TWI692897B - In-line system for mass production of organic optoelectronic device and manufacturing method using the same - Google Patents

In-line system for mass production of organic optoelectronic device and manufacturing method using the same Download PDF

Info

Publication number
TWI692897B
TWI692897B TW107144590A TW107144590A TWI692897B TW I692897 B TWI692897 B TW I692897B TW 107144590 A TW107144590 A TW 107144590A TW 107144590 A TW107144590 A TW 107144590A TW I692897 B TWI692897 B TW I692897B
Authority
TW
Taiwan
Prior art keywords
electrode layer
cavity
organic
mass production
continuous mass
Prior art date
Application number
TW107144590A
Other languages
Chinese (zh)
Other versions
TW202023090A (en
Inventor
顏豐文
張正澔
Original Assignee
機光科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 機光科技股份有限公司 filed Critical 機光科技股份有限公司
Priority to TW107144590A priority Critical patent/TWI692897B/en
Priority to US16/396,768 priority patent/US10790466B2/en
Application granted granted Critical
Publication of TWI692897B publication Critical patent/TWI692897B/en
Publication of TW202023090A publication Critical patent/TW202023090A/en

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

An in-line system for mass production of organic optoelectronic device is disclosed. The in-line system includes a first chamber, a second chamber, and a patterned holder. A substrate is held by the patterned holder. The substrate is covered with a first electrode layer and a contact electrode layer. The first electrode layer and the contact electrode layer are partially shielded with the patterned holder. The first chamber is for forming an organic layer on portions of the first electrode layer and the contact electrode layer which are not shielded with the patterned holder. The second chamber, aligned with the first chamber, is for forming a second electrode layer on the organic layer.

Description

有機光電元件的連續式量產設備及使用 該連續式量產設備的製造方法 Continuous mass production equipment and use of organic photoelectric elements Manufacturing method of continuous mass production equipment

本揭示內容係關於一種有機光電元件的連續式量產設備,以及關於一種有機光電元件的製造方法。 This disclosure relates to a continuous mass production device for organic photovoltaic elements, and to a method for manufacturing an organic photovoltaic element.

諸如有機發光二極體(organic light emitting diode,OLED)之發光裝置係藉由沉積有機材料及金屬材料於基板上所製成。傳統上,係使用團簇式沉積設備來進行各種材料的沉積。如第1圖所示,團簇式沉積設備20包括機械手臂710及呈放射狀設置於機械手臂710周圍的多個真空腔體720。機械手臂710配置以將基板放入真空腔體720中進行各種材料的沉積以製成發光裝置。 Light emitting devices such as organic light emitting diodes (OLEDs) are made by depositing organic materials and metal materials on the substrate. Traditionally, cluster deposition equipment is used to deposit various materials. As shown in FIG. 1, the cluster deposition apparatus 20 includes a robot arm 710 and a plurality of vacuum chambers 720 arranged radially around the robot arm 710. The robot arm 710 is configured to place the substrate in the vacuum chamber 720 to deposit various materials to make a light-emitting device.

然而,使用此種團簇式沉積設備20來進行各種材料的沉積是耗時且高成本的。原因在於,當基板被放入真空腔體720中進行各種材料的沉積時,須更換真空腔體720中的沉積材料及對應的遮罩。此外,必須等到各種材料沉積 於基板上後,始得將其移出並放入下一個基板。因此,開發出一種可有效減少發光裝置的製造工時及生產成本的設備,為各方所研究之課題。 However, using such a cluster deposition apparatus 20 to deposit various materials is time-consuming and costly. The reason is that, when the substrate is placed in the vacuum chamber 720 to deposit various materials, the deposition material in the vacuum chamber 720 and the corresponding mask must be replaced. In addition, various materials must be deposited After it is on the substrate, it must be removed and placed into the next substrate. Therefore, the development of a device that can effectively reduce the manufacturing hours and production costs of light-emitting devices is a subject studied by all parties.

本揭示內容的一態樣係提供一種有機光電元件的連續式量產設備,包括一第一腔體、一第二腔體、以及一圖案化載具。圖案化載具承載一基板,其中基板覆蓋有一第一電極層及一接觸電極層,且其中圖案化載具可部分遮蔽第一電極層及接觸電極層。第一腔體,是用以在未被圖案化載具遮蔽的第一電極層及接觸電極層上,形成一有機層。第二腔體,線性地排在第一腔體後方,用以在有機層上,形成一第二電極層。 An aspect of the present disclosure provides a continuous mass production device for organic optoelectronic devices, including a first cavity, a second cavity, and a patterned carrier. The patterned carrier carries a substrate, wherein the substrate is covered with a first electrode layer and a contact electrode layer, and wherein the patterned carrier can partially shield the first electrode layer and the contact electrode layer. The first cavity is used to form an organic layer on the first electrode layer and the contact electrode layer not covered by the patterned carrier. The second cavity is linearly arranged behind the first cavity to form a second electrode layer on the organic layer.

在本揭示內容的一實施方式中,第一腔體可以是一第一真空蒸鍍腔體。第二腔體,也可以是一第二真空蒸鍍腔體。 In an embodiment of the present disclosure, the first cavity may be a first vacuum evaporation cavity. The second cavity may also be a second vacuum evaporation cavity.

在本揭示內容的一實施方式中,在形成第二電極層及形成有機層時,圖案化載具皆可作為一遮罩,部分遮蔽第一電極層及接觸電極層,故不需要更換其他遮罩。 In an embodiment of the present disclosure, when forming the second electrode layer and the organic layer, the patterned carrier can be used as a mask, partially shielding the first electrode layer and the contact electrode layer, so there is no need to replace other masks cover.

在本揭示內容的一實施方式中,本發明連續式量產設備可更包括一第一真空通道,其中在有機層形成之後,基板可以通過第一真空通道,被輸送至第二腔體,以形成第二電極層。 In an embodiment of the present disclosure, the continuous mass production device of the present invention may further include a first vacuum channel, wherein after the organic layer is formed, the substrate may be transported to the second cavity through the first vacuum channel, The second electrode layer is formed.

在本揭示內容的一實施方式中,本發明連續式 量產設備可更包括一第二真空通道,第二真空通道中設置有一雷射源,可用以形成一電性連接件,電性連接第二電極層及接觸電極層。 In one embodiment of the disclosure, the invention is continuous The mass production equipment may further include a second vacuum channel, and a laser source is disposed in the second vacuum channel, which may be used to form an electrical connection member, which is electrically connected to the second electrode layer and the contact electrode layer.

在本揭示內容的一實施方式中,本發明連續式量產設備可更包括一第三腔體,線性地排在第二腔體後方,其中第三腔體中設置有一雷射源,可用以形成一電性連接件,電性連接第二電極層及接觸電極層。第三腔體,可以是一第三真空蒸鍍腔體。 In an embodiment of the present disclosure, the continuous mass production device of the present invention may further include a third cavity linearly arranged behind the second cavity, wherein a laser source is provided in the third cavity, which can be used to An electrical connector is formed to electrically connect the second electrode layer and the contact electrode layer. The third cavity may be a third vacuum evaporation cavity.

本揭示內容的另一態樣係提供一種有機光電元件的製造方法,包括提供覆蓋有第一電極層及接觸電極層的基板;使用前述的連續式量產設備,在第一電極層及接觸電極層上,形成有機層;以及在有機層上,形成第二電極層。本發明的製造方法可更包括形成一電性連接件,電性連接第二電極層及接觸電極層。 Another aspect of the present disclosure is to provide a method for manufacturing an organic optoelectronic device, including providing a substrate covered with a first electrode layer and a contact electrode layer; using the aforementioned continuous mass production equipment, the first electrode layer and the contact electrode On the layer, an organic layer is formed; and on the organic layer, a second electrode layer is formed. The manufacturing method of the present invention may further include forming an electrical connection member to electrically connect the second electrode layer and the contact electrode layer.

以下將以實施方式對上述之說明作詳細的描述,並對本揭示內容的技術方案提供更進一步的解釋。 The above description will be described in detail in the following embodiments, and the technical solutions of the present disclosure will be further explained.

10‧‧‧有機光電元件的連續式量產設備 10‧‧‧Continuous mass production equipment for organic optoelectronic components

20‧‧‧團簇式沉積設備 20‧‧‧Cluster deposition equipment

100‧‧‧真空蒸鍍腔體 100‧‧‧Vacuum evaporation chamber

100a‧‧‧第一真空蒸鍍腔體(第一腔體) 100a‧‧‧First vacuum evaporation chamber (first chamber)

100b‧‧‧第二真空蒸鍍腔體(第二腔體) 100b‧‧‧Second vacuum evaporation chamber (second chamber)

100c‧‧‧第三真空蒸鍍腔體(第三腔體) 100c‧‧‧Third vacuum evaporation chamber (third chamber)

110‧‧‧蒸鍍源 110‧‧‧Evaporation source

120‧‧‧入口 120‧‧‧ entrance

130‧‧‧出口 130‧‧‧Export

140‧‧‧抽氣部 140‧‧‧Exhaust Department

150‧‧‧入口閘門 150‧‧‧ Entrance gate

160‧‧‧出口閘門 160‧‧‧ Exit gate

200‧‧‧真空通道 200‧‧‧Vacuum channel

200a‧‧‧第一真空通道 200a‧‧‧First vacuum channel

200b‧‧‧第二真空通道 200b‧‧‧Second vacuum channel

300‧‧‧輸送單元 300‧‧‧Conveying unit

400‧‧‧圖案化載具 400‧‧‧patterned vehicle

400a‧‧‧開口 400a‧‧‧ opening

500‧‧‧雷射處理腔體 500‧‧‧Laser processing chamber

520‧‧‧入口 520‧‧‧ entrance

530‧‧‧出口 530‧‧‧Export

610‧‧‧第一電極層 610‧‧‧First electrode layer

620‧‧‧有機層 620‧‧‧ organic layer

630‧‧‧第二電極層 630‧‧‧Second electrode layer

640‧‧‧電性連接件 640‧‧‧Electrical connector

650‧‧‧接觸電極層 650‧‧‧Contact electrode layer

710‧‧‧機械手臂 710‧‧‧Robot

720‧‧‧真空腔體 720‧‧‧Vacuum chamber

800‧‧‧裝載腔體 800‧‧‧Loading cavity

820‧‧‧入口 820‧‧‧ entrance

830‧‧‧出口 830‧‧‧Export

840‧‧‧抽氣部 840‧‧‧Exhaust Department

850‧‧‧入口閘門 850‧‧‧ Entrance gate

860‧‧‧出口閘門 860‧‧‧ Exit gate

900‧‧‧緩衝腔體 900‧‧‧Buffer cavity

920‧‧‧入口 920‧‧‧ entrance

930‧‧‧出口 930‧‧‧Export

940‧‧‧抽氣部 940‧‧‧Exhaust Department

950‧‧‧入口閘門 950‧‧‧ Entrance gate

960‧‧‧出口閘門 960‧‧‧ Exit gate

S‧‧‧基板 S‧‧‧Substrate

LS‧‧‧雷射源 LS‧‧‧Laser source

TH‧‧‧穿孔 TH‧‧‧Perforation

L1、L2‧‧‧長度 L1, L2‧‧‧Length

D1‧‧‧輸送方向 D1‧‧‧Conveying direction

D2、D3‧‧‧距離 D2, D3‧‧‧Distance

第1圖為傳統之團簇式沉積設備的俯視示意圖。 Figure 1 is a schematic top view of a traditional cluster deposition equipment.

第2圖為本揭示內容第一實施方式之有機光電元件的連續式量產設備的剖面示意圖。 FIG. 2 is a schematic cross-sectional view of a continuous mass production device for an organic photovoltaic element according to the first embodiment of the present disclosure.

第3圖為本揭示內容第二實施方式之有機光電元件的連續式量產設備的剖面示意圖。 FIG. 3 is a schematic cross-sectional view of a continuous mass production device for an organic photovoltaic element according to a second embodiment of the present disclosure.

第4圖為本揭示內容第三實施方式之有機光電元件的連續式量產設備的剖面示意圖。 FIG. 4 is a schematic cross-sectional view of a continuous mass production device for an organic photovoltaic element according to a third embodiment of the present disclosure.

第5圖為本揭示內容第四實施方式之有機光電元件的連續式量產設備的剖面示意圖。 FIG. 5 is a schematic cross-sectional view of a continuous mass production device for an organic photovoltaic element according to a fourth embodiment of the present disclosure.

第6圖為本揭示內容第五實施方式之有機光電元件的連續式量產設備的剖面示意圖。 FIG. 6 is a schematic cross-sectional view of a continuous mass production device for an organic photovoltaic element according to a fifth embodiment of the present disclosure.

第7圖為本揭示內容第六實施方式之有機光電元件的連續式量產設備的剖面示意圖。 FIG. 7 is a schematic cross-sectional view of a continuous mass production device for an organic photovoltaic element according to a sixth embodiment of the present disclosure.

第8圖~第9圖為本揭示內容一實施方式之發光裝置的製造方法的各個階段的剖面示意圖。 8 to 9 are cross-sectional schematic diagrams at various stages of a method of manufacturing a light-emitting device according to an embodiment of the present disclosure.

為了使本揭示內容的敘述更加詳盡與完備,下文針對了本揭示內容的實施態樣與具體實施例提出了說明性的描述;但這並非實施或運用本揭示內容具體實施例的唯一形式。以下所揭露的各實施例,在有益的情形下可相互組合或取代,也可在一實施例中附加其他的實施例,而無須進一步的記載或說明。在以下描述中,將詳細敘述許多特定細節以使讀者能夠充分理解以下的實施例。然而,可在無此等特定細節之情況下實踐本揭示內容的實施例。 In order to make the description of this disclosure more detailed and complete, the following provides an illustrative description of the implementation and specific embodiments of this disclosure; however, this is not the only way to implement or use specific embodiments of this disclosure. The embodiments disclosed below can be combined or replaced with each other under beneficial circumstances, and other embodiments can be added to an embodiment without further description or description. In the following description, many specific details will be described in detail to enable the reader to fully understand the following embodiments. However, embodiments of the present disclosure may be practiced without these specific details.

再者,空間相對用語,例如「下」、「下方」、「之下」、「上」、「上方」、「之上」等,這是為了便於敘述一元件或特徵與另一元件或特徵之間的相對關係。這些空間上的相對用語的真實意義包含其他的方位。例如,當圖 式上下翻轉180度時,一元件與另一元件之間的關係,可能從「下」、「下方」、「之下」變成「上」、「上方」、「之上」。此外,本文中所使用的空間上的相對敘述也應作同樣的解釋。 Furthermore, the relative terms of space, such as "below", "below", "below", "upper", "above", "above", etc., are for the convenience of describing one element or feature and another element or feature The relative relationship between. The true meaning of these spatial relative terms includes other orientations. For example, when the picture When the formula is turned upside down by 180 degrees, the relationship between one component and another component may change from "below", "below", "below" to "up", "above", "above". In addition, the relative spatial description used in this article should also be interpreted in the same way.

請參閱第2圖,第2圖繪示本揭示內容第一實施方式之有機光電元件的連續式量產設備10的剖面示意圖。有機光電元件的連續式量產設備10包括裝載腔體800、多個真空蒸鍍腔體100、多個真空通道200、以及輸送單元300。有機光電元件的連續式量產設備10可用於在基板S上連續蒸鍍多層材料,以製造電子或光電子元件,例如太陽能電池或有機發光二極體裝置及其他電子元件。 Please refer to FIG. 2, which is a schematic cross-sectional view of the continuous mass production device 10 of the organic photoelectric device according to the first embodiment of the present disclosure. The continuous mass production apparatus 10 for organic photoelectric elements includes a loading chamber 800, a plurality of vacuum evaporation chambers 100, a plurality of vacuum channels 200, and a conveying unit 300. The continuous mass production device 10 of organic optoelectronic components can be used for continuously vapor-depositing multiple layers of materials on a substrate S to manufacture electronic or optoelectronic components, such as solar cells or organic light-emitting diode devices and other electronic components.

在一些實施方式中,基板S例如是GaAs基板、Ge基板或矽基板,但亦可採用其他適合的可供蒸鍍有機材料或金屬材料的基板。 In some embodiments, the substrate S is, for example, a GaAs substrate, a Ge substrate, or a silicon substrate, but other suitable substrates for vapor deposition of organic materials or metal materials may also be used.

多個真空蒸鍍腔體100配置以蒸鍍多層材料於基板S上。具體地,各真空蒸鍍腔體100具有蒸鍍源110、入口120、出口130、位於入口120的入口閘門150及位於出口130的出口閘門160。蒸鍍源110例如是具有穩定鍍率的加熱器。根據需要,將各種蒸鍍材料放入各別的真空蒸鍍腔體100中,從而在有機光電元件的連續式量產設備10運作時,各蒸鍍材料可被蒸鍍源110加熱至汽化,以附著並在基板S的下表面上形成多層材料。所述蒸鍍材料可以是本領域已知的任何適用於形成諸如電極層或有機層之材料。舉例來說, 如第2圖所示,有機光電元件的連續式量產設備10包括三個真空蒸鍍腔體100,且在三個真空蒸鍍腔體100中,分別蒸鍍第一有機材料層、第二有機材料層及一電極材料層於基板S的下表面上。 The plurality of vacuum evaporation chambers 100 are configured to deposit multiple layers of materials on the substrate S. Specifically, each vacuum evaporation chamber 100 has an evaporation source 110, an inlet 120, an outlet 130, an inlet gate 150 at the inlet 120, and an outlet gate 160 at the outlet 130. The vapor deposition source 110 is, for example, a heater having a stable plating rate. As needed, various vapor deposition materials are put into the respective vacuum vapor deposition chambers 100, so that when the continuous mass production device 10 of the organic photovoltaic element is operated, each vapor deposition material can be heated to vaporization by the vapor deposition source 110, In order to attach and form a multilayer material on the lower surface of the substrate S. The vapor deposition material may be any material known in the art suitable for forming an electrode layer or an organic layer. for example, As shown in FIG. 2, the continuous mass production device 10 of organic photovoltaic elements includes three vacuum evaporation chambers 100, and in the three vacuum evaporation chambers 100, the first organic material layer and the second An organic material layer and an electrode material layer are on the lower surface of the substrate S.

須說明的是,雖然在第2圖中僅繪示三個真空蒸鍍腔體100,但在其他實施方式中,有機光電元件的連續式量產設備10可包括超過三個真空蒸鍍腔體100。例如,在所欲形成的發光裝置的有機層為多層結構(例如包括電洞注入層(HIL)、電洞傳輸層(HTL)、發射層(EML)、電子傳輸層(ETL)、電子注入層(EIL)等)的情況下,有機光電元件的連續式量產設備10可包括超過三個真空蒸鍍腔體100以分別蒸鍍對應的有機材料層於基板S上。另外,根據需要,可在各真空蒸鍍腔體100之間,額外插入其他處理腔體,例如蝕刻處理腔體等。 It should be noted that although only three vacuum evaporation chambers 100 are shown in FIG. 2, in other embodiments, the continuous mass production apparatus 10 of organic photovoltaic elements may include more than three vacuum evaporation chambers 100. For example, the organic layer of the light-emitting device to be formed is a multilayer structure (for example, including a hole injection layer (HIL), a hole transport layer (HTL), an emission layer (EML), an electron transport layer (ETL), an electron injection layer In the case of (EIL) etc.), the continuous mass production device 10 of organic photovoltaic elements may include more than three vacuum evaporation chambers 100 to vapor-deposit corresponding organic material layers on the substrate S, respectively. In addition, other processing chambers, such as etching processing chambers, may be additionally inserted between the vacuum evaporation chambers 100 as needed.

在一些實施方式中,真空蒸鍍腔體100具有抽氣部140。抽氣部140耦接至一真空抽氣裝置(未繪示),以將真空蒸鍍腔體100內的氣體抽出。在一些實施例中,為了達到高真空度(例如~10-7torr),當抽出真空蒸鍍腔體100內的氣體時,每個真空蒸鍍腔體100的入口閘門150及出口閘門160係關閉的。 In some embodiments, the vacuum evaporation chamber 100 has a suction part 140. The pumping part 140 is coupled to a vacuum pumping device (not shown) to pump out the gas in the vacuum evaporation chamber 100. In some embodiments, in order to achieve a high degree of vacuum (eg, ~10 -7 torr), when the gas in the vacuum evaporation chamber 100 is evacuated, the inlet gate 150 and the outlet gate 160 of each vacuum evaporation chamber 100 are closed.

在一實施方式中,裝載腔體800的出口830及與其相鄰的真空蒸鍍腔體100的入口120之間通過一真空通道 200連接,且兩個相鄰的真空蒸鍍腔體100之間通過一真空通道200連接。 In one embodiment, a vacuum channel is passed between the outlet 830 of the loading chamber 800 and the inlet 120 of the vacuum evaporation chamber 100 adjacent thereto 200 is connected, and two adjacent vacuum evaporation chambers 100 are connected through a vacuum channel 200.

值得一提的是,真空通道200配置以當蒸鍍多層材料於基板S上時,真空通道200連通其所連接的真空蒸鍍腔體100(即入口閘門150及出口閘門160係打開的)。詳細而言,真空蒸鍍腔體100的蒸鍍源110與入口120之間的距離D2,以及蒸鍍源110與出口130之間的距離D3可根據實際狀況調整。當蒸鍍材料被蒸鍍源110加熱至汽化後,氣態的蒸鍍材料僅存在於真空蒸鍍腔體100內。據此,氣態的蒸鍍材料不會飄散到相鄰的真空通道200及相鄰的真空蒸鍍腔體100中,從而避免了汙染問題。此外,在有機光電元件的連續式量產設備10運作時,由於不用打開及關閉入口閘門150及出口閘門160,可節省基板S的輸送時間,從而可有效減少發光裝置的製造工時。 It is worth mentioning that the vacuum channel 200 is configured so that when the multilayer material is vapor-deposited on the substrate S, the vacuum channel 200 communicates with the vacuum vapor deposition chamber 100 to which it is connected (that is, the inlet gate 150 and the outlet gate 160 are opened). In detail, the distance D2 between the evaporation source 110 and the inlet 120 of the vacuum evaporation chamber 100 and the distance D3 between the evaporation source 110 and the outlet 130 can be adjusted according to actual conditions. After the vapor deposition material is heated to vaporization by the vapor deposition source 110, the vapor deposition material only exists in the vacuum vapor deposition chamber 100. According to this, the gaseous vapor deposition material will not be scattered into the adjacent vacuum channel 200 and the adjacent vacuum evaporation cavity 100, thereby avoiding the pollution problem. In addition, when the continuous mass production equipment 10 of the organic photoelectric element is operated, since it is not necessary to open and close the entrance gate 150 and the exit gate 160, the transportation time of the substrate S can be saved, so that the manufacturing time of the light emitting device can be effectively reduced.

在一些實施方式中,有機光電元件的連續式量產設備10更包括圖案化載具400。圖案化載具400配置以承載基板S。如第2圖所示,在一實施方式中,圖案化載具400具有一開口400a,且形成於基板S上的多層材料的形狀對應於開口400a的形狀。具體而言,圖案化載具400可作為遮罩以遮蔽基板S下表面的一部分,而開口400a暴露出基板S下表面的另一部分。因此,被蒸鍍源110加熱至汽化後的蒸鍍材料僅附著在基板S下表面的暴露部分上。 In some embodiments, the continuous mass production device 10 of organic photovoltaic elements further includes a patterned carrier 400. The patterned carrier 400 is configured to carry the substrate S. As shown in FIG. 2, in one embodiment, the patterning carrier 400 has an opening 400a, and the shape of the multilayer material formed on the substrate S corresponds to the shape of the opening 400a. Specifically, the patterned carrier 400 may serve as a mask to shield a part of the lower surface of the substrate S, and the opening 400a exposes another part of the lower surface of the substrate S. Therefore, the vapor deposition material heated by the vapor deposition source 110 until vaporized adheres only to the exposed portion of the lower surface of the substrate S.

裝載腔體800具有一入口820、一出口830、抽氣部840、位於入口820的入口閘門850及位於出口830的出口閘門860。抽氣部840耦接至真空抽氣裝置(未繪示),以將裝載腔體800內的氣體抽出。具體地,裝載腔體800的出口830連接與其相鄰的真空蒸鍍腔體100的入口120。 The loading chamber 800 has an inlet 820, an outlet 830, a suction part 840, an inlet gate 850 at the inlet 820, and an outlet gate 860 at the outlet 830. The pumping part 840 is coupled to a vacuum pumping device (not shown) to pump the gas in the loading chamber 800. Specifically, the outlet 830 of the loading chamber 800 is connected to the inlet 120 of the vacuum evaporation chamber 100 adjacent thereto.

應當理解,裝載腔體800配置以當從裝載腔體800的入口820放置基板S進裝載腔體800時,裝載腔體800與其相鄰的真空蒸鍍腔體100不連通(即出口閘門860係關閉的)。據此,當放置基板S進裝載腔體800時,不會影響各真空蒸鍍腔體100的高真空度。而在將基板S放進裝載腔體800之後,關閉入口閘門850,並通過真空抽氣裝置(未繪示)將裝載腔體800內的氣體抽出以使裝載腔體800達到與真空蒸鍍腔體100相近的高真空度。隨後,將出口閘門860打開,以將基板S從裝載腔體800的出口830輸送至真空蒸鍍腔體100的入口120。亦即,藉由裝載腔體800的設置,可在不影響各真空蒸鍍腔體100的高真空度的情況下,將基板S饋入有機光電元件的連續式量產設備10中。 It should be understood that the loading chamber 800 is configured such that when a substrate S is placed into the loading chamber 800 from the inlet 820 of the loading chamber 800, the loading chamber 800 is not in communication with its adjacent vacuum evaporation chamber 100 (ie, the exit gate 860 is closed). According to this, when the substrate S is placed in the loading chamber 800, the high vacuum degree of each vacuum evaporation chamber 100 will not be affected. After the substrate S is placed in the loading chamber 800, the entrance gate 850 is closed, and the gas in the loading chamber 800 is evacuated by a vacuum exhaust device (not shown) to make the loading chamber 800 reach the vacuum evaporation chamber The high vacuum degree of the body 100 is similar. Subsequently, the outlet gate 860 is opened to convey the substrate S from the outlet 830 of the loading chamber 800 to the inlet 120 of the vacuum evaporation chamber 100. That is, by setting the loading chamber 800, the substrate S can be fed into the continuous mass production apparatus 10 of the organic photoelectric element without affecting the high vacuum degree of each vacuum evaporation chamber 100.

輸送單元300位於裝載腔體800及各真空蒸鍍腔體100中。在一實施方式中,輸送單元300包括輸送滾輪、輸送輥或輸送鏈,但不以此為限。輸送單元300配置以在一輸送方向D1上,將基板S從裝載腔體800的入口820輸送至出口830,並從出口830通過真空通道200輸送至與其相鄰 的真空蒸鍍腔體100的入口120。此外,輸送單元300配置以在輸送方向D1上,將基板S從各真空蒸鍍腔體100的入口120輸送至出口130,並從出口130通過真空通道200輸送至與其相鄰的真空蒸鍍腔體100的入口120。 The conveying unit 300 is located in the loading chamber 800 and each vacuum evaporation chamber 100. In an embodiment, the conveying unit 300 includes conveying rollers, conveying rollers, or conveying chains, but not limited thereto. The conveying unit 300 is configured to convey the substrate S from the inlet 820 to the outlet 830 of the loading chamber 800 in a conveying direction D1, and convey the substrate S from the outlet 830 through the vacuum channel 200 to the adjacent one The inlet 120 of the vacuum evaporation chamber 100. In addition, the transport unit 300 is configured to transport the substrate S in the transport direction D1 from the inlet 120 to the outlet 130 of each vacuum evaporation chamber 100 and from the outlet 130 through the vacuum channel 200 to the vacuum evaporation chamber adjacent thereto The entrance 120 of the body 100.

如第2圖所示,在本揭示內容的一實施方式中,輸送單元300可僅位於裝載腔體800及各真空蒸鍍腔體100中,而不存在於真空通道200中。詳細而言,在一實施方式中,在輸送方向D1上,真空通道200的一長度L1與圖案化載具400的一長度L2的比為1:2~1:4。換言之,圖案化載具400的長度L2大於真空通道200的長度L1,使得圖案化載具400可從位於一真空蒸鍍腔體100中的輸送單元300橫跨真空通道200至位於另一真空蒸鍍腔體100中的輸送單元300。此外,須說明的是,雖然在第2圖中,一個真空蒸鍍腔體100中的輸送單元300上僅具有一個圖案化載具400(或一個基板S),但在其他實施方式中,一個真空蒸鍍腔體100中的輸送單元300上可同時具有多個圖案化載具400(或多個基板S)。換言之,位於一真空蒸鍍腔體100中的輸送單元300可同時輸送多個基板S,從而同時對多個基板S進行蒸鍍。 As shown in FIG. 2, in an embodiment of the present disclosure, the transport unit 300 may be located only in the loading chamber 800 and each vacuum evaporation chamber 100, but not in the vacuum channel 200. In detail, in one embodiment, in the conveying direction D1, a ratio of a length L1 of the vacuum channel 200 to a length L2 of the patterned carrier 400 is 1:2~1:4. In other words, the length L2 of the patterning carrier 400 is greater than the length L1 of the vacuum channel 200, so that the patterning carrier 400 can traverse the vacuum channel 200 from the transport unit 300 located in a vacuum evaporation chamber 100 to another vacuum evaporation The transport unit 300 in the plating chamber 100. In addition, it should be noted that although in the second figure, only one patterned carrier 400 (or one substrate S) is provided on the conveying unit 300 in one vacuum evaporation chamber 100, in other embodiments, one The conveying unit 300 in the vacuum evaporation chamber 100 may have multiple patterned carriers 400 (or multiple substrates S) at the same time. In other words, the conveying unit 300 located in a vacuum evaporation chamber 100 can simultaneously convey a plurality of substrates S, so that the plurality of substrates S are simultaneously vapor-deposited.

在一些實施方式中,有機光電元件的連續式量產設備10還包括一控制單元(未繪示)。控制單元配置以控制輸送單元300將基板S從各真空蒸鍍腔體100的入口 120輸送至出口130的時間。據此,藉由控制基板S在每個真空蒸鍍腔體100中的輸送時間(即被蒸鍍的時間),進而控制形成在基板S上的各層之厚度。 In some embodiments, the continuous mass production device 10 of organic photovoltaic elements further includes a control unit (not shown). The control unit is configured to control the transport unit 300 to remove the substrate S from the entrance of each vacuum evaporation chamber 100 120 Time to deliver to outlet 130. According to this, the thickness of each layer formed on the substrate S is controlled by controlling the transport time of the substrate S in each vacuum evaporation chamber 100 (that is, the time of being evaporated).

請參閱第3圖,第3圖繪示本揭示內容第二實施方式之有機光電元件的連續式量產設備10a的剖面示意圖。須說明的是,在第3圖中,與第2圖相同或相似之元件被給予相同的符號,並省略相關說明。第3圖的有機光電元件的連續式量產設備10a與第2圖的有機光電元件的連續式量產設備10相似,差異在於,第3圖的有機光電元件的連續式量產設備10a更包括一緩衝腔體900。緩衝腔體900具有一入口920、一出口930、抽氣部940、位於入口920的入口閘門950及位於出口830的出口閘門960。 Please refer to FIG. 3, which is a schematic cross-sectional view of a continuous mass production device 10a of an organic optoelectronic device according to a second embodiment of the present disclosure. It should be noted that in FIG. 3, elements that are the same as or similar to FIG. 2 are given the same symbols, and related descriptions are omitted. The continuous mass production device 10a of the organic photovoltaic element in FIG. 3 is similar to the continuous mass production device 10 of the organic photovoltaic element in FIG. 2, the difference is that the continuous mass production device 10a of the organic photovoltaic element in FIG. 3 further includes一Buffer cavity 900. The buffer chamber 900 has an inlet 920, an outlet 930, a suction part 940, an inlet gate 950 at the inlet 920, and an outlet gate 960 at the outlet 830.

具體地,抽氣部940耦接至真空抽氣裝置(未繪示),以將緩衝腔體900內的氣體抽出。緩衝腔體900的入口920連接裝載腔體800的出口830,且緩衝腔體900的出口930連接與其相鄰的真空蒸鍍腔體100的入口120。更具體地,輸送單元300位於緩衝腔體900中,且輸送單元300配置以在輸送方向D1上,將基板S從裝載腔體800的出口830通過真空通道200輸送至緩衝腔體900的入口920。此外,輸送單元300配置以在輸送方向D1上,將基板S從緩衝腔體900的入口920輸送至出口930,並從出口930通過真空通道200輸送至與其相鄰的真空蒸鍍腔體100的入口120。 Specifically, the pumping portion 940 is coupled to a vacuum pumping device (not shown) to pump the gas in the buffer cavity 900. The inlet 920 of the buffer chamber 900 is connected to the outlet 830 of the loading chamber 800, and the outlet 930 of the buffer chamber 900 is connected to the inlet 120 of the vacuum evaporation chamber 100 adjacent thereto. More specifically, the transport unit 300 is located in the buffer chamber 900, and the transport unit 300 is configured to transport the substrate S from the outlet 830 of the loading chamber 800 through the vacuum channel 200 to the inlet 920 of the buffer chamber 900 in the transport direction D1 . In addition, the transport unit 300 is configured to transport the substrate S in the transport direction D1 from the inlet 920 to the outlet 930 of the buffer chamber 900 and from the outlet 930 through the vacuum channel 200 to the vacuum evaporation chamber 100 adjacent thereto Entrance 120.

應當理解,緩衝腔體900配置以當基板S進入緩衝腔體900並且緩衝腔體900內的氣體被抽出時,緩衝腔體900與裝載腔體800及各真空蒸鍍腔體100不連通。詳細而言,為了將基板S更快地饋入各真空蒸鍍腔體100中但又不影響各真空蒸鍍腔體100的高真空度,利用緩衝腔體900可快速達到高真空度的特性,可將基板S更快地饋入各真空蒸鍍腔體100中。 It should be understood that the buffer cavity 900 is configured such that when the substrate S enters the buffer cavity 900 and the gas in the buffer cavity 900 is evacuated, the buffer cavity 900 is not in communication with the loading cavity 800 and each vacuum evaporation cavity 100. In detail, in order to quickly feed the substrate S into each vacuum evaporation chamber 100 without affecting the high vacuum degree of each vacuum evaporation chamber 100, the characteristics of the high vacuum degree can be quickly achieved by using the buffer chamber 900 , The substrate S can be fed into each vacuum evaporation chamber 100 faster.

更詳細而言,當不存在緩衝腔體900時(如第2圖所示的有機光電元件的連續式量產設備10),為了將基板S從裝載腔體800輸送至真空蒸鍍腔體100,須將裝載腔體800內的氣體抽出以達到與真空蒸鍍腔體100相近的高真空度。然而,在打開裝載腔體800的入口820以放置基板S時,裝載腔體800係處於常壓狀態。由於將氣體從常壓狀態抽出至達到高真空度係耗時的,因此可藉由緩衝腔體900的設置以分別在裝載腔體800先達到第一真空度,而在緩衝腔體900達到與真空蒸鍍腔體100相近的第二真空度。舉例來說,各真空蒸鍍腔體100的真空度為約10-7torr。而在基板S被放進裝載腔體800之後,關閉裝載腔體800的入口閘門850及出口閘門860,並抽出裝載腔體800內的氣體以達到約10-2torr的真空度。接著,打開裝載腔體800的出口閘門860以將基板S輸送至緩衝腔體900中(此時,緩衝腔體900的出口閘門960係關閉的)。隨後,關閉緩衝腔體900的入 口閘門950,並抽出緩衝腔體900內的氣體以達到約10-6torr的真空度。 In more detail, when there is no buffer chamber 900 (as shown in FIG. 2 of the continuous mass production apparatus 10 for organic photoelectric elements), in order to transport the substrate S from the loading chamber 800 to the vacuum evaporation chamber 100 , The gas in the loading chamber 800 must be evacuated to achieve a high vacuum degree close to the vacuum evaporation chamber 100. However, when the inlet 820 of the loading chamber 800 is opened to place the substrate S, the loading chamber 800 is in a normal pressure state. Since it is time-consuming to extract the gas from the normal pressure state to reach a high vacuum degree, the first vacuum degree can be achieved first in the loading chamber 800 by the setting of the buffer chamber 900, and the The second vacuum degree of the vacuum evaporation chamber 100 is similar. For example, the vacuum degree of each vacuum evaporation chamber 100 is about 10 -7 torr. After the substrate S is put into the loading chamber 800, the inlet gate 850 and the outlet gate 860 of the loading chamber 800 are closed, and the gas in the loading chamber 800 is extracted to achieve a vacuum of about 10-2 torr. Next, the exit gate 860 of the loading chamber 800 is opened to convey the substrate S into the buffer chamber 900 (at this time, the exit gate 960 of the buffer chamber 900 is closed). Subsequently, the inlet gate 950 of the buffer chamber 900 is closed, and the gas in the buffer chamber 900 is evacuated to achieve a vacuum of about 10 -6 torr.

請參閱第4圖,第4圖繪示本揭示內容第三實施方式之有機光電元件的連續式量產設備10b的剖面示意圖。須說明的是,在第4圖中,與第2圖相同或相似之元件被給予相同的符號,並省略相關說明。第4圖的有機光電元件的連續式量產設備10b與第2圖的有機光電元件的連續式量產設備10相似,差異在於,第4圖的有機光電元件的連續式量產設備10b更包括一雷射處理腔體500。 Please refer to FIG. 4, which is a schematic cross-sectional view of a continuous mass production device 10 b of an organic optoelectronic device according to a third embodiment of the present disclosure. It should be noted that in FIG. 4, elements that are the same as or similar to those in FIG. 2 are given the same symbols, and related descriptions are omitted. The continuous mass production device 10b of the organic photovoltaic element in FIG. 4 is similar to the continuous mass production device 10 of the organic photovoltaic element in FIG. 2, the difference is that the continuous mass production device 10b of the organic photovoltaic element in FIG. 4 further includes One laser processing cavity 500.

雷射處理腔體500具有雷射源LS、入口520及出口530。雷射處理腔體500的入口520通過一真空通道200連接至一真空蒸鍍腔體100的出口530。雷射源LS配置以發射雷射擊穿形成於基板S上的一層或多層材料。 The laser processing chamber 500 has a laser source LS, an inlet 520, and an outlet 530. The inlet 520 of the laser processing chamber 500 is connected to the outlet 530 of a vacuum evaporation chamber 100 through a vacuum channel 200. The laser source LS is configured to emit a laser beam through one or more layers of material formed on the substrate S.

請參閱第5圖,第5圖繪示本揭示內容第四實施方式之有機光電元件的連續式量產設備10c的剖面示意圖。第5圖的有機光電元件的連續式量產設備10c與第4圖的有機光電元件的連續式量產設備10b相似,差異在於,第5圖的有機光電元件的連續式量產設備10c的雷射處理腔體500設置於兩個真空蒸鍍腔體100之間。據此,在雷射擊穿一層或多層材料之後,可在下一個真空蒸鍍腔體100中,繼續蒸鍍其他材料層。 Please refer to FIG. 5. FIG. 5 is a schematic cross-sectional view of a continuous mass production device 10c of an organic optoelectronic device according to a fourth embodiment of the present disclosure. The continuous mass production device 10c of the organic photovoltaic element in FIG. 5 is similar to the continuous mass production device 10b of the organic photovoltaic element in FIG. 4, except that the continuous mass production device 10c of the organic photovoltaic element in FIG. 5 The injection processing chamber 500 is disposed between two vacuum evaporation chambers 100. According to this, after the laser beam penetrates one or more layers of materials, other layers of materials can be continuously deposited in the next vacuum evaporation chamber 100.

請參閱第6圖,第6圖繪示本揭示內容第五實施 方式之有機光電元件的連續式量產設備10d的剖面示意圖。第6圖的有機光電元件的連續式量產設備10d與第2圖的有機光電元件的連續式量產設備10相似,差異之一在於,在第6圖的有機光電元件的連續式量產設備10d中,其中一個第三真空蒸鍍腔體100c還包括一雷射源LS。亦即,在某些實施方式中,可直接將雷射源LS設置於真空蒸鍍腔體100中,以發射雷射擊穿形成於基板S上的一層或多層材料。 Please refer to FIG. 6, which illustrates the fifth implementation of the disclosure 10d is a schematic cross-sectional view of a continuous mass production device 10d of organic photovoltaic elements. The continuous mass production device 10d of the organic photovoltaic element in FIG. 6 is similar to the continuous mass production device 10 of the organic photovoltaic element in FIG. 2, and one of the differences is that the continuous mass production device of the organic photovoltaic element in FIG. 6 In 10d, one of the third vacuum evaporation chambers 100c further includes a laser source LS. That is, in some embodiments, the laser source LS may be directly disposed in the vacuum evaporation chamber 100 to emit a laser beam through one or more layers of material formed on the substrate S.

請參閱第7圖,第7圖繪示本揭示內容第六實施方式之有機光電元件的連續式量產設備10e的剖面示意圖。第7圖的有機光電元件的連續式量產設備10e與第2圖的有機光電元件的連續式量產設備10相似,差異之一在於,在第7圖的有機光電元件的連續式量產設備10e中,其中一個第二真空通道200b中設置有一雷射源LS。據此,在某些實施方式中,可在將基板S從一個第二真空蒸鍍腔體100b輸送至另一個真空蒸鍍腔體100時,通過真空通道200中的雷射源LS發射雷射以擊穿基板S上的一層或多層材料。 Please refer to FIG. 7, which is a schematic cross-sectional view of a continuous mass production device 10 e of an organic optoelectronic device according to a sixth embodiment of the disclosure. The continuous mass production device 10e of the organic photovoltaic element in FIG. 7 is similar to the continuous mass production device 10 of the organic photovoltaic element in FIG. 2, one of the differences is that the continuous mass production device of the organic photovoltaic element in FIG. 7 In 10e, one of the second vacuum channels 200b is provided with a laser source LS. According to this, in some embodiments, when the substrate S is transferred from one second vacuum evaporation chamber 100b to another vacuum evaporation chamber 100, the laser can be emitted by the laser source LS in the vacuum channel 200 In order to break down one or more layers of material on the substrate S.

本揭示內容亦提供一種發光裝置的製造方法。第8圖~第9圖繪示本揭示內容一實施方式之發光裝置的製造方法的各個階段的剖面示意圖。 The disclosure also provides a method of manufacturing a light-emitting device. 8 to 9 are schematic cross-sectional views of various stages of a method of manufacturing a light-emitting device according to an embodiment of the present disclosure.

請同時參閱第8圖~第9圖。在各種實施方式中,發光裝置的製造方法包括(i)提供一基板S,其中基板S上設置有第一電極層610及接觸電極層650;(ii)在基板S上 依序形成有機層620及第二電極層630(如第8圖所示);以及(iii)使用雷射擊穿第二電極層630及其下方之有機層620,而產生貫穿有機層620及第二電極層630的穿孔TH(如第9圖所示)。 Please also refer to Figure 8 ~ Figure 9. In various embodiments, a method of manufacturing a light-emitting device includes (i) providing a substrate S, wherein a first electrode layer 610 and a contact electrode layer 650 are provided on the substrate S; (ii) on the substrate S Sequentially forming the organic layer 620 and the second electrode layer 630 (as shown in FIG. 8); and (iii) using a laser to penetrate the second electrode layer 630 and the organic layer 620 below it The through hole TH of the two-electrode layer 630 (as shown in FIG. 9).

具體地,操作(ii)及(iii)可通過前述之有機光電元件的連續式量產設備10b、10c、10d或10e來執行。舉例來說,可使用如第4圖所示的有機光電元件的連續式量產設備10b,在多個真空蒸鍍腔體100中,在基板S上依序形成有機層620及第二電極層630。接著,在雷射處理腔體500中,使用雷射擊穿第二電極層630及其下方之有機層620,而產生貫穿有機層620及第二電極層630的穿孔TH。 Specifically, operations (ii) and (iii) can be performed by the aforementioned continuous mass production device 10b, 10c, 10d, or 10e of an organic photovoltaic element. For example, a continuous mass production device 10b of an organic photovoltaic element as shown in FIG. 4 may be used to sequentially form an organic layer 620 and a second electrode layer on a substrate S in a plurality of vacuum evaporation chambers 100 630. Next, in the laser processing chamber 500, a laser is used to penetrate the second electrode layer 630 and the organic layer 620 therebelow, thereby generating a through hole TH penetrating the organic layer 620 and the second electrode layer 630.

可替代地,請參閱第7圖,本發明的連續式量產設備10e,可包括一第一腔體100a、一第二腔體100b、以及一圖案化載具400,圖案化載具400承載一基板S。 Alternatively, referring to FIG. 7, the continuous mass production device 10e of the present invention may include a first cavity 100a, a second cavity 100b, and a patterned carrier 400, which is carried by the patterned carrier 400 One substrate S.

請參閱第9圖,基板S覆蓋有一第一電極層610及一接觸電極層650,且其中圖案化載具400(第7圖)可部分遮蔽第一電極層610(第9圖)及接觸電極層650。 Please refer to FIG. 9, the substrate S is covered with a first electrode layer 610 and a contact electrode layer 650, and the patterned carrier 400 (FIG. 7) can partially shield the first electrode layer 610 (FIG. 9) and the contact electrode Layer 650.

請參閱第7圖,第一腔體100a,是用以在未被圖案化載具400遮蔽的第一電極層610(第9圖)及接觸電極層650上,形成一有機層620。第二腔體100b(第7圖),線性地排在第一腔體100a後方,用以在有機層620(第9圖)上,形成一第二電極層630。 Referring to FIG. 7, the first cavity 100 a is used to form an organic layer 620 on the first electrode layer 610 (FIG. 9) and the contact electrode layer 650 that are not shielded by the patterned carrier 400. The second cavity 100b (FIG. 7) is linearly arranged behind the first cavity 100a to form a second electrode layer 630 on the organic layer 620 (FIG. 9).

請參閱第7圖,在一實施方式中,圖案化載具400具有一開口400a,且形成於基板S上的第二電極層 630(第9圖)及有機層620的形狀對應於開口400a(第7圖)的形狀。具體而言,圖案化載具400可作為遮罩以遮蔽基板S下表面的一部分,而開口400a暴露出基板S下表面的另一部分。 Please refer to FIG. 7. In one embodiment, the patterned carrier 400 has an opening 400 a and a second electrode layer formed on the substrate S The shape of 630 (FIG. 9) and the organic layer 620 correspond to the shape of the opening 400a (FIG. 7). Specifically, the patterned carrier 400 may serve as a mask to shield a part of the lower surface of the substrate S, and the opening 400a exposes another part of the lower surface of the substrate S.

在一些實施方式中,第一腔體100a可以是一第一真空蒸鍍腔體。第二腔體100b,也可以是一第二真空蒸鍍腔體,如此可使本發明完全在一連續式(In-Line)真空設備中,形成有機層、第二電極層,避免外界汙染,提高元件的量產速度與品質。 In some embodiments, the first cavity 100a may be a first vacuum evaporation cavity. The second cavity 100b can also be a second vacuum evaporation cavity, so that the present invention can form an organic layer and a second electrode layer completely in an in-line vacuum equipment to avoid external pollution, Improve the mass production speed and quality of components.

在形成第二電極層630(第9圖)及形成有機層620時,圖案化載具400(第7圖)皆可作為一遮罩,部分遮蔽第一電極層610及接觸電極層650,故不需要更換其他遮罩,也就不需要使用機械手臂進行遮罩更換,可以有效減少遮罩使用數目、定位次數,大幅降低製程所需的時間,也避免更換遮罩時可能造成的汙染,提高量產的良率與速度。 When forming the second electrode layer 630 (Figure 9) and the organic layer 620, the patterned carrier 400 (Figure 7) can be used as a mask to partially shield the first electrode layer 610 and the contact electrode layer 650, so There is no need to replace other masks, and there is no need to use a mechanical arm to replace the mask, which can effectively reduce the number of masks used and the number of positioning, greatly reduce the time required for the manufacturing process, and avoid possible pollution caused by replacing the mask. Yield and speed of mass production.

請參閱第7圖,本發明連續式量產設備可更包括一第一真空通道200a。在有機層620(第9圖)形成之後,基板400(第7圖)可以通過第一真空通道200a,被輸送至第二腔體100b,以形成第二電極層630(第9圖)。 Please refer to FIG. 7, the continuous mass production equipment of the present invention may further include a first vacuum channel 200a. After the organic layer 620 (FIG. 9) is formed, the substrate 400 (FIG. 7) may be transported to the second cavity 100b through the first vacuum channel 200a to form the second electrode layer 630 (FIG. 9).

請參閱第7圖,本發明連續式量產設備可更包括一第二真空通道200b。第二真空通道200b中可設置有一雷射源LS,用以形成一電性連接件640(第9圖),電性連接第二電極層630及接觸電極層650。在第二真空通道200b(第7圖)中,形成電性連接件640(第9圖),可使本發明完全在一 連續式(In-Line)真空設備中,形成有機層、第二電極層、電性連接件,避免外界汙染,提高元件量產品質與速度。 Please refer to FIG. 7, the continuous mass production equipment of the present invention may further include a second vacuum channel 200b. A laser source LS may be provided in the second vacuum channel 200b to form an electrical connection member 640 (FIG. 9) to electrically connect the second electrode layer 630 and the contact electrode layer 650. In the second vacuum channel 200b (Figure 7), the formation of the electrical connector 640 (Figure 9) can make the present invention completely In an In-Line vacuum equipment, an organic layer, a second electrode layer, and electrical connectors are formed to avoid external pollution and improve the quality and speed of component quantities.

可替代地,請參閱第6圖,本發明連續式量產設備10d可更包括一第三腔體100c,線性地排在第二腔體100b後方,其中第三腔體100c中設置有一雷射源LS,可用以形成一電性連接件640(第9圖),電性連接第二電極層630及接觸電極層650。第三腔體100c(第6圖),可以是一第三真空蒸鍍腔體。 Alternatively, referring to FIG. 6, the continuous mass production device 10d of the present invention may further include a third cavity 100c, which is linearly arranged behind the second cavity 100b, wherein a laser is disposed in the third cavity 100c The source LS can be used to form an electrical connection 640 (FIG. 9), which is electrically connected to the second electrode layer 630 and the contact electrode layer 650. The third cavity 100c (Figure 6) may be a third vacuum evaporation cavity.

本揭示內容的另一態樣係提供一種有機光電元件的製造方法,包括提供覆蓋有第一電極層610(第9圖)及接觸電極層650的基板S;使用上述連續式量產設備,在第一電極層610及接觸電極層650上,形成有機層620;以及在有機層620上,形成第二電極層630。本發明的製造方法可更包括形成一電性連接件640於穿孔TH的側壁上。電性連接件640電性連接第二電極層630及接觸電極層650。 Another aspect of the present disclosure is to provide a method for manufacturing an organic optoelectronic device, including providing a substrate S covered with a first electrode layer 610 (Figure 9) and a contact electrode layer 650; using the continuous mass production equipment described above, in On the first electrode layer 610 and the contact electrode layer 650, an organic layer 620 is formed; and on the organic layer 620, a second electrode layer 630 is formed. The manufacturing method of the present invention may further include forming an electrical connector 640 on the sidewall of the through hole TH. The electrical connector 640 is electrically connected to the second electrode layer 630 and the contact electrode layer 650.

穿孔TH的形成方法,例如是在設有雷射源LS(第7圖)的真空通道200b中,使用雷射擊穿第二電極層630及其下方之有機層620,而產生貫穿有機層620及第二電極層630的穿孔TH。在一些實施方式中,使用雷射擊穿第二電極層630及有機層620時,會產生一電性連接件640於穿孔TH的側壁上。 The formation method of the through hole TH is, for example, in a vacuum channel 200b provided with a laser source LS (Figure 7), a laser is used to penetrate the second electrode layer 630 and the organic layer 620 underneath, to produce a through organic layer 620 and The through hole TH of the second electrode layer 630. In some embodiments, when a laser is used to penetrate the second electrode layer 630 and the organic layer 620, an electrical connection 640 is generated on the sidewall of the through hole TH.

由於本發明可以完全在一連續式(In-Line)真空設備中,形成有機層、第二電極層、電性連接件,可以避免外界汙染,提高元件的量產品質與速度。此外,利用本發 明之連續式量產設備,形成第二電極層及形成有機層時,圖案化載具本身,既可以作為載具,也可以作為遮罩,部分遮蔽第一電極層及接觸電極層,故不需要更換其他遮罩,大幅降低製程所需的時間,也避免更換遮罩時可能造成的汙染,提高量產的良率與速度。再者,當一基板正在形成電性連接件時,另一基板可以形成第二電極層,其他基板可以形成有機層,達到快速量產的效果。另一方面,本發明不需要使用機械手臂進行遮罩更換,可以有效減少遮罩使用數目、定位次數。 Since the present invention can form an organic layer, a second electrode layer, and electrical connectors completely in an in-line vacuum equipment, external pollution can be avoided, and the quality and speed of the components can be improved. In addition, use this post In the continuous mass production equipment of the Ming Dynasty, when forming the second electrode layer and the organic layer, the patterned carrier itself can be used as a carrier or a mask to partially shield the first electrode layer and the contact electrode layer, so there is no need Replacing other masks greatly reduces the time required for the manufacturing process, avoids the pollution that may be caused when replacing the mask, and improves the yield and speed of mass production. Furthermore, when one substrate is forming an electrical connection member, another substrate can form a second electrode layer, and the other substrate can form an organic layer to achieve the effect of rapid mass production. On the other hand, the present invention does not require the use of a mechanical arm for mask replacement, which can effectively reduce the number of masks used and the number of positioning times.

換句話說,由於在此揭露的有機光電元件的連續式量產設備中的各真空蒸鍍腔體、雷射處理腔體及其他處理腔體互相連通,因此多個基板可同時被輸送單元進行輸送,並在各個腔體內進行蒸鍍、雷射等製程,從而減少發光裝置的製造工時。此外,相較於傳統的團簇式沉積設備,在此揭露的有機光電元件的連續式量產設備中,使用圖案化載具作為遮罩,且遮罩圖案適用於各真空蒸鍍腔體,因此有效減少更換遮罩及定位的時間。 In other words, since the vacuum evaporation chambers, laser processing chambers, and other processing chambers in the continuous mass production equipment for organic optoelectronic elements disclosed herein are interconnected, multiple substrates can be simultaneously carried by the transport unit Transport and perform processes such as vapor deposition and laser in each cavity, thereby reducing the manufacturing time of the light-emitting device. In addition, compared with the traditional cluster deposition equipment, the continuous mass production equipment of the organic photoelectric device disclosed herein uses a patterned carrier as a mask, and the mask pattern is suitable for each vacuum evaporation chamber, Therefore, the time for replacing the mask and positioning is effectively reduced.

雖然本揭示內容已以實施方式揭露如上,但其他實施方式亦有可能。因此,所請請求項之精神與範圍並不限定於此處實施方式所含之敘述。 Although the present disclosure has been disclosed as above, other embodiments are also possible. Therefore, the spirit and scope of the requested items are not limited to the description contained in the embodiments herein.

任何熟習此技藝者可明瞭,在不脫離本揭示內容的精神和範圍內,當可作各種之更動與潤飾,因此本揭示內容的保護範圍當視後附之申請專利範圍所界定者為準。 Anyone who is familiar with this skill can understand that various changes and modifications can be made without departing from the spirit and scope of this disclosure. Therefore, the scope of protection of this disclosure shall be subject to the scope defined in the attached patent application.

10e‧‧‧有機光電元件的連續式量產設備 10e‧‧‧Continuous mass production equipment for organic optoelectronic components

100‧‧‧真空蒸鍍腔體 100‧‧‧Vacuum evaporation chamber

100a‧‧‧第一真空蒸鍍腔體(第一腔體) 100a‧‧‧First vacuum evaporation chamber (first chamber)

100b‧‧‧第二真空蒸鍍腔體(第二腔體) 100b‧‧‧Second vacuum evaporation chamber (second chamber)

110‧‧‧蒸鍍源 110‧‧‧Evaporation source

120‧‧‧入口 120‧‧‧ entrance

130‧‧‧出口 130‧‧‧Export

140‧‧‧抽氣部 140‧‧‧Exhaust Department

150‧‧‧入口閘門 150‧‧‧ Entrance gate

160‧‧‧出口閘門 160‧‧‧ Exit gate

200‧‧‧真空通道 200‧‧‧Vacuum channel

200a‧‧‧第一真空通道 200a‧‧‧First vacuum channel

200b‧‧‧第二真空通道 200b‧‧‧Second vacuum channel

300‧‧‧輸送單元 300‧‧‧Conveying unit

400‧‧‧圖案化載具 400‧‧‧patterned vehicle

400a‧‧‧開口 400a‧‧‧ opening

800‧‧‧裝載腔體 800‧‧‧Loading cavity

820‧‧‧入口 820‧‧‧ entrance

830‧‧‧出口 830‧‧‧Export

840‧‧‧抽氣部 840‧‧‧Exhaust Department

850‧‧‧入口閘門 850‧‧‧ Entrance gate

860‧‧‧出口閘門 860‧‧‧ Exit gate

S‧‧‧基板 S‧‧‧Substrate

D1‧‧‧輸送方向 D1‧‧‧Conveying direction

LS‧‧‧雷射源 LS‧‧‧Laser source

Claims (10)

一種有機光電元件的連續式量產設備,包括:一圖案化載具,承載一基板,其中該基板覆蓋有一第一電極層及一接觸電極層,且其中該圖案化載具遮蔽該第一電極層及該接觸電極層的一部分;一第一腔體,用以在未被該圖案化載具遮蔽的該第一電極層及該接觸電極層的另一部分上,形成一有機層;一第二腔體,線性地排在該第一腔體後方,用以在該有機層上,形成一第二電極層;一第一真空通道,其中在該有機層形成之後,該基板可以通過該第一真空通道,被輸送至該第二腔體,以形成該第二電極層;一輸送單元位於該第一腔體與該第二腔體中,而不存在於該第一真空通道中;以及其中該圖案化載具的長度大於該第一真空通道的長度。 A continuous mass production device for organic optoelectronic components, comprising: a patterned carrier carrying a substrate, wherein the substrate is covered with a first electrode layer and a contact electrode layer, and wherein the patterned carrier shields the first electrode A layer and a part of the contact electrode layer; a first cavity for forming an organic layer on the other part of the first electrode layer and the contact electrode layer not covered by the patterned carrier; a second The cavity is linearly arranged behind the first cavity to form a second electrode layer on the organic layer; a first vacuum channel in which the substrate can pass through the first after the organic layer is formed The vacuum channel is transported to the second cavity to form the second electrode layer; a transport unit is located in the first cavity and the second cavity, but does not exist in the first vacuum channel; and wherein The length of the patterned carrier is greater than the length of the first vacuum channel. 如請求項1所述的有機光電元件的連續式量產設備,其中該第一腔體是一第一真空蒸鍍腔體。 The continuous mass production device for organic photoelectric elements according to claim 1, wherein the first cavity is a first vacuum evaporation cavity. 如請求項2所述的有機光電元件的連續式量產設備,其中該第二腔體是一第二真空蒸鍍腔體。 The continuous mass production device for organic photoelectric elements according to claim 2, wherein the second cavity is a second vacuum evaporation cavity. 如請求項1所述的有機光電元件的連續式量產設備,其中在形成該第二電極層及形成該有機層時,該圖案化載具皆可作為一遮罩,部分遮蔽該第一電極層及該接觸電極層,故不需要更換其他遮罩。 The continuous mass production device for organic optoelectronic devices according to claim 1, wherein when forming the second electrode layer and forming the organic layer, the patterned carrier can be used as a mask to partially shield the first electrode Layer and the contact electrode layer, there is no need to replace other masks. 如請求項1所述的有機光電元件的連續式量產設備,其中該第一真空通道的該長度與該圖案化載具的 該長度的比為1:2~1:4。 The continuous mass production device for organic photovoltaic elements according to claim 1, wherein the length of the first vacuum channel and the patterned carrier The ratio of the length is 1:2~1:4. 如請求項5所述的有機光電元件的連續式量產設備,更包括一第二真空通道,該第二真空通道中設置有一雷射源,可用以形成一電性連接件,電性連接該第二電極層及該接觸電極層。 The continuous mass production device for organic photoelectric elements according to claim 5, further comprising a second vacuum channel, a laser source is provided in the second vacuum channel, which can be used to form an electrical connection part, which is electrically connected to the The second electrode layer and the contact electrode layer. 如請求項1所述的有機光電元件的連續式量產設備,更包括一第三腔體,線性地排在該第二腔體後方,其中該第三腔體中設置有一雷射源,可用以形成一電性連接件,電性連接該第二電極層及該接觸電極層。 The continuous mass production device for organic photovoltaic elements according to claim 1, further comprising a third cavity linearly arranged behind the second cavity, wherein a laser source is provided in the third cavity, available In order to form an electrical connector, the second electrode layer and the contact electrode layer are electrically connected. 如請求項7所述的有機光電元件的連續式量產設備,其中該第三腔體是一第三真空蒸鍍腔體。 The continuous mass production device for organic photoelectric elements according to claim 7, wherein the third cavity is a third vacuum evaporation cavity. 一種有機光電元件的製造方法,包括:提供覆蓋有一第一電極層及一接觸電極層的一基板;使用如請求項1至8中任一項所述的連續式量產設備,在該第一電極層及該接觸電極層上,形成一有機層;以及在該有機層上,形成該第二電極層。 A method for manufacturing an organic optoelectronic component, comprising: providing a substrate covered with a first electrode layer and a contact electrode layer; using the continuous mass production equipment described in any one of claims 1 to 8, in the first An organic layer is formed on the electrode layer and the contact electrode layer; and the second electrode layer is formed on the organic layer. 一種有機光電元件的製造方法,包括:提供覆蓋有一第一電極層及一接觸電極層的一基板;使用如請求項7所述的連續式量產設備的該第一腔體,形成該有機層;在該有機層上,形成該第二電極層;以及用線性地排在該第二腔體後方的該第三腔體中設置的該雷射源,形成該電性連接件,電性連接該第二 電極層及該接觸電極層。 A method for manufacturing an organic optoelectronic component, comprising: providing a substrate covered with a first electrode layer and a contact electrode layer; using the first cavity of the continuous mass production device as described in claim 7, to form the organic layer Forming the second electrode layer on the organic layer; and using the laser source arranged in the third cavity linearly behind the second cavity to form the electrical connector, electrically connected The second The electrode layer and the contact electrode layer.
TW107144590A 2018-12-11 2018-12-11 In-line system for mass production of organic optoelectronic device and manufacturing method using the same TWI692897B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW107144590A TWI692897B (en) 2018-12-11 2018-12-11 In-line system for mass production of organic optoelectronic device and manufacturing method using the same
US16/396,768 US10790466B2 (en) 2018-12-11 2019-04-29 In-line system for mass production of organic optoelectronic device and manufacturing method using the same system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107144590A TWI692897B (en) 2018-12-11 2018-12-11 In-line system for mass production of organic optoelectronic device and manufacturing method using the same

Publications (2)

Publication Number Publication Date
TWI692897B true TWI692897B (en) 2020-05-01
TW202023090A TW202023090A (en) 2020-06-16

Family

ID=71895876

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107144590A TWI692897B (en) 2018-12-11 2018-12-11 In-line system for mass production of organic optoelectronic device and manufacturing method using the same

Country Status (1)

Country Link
TW (1) TWI692897B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI261627B (en) * 2001-05-23 2006-09-11 Junji Kido Successive vapour deposition system, vapour deposition system, and vapour deposition process
TWI558835B (en) * 2014-02-26 2016-11-21 qing-feng Chen Continuous physical vacuum coating equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI261627B (en) * 2001-05-23 2006-09-11 Junji Kido Successive vapour deposition system, vapour deposition system, and vapour deposition process
TWI558835B (en) * 2014-02-26 2016-11-21 qing-feng Chen Continuous physical vacuum coating equipment

Also Published As

Publication number Publication date
TW202023090A (en) 2020-06-16

Similar Documents

Publication Publication Date Title
KR101230997B1 (en) Substrate processing system
KR101057915B1 (en) Method of manufacturing film deposition apparatus and light emitting element
JP5356627B2 (en) Vapor deposition particle injection apparatus and vapor deposition apparatus
KR102106414B1 (en) Depositing chamber, depositing system comprising the same and method for manufacturing organic light emitting diode display
CN101106848A (en) Deposition apparatus
EP2943989B1 (en) Apparatus and method for making oled lighting device
US20120094025A1 (en) Substrate Depositing System and Method
KR20140078559A (en) Manufacturing flexible organic electronic devices
TW201028034A (en) Organic electroluminescent apparatus manufacturing installation and production method thereof as well as film-forming device and film-forming method
TW200843552A (en) Processing device and method for processing a substrate
WO2007145255A1 (en) Light-emitting device and method for manufacturing light-emitting device
KR101046239B1 (en) Deposition Device, Deposition System and Deposition Method
KR100727849B1 (en) In-line deposition system of parallel type
TWI692897B (en) In-line system for mass production of organic optoelectronic device and manufacturing method using the same
KR101925064B1 (en) Manufacturing equipment using vertical type plane source evaporation for high definition AMOLED devices
US10790466B2 (en) In-line system for mass production of organic optoelectronic device and manufacturing method using the same system
US20140191200A1 (en) Apparatus and Method for Making OLED Lighting Device
KR101814241B1 (en) Organic el display device and method for manufacturing the same
CN111312932A (en) Continuous mass production equipment for organic photoelectric assembly and manufacturing method for organic photoelectric assembly
KR100762683B1 (en) Vapor source for organic layer and the deposition apparatus having it
KR100783729B1 (en) OLED(Organic Light Emitting Diodes) Panel Fabrication process
KR100965408B1 (en) Apparatus for depositing organic and inorganic material of oled
KR101334704B1 (en) Organic deposition apparatus and organic deposition method
JP2014232727A (en) Organic layer etching apparatus and organic layer etching method
KR101576549B1 (en) Thermal evaporation apparatus for in line type

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees