TWI692114B - 矽基疊層的形成方法及矽基太陽能電池的製造方法 - Google Patents

矽基疊層的形成方法及矽基太陽能電池的製造方法 Download PDF

Info

Publication number
TWI692114B
TWI692114B TW107141262A TW107141262A TWI692114B TW I692114 B TWI692114 B TW I692114B TW 107141262 A TW107141262 A TW 107141262A TW 107141262 A TW107141262 A TW 107141262A TW I692114 B TWI692114 B TW I692114B
Authority
TW
Taiwan
Prior art keywords
silicon
film layer
thin film
microwave
forming
Prior art date
Application number
TW107141262A
Other languages
English (en)
Other versions
TW202021151A (zh
Inventor
田偉辰
洪政源
葉昌鑫
吳以德
Original Assignee
財團法人金屬工業研究發展中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人金屬工業研究發展中心 filed Critical 財團法人金屬工業研究發展中心
Priority to TW107141262A priority Critical patent/TWI692114B/zh
Application granted granted Critical
Publication of TWI692114B publication Critical patent/TWI692114B/zh
Publication of TW202021151A publication Critical patent/TW202021151A/zh

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

一種矽基疊層的形成方法,其包括提供矽基板,其中矽基板具有相對的第一表面與第二表面。於第一表面上形成第一薄膜層。於第二表面上形成第二薄膜層。對矽基板、第一薄膜層及第二薄膜層進行微波製程,以鈍化第一薄膜層及第二薄膜層。一種矽基太陽能電池的製造方法亦被提出。

Description

矽基疊層的形成方法及矽基太陽能電池的製造方法
本發明是有關於一種疊層的形成方法及太陽能電池的製造方法,且特別是有關於一種矽基疊層的形成方法及矽基太陽能電池的製造方法。
矽為地球上蘊含量第二豐富的元素。由於矽在半導體工業的發展上已具有深厚的基礎,因此,目前太陽能電池大多以矽為主要材料。太陽能電池的基本構造是運用P型與N型半導體接合而成,在N型半導體與P型半導體結合處,會產生一個由N指向P的內建電場。當太陽光照射進來時,光子提供能量,所產生的電子將會受電場作用而移動至N型半導體處,電洞則移動至P型半導體處,以導線連接在兩側累積的電荷,即可輸出電流。
然而,目前矽基材料(例如單晶矽基板或非晶矽層)的表面存在許多缺陷,例如高活性之懸鍵(dangling bond),致使電 子和電洞易產生複合(recombination)而導致載子的生命週期降低。傳統上使用加熱退火製程以改善矽基材料表面的缺陷,但傳統的加熱方式是從外到內加熱,使得加熱不均勻且花費時間較長。
本發明提供一種矽基疊層的形成方法,其可快速且均勻地改善矽基疊矽基疊層之間的介面缺陷密度。
本發明提供一種矽基太陽能電池的製造方法,其可快速且均勻地改善矽基板與上下疊層之間的介面缺陷密度,以提高載子的生命週期,使得矽基太陽能電池具有良好的光電轉換效率。
本發明提出一種矽基疊層的形成方法,其包括提供矽基板,其中矽基板具有相對的第一表面與第二表面。於第一表面上形成第一薄膜層。於第二表面上形成第二薄膜層。對矽基板、第一薄膜層及第二薄膜層進行微波製程,以鈍化第一薄膜層及第二薄膜層。
在本發明的一實施例中,上述的矽基疊層的形成方法中,第一薄膜層的材料包括本質矽、氮化矽、氧化矽、氧化鋁或氧化鉿,第二薄膜層的材料包括本質矽、氮化矽、氧化矽、氧化鋁或氧化鉿。
在本發明的一實施例中,上述的矽基疊層的形成方法中,微波製程的微波頻率例如是介於850MHz~3GHz之間。
在本發明的一實施例中,上述的矽基疊層的形成方法 中,微波製程的單位面積的功率密度例如是介於10mW/cm2~1000mW/cm2之間,微波製程的時間例如是介於10分鐘~90分鐘之間。
在本發明的一實施例中,上述的矽基疊層的形成方法中,微波製程的單位面積的功率密度例如是介於180mW/cm2~220mW/cm2之間,微波製程的微波頻率例如是介於2.3GHz~2.5GHz之間,微波製程的時間例如是介於25分鐘~30分鐘之間。
在本發明的一實施例中,上述的矽基疊層的形成方法中,微波製程的單位面積的功率密度例如是介於140mW/cm2~160mW/cm2之間,微波製程的微波頻率例如是介於900MHz~930MHz之間,微波製程的時間例如是介於25分鐘~30分鐘之間。
本發明提出一種矽基太陽能電池的製造方法,其包括提供半導體基板,具有第一導電型態、相對的第一表面與第二表面。於第一表面上形成第一薄膜層。於第二表面上形成第二薄膜層。對半導體基板、第一薄膜層及第二薄膜層進行微波製程處理,以鈍化第一薄膜層及第二薄膜層。
在本發明的一實施例中,上述的矽基太陽能電池的製造方法中,第一薄膜層的材料包括本質矽、氮化矽、氧化矽、氧化鋁或氧化鉿,第二薄膜層的材料包括本質矽、氮化矽、氧化矽、氧化鋁或氧化鉿。
在本發明的一實施例中,上述的矽基太陽能電池的製造方法中,微波製程的微波頻率例如是介於850MHz~3GHz之間。
在本發明的一實施例中,上述的矽基太陽能電池的製造方法中,微波製程的單位面積的功率密度例如是介於10mW/cm2~1000mW/cm2之間,微波製程的時間例如是介於10分鐘~90分鐘之間。
在本發明的一實施例中,上述的矽基太陽能電池的製造方法中,微波製程的單位面積的功率密度例如是介於180mW/cm2~220mW/cm2之間,微波製程的微波頻率例如是介於2.3GHz~2.5GHz之間,微波製程的時間例如是介於25分鐘~30分鐘之間。
在本發明的一實施例中,上述的矽基太陽能電池的製造方法中,微波製程的單位面積的功率密度例如是介於140mW/cm2~160mW/cm2之間,微波製程的微波頻率例如是介於900MHz~930MHz之間,微波製程的時間例如是介於25分鐘~30分鐘之間。
在本發明的一實施例中,上述的矽基太陽能電池的製造方法中,更包括於鈍化後的第一薄膜層上形成第一半導體層,第一半導體層具有不同於第一導電型態的第二導電型態。於鈍化後的第二薄膜層上形成第二半導體層,第二半導體層具有與半導體基板相同的第一導電型態。
在本發明的一實施例中,上述的矽基太陽能電池的製造 方法中,更包括於第一半導體層上形成第一透明導電膜。於第二半導體層上形成第二透明導電膜。
在本發明的一實施例中,上述的矽基太陽能電池的製造方法中,更包括於第一透明導電膜上形成第一電極。於第二透明導電膜上形成第二電極。
在本發明的一實施例中,上述的矽基太陽能電池的製造方法中,其中第一薄膜層具有不同於第一導電型態的第二導電型態。
在本發明的一實施例中,上述的矽基太陽能電池的製造方法中,更包括於第一薄膜層上形成第三電極。於第二薄膜層上形成第四電極。
基於上述,在本發明所提出之矽基疊層的形成方法中,對矽基板、第一薄膜層及第二薄膜層進行微波製程,以快速且均勻地鈍化第一薄膜層及第二薄膜層,如此可避免懸鍵與空氣中的其他原子鍵結(例如碳原子或是氧原子),以改善矽基板與第一薄膜層及第二薄膜層之間的介面缺陷密度。另外,在本發明所提出之矽基太陽能電池的製造方法中,對半導體基板、第一薄膜層及第二薄膜層進行微波製程處理,以快速且均勻地鈍化第一薄膜層及第二薄膜層。如此一來,可改善基板材料之間的介面缺陷密度,使得矽基太陽能電池具有良好的轉換效率。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
100:矽基板
102:第一表面
104:第二表面
110、210、310:第一薄膜層
120、220、320:第二薄膜層
200、300:半導體基板
200a:第一半導體層
200b:第二半導體層
230:第一透明導電膜
240:第二透明導電膜
250:第一電極
260:第二電極
330:第三電極
340:第四電極
圖1A是依據本發明一實施例的矽基疊層的形成方法的流程圖。
圖1B是依據本發明一實施例的矽基疊層的形成方法的剖面示意圖。
圖2是依據本發明一實施例的矽基太陽能電池的製造方法的流程圖。
圖3是依據本發明一實施例的矽基太陽能電池的剖面示意圖。
圖4是依據本發明另一實施例的矽基太陽能電池的剖面示意圖。
圖5是習知太陽能電池的矽基板、第一薄膜層及第二薄膜層經傳統退火的方式鈍化後的載子生命週期圖。
圖6是是依據本發明一實施例的矽基太陽能電池的矽基板、第一薄膜層及第二薄膜層經微波的方式鈍化後的載子生命週期圖。
以下將參照本實施例之圖式以更全面地闡述本發明。然而,本發明亦可以各種不同的形式體現,而不應限於本文中所述 之實施例。圖式中的層與區域的厚度會為了清楚起見而放大。相同或相似之參考號碼表示相同或相似之元件,以下段落將不再一一贅述。另外,實施例中所提到的方向用語,例如:上、下、左、右、前或後等,僅是參考附加圖式的方向。因此,使用的方向用語是用來說明並非用來限制本發明。
一般矽基疊層在製作時容易發生表面缺陷的問題,下面將提供一種矽基疊層的形成方法來均勻且快速地降低矽基疊層的介面之間的缺陷。
圖1A是依據本發明一實施例的矽基疊層的形成方法的流程圖。圖1B是依據本發明一實施例的矽基疊層的形成方法的剖面示意圖。請參照圖1A及圖1B,首先,提供矽基板100(步驟S11)。矽基板100的材料例如是單晶矽、多晶矽、非晶矽或其組合,舉例來說,矽基板100可為N型單晶矽基板、P型單晶矽基板、本質型非晶矽薄膜、N型非晶矽薄膜或P型非晶矽薄膜。
從圖1B可以看到矽基板100具有相對的第一表面102與第二表面104。接著,於第一表面102上形成第一薄膜層110(步驟S13),在本實施例中,第一薄膜層110的材料包括本質矽、氮化矽、氧化矽、氧化鋁或氧化鉿。當然,第一薄膜層110的材料不以此為限制。
接著,於第二表面104上形成第二薄膜層120(步驟S15)。在本實施例中,第二薄膜層120的材料包括本質矽、氮化矽、氧化矽、氧化鋁或氧化鉿。當然,第二薄膜層120的材料不以此為 限制。要說明的是,步驟S13與步驟S15在製作上的順序也可以相反。也就是說,在一實施例中,也可以是先進行步驟S15之後再進行步驟S13。或者,在一實施例中,步驟S13與步驟S15可以是同時進行。
在步驟S13與步驟S15中,薄膜層形成的方法可以是化學氣相沉積法、物理氣相沈積法或原子層沉積法。在本實施例中,薄膜層形成的方法是使用化學氣相沉積法製作而成,製程壓力例如是400毫托(mTorr),射頻功率例如是500mW/cm2,基板溫度例如是150℃,薄膜厚度例如是20奈米,但步驟S13與步驟S15並不以此為限。
沉積完薄膜後,接著對矽基板100、第一薄膜層110及第二薄膜層120進行微波製程處理(步驟S17)。微波製程的微波頻率例如是介於850MHz~3GHz之間。微波製程的單位面積的功率密度例如是介於10mW/cm2~1000mW/cm2之間。微波製程的時間例如是介於10分鐘~90分鐘之間。
在本實施例中,微波頻率優選是2.4GHz,微波製程的單位面積的功率密度優選是200mW/cm2,微波製程的時間優選是30分鐘,但本發明並不以此為限。在另一實施例中,微波製程的微波頻率優選是915MHz,微波製程的單位面積的功率密度優選是150mW/cm2,微波製程的時間優選是30分鐘。
本發明利用矽材料是非常好的微波吸收體的特性,藉由微波製程產生電磁波並穿透物體產生極化震盪的全均勻性加熱, 其所花費的時間較短,且能達到節能的目的,以改善傳統退火製程是由外到內加熱,容易加熱不均勻且耗時的缺點。
當矽基板100、第一薄膜層110及第二薄膜層120在經過微波製程之後,位於矽基板100的懸鍵失去活性,以避免懸鍵與其他原子產生鍵結(例如碳原子或是氧原子),進而產生鈍化效應,藉此改善矽基板100與第一薄膜層110之間的介面缺陷密度,以及改善矽基板100與第二薄膜層120之間的介面缺陷密度。
本發明的矽基疊層的形成方法具有快速省時且能夠均勻的加熱的優勢,還能達到節能的目的。在本實施例中,相較於傳統以退火製程進行鈍化,以微波製程來進行鈍化能夠達到節能約20%。
上述矽基疊層的形成方法可以應用於矽基太陽能電池的製作,例如是矽基異質接面太陽能電池的製作。下面將對此進行說明。
圖2是依據本發明一實施例的矽基太陽能電池的製造方法的流程圖。圖3是依據本發明一實施例的矽基太陽能電池的剖面示意圖,其中矽基太陽能電池例如是矽基異質接面太陽能電池。請參照圖2及圖3,首先,提供半導體基板200(步驟S21),半導體基板200例如是矽基板,藉由摻雜三價原子或五價原子,分別可為P型矽基板或N型矽基板。在此實施例中,半導體基板200是以N型矽基板為例來進行說明,但本發明並不以此為限。在另一實施例中,半導體基板200可為P型矽基板。
接著,半導體基板200具有相對的第一表面201與第二表面202。於第一表面201上形成第一薄膜層210(步驟S23)。在本實施例中,第一薄膜層210的材料可以是非晶矽、非晶氮化矽、非晶氧化矽、非晶氧化鋁或其組合。當然,第一薄膜層210的材料不以此為限制。
接著,於第二表面202上形成第二薄膜層220(步驟S25)。第二薄膜層220的材料可以是非晶矽、非晶氮化矽、非晶氧化矽、非晶氧化鋁或其組合。當然,第二薄膜層220的材料不以此為限制。同樣地,步驟S23與步驟S25沒有順序上的限制。薄膜層的形成方法可以是化學氣相沉積法、物理氣相沈積法或原子層沉積法。
然後,對半導體基板200、第一薄膜層210及第二薄膜層220進行微波製程處理(步驟S27)。在本實施例中,微波製程的微波頻率例如是介於850MHz~3GHz之間。微波製程的單位面積的功率密度例如是介於10mW/cm2~1000mW/cm2之間。微波製程的時間例如是介於10分鐘~90分鐘之間。
半導體基板200、第一薄膜層210及第二薄膜層220在經過微波製程之後,位於半導體基板200的懸鍵失去活性,避免懸鍵與其他原子產生鍵結(例如碳原子或是氧原子),進而產生鈍化效應。
再來,於第一薄膜層210上形成第一半導體層200a。半導體基板200具有第一導電型態,而第一薄膜層210具有不同於 第一導電型態的第二導電型態。在此實施例中,第一半導體層200a是以P型非晶矽層為例來進行說明。第一半導體層200a的形成方法例如是化學氣相沉積法、物理氣相沈積法或原子層沉積法。
接著,於第二薄膜層220上形成第二半導體層200b,第二半導體層200b具有與半導體基板200相同的第一導電型態。在此實施例中,第二半導體層200b是以N型非晶矽層為例來進行說明。第二半導體層200b的形成方法例如是化學氣相沉積法、物理氣相沈積法或原子層沉積法。
再來,如圖3所示,於第一半導體層200a上形成第一透明導電膜230,使得電流的收集效率能夠提高。第一透明導電膜230的材料可以是透明導電氧化物(transparent conductive oxide,TCO),例如銦錫氧化物(ITO)等金屬氧化物。第一透明導電膜230的形成方法例如是蒸鍍或濺鍍。
此外,於第二半導體層200b上形成第二透明導電膜240,使得電流的收集效率能夠提升。第二透明導電膜240的材料可以是透明導電氧化物(transparent conductive oxide,TCO),例如銦錫氧化物(ITO)等金屬氧化物。第二透明導電膜240的形成方法例如是蒸鍍或濺鍍。當然,第一透明導電膜230與第二透明導電膜240的形成順序並不被限制。
而後,於第一透明導電膜230上形成第一電極250。第一電極250可用於導出矽基異質接面太陽能電池所產生的電力。第一電極250的材料例如是鋁、金、銀或銅。
最後,於第二透明導電膜240上形成第二電極260,以形成矽基異質接面太陽能電池。第二電極260可用於導出矽基異質接面太陽能電池所產生的電力。第二電極260的材料例如是鋁、金、銀或銅。同樣地,第一電極250與第二電極260的形成順序並不被限制。
在本實施例的矽基異質接面太陽能電池的製造方法中,由於對半導體基板200、第一薄膜層210及第二薄膜層220進行微波製程處理,以避免懸鍵與其他原子產生鍵結,進而改善半導體基板200與第一薄膜層210之間的介面缺陷密度,以及半導體基板200與第二薄膜層220之間的介面缺陷密度,可以使矽基異質接面太陽能電池具有良好的光電轉換效率。並且,微波處理具有快速且均勻化的效果。
圖2的矽基太陽能電池的製造方法也可以應用於例如是背電極鈍化電池(Passivated Emitter and Rear Contact Solar Cell,PERC)的製作。圖4是依據本發明另一實施例的矽基太陽能電池的剖面示意圖,其中矽基太陽能電池例如是背電極鈍化電池。請參照圖2及圖4,首先,提供半導體基板300(步驟S21),半導體基板300例如是矽基板,藉由摻雜三價原子或五價原子,分別可為P型矽基板或N型矽基板。在此實施例中,半導體基板300是以N型矽基板為例來進行說明,但本發明並不以此為限。在另一實施例中,半導體基板300可為P型矽基板。
半導體基板300具有相對的第一表面301與第二表面 302。第一表面301具有織構化(Texture)結構,例如是鋸齒狀或是其他可以讓第一表面301粗糙化的結構。
接著,於第一表面301上形成第一薄膜層310(步驟S23)。第一薄膜層310的材料例如是氧化矽,可以作為太陽能電池的射極(emitter)。半導體基板300具有第一導電型態。而第一薄膜層310藉由摻雜三價原子或五價原子,具有不同於第一導電型態的第二導電型態。舉例來說,在一些實施例中,當半導體基板300為P型摻雜半導體時,第一薄膜層310可以是N型摻雜半導體。在另一些實施例中,當半導體基板300為N型摻雜半導體時,第一薄膜層310可以是P型摻雜半導體。
接著,於第二表面302上形成第二薄膜層320(步驟S25)。第二薄膜層320的材料例如是氧化矽或氧化鋁。
然後,對半導體基板300、第一薄膜層310及第二薄膜層320進行微波製程處理(步驟S27)。在本實施例中,微波製程的微波頻率例如是介於850MHz~3GHz之間。微波製程的單位面積的功率密度例如是介於10mW/cm2~1000mW/cm2之間。微波製程的時間例如是介於10分鐘~90分鐘之間。
半導體基板300、第一薄膜層310及第二薄膜層320在經過微波製程之後,位於半導體基板300的懸鍵失去活性,避免懸鍵與其他原子產生鍵結(例如碳原子或是氧原子),進而產生鈍化效應。
接著,將第三電極330設置在第一薄膜層310上,且第 三電極330電性連接第一薄膜層310。第三電極330的材料例如是鋁、金、銀或銅。此外,將第四電極340設置在第二薄膜層320的開口上。第四電極340的材料例如是鋁、金、銀或銅。
基於上述實施例可知,對半導體基板300、第一薄膜層310及第二薄膜層320進行微波製程處理,可以避免懸鍵與其他原子產生鍵結,而可快速且均勻地改善半導體基板300與第一薄膜層310之間的介面缺陷密度,以及半導體基板300與第二薄膜層320之間的介面缺陷密度,可以使背電極鈍化電池(Passivated Emitter and Rear Contact Solar Cell,PERC)具有良好的光電轉換效率。
圖5是習知太陽能電池的矽基板、第一薄膜層及第二薄膜層經傳統退火的方式鈍化後的載子生命週期圖。圖6是是依據本發明一實施例的矽基太陽能電池的矽基板、第一薄膜層及第二薄膜層經微波的方式鈍化後的載子生命週期圖。請參照圖5及圖6,經由實驗結果可得,傳統退火製程後的載子生命週期為940μs,而經過微波製程後的載子生命週期為1220μs。由此可知,將半導體基板、第一薄膜層及第二薄膜層進行微波製程處理,確實可有效地增加載子生命週期。
綜上所述,本發明的矽基疊層的形成方法中,藉由對矽基板、第一薄膜層及第二薄膜層,進行微波製程處理,以快速且均勻地鈍化第一薄膜層及第二薄膜層,如此可避免懸鍵與其他原子(例如碳原子或是氧原子)產生鍵結,以改善矽基板與第一薄 膜層之間的介面缺陷密度,以及矽基板與第二薄膜層之間的介面缺陷密度。另外,在本發明的矽基太陽能電池的製造方法中,對半導體基板、第一薄膜層及第二薄膜層進行微波製程處理,以快速且均勻地鈍化第一薄膜層及第二薄膜層,如此可避免懸鍵與其他原子(例如碳原子或是氧原子)產生鍵結,以改善半導體基板與第一薄膜層之間的介面缺陷密度,以及半導體基板與第二薄膜層之間的介面缺陷密度,使矽基太陽能電池具有良好的轉換效率。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
S11~S17:步驟

Claims (13)

  1. 一種矽基疊層的形成方法,包括:提供一矽基板,其中該矽基板具有相對的一第一表面與一第二表面;於該第一表面上形成一第一薄膜層;於該第二表面上形成一第二薄膜層;以及對該矽基板、該第一薄膜層及該第二薄膜層進行一微波製程,以鈍化該第一薄膜層及該第二薄膜層,該微波製程的單位面積的功率密度介於10mW/cm2~1000mW/cm2之間。
  2. 如申請專利範圍第1項所述的矽基疊層的形成方法,其中該第一薄膜層的材料包括本質矽、氮化矽、氧化矽、氧化鋁或氧化鉿,該第二薄膜層的材料包括本質矽、氮化矽、氧化矽、氧化鋁或氧化鉿。
  3. 如申請專利範圍第1項所述的矽基疊層的形成方法,其中該微波製程的微波頻率介於850MHz~3GHz之間。
  4. 如申請專利範圍第1項所述的矽基疊層的形成方法,其中該微波製程的時間介於10分鐘~90分鐘之間。
  5. 如申請專利範圍第1項所述的矽基疊層的形成方法,其中該微波製程的單位面積的功率密度介於180mW/cm2~220mW/cm2之間,該微波製程的微波頻率介於2.3GHz~2.5GHz之間,微波製程的時間介於25分鐘~30分鐘之間。
  6. 如申請專利範圍第1項所述的矽基疊層的形成方法,其中該微波製程的單位面積的功率密度介於140mW/cm2~160mW/cm2之間,該微波製程的微波頻率介於900MHz~930MHz之間,該微波製程的時間介於25分鐘~30分鐘之間。
  7. 一種矽基太陽能電池的製造方法,包括:提供一半導體基板,具有一第一導電型態、相對的一第一表面與一第二表面;於該第一表面上形成一第一薄膜層;於該第二表面上形成一第二薄膜層;以及對該半導體基板、該第一薄膜層及該第二薄膜層進行一微波製程處理,以鈍化該第一薄膜層及該第二薄膜層,該微波製程的單位面積的功率密度介於10mW/cm2~1000mW/cm2之間。
  8. 如申請專利範圍第7項所述的矽基太陽能電池的製造方法,其中該第一薄膜層的材料包括本質矽、氮化矽、氧化矽、氧化鋁或氧化鉿,該第二薄膜層的材料包括本質矽、氮化矽、氧化矽、氧化鋁或氧化鉿。
  9. 如申請專利範圍第7項所述的矽基太陽能電池的製造方法,其中該微波製程的微波頻率介於850MHz~3GHz之間。
  10. 如申請專利範圍第7項所述的矽基太陽能電池的製造方法,其中該微波製程的時間介於10分鐘~90分鐘之間。
  11. 如申請專利範圍第7項所述的矽基太陽能電池的製造 方法,其中該微波製程的單位面積的功率密度介於180mW/cm2~220mW/cm2之間,該微波製程的微波頻率介於2.3GHz~2.5GHz之間,微波製程的時間介於25分鐘~30分鐘之間。
  12. 如申請專利範圍第7項所述的矽基太陽能電池的製造方法,其中該微波製程的單位面積的功率密度介於140mW/cm2~160mW/cm2之間,該微波製程的微波頻率介於900MHz~930MHz之間,微波製程的時間介於25分鐘~30分鐘之間。
  13. 如申請專利範圍第7項所述的矽基太陽能電池的製造方法,更包括:於鈍化後的該第一薄膜層上形成一第一半導體層,該第一半導體層具有不同於該第一導電型態的一第二導電型態;於鈍化後的該第二薄膜層上形成一第二半導體層,該第二半導體層具有與該半導體基板相同的該第一導電型態;於該第一半導體層上形成一第一透明導電膜;於該第二半導體層上形成一第二透明導電膜於該第一透明導電膜上形成一第一電極;以及於該第二透明導電膜上形成一第二電極。
TW107141262A 2018-11-20 2018-11-20 矽基疊層的形成方法及矽基太陽能電池的製造方法 TWI692114B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107141262A TWI692114B (zh) 2018-11-20 2018-11-20 矽基疊層的形成方法及矽基太陽能電池的製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107141262A TWI692114B (zh) 2018-11-20 2018-11-20 矽基疊層的形成方法及矽基太陽能電池的製造方法

Publications (2)

Publication Number Publication Date
TWI692114B true TWI692114B (zh) 2020-04-21
TW202021151A TW202021151A (zh) 2020-06-01

Family

ID=71134586

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107141262A TWI692114B (zh) 2018-11-20 2018-11-20 矽基疊層的形成方法及矽基太陽能電池的製造方法

Country Status (1)

Country Link
TW (1) TWI692114B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201237969A (en) * 2011-03-03 2012-09-16 Toshiba Kk Method of manufacturing semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201237969A (en) * 2011-03-03 2012-09-16 Toshiba Kk Method of manufacturing semiconductor device

Also Published As

Publication number Publication date
TW202021151A (zh) 2020-06-01

Similar Documents

Publication Publication Date Title
CN109004053B (zh) 双面受光的晶体硅/薄膜硅异质结太阳电池及制作方法
CN113707734B (zh) 具有空穴选择钝化结构的晶硅/钙钛矿叠层太阳电池
CN107146846A (zh) P型晶体硅基底钙钛矿叠层异质结双面电池结构及其制法
WO2022142343A1 (zh) 太阳能电池及其制备方法
WO2014206211A1 (zh) 背钝化太阳能电池及其制作方法
WO2012162905A1 (zh) 背接触晶体硅太阳能电池片制造方法
JP2021523580A (ja) 半積層型フレキシブルシリコン系薄膜太陽電池、及びその製造方法
TWM517422U (zh) 具有局部鈍化的異質接面太陽能電池結構
TWI692114B (zh) 矽基疊層的形成方法及矽基太陽能電池的製造方法
CN106449850A (zh) 一种高效硅基异质结双面电池及其制备方法
JPH0992860A (ja) 光起電力素子
US20100326507A1 (en) Solar cell and manufacturing method thereof
US20110120534A1 (en) Thin film solar cell and manufacturing method thereof
TWI470812B (zh) 異質接面太陽能電池及其電極
CN114038932A (zh) 一种背部含有氧化硅-氮化钛双层接触结构的单晶硅太阳能电池及其制备方法
CN111244223A (zh) 硅基叠层的形成方法及硅基太阳能电池的制造方法
CN108538937B (zh) 一种太阳电池及其制备方法
CN105449041A (zh) 硅基异质结sis结构太阳电池的制备方法
TWI647327B (zh) 矽基疊層的形成方法及矽基異質接面太陽能電池的製造方法
CN102231402B (zh) 一种ii-vi族稀释氧化物半导体薄膜太阳电池
CN110957397A (zh) 一种异质结电池制备方法
WO2012162903A1 (zh) 背接触晶体硅太阳能电池片制造方法
KR101303594B1 (ko) 표면 텍스처가 형성된 유리기판을 이용한 박막형 태양전지 및 이의 제조방법
CN115274879B (zh) 一种设有铝背电极的TOPCon电池及其制备方法、组件和系统
US20170110600A1 (en) Method of manufacturing photovoltaic device having ultra-shallow junction layer