪替選擇該多個感測器的其中之一,並依據未選擇的該感測器的該感測參數計算所選擇的該感測器的該標準參數;該步驟c)是依據各該感測器的該標準參數與該感測參數計算各該感測器的該偏差資料。
  6. 如請求項1所述的遠端校正感測器的方法,其中該步驟d)包括以下步驟:d1)於判斷該偏差資料大於一偏差臨界值或超出一偏差容許範圍時計算一位準校正量;d2)依據該位準校正量產生該更新資料,其中該更新資料包括用來將該參考位準校正該位準校正量的一軟體更新;及d3)發送該更新資料至該感測器;該步驟e)是經由安裝該軟體更新以將該參考位準調升或調降該位準校正量。
  7. 如請求項6所述的遠端校正感測器的方法,其中更包括以下步驟:f1)於該監控主機對該感測器的每次校正進行記錄;f2)於判斷該感測器的一校正頻率高於一臨界頻率、一校正次數高於一臨界次數或多次校正的多個校正幅度皆超過一臨界幅度時,發出警示;及f3)將該感測器加入一監控清單。
  8. 如請求項7所述的遠端校正感測器的方法,其中於該步驟f3)之後更包括一步驟f4)於判斷該校正頻率不高於該臨界頻率、該校正次數不高於該臨界次數或多次校正的該多個校正幅度皆不超過該臨界幅度且該感測器已被加入該監控清單時,將該感測器移出該監控清單。
  9. 如請求項1所述的遠端校正感測器的方法,其中該感測器是一空氣品質感測器,並包括一光學結構;該步驟a)是經由該光學結構對該環境的空氣進行感測以產生該環境狀態訊號。
  10. 如請求項9所述的遠端校正感測器的方法,其中該光學結構包括一光源、容納該環境的空氣的一氣體室及一光感測器;該步驟a)是控制該光源照射該氣體室的空氣,並經由該光感測器感測照射空氣後的光能來產生該環境狀態訊號。
  11. 一種遠端校正系統,包括:一感測器,包括:一感測模組,用以對一環境進行感測以產生一環境狀態訊號;及一傳輸模組;一控制模組,電性連接該感測模組及該傳輸模組,用以依據該環境狀態訊號及一參考位準之間的差距及該參考位準所對應的一預設參數產生一感測參數,並經由該傳輸模組對外傳輸該感測參數,該控制模組於收到一更新資料時依據該更新資料校正該參考位準;及一監控主機,與該感測器的該傳輸模組建立一通訊連接,並經由該通訊連接接收該感測參數,該監控主機取得於一校正時機滿足時所在環境的一標準參數,於判斷該校正時機滿足時依據該標準參數與該感測參數計算一偏差資料,依據該偏差資料產生一更新資料,並發送該更新資料至該感測器。
  12. 如請求項11所述的遠端校正系統,其中該校正時機是當前時間符合一校正時段,該標準參數是該環境於該校正時段的一常態參數。
  13. 如請求項12所述的遠端校正系統,其中該校正時機是當前時間符合該校正時段且同一該感測器於多個臨近時間點所上傳的該多個感測參數呈現一穩定狀態。
  14. 如請求項11所述的遠端校正系統,其中該遠端校正系統包括設置於該環境的該多個感測器,該校正時機是計時一校正時間經過;其中,該監控主機包括一標準取得模組及一偏差計算模組,該標準取得模組是被設定來於該校正時機滿足時,依據該多個感測器最近上傳的該多個感測參數計算該標準參數,該偏差計算模組是被設定來於該校正時機滿足時,依據該標準參數與各該感測器的該感測參數計算各該感測器的該偏差資料。
  15. 如請求項14所述的遠端校正系統,其中該監控主機包括一標準取得模組及一偏差計算模組,該標準取得模組是被設定來輪替選擇該多個感測器的其中之一,並依據未選擇的該感測器的該感測參數計算所選擇的該感測器的該標準參數,該偏差計算模組是被設定來依據各該感測器的該標準參數與該感測參數計算各該感測器的該偏差資料。
  16. 如請求項11所述的遠端校正系統,其中該監控主機包括一更新產生模組,該更新產生模組被設定來於判斷該偏差資料大於一偏差臨界值或超出一偏差容許範圍時計算一位準校正量,依據該位準校正量產生該更新資料,並發送該更新資料至該感測器,其中該更新資料包括用來將該參考位準校正該位準校正量的一軟體更新;該感射器是被設定來經由安裝該軟體更新以將該參考位準調升或調降該位準校正量。
  17. 如請求項16所述的遠端校正系統,其中該監控主機包括一記錄模組及一監控模組,該記錄模組被設定來記錄該監控主機對該感測器的每次校正,該監控模組被設定來於判斷該感測器的一校正頻率高於一臨界頻率、一校 正次數高於一臨界次數或多次校正的多個校正幅度皆超過一臨界幅度時,發出警示,並將該感測器加入一監控清單。
  18. 如請求項17所述的遠端校正系統,其中於該監控模組被設定來於判斷任一該感測器滿足該校正頻率不高於該臨界頻率、該校正次數不高於該臨界次數或多次校正的該多個校正幅度皆不超過該臨界幅度且該感測器已被加入該監控清單時,將該感測器移出該監控清單。
  19. 如請求項11所述的遠端校正系統,其中該感測器是一空氣品質感測器,並包括一光學結構,該感測器被設定來經由該光學結構對該環境的空氣進行感測以產生該環境狀態訊號。
  20. 如請求項19所述的遠端校正系統,其中該光學結構包括一光源、容納該環境的空氣的一氣體室及一光感測器,該感測器被設定來控制該光源照射該氣體室的空氣,並經由該光感測器感測照射空氣後的光能來產生該環境狀態訊號。
TW108109030A 2019-03-18 2019-03-18 遠端校正系統及其遠端校正感測器的方法 TWI693376B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW108109030A TWI693376B (zh) 2019-03-18 2019-03-18 遠端校正系統及其遠端校正感測器的方法
JP2020008149A JP6850913B2 (ja) 2019-03-18 2020-01-22 遠隔較正システム及びそのセンサの遠隔較正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108109030A TWI693376B (zh) 2019-03-18 2019-03-18 遠端校正系統及其遠端校正感測器的方法

Publications (2)

Publication Number Publication Date
TWI693376B true TWI693376B (zh) 2020-05-11
TW202035952A TW202035952A (zh) 2020-10-01

Family

ID=71896065

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108109030A TWI693376B (zh) 2019-03-18 2019-03-18 遠端校正系統及其遠端校正感測器的方法

Country Status (2)

Country Link
JP (1) JP6850913B2 (zh)
TW (1) TWI693376B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102545662B1 (ko) * 2020-10-22 2023-06-20 주식회사 모빅랩 센서의 임계치를 설정하는 방법
JP7546510B2 (ja) 2021-03-31 2024-09-06 三菱重工業株式会社 校正方法、校正システム及びプログラム
CN113237575B (zh) * 2021-06-01 2022-11-08 中国计量大学 一种基于双温度激励的温度传感器动态校准方法
CN114994261A (zh) * 2022-07-08 2022-09-02 东阿县环境监控中心 环境空气监测的传感器远程校准方法
CN115242695B (zh) * 2022-07-22 2023-08-15 高新兴物联科技股份有限公司 服务器的环境状态监测方法、设备及计算机可读存储介质
CN117014079A (zh) * 2023-08-22 2023-11-07 深圳宇问测量技术有限公司 一种基于ism频段无线通信的传感器校准和检验方法
CN117553864B (zh) * 2024-01-12 2024-04-19 北京宏数科技有限公司 一种基于大数据的传感器采集方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI347178B (en) * 2008-03-19 2011-08-21 Nat Univ Chung Hsing Remote wireless sensor micro-electrical system with real-time calibration and self-assembly
US20120173185A1 (en) * 2010-12-30 2012-07-05 Caterpillar Inc. Systems and methods for evaluating range sensor calibration data
TWM565303U (zh) * 2018-02-07 2018-08-11 謝金原 水質監測系統

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015135303A (ja) * 2014-01-20 2015-07-27 学校法人幾徳学園 携帯端末を使用した所在階数推定システム、携帯端末及びプログラム
WO2016035464A1 (ja) * 2014-09-04 2016-03-10 ソニー株式会社 解析方法、システムおよび解析装置
US20180010935A1 (en) * 2014-12-19 2018-01-11 Information is Power Pty Ltd. System and method for identifying and calibrating a sensor
CN107408334B (zh) * 2015-03-13 2020-03-20 富士通株式会社 控制装置、记录介质、以及传感器节点
FR3046245B1 (fr) * 2015-12-24 2018-02-16 Partnering 3.0 Systeme de surveillance de qualite d'air et station d'accueil pour robot mobile equipe de capteurs de qualite d'air
KR101863632B1 (ko) * 2017-12-26 2018-06-04 한국과학기술정보연구원 센서값처리서버 및 그 동작 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI347178B (en) * 2008-03-19 2011-08-21 Nat Univ Chung Hsing Remote wireless sensor micro-electrical system with real-time calibration and self-assembly
US20120173185A1 (en) * 2010-12-30 2012-07-05 Caterpillar Inc. Systems and methods for evaluating range sensor calibration data
TWM565303U (zh) * 2018-02-07 2018-08-11 謝金原 水質監測系統

Also Published As

Publication number Publication date
JP6850913B2 (ja) 2021-03-31
TW202035952A (zh) 2020-10-01
JP2020155100A (ja) 2020-09-24

Similar Documents

Publication Publication Date Title
TWI693376B (zh) 遠端校正系統及其遠端校正感測器的方法
KR101653763B1 (ko) 건물 에너지 모델을 이용한 에너지 설비의 이상 검출 방법
KR102281640B1 (ko) 자가진단 기능을 구비한 ai 가스 누액 누출 감지시스템 및 운영방법
US10353016B2 (en) System and method for fault management in lighting systems
RU2562418C2 (ru) Устройства и способы для диагностики основанных на электронике продуктов
CN112101662A (zh) 设备健康状况和生命周期检测方法、存储介质及电子设备
US10872511B2 (en) Intelligent space safety monitoring apparatus and system thereof
KR101412624B1 (ko) 화재감지기 원격 점검 시스템 및 그를 위한 화재수신기
JP2015522160A (ja) センサのストレス診断を備えた工業プロセス温度伝送器
JP2020009184A (ja) 異常検知方法及び異常検知システム
CN116909049B (zh) 用于tft-lcd光敏阵列板的校准方法和系统
JP6465420B2 (ja) センサ監視装置、センサ監視方法、及び、プログラム
CN116365716A (zh) 一种基于物联网平台的用电检查系统
CN117395825B (zh) 一种基于实时led亮度和色差的校正软件控制方法
KR101997217B1 (ko) 장치 진단 시스템
JP2015094616A (ja) ガスセンサ使用寿命予測方法およびガス検知装置
KR101655776B1 (ko) 소형 자동기상관측 장치 및 이를 사용한 관측 방법
CN117035395A (zh) 一种工业标识解析应用的运维管理方法
KR101377052B1 (ko) 반도체 공정 모니터링 장치 및 이를 이용한 반도체 공정 모니터링 방법
CN202472847U (zh) 设有地址编码器的烟雾探测器
US20220196447A1 (en) Method and arrangement for long term drift analysis
JP2013196219A (ja) 報告書作成装置、報告書作成プログラムおよび報告書作成方法
JP2006064494A (ja) ガスセンサシステム
US20240255480A1 (en) Measurement system, measurement method, and computer program
KR102018326B1 (ko) M2m 기반의 데이터 신뢰성 검증 방법 및 시스템