TWI691143B - System and method for dynamically optimizing the capacity of battery module management system - Google Patents

System and method for dynamically optimizing the capacity of battery module management system Download PDF

Info

Publication number
TWI691143B
TWI691143B TW108100140A TW108100140A TWI691143B TW I691143 B TWI691143 B TW I691143B TW 108100140 A TW108100140 A TW 108100140A TW 108100140 A TW108100140 A TW 108100140A TW I691143 B TWI691143 B TW I691143B
Authority
TW
Taiwan
Prior art keywords
battery module
rechargeable battery
management system
voltage
capacity
Prior art date
Application number
TW108100140A
Other languages
Chinese (zh)
Other versions
TW202027367A (en
Inventor
陳勁萁
陳浩雲
陳守德
楊慧敏
陳永銘
Original Assignee
陳勁萁
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陳勁萁 filed Critical 陳勁萁
Priority to TW108100140A priority Critical patent/TWI691143B/en
Application granted granted Critical
Publication of TWI691143B publication Critical patent/TWI691143B/en
Publication of TW202027367A publication Critical patent/TW202027367A/en

Links

Images

Abstract

This invention provides a system and a method for dynamically optimizing the capacity of battery management system of the rechargeable battery module. By the remote control terminal, this invention system and method can dynamically optimize the capacity of battery management system (BMS) of the rechargeable battery module in the rechargeable battery module exchange station and the charging station. It improves the service life and efficiency of the rechargeable battery module, and to more accurately grasp the remaining capacity and usage status of the rechargeable battery module.

Description

動態優化電池模組管理系統電容量的系統及方法 System and method for dynamically optimizing electric capacity of battery module management system

本發明係關於一種可針對可充電電池模組之電池模組管理系統之電池容量,進行動態優化校準之系統。 The invention relates to a system that can dynamically optimize and calibrate the battery capacity of a battery module management system of a rechargeable battery module.

綠能時代的來臨,可充電電池模組的使用範圍與需求也與日俱增,無論在電動自行車、電動機車、電動汽車、儲能、綠能發電等領域,皆需要先將電能儲存後再進行利用,然而,對於電能的儲存則皆是由電能儲能模組所提供。在電能儲能模組中,則以可充電電池模組之使用最為普遍,而目前的可充電電池模組儲能技術中,又以鋰離子電池模組之儲存能量密度為最高。然可充電電池模組在充放電的過程中,正負電極的材料會反覆的經歷解離與結晶的氧化還原反應,漸漸造成電極材料晶體的不規則化,進一步影響到所能儲存電容量的效果,也就是可充電電池模組的電極劣化現象,使得可充電電池模組的使用壽命縮短。 With the advent of the green energy era, the use scope and demand of rechargeable battery modules are increasing day by day. No matter in the fields of electric bicycles, electric locomotives, electric vehicles, energy storage, green energy power generation, etc., electric energy needs to be stored before being used. However, the storage of electrical energy is provided by the electrical energy storage module. Among electric energy storage modules, the use of rechargeable battery modules is the most common, and in the current energy storage technology of rechargeable battery modules, the storage energy density of lithium ion battery modules is the highest. However, during the charging and discharging process of the rechargeable battery module, the materials of the positive and negative electrodes will repeatedly undergo dissociation and crystallization redox reactions, which gradually cause irregularities in the crystal of the electrode material, which further affects the effect of the storage capacity. That is, the electrode deterioration of the rechargeable battery module shortens the service life of the rechargeable battery module.

此一可充電電池模組的電極老化現象,使得可充電電池模組可儲存利用的電容量,隨著反覆的充、放電循環而減少;進而產生對使用當下可充電電池模組所儲存的電容量的精確掌握的需求,也就日益增加與重要。 The electrode aging phenomenon of this rechargeable battery module makes the rechargeable battery module storeable and usable capacity decreases with repeated charge and discharge cycles; thereby generating electricity stored in the current rechargeable battery module The demand for precise control of capacity is increasing and important.

為達到提高對可充電電池模組電池容量的精確掌握,致使對 可充電電池模組更有效率的利用與監控,避免因對可充電電池模組剩餘電容量的誤判而導致的電力中斷,及可充電電池模組電容量的有效管理及提昇可充電電池模組的使用效率;則對可充電電池模組的總體電容量、電池健康狀態等的參數值進行動態調整的功能,也就成為必然且需要的步驟了。 In order to improve the precise control of the battery capacity of the rechargeable battery module, Rechargeable battery modules are more efficiently used and monitored to avoid power interruption caused by misjudgment of the remaining capacity of the rechargeable battery modules, and effective management and improvement of the rechargeable battery modules' capacity The use efficiency; the function of dynamically adjusting the parameter values of the total capacity of the rechargeable battery module, the battery health status, etc., has become an inevitable and necessary step.

為了對可充電電池模組有精確的監控與利用,係利用一可充電電池模組管理系統(Battery Management System:BMS)來達成此項工作,以鋰離子電池模組為例,鋰離子電池模組中包含有一鋰離子電池模組管理系統(BMS),鋰離子電池模組管理系統之主要功能除了具對鋰離子電池模組過充/放電、過溫度、過電流之保護功能外,另包含管理對鋰離子電池模組中各個鋰離子電池芯之使用狀況、鋰離子電池模組的剩餘電容量之監控,且提供與外部裝置通訊之通訊網路介面,使得外部系統可存取鋰離子電池模組管理系統(BMS)中之電壓、電流、剩餘電容量、溫度、充放電循環次數、健康狀態、使用狀態...等的管理資訊。 In order to accurately monitor and use rechargeable battery modules, a rechargeable battery module management system (BMS) is used to accomplish this task. Taking lithium-ion battery modules as an example, lithium-ion battery modules The group includes a lithium ion battery module management system (BMS). The main functions of the lithium ion battery module management system include the protection functions of lithium ion battery module overcharge/discharge, overtemperature, and overcurrent. Manage the monitoring of the usage status of each lithium-ion battery cell in the lithium-ion battery module, the remaining capacity of the lithium-ion battery module, and provide a communication network interface to communicate with external devices so that external systems can access the lithium-ion battery module Management information on voltage, current, remaining capacity, temperature, number of charge and discharge cycles, health status, usage status, etc. in the group management system (BMS).

可充電電池模組管理系統(BMS)的組成,至少包括有可充電電池電壓感測電路、可充電電池保護電路、BMS電源電路、A/D轉換電路、溫度感測電路、LED顯示電路、複數個功率電晶體等;隨著可充電電池模組管理系統功能的增加,進一步可包括:微控制器模組、對外通訊網路介面模組、顯示模組、聲音模組、人機輸入模組等。對於可充電電池模組管理系統(BMS)的細部功能與構造,可謂所屬技術領域之習知技術。 The composition of the rechargeable battery module management system (BMS) includes at least a rechargeable battery voltage sensing circuit, a rechargeable battery protection circuit, a BMS power circuit, an A/D conversion circuit, a temperature sensing circuit, an LED display circuit, and a complex number Power transistors, etc.; as the functions of the rechargeable battery module management system increase, it can further include: microcontroller modules, external communication network interface modules, display modules, sound modules, man-machine input modules, etc. . The detailed function and structure of the rechargeable battery module management system (BMS) can be described as a conventional technology in the technical field.

當可充電電池模組因長期充、放電循環使用後,會有儲能效率衰減的問題如前所述。而可充電電池模組的電極劣化,亦會造成可充電電池模組的內部阻抗(又稱之為電池內阻)上升,進一步造成可充電電池 模組電容量的損失。 When the rechargeable battery module is used for a long period of charge and discharge cycles, there will be a problem of energy storage efficiency attenuation as described above. The deterioration of the electrode of the rechargeable battery module will also cause the internal impedance of the rechargeable battery module (also called the internal resistance of the battery) to rise, further causing the rechargeable battery Loss of module capacitance.

此外,由於可充電電池模組係由多個可充電電池芯透過串聯、並聯組合而成。當可充電電池模組因長期充、放電使用後,各個可充電電池芯的電壓亦會有所差異,而各個可充電電池芯的電壓差異將造成某些可充電電池芯經過充、放電循環後,電壓會有過高或過低的現象,亦會進一步造成可充電電池模組電容量的損失。 In addition, since the rechargeable battery module is composed of a plurality of rechargeable battery cells connected in series or parallel. When the rechargeable battery module is used for long-term charging and discharging, the voltage of each rechargeable battery cell will also be different, and the voltage difference of each rechargeable battery cell will cause some rechargeable battery cells to undergo charge and discharge cycles. The voltage will be too high or too low, and it will further cause the loss of the capacity of the rechargeable battery module.

鑑於先前技術所存在之可充電電池模組長時間循環充/放電使用後所衍生之可充電電池模組電容量下降及不準確之問題與困難,本發明的目的係針對可充電電池模組提供一動態優化電池模組管理系統電容量的系統及方法,透過遠端控制端,可對可充電電池模組交換站、充電站之可充電電池模組進行動態優化可充電電池模組之電容量的程序,使提高可充電電池模組之使用壽命及效率,與更精確的掌握可充電電池模組之剩餘電容量及使用狀態。 In view of the problems and difficulties of the rechargeable battery module, which is caused by the long-term cycle charge/discharge of the prior art, after the long-term cycle charge/discharge use, the capacity and inaccuracy of the rechargeable battery module are reduced. A system and method for dynamically optimizing the electric capacity of the battery module management system. Through the remote control terminal, the electric capacity of the rechargeable battery module exchange station and the rechargeable battery module of the charging station can be dynamically optimized The program improves the service life and efficiency of the rechargeable battery module, and more accurately grasps the remaining capacity and use status of the rechargeable battery module.

為達成上述目的,本發明所採取的技術手段係針對具有多組串聯、並聯之可充電電池模組,其可充電電池模組之提供電壓範圍涵蓋4V~240V之電壓範圍區間,此電壓區間之可充電電池模組皆可適用於本發明之動態優化可充電電池模組管理系統電容量的系統及方法。 In order to achieve the above purpose, the technical means adopted by the present invention is directed to rechargeable battery modules with multiple sets of series and parallel connections. The rechargeable battery modules provide a voltage range covering a voltage range of 4V~240V. Both rechargeable battery modules are applicable to the system and method of the present invention for dynamically optimizing the capacity of the rechargeable battery module management system.

本發明之另一目的係藉由遠端之外部校準系統及可充電電池模組之電池模組管理系統(BMS),對可充電電池模組進行動態的校準優化程序,方便將市場上流通之可充電電池模組進行管理,無須將可充電電池模組返廠維護,即可將可充電電池模組之電容量精確掌握、監控,更可 進一步降低維護所需的人力成本。 Another object of the present invention is to use a remote external calibration system and a battery module management system (BMS) of a rechargeable battery module to perform a dynamic calibration and optimization procedure on the rechargeable battery module to facilitate circulation on the market Rechargeable battery modules for management, without having to return the rechargeable battery modules to the factory for maintenance, the electrical capacity of the rechargeable battery modules can be accurately grasped, monitored, and more Further reduce the labor cost required for maintenance.

本發明係提供一種動態優化電池模組管理系統(BMS)電容量的系統,係至少包含:一可充電電池模組、一可充電電池模組充電單元、一可充電電池模組校準裝置;其中可充電電池模組校準裝置,至少包含:一校準模組、一電源供應單元、一微控制單元、一可充電電池模組通訊單元;其中校準模組至少包含有:一電壓量測單元、一溫度量測單元;其中可充電電池模組通訊單元、校準模組透過一或複數個連接埠與可充電電池模組進行對接;校準模組對可充電電池模組之電池模組管理系統(BMS)執行校準程序。 The invention provides a system for dynamically optimizing the capacity of a battery module management system (BMS), which at least includes: a rechargeable battery module, a rechargeable battery module charging unit, and a rechargeable battery module calibration device; wherein The rechargeable battery module calibration device includes at least: a calibration module, a power supply unit, a micro control unit, and a rechargeable battery module communication unit; wherein the calibration module includes at least: a voltage measurement unit, a Temperature measurement unit; wherein the rechargeable battery module communication unit and the calibration module are connected to the rechargeable battery module through one or more ports; the calibration module is connected to the battery module management system (BMS) of the rechargeable battery module ) Perform the calibration procedure.

在較佳的實施方式中,校準模組進一步包含:一可充電電池模組內阻量測單元;其中可充電電池模組內阻量測單元,亦透過一或複數個連接埠與可充電電池模組進行對接;可充電電池模組內阻量測單元量測之微電阻範圍介於10μΩ至10Ω之間。 In a preferred embodiment, the calibration module further includes: a rechargeable battery module internal resistance measurement unit; wherein the rechargeable battery module internal resistance measurement unit also communicates with the rechargeable battery through one or more ports The modules are docked; the micro resistance measured by the internal resistance measurement unit of the rechargeable battery module is between 10μΩ and 10Ω.

本發明亦提供一種動態優化電池模組管理系統(BMS)電容量的方法,至少包含步驟:步驟(1):外部系統讀取可充電電池模組之電池模組管理系統之可充電電池種類、目前額定電容量設定值、目前庫倫計數器值、目前剩餘電容量值、目前荷電狀態(SOC),其中之一以上的參數值;步驟(2):外部系統判斷目前可充電電池模組之電壓、充放電循環次數、可充電電池模組之電池模組管理系統之使用記錄,其中之一以上的參數值;步驟(3):連接可充電電池模組至外部系統之可充電電池模組充電單元,電池模組管理系統進入充電程序;步驟(4):外部系統或可充電電池模組之電池模組管理系統(BMS),判斷可充電電池模組電壓是否高於一第一電壓閥 值,若可充電電池模組電壓高於第一電壓閥值,則可充電電池模組停止充電;步驟(5):外部系統或可充電電池模組之電池模組管理系統(BMS),設定重置可充電電池模組之電池模組管理系統(BMS)之目前庫倫計數器值、目前剩餘電容量值的參數值為充飽電預設值。 The invention also provides a method for dynamically optimizing the capacity of a battery module management system (BMS), which includes at least the following steps: step (1): the external system reads the type of rechargeable battery in the battery module management system of the rechargeable battery module, Current rated capacity setting value, current coulomb counter value, current remaining capacity value, current state of charge (SOC), more than one of the parameter values; Step (2): the external system determines the current voltage of the rechargeable battery module, The number of charge and discharge cycles, the usage record of the battery module management system of the rechargeable battery module, one or more of the parameter values; Step (3): connect the rechargeable battery module to the rechargeable battery module charging unit of the external system , The battery module management system enters the charging procedure; Step (4): The external system or the battery module management system (BMS) of the rechargeable battery module determines whether the voltage of the rechargeable battery module is higher than a first voltage valve Value, if the voltage of the rechargeable battery module is higher than the first voltage threshold, the rechargeable battery module stops charging; step (5): external system or battery module management system (BMS) of the rechargeable battery module, set The parameter values of the current coulomb counter value and the current remaining capacity value of the battery module management system (BMS) of the rechargeable battery module are reset to the preset value of full charge.

在較佳的實施方式中,進一步包含:步驟(6):由外部系統之可充電電池模組充電單元移除可充電電池模組,可充電電池模組之電池模組管理系統(BMS)進入放電剩餘電容量計數程序;步驟(7):可充電電池模組之電池模組管理系統(BMS)判斷可充電電池模組電壓是否低於一第二電壓閥值,若可充電電池模組電壓低於上述第二電壓閥值,則可充電電池模組停止放電;步驟(8):可充電電池模組之電池模組管理系統(BMS),設定由可充電電池模組之電池模組管理系統(BMS)之目前庫倫計數器值換算而得之目前已消耗電容量值,成為可充電電池模組之電池模組管理系統(BMS)之目前額定電容量設定值,並設定可充電電池模組之電池模組管理系統(BMS)之目前剩餘電容量值為停止放電容量預設值。 In a preferred embodiment, the method further includes the following step: (6): the rechargeable battery module charging unit of the external system removes the rechargeable battery module, and the battery module management system (BMS) of the rechargeable battery module enters Discharge remaining capacity counting procedure; Step (7): The battery module management system (BMS) of the rechargeable battery module determines whether the voltage of the rechargeable battery module is lower than a second voltage threshold, if the voltage of the rechargeable battery module Below the second voltage threshold, the rechargeable battery module stops discharging; Step (8): The battery module management system (BMS) of the rechargeable battery module is set to be managed by the battery module of the rechargeable battery module The current power consumption value converted from the current Coulomb counter value of the system (BMS) becomes the current rated capacity setting value of the battery module management system (BMS) of the rechargeable battery module and sets the rechargeable battery module The current remaining capacity of the battery module management system (BMS) is the preset value of the stop discharge capacity.

在較佳的實施方式中,其中步驟(2)進一步包含:步驟(2.1):外部系統校準可充電電池模組之電池模組管理系統之電壓讀值、溫度讀值、類比/數位轉換器(ADC)讀值,其中之一以上的參數值。 In a preferred embodiment, step (2) further includes: step (2.1): the external system calibrates the voltage reading, temperature reading, analog/digital converter of the battery module management system of the rechargeable battery module ( ADC) reading, one or more of the parameter values.

在較佳的實施方式中,其中步驟(2)進一步包含:步驟(2.1):外部系統或可充電電池模組之電池模組管理系統(BMS),量測讀取可充電電池模組中各單個可充電電池芯之電壓值;步驟(2.2):外部系統或可充電電池模組之電池模組管理系統(BMS),判斷可充電電池模組中各單個可充電電池芯之電壓、可充電電池模組中之任意兩個以上可充電電池芯之間的 電壓差,其中之一以上的參數值;其中外部系統或可充電電池模組之電池模組管理系統(BMS),執行步驟(2.2)之程序判斷可充電電池模組中之單數或複數個可充電電池芯電壓低於一單個可充電電池芯過放電壓設定閥值、或可充電電池模組中之任意兩個以上可充電電池芯之間的電壓差大於一允許充電電壓差設定範圍閥值,當其中之一以上的條件成立時,則判定可充電電池模組無法繼續充電使用,中止動態優化程序。 In a preferred embodiment, step (2) further includes: step (2.1): an external system or a battery module management system (BMS) of the rechargeable battery module, measuring and reading each of the rechargeable battery modules Voltage value of a single rechargeable battery cell; Step (2.2): External system or battery module management system (BMS) of rechargeable battery module to determine the voltage and rechargeability of each single rechargeable battery cell in the rechargeable battery module Between any two or more rechargeable battery cells in the battery module Voltage difference, one or more of the parameter values; where the external system or the battery module management system (BMS) of the rechargeable battery module, execute the procedure of step (2.2) to determine the singular or plural number of rechargeable battery modules The rechargeable battery cell voltage is lower than a single rechargeable battery cell over-discharge voltage setting threshold, or the voltage difference between any two or more rechargeable battery cells in the rechargeable battery module is greater than a permissible charging voltage difference setting range threshold When one or more of the conditions are met, it is determined that the rechargeable battery module cannot continue to be charged for use, and the dynamic optimization process is terminated.

在較佳的實施方式中,其中步驟(2)進一步包含:步驟(2.1):外部系統判斷可充電電池模組之內阻值。 In a preferred embodiment, step (2) further includes: step (2.1): the external system determines the internal resistance of the rechargeable battery module.

在較佳的實施方式中,其中步驟(3)進一步包含:步驟(3.1):外部系統校準可充電電池模組之電池模組管理系統之電流讀值、電流類比/數位轉換器(ADC)讀值,其中之一以上的參數值。 In a preferred embodiment, step (3) further includes: step (3.1): the external system calibrates the current reading of the battery module management system of the rechargeable battery module, and the current analog/digital converter (ADC) reading Value, one or more of the parameter values.

在較佳的實施方式中,其中步驟(3)進一步包含:步驟(3.1):外部系統或可充電電池模組之電池模組管理系統(BMS),判斷可充電電池模組中之單數或複數個可充電電池芯電壓高於一單個可充電電池芯平衡電壓設定閥值、可充電電池模組中之任意兩個以上可充電電池芯之間的電壓差大於一平衡電壓差設定範圍閥值,當其中之一以上的條件成立時,則執行可充電電池模組中之各單個可充電電池芯間的電壓平衡程序。 In a preferred embodiment, step (3) further includes: step (3.1): an external system or a battery module management system (BMS) of the rechargeable battery module to determine the singular or plural number in the rechargeable battery module The voltage of each rechargeable battery cell is higher than a single rechargeable battery cell balance voltage setting threshold, and the voltage difference between any two or more rechargeable battery cells in the rechargeable battery module is greater than a balance voltage difference setting range threshold, When more than one of the conditions is satisfied, the voltage balancing process between the individual rechargeable battery cells in the rechargeable battery module is executed.

在較佳的實施方式中,其中步驟(8)進一步包含:步驟(8.1):可充電電池模組之電池模組管理系統(BMS)判斷由可充電電池模組之電池模組管理系統(BMS)之目前庫倫計數器值換算而得之目前已消耗電容量值,是否高於一最低消耗電容量設定閥值;若目前已消耗電容量值已高於最低消耗電容量設定閥值,則設定成為目前額定電容量設定值。 In a preferred embodiment, step (8) further includes: step (8.1): the battery module management system (BMS) of the rechargeable battery module determines that the battery module management system (BMS) of the rechargeable battery module ) Whether the current power consumption value converted from the current Coulomb counter value is higher than a minimum power consumption setting threshold; if the current power consumption value is higher than the minimum power consumption setting threshold, the setting becomes The current rated capacity setting value.

本發明具有精確掌握、監控可充電電池模組之電容量之功效,有效提升對可充電電池模組使用壽命及效率,並大幅降低對大量可充電電池模組執行校準所需之維護成本。 The invention has the effect of accurately grasping and monitoring the electric capacity of the rechargeable battery module, effectively improving the service life and efficiency of the rechargeable battery module, and greatly reducing the maintenance cost required to perform calibration on a large number of rechargeable battery modules.

11:可充電電池模組校準裝置 11: Rechargeable battery module calibration device

111:微控制單元 111: Micro Control Unit

112:可充電電池模組識別認證單元 112: Rechargeable battery module identification and certification unit

1121:通訊連接介面 1121: Communication connection interface

113:可充電電池模組通訊單元 113: Rechargeable battery module communication unit

1131:通訊連接介面 1131: Communication connection interface

114:校準模式設定單元 114: Calibration mode setting unit

115:校準模組 115: Calibration module

1151:電壓量測單元 1151: Voltage measurement unit

1152:溫度量測單元 1152: Temperature measurement unit

1153:內阻量測單元 1153: Internal resistance measurement unit

1154:定電流負載源 1154: Constant current load source

1155:連接電路 1155: Connect the circuit

1156:連接電路 1156: Connect the circuit

1157:連接電路 1157: Connect the circuit

1158:連接電路 1158: Connect the circuit

1159:連接電路 1159: Connect the circuit

116:電源供應單元 116: Power supply unit

117:連接介面 117: Connection interface

118:可充電電池模組充電單元 118: Rechargeable battery module charging unit

12:可充電電池模組 12: Rechargeable battery module

121:連接埠 121: Port

122:可充電電池芯 122: Rechargeable battery cell

123:電池模組管理系統(BMS) 123: Battery Module Management System (BMS)

13:中央處理控制模組 13: Central processing control module

14:通訊連接介面 14: Communication connection interface

第1圖係本發明之動態優化電池模組管理系統電容量的系統之實施例一架構圖。 FIG. 1 is a structural diagram of an embodiment of a system for dynamically optimizing the capacity of a battery module management system of the present invention.

第2圖係本發明之動態優化電池模組管理系統電容量的系統之實施例二架構圖。 FIG. 2 is an architecture diagram of Embodiment 2 of the system for dynamically optimizing the capacity of a battery module management system of the present invention.

第3圖係一般可充電電池(以鋰離子電池為例)的放電特性曲線圖。 Figure 3 is a graph of the discharge characteristics of a general rechargeable battery (taking a lithium ion battery as an example).

第4圖係各種陽極材料鋰離子電池的放電特性曲線比較圖。 Figure 4 is a comparison chart of the discharge characteristic curves of various anode material lithium ion batteries.

第5圖係本發明之動態優化可充電電池模組之電池模組管理系統電容量的方法實施例一流程圖。 FIG. 5 is a flow chart of an embodiment of the method for dynamically optimizing the capacity of a battery module management system of a rechargeable battery module of the present invention.

第6圖係本發明之動態優化可充電電池模組之電池模組管理系統電容量的方法實施例二流程圖。 FIG. 6 is a flowchart of Embodiment 2 of the method for dynamically optimizing the capacity of a battery module management system of a rechargeable battery module of the present invention.

第7圖係本發明之動態優化可充電電池模組之電池模組管理系統電容量的方法實施例三流程圖。 FIG. 7 is a flowchart of Embodiment 3 of the method for dynamically optimizing the capacity of a battery module management system of a rechargeable battery module of the present invention.

第8圖係本發明之動態優化可充電電池模組之電池模組管理系統電容量的方法實施例四流程圖。 FIG. 8 is a flowchart of Embodiment 4 of the method for dynamically optimizing the capacity of a battery module management system of a rechargeable battery module of the present invention.

第9圖係本發明之動態優化可充電電池模組之電池模組管理系統電容量的方法實施例五流程圖。 FIG. 9 is a flowchart of Embodiment 5 of the method for dynamically optimizing the capacity of a battery module management system of a rechargeable battery module of the present invention.

第10圖係本發明之動態優化可充電電池模組之電池模組管理系統電 容量的方法實施例六流程圖。 Figure 10 is the battery module management system of the dynamically optimized rechargeable battery module of the present invention Flow chart of the sixth embodiment of the capacity method.

第11圖係本發明之動態優化可充電電池模組之電池模組管理系統電容量的方法實施例七流程圖。 FIG. 11 is a flowchart of Embodiment 7 of the method for dynamically optimizing the capacity of a battery module management system of a rechargeable battery module of the present invention.

第12圖係本發明之動態優化可充電電池模組之電池模組管理系統電容量的方法實施例八流程圖。 FIG. 12 is a flowchart of Embodiment 8 of the method for dynamically optimizing the capacity of a battery module management system of a rechargeable battery module of the present invention.

下面將結合本發明實施例中的附圖,對本發明實施例中的技術方案進行清楚、完整地描述。顯然,所描述的實施例僅僅是本發明一部分實施例,而不是全部的實施例。基於本發明中的實施例,本領域通常知識者在沒有作出進步性前提下所獲得的所有其他實施例,都屬於本發明保護的範圍。 The technical solutions in the embodiments of the present invention will be described clearly and completely in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by a person of ordinary skill in the art without making advancement fall within the protection scope of the present invention.

第1圖所示係本發明之一種動態優化電池模組管理系統(BMS)電容量的系統之實施例,其包括:可充電電池模組校準裝置11、微控制單元111、可充電電池模組識別認證單元112、可充電電池模組通訊單元113、校準模式設定單元114、校準單元115、電源供應單元116、可充電電池模組充電單元118;校準單元115又包括:電壓量測單元1151、溫度量測單元1152、內阻量測單元1153、定電流負載源1154;可充電電池模組校準裝置11透過連接埠121與可充電電池模組12進行對接,而可充電電池模組12則是由電池模組管理系統(BMS)123及複數個可充電電池芯122,經由串聯來提高電池模組電壓,並聯來增加電池模組電容量所組成,其中可充電電池模組12係以鋰離子電池模組為主要實施例,但不僅限制於使用鋰離子電池模組上,而係針對凡具有電池模組管理系統(BMS)之可充電電池模組。 Figure 1 shows an embodiment of a system for dynamically optimizing the capacity of a battery module management system (BMS) of the present invention, which includes: a rechargeable battery module calibration device 11, a micro control unit 111, and a rechargeable battery module Identification authentication unit 112, rechargeable battery module communication unit 113, calibration mode setting unit 114, calibration unit 115, power supply unit 116, rechargeable battery module charging unit 118; calibration unit 115 further includes: voltage measurement unit 1151 Temperature measurement unit 1152, internal resistance measurement unit 1153, constant current load source 1154; the rechargeable battery module calibration device 11 is connected to the rechargeable battery module 12 through the port 121, and the rechargeable battery module 12 is It consists of a battery module management system (BMS) 123 and a plurality of rechargeable battery cells 122, which are connected in series to increase the voltage of the battery module and in parallel to increase the capacity of the battery module. The rechargeable battery module 12 is made of lithium ions The battery module is the main embodiment, but it is not limited to the use of lithium-ion battery modules, but is aimed at all rechargeable battery modules with a battery module management system (BMS).

可充電電電池模組識別認證單元112與可充電電池模組12之間的通訊連接介面1121,除了可以為有線之連接介面,如:UART、SPI-Bus、RS-232、RS-485、CAN-Bus、I2C-Bus、HDQ-Bus、USB...等介面之至少其中之一種外,也可以為無線之連接介面,如:RF標籤介面(RFID)、近場通訊介面(NFC)、藍芽(BT)、Zigbee...等無線介面之至少其中之一種。 The communication connection interface 1121 between the rechargeable battery module identification and authentication unit 112 and the rechargeable battery module 12 can be a wired connection interface, such as: UART, SPI-Bus, RS-232, RS-485, CAN -At least one of Bus, I2C-Bus, HDQ-Bus, USB... and other interfaces can also be a wireless connection interface, such as: RF tag interface (RFID), near field communication interface (NFC), blue At least one of wireless interfaces such as Bud (BT), Zigbee...

微控制單元111可以為8-bit、16-bit或32-bit之微控制器之一種,微控制器之韌體設計可以包含有作業系統(OS)或不含作業系統之單純韌體程式設計。此外,微控制器還提供有多樣之週邊模組,如:A/D轉換電路、Timer電路、D/A轉換電路、UART通訊電路、可程式化輸入/輸出電路(GPIO)、實時時脈電路(RTC)、非揮發性記憶體...等模組。 The micro control unit 111 can be one of 8-bit, 16-bit or 32-bit microcontrollers. The firmware design of the microcontroller can include an operating system (OS) or a simple firmware programming without an operating system . In addition, the microcontroller also provides a variety of peripheral modules, such as: A/D conversion circuit, Timer circuit, D/A conversion circuit, UART communication circuit, programmable input/output circuit (GPIO), real-time clock circuit (RTC), non-volatile memory... and other modules.

可充電電電池模組通訊單元113與可充電電電池模組12之通訊連接介面1131,為有線之連接介面,可如:UART、SPI-Bus、RS-232、RS-485、CAN-Bus、I2C-Bus、HDQ-Bus、USB...等介面之至少其中之一種,其中可充電電電池模組通訊單元113與與可充電電電池模組12之連接介面1131,也可以與可充電電電池模組識別認證單元112與可充電電電池模組12之通訊連接介面1121共用為同一通訊連接介面,亦即可充電電電池模組通訊單元113與可充電電電池模組識別認證單元112,對可充電電電池模組12使用同一通訊連接介面。 The communication connection interface 1131 of the rechargeable battery module communication unit 113 and the rechargeable battery module 12 is a wired connection interface, such as: UART, SPI-Bus, RS-232, RS-485, CAN-Bus, At least one of I2C-Bus, HDQ-Bus, USB... and other interfaces, where the rechargeable battery module communication unit 113 and the connection interface 1131 with the rechargeable battery module 12 can also be connected to the rechargeable battery The battery module identification and authentication unit 112 and the communication connection interface 1121 of the rechargeable electric battery module 12 share the same communication connection interface, that is, the rechargeable battery module communication unit 113 and the rechargeable electric battery module identification and authentication unit 112, The same communication connection interface is used for the rechargeable battery module 12.

此外,微控制單元111對可充電電電池模組12之電池模組管理系統(BMS)之所存取之管理資訊,除電壓、電流、額定電容量、剩餘電容量、溫度、庫倫計數器值...等外,亦包含有:BMS硬體/韌體版本、充/放電循環次數、電池模組序號、電池模組出廠日期、電池模組製造廠商、 電池芯類型、電池芯串聯數、電池芯並聯數、電池模組健康狀態、電池模組錯誤狀態資訊等,皆可藉由可充電電池模組12之通訊單元介面進行存取。 In addition, the micro-control unit 111 manages information accessed by the battery module management system (BMS) of the rechargeable battery module 12, except for voltage, current, rated capacity, remaining capacity, temperature, and coulomb counter value. .. etc., also includes: BMS hardware/firmware version, charge/discharge cycles, battery module serial number, battery module ex-factory date, battery module manufacturer, The battery cell type, battery cell serial number, battery cell parallel number, battery module health status, battery module error status information, etc., can be accessed through the communication unit interface of the rechargeable battery module 12.

校準模組115對可充電電池模組12進行校準;藉由可充電電池模組12的連接埠121,校準模組115之各個單元對可充電電池模組12,有獨立之連接電路1155-1158,分別量測、執行校準所需之訊號值。 The calibration module 115 calibrates the rechargeable battery module 12; through the connection port 121 of the rechargeable battery module 12, each unit of the calibration module 115 has an independent connection circuit 1155-1158 for the rechargeable battery module 12 , Separately measure and execute the signal value needed for calibration.

可充電電池模組校準裝置11透過通訊連接介面14與中央處理控制模組13進行資料傳遞通訊作業,而中央處理控制模組13,則可同時與多個可充電電池模組校準裝置11進行連接通訊,中央處理控制模組13又可與遠端之管理、監控伺服器進行資料通訊與交換。 The rechargeable battery module calibration device 11 communicates with the central processing control module 13 through the communication connection interface 14 for data transmission and communication, and the central processing control module 13 can be simultaneously connected to a plurality of rechargeable battery module calibration devices 11 For communication, the central processing control module 13 can communicate and exchange data with the remote management and monitoring server.

可充電電池模組充電單元118,可與可充電電池模組12(以鋰離子電池模組為例)透過連接電路1159相連接,連接電路1159與連接電路1155-1158共用連接可充電電池模組12的輸出正極與負極端接點,可充電電池模組充電單元118透過一開關元件(未標示元件符號),來開啟/關閉對可充電電池模組12的充電程序。 The rechargeable battery module charging unit 118 can be connected to the rechargeable battery module 12 (taking a lithium-ion battery module as an example) through a connection circuit 1159, and the connection circuit 1159 and the connection circuit 1155-1158 are commonly connected to the rechargeable battery module The output positive and negative terminals of the 12 are connected to the rechargeable battery module charging unit 118 through a switching element (not marked with a component symbol) to turn on/off the charging procedure for the rechargeable battery module 12.

微控制單元111控制與可充電電池模組充電單元118相連之開關元件(未標示元件符號),來開啟/關閉對可充電電池模組12的充電程序,並量測、讀取可充電電池模組充電單元118對可充電電池模組12之精確充電電流值,可作為校準可充電電池模組12之電池模組管理系統(BMS)之電流讀值、電流類比/數位轉換器(ADC)讀值之程序使用。 The micro control unit 111 controls the switching element (not marked with an element symbol) connected to the rechargeable battery module charging unit 118 to turn on/off the charging procedure for the rechargeable battery module 12, and to measure and read the rechargeable battery module The accurate charging current value of the rechargeable battery module 12 by the group charging unit 118 can be used as a current reading value and a current analog/digital converter (ADC) reading of the battery module management system (BMS) for calibrating the rechargeable battery module 12 Value program.

第2圖所示係本發明之一種動態優化電池模組管理系統(BMS)電容量的系統之另一實施例,其中可充電電池模組充電單元118可獨立於可充電電池模組校準裝置11之外,與可充電電池模組校準裝置11並 行使用,亦可包含於可充電電池模組校準裝置11之中如前第1圖實施例所示一般。 FIG. 2 shows another embodiment of a system for dynamically optimizing the capacity of a battery module management system (BMS) of the present invention, wherein the rechargeable battery module charging unit 118 can be independent of the rechargeable battery module calibration device 11 In addition, and rechargeable battery module calibration device 11 It can also be included in the rechargeable battery module calibration device 11 as shown in the previous embodiment of FIG. 1.

第3圖所示係為一般可充電電池(以鋰離子電池為例)的放電特性曲線圖,在整個放電過程中可充電電池的放電特性曲線分為三個階段,第1階段:高活性區間;第2階段:高效放電區間;第3階段:放電截止區間。 Figure 3 shows the discharge characteristic curve of a general rechargeable battery (taking a lithium ion battery as an example). The discharge characteristic curve of the rechargeable battery is divided into three stages during the entire discharge process. The first stage: high activity interval ; Stage 2: High-efficiency discharge interval; Stage 3: Discharge cut-off interval.

第1階段:高活性區間,可充電電池的電壓快速下降,當放電電流越大,則電壓下降越快。 Stage 1: In the high activity interval, the voltage of the rechargeable battery drops rapidly. When the discharge current is larger, the voltage drops faster.

第2階段:高效放電區間,可充電電池的電壓平緩下降,此一區間符合歐姆定律的作用,其作用電阻值係依可充電電池的內阻阻值而定。 The second stage: the high-efficiency discharge interval, the voltage of the rechargeable battery decreases gently. This interval conforms to the role of Ohm's law, and its acting resistance value depends on the internal resistance of the rechargeable battery.

第3階段:放電截止區間,可充電電池的電量已接近放完,電壓極劇下降,當可充電電池的電壓下降超過電池的氧化還原反應電壓的過放電壓點,則可充電電池將無法繼續利用電池的氧化還原反應來進行充/放電的使用,此時可充電電池進入使用壽命中止區間。 Stage 3: During the discharge cut-off period, the charge of the rechargeable battery is nearly discharged, and the voltage drops sharply. When the voltage of the rechargeable battery exceeds the over-discharge voltage point of the battery's redox reaction voltage, the rechargeable battery will not continue The redox reaction of the battery is used for charging/discharging. At this time, the rechargeable battery enters the service life suspension interval.

可充電電池模組的電容量係指在一定條件下(放電電流I、放電溫度T、放電時間t、放電電壓V),電池模組所放出的電量總額,其單位為安培*小時(Ah)、或是庫倫(C=A*s=安培*秒),計算公式如下:C放電=ʃ I(t)dt...................................................(1) The capacity of the rechargeable battery module refers to the total amount of electricity discharged by the battery module under certain conditions (discharge current I, discharge temperature T, discharge time t, discharge voltage V), whose unit is ampere*hour (Ah) , Or Coulomb (C=A*s=Amp*sec), the calculation formula is as follows: C discharge =ʃ I(t)dt........................ ..............................(1)

若考慮放電時的溫度(T)變化,則計算公式修正如下:C放電=ʃ η(T)*I(t)dt............................................(2) If the temperature (T) change during discharge is considered, the calculation formula is revised as follows: C discharge = ʃ η(T)*I(t)dt................... .........................(2)

其中η(T)係指可充電電池模組的充放電效率,為溫度(T) 的函數。 Where η(T) refers to the charge and discharge efficiency of the rechargeable battery module, which is the temperature (T) The function.

對於可充電電池模組使用過程的電容量變化,除直接利用目前庫倫計數器計數值換算成目前已消耗電容量值、目前剩餘電容量值外,還會利用可充電電池模組之荷電狀態(State of Charge-SOC)作為參考依據,所謂可充電電池模組之荷電狀態(SOC)係指目前可充電電池模組的剩餘電量百分比,其單位為%,計算公式如下:SOC=(1-(C放電/C額定))* 100%...........................(3) For the change in the capacity of the rechargeable battery module during the use, in addition to directly using the current Coulomb counter count value to convert to the current consumed power capacity value and the current remaining capacity value, the state of charge of the rechargeable battery module (State of Charge-SOC) as a reference, the so-called state-of-charge (SOC) of the rechargeable battery module refers to the percentage of the remaining charge of the current rechargeable battery module, whose unit is %. The calculation formula is as follows: SOC=(1-(C Discharge /C rating ))* 100%..............................(3)

其中C額定係指可充電電池模組之電池模組管理系統(BMS)之目前額定電容量設定值。 The C rating refers to the current rated capacity setting value of the battery module management system (BMS) of the rechargeable battery module.

在可充電電池模組之電池模組管理系統(BMS)中,對於電容量(庫倫)的計數,係透過一庫倫計數器來加以達成,而庫倫計數器的實作,則可透過硬體或是軟體的方式來加以實現。就硬體方式而言,可透過一電流感測電路加上一積分電路來完成;而就軟體方式而言,則可透過程式計時器(Timer)對充/放電電流感測讀值進行累減/累加來完成。 In the battery module management system (BMS) of rechargeable battery modules, the counting of the capacity (Coulomb) is achieved through a Coulomb counter, and the implementation of the Coulomb counter can be through hardware or software Way. For the hardware mode, it can be completed by a current sensing circuit plus an integrating circuit; for the software mode, the charge/discharge current sensing reading value can be accumulated through the program timer (Timer) / Accumulate to complete.

第4圖所示係各種陽極材料鋰離子電池的放電曲線比較圖,其中比較的陽極材料有:鎳鈷錳酸鋰(LiNi1/3Co1/3Mn1/3O2)、錳酸鋰(LiMn2O4)、鈷酸鋰(LiCoO2)、磷酸鐵鋰(LiFePO4)等。 Figure 4 shows a comparison diagram of the discharge curves of various anode materials for lithium-ion batteries. Among the anode materials compared are: lithium nickel cobalt manganate (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ), lithium manganate (LiMn 2 O 4 ), lithium cobaltate (LiCoO 2 ), lithium iron phosphate (LiFePO 4 ), etc.

各種不同的鋰離子電池陽極材料,所展現的放電特性曲線有相當不同的表現,其中磷酸鐵鋰(LiFePO4)陽極材料的鋰離子電池,具有較為平緩的第2階段:高效放電區間。而鎳鈷錳酸鋰(LiNi1/3Co1/3Mn1/3O2)陽極材料的鋰離子電池,則具有較佳的電池電容量。 A variety of different lithium ion battery anode materials exhibit quite different discharge characteristic curves. Among them, lithium iron phosphate (LiFePO 4 ) anode materials for lithium ion batteries have a relatively smooth second stage: high-efficiency discharge interval. Lithium-ion batteries with nickel-cobalt-manganese oxide (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) anode materials have better battery capacity.

第5至12圖所示本發明之動態優化可充電電池模組之電池模 組管理系統電容量的方法實施例,以鋰離子電池模組之電池模組管理系統(BMS)為主要實施例,但不僅限制於使用鋰離子電池模組上,凡具有電池模組管理系統(BMS)之可充電電池模組接可適用。 Figures 5 to 12 show the battery module of the dynamically optimized rechargeable battery module of the present invention The battery capacity management system (BMS) of the lithium-ion battery module is the main embodiment of the method embodiment of the group management system electric capacity, but it is not limited to the use of lithium-ion battery modules. BMS) rechargeable battery module is applicable.

第5圖所示係本發明之動態優化可充電電池模組之電池模組管理系統電容量的方法實施例一,至少包含:步驟(1):外部系統讀取可充電電池模組之電池模組管理系統(BMS)之可充電電池種類、目前額定電容量設定值、目前庫倫計數器值、目前剩餘電容量值、目前荷電狀態(SOC),其中之一以上的參數值;步驟(2):外部系統判斷目前可充電電池模組之電壓、充放電循環次數、可充電電池模組之電池模組管理系統之使用記錄,其中之一以上的參數值;步驟(3):連接可充電電池模組至外部系統之可充電電池模組充電單元,可充電電池模組之電池模組管理系統(BMS)進入充電程序;步驟(4):外部系統或電池模組管理系統,判斷可充電電池模組電壓是否高於一第一電壓閥值,若可充電電池模組電壓高於第一電壓閥值,則可充電電池模組停止充電;步驟(5):外部系統或電池模組管理系統,設定重置目前庫倫計數器值、目前剩餘電容量值的參數值為充飽電預設值。 Figure 5 shows the first embodiment of the method for dynamically optimizing the capacity of a battery module management system of a rechargeable battery module of the present invention, which includes at least the following steps: (1): the external system reads the battery module of the rechargeable battery module The type of rechargeable battery, current rated capacity setting value, current coulomb counter value, current remaining capacity value, current state of charge (SOC) of the group management system (BMS), more than one of the parameter values; Step (2): The external system judges the current voltage of the rechargeable battery module, the number of charge and discharge cycles, the usage record of the battery module management system of the rechargeable battery module, and more than one of the parameter values; Step (3): connect the rechargeable battery module Set to the rechargeable battery module charging unit of the external system, the battery module management system (BMS) of the rechargeable battery module enters the charging procedure; step (4): the external system or the battery module management system, determine the rechargeable battery module Whether the group voltage is higher than a first voltage threshold, if the rechargeable battery module voltage is higher than the first voltage threshold, the rechargeable battery module stops charging; Step (5): external system or battery module management system, Set the parameters to reset the current Coulomb counter value and the current remaining capacity value to the preset value of full charge.

其中「第一電壓閥值」係為認定可充電電池模組充飽電時之電壓值,此充飽電之電壓閥值為判斷可充電電池模組是否已達充飽電狀態的參考依據參數值,應依各種不同材料之可充電電池模組之氧化還原反應之電位特性來加以設定,此第一電壓閥值可固定存於外部系統或可充電電池模組之電池模組管理系統(BMS)中。「充飽電預設值」係為當可充電電池模組被認定為充飽電狀態時,用以將可充電電池模組之電池模組管理系統(BMS)之目前庫倫計數器值以及目前剩餘電容量值,重置設定所使用 的預設數值;此二參數值的充飽電預設值之實施例,一般設定為:目前庫倫計數器值=0庫倫、目前剩餘電容量值=目前額定電容量設定值,而目前荷電狀態(SOC)=100%。然,二參數值的充飽電預設值並不僅只能如上實施例中設定,而是可依可充電電池模組之校準需要來進行調整設定,此二參數值的充飽電預設值可固定存於外部系統或可充電電池模組之電池模組管理系統(BMS)中。 The "first voltage threshold" is the voltage value at which the rechargeable battery module is fully charged. The voltage threshold of this fully charged voltage is the reference basis parameter for judging whether the rechargeable battery module has reached the fully charged state The value should be set according to the potential characteristics of the redox reaction of rechargeable battery modules of various materials. This first voltage threshold can be fixedly stored in an external system or the battery module management system (BMS) of the rechargeable battery module )in. "Full charge preset value" is the current coulomb counter value and current remaining value of the battery module management system (BMS) of the rechargeable battery module when the rechargeable battery module is determined to be fully charged Capacitance value, used to reset settings The default value of the two parameters; the embodiment of the preset value of the full charge of these two parameter values is generally set as follows: the current Coulomb counter value = 0 Coulomb, the current remaining capacity value = the current rated capacity setting value, and the current state of charge ( SOC)=100%. However, the preset value of the two parameter values can not only be set as in the above embodiment, but can be adjusted and set according to the calibration needs of the rechargeable battery module. It can be fixedly stored in an external system or a battery module management system (BMS) of rechargeable battery modules.

第6圖所示係本發明之動態優化可充電電池模組之電池模組管理系統電容量的方法實施例二,除包含第5圖所示之方法實施例外,進一步包含:步驟(6):由外部系統之可充電電池模組充電單元移除可充電電池模組,可充電電池模組之電池模組管理系統(BMS)進入放電剩餘電容量計數程序;步驟(7):電池模組管理系統判斷可充電電池模組電壓是否低於一第二電壓閥值,若可充電電池模組電壓低於第二電壓閥值,則可充電電池模組停止放電;步驟(8):電池模組管理系統,設定由目前庫倫計數器值換算得之目前已消耗電容量值,成為目前額定電容量設定值,並設定目前剩餘電容量值為停止放電容量預設值。 Figure 6 shows the second embodiment of the method for dynamically optimizing the capacity of the battery module management system of the rechargeable battery module of the present invention. In addition to the method implementation shown in Figure 5, the method further includes: step (6): Remove the rechargeable battery module from the rechargeable battery module charging unit of the external system. The battery module management system (BMS) of the rechargeable battery module enters the discharge remaining capacity counting procedure; step (7): battery module management The system determines whether the voltage of the rechargeable battery module is lower than a second voltage threshold. If the voltage of the rechargeable battery module is lower than the second voltage threshold, the rechargeable battery module stops discharging; step (8): the battery module The management system sets the current consumed power value converted from the current Coulomb counter value to become the current rated capacity setting value, and sets the current remaining capacity value as the preset value of the stop discharge capacity.

其中「第二電壓閥值」係為認定可充電電池模組截止放電之電壓值,此截止放電之電壓閥值為判斷可充電電池模組是否已達截止放電狀態的參考依據參數值,應依各種不同材料之可充電電池模組之氧化還原反應之電位特性來加以設定,此第二電壓閥值可固定存於外部系統或可充電電池模組之電池模組管理系統(BMS)中。而「由目前庫倫計數器值換算得之目前已消耗電容量值」係指可充電電池模組已放出的電量總額,如前述公式(1)、公式(2)所述;而「目前額定電容量設定值」係為可充電電池 模組之電池模組管理系統(BMS)中所設定之可充電電池模組可利用的總電容量,此參數值於本發明之方法中將隨著可充電電池模組的充/放電使用循環而動態調整,當可充電電池模組已達截止放電狀態,即表示可充電電池模組已完全放電,此時由目前庫倫計數器值換算得之目前已消耗電容量值,即為可充電電池模組完全放電的總電容量,此時將目前額定電容量設定值更新為目前已消耗電容量值,更可精確掌握可充電電池模組可利用的總電容量。「停止放電容量預設值」係為當可充電電池模組被認定為截止放電狀態時,用以將可充電電池模組之電池模組管理系統(BMS)之目前剩餘電容量值,設定所使用的預設數值;此目前剩餘電容量值的停止放電容量預設值之實施例,一般設定為:目前剩餘電容量值=0。然,目前剩餘電容量值的停止放電容量預設值並不僅只能如上實施例中設定,而是可依可充電電池模組之校準需要來進行調整設定,此目前剩餘電容量值的停止放電容量預設值可固定存於外部系統或可充電電池模組之電池模組管理系統(BMS)中。 The "second voltage threshold" is the voltage value of the cut-off discharge of the rechargeable battery module. The cut-off discharge voltage threshold is the reference based on the parameter value to determine whether the rechargeable battery module has reached the cut-off discharge state. The potential characteristics of the redox reaction of rechargeable battery modules of various materials are set. This second voltage threshold can be fixedly stored in an external system or the battery module management system (BMS) of the rechargeable battery module. The "current power consumption value converted from the current Coulomb counter value" refers to the total amount of electricity discharged by the rechargeable battery module, as described in the foregoing formula (1) and formula (2); and "current rated capacity Set value is a rechargeable battery The total available capacity of the rechargeable battery module set in the battery module management system (BMS) of the module. This parameter value will be cycled with the charge/discharge of the rechargeable battery module in the method of the present invention In dynamic adjustment, when the rechargeable battery module has reached the cut-off discharge state, it means that the rechargeable battery module has been completely discharged. At this time, the current consumed power value converted from the current Coulomb counter value is the rechargeable battery module. The total electric capacity of the group is completely discharged. At this time, the current rated electric capacity setting value is updated to the current consumed electric capacity value, and the total electric capacity available for the rechargeable battery module can be accurately grasped. The "stop discharge capacity preset value" is used to set the current remaining capacity value of the battery module management system (BMS) of the rechargeable battery module when the rechargeable battery module is deemed to be in the discharge state. The preset value to be used; in this embodiment of the preset value of the stop discharge capacity of the current remaining capacity value, the current remaining capacity value is generally set to 0. However, the current preset value of the stop discharge capacity of the remaining capacity value can not only be set as in the above embodiment, but can be adjusted and set according to the calibration needs of the rechargeable battery module. The preset value of capacity can be fixedly stored in an external system or a battery module management system (BMS) of a rechargeable battery module.

第7圖所示係本發明之動態優化可充電電池模組之電池模組管理系統電容量的方法實施例三,除包含第5、6圖所示之方法實施例外,其中步驟(2)進一步包含:步驟(2.1):外部系統校準可充電電池模組之電池模組管理系統(BMS)之電壓讀值、溫度讀值、類比/數位轉換器(ADC)讀值,其中之一以上的參數值。 Fig. 7 shows the third embodiment of the method for dynamically optimizing the capacity of the battery module management system of the rechargeable battery module of the present invention, except for the method shown in Figs. 5 and 6, which includes the step (2) further Contains: Step (2.1): external system calibrates the battery module management system (BMS) voltage reading, temperature reading, analog/digital converter (ADC) reading of rechargeable battery modules, and more than one of the parameters value.

第8圖所示係本發明之動態優化可充電電池模組之電池模組管理系統電容量的方法實施例四,除包含第5、6圖所示之方法實施例外,其中步驟(2)進一步包含:步驟(2.1):外部系統或可充電電池模組之電池模 組管理系統(BMS),量測讀取可充電電池模組中各單個可充電電池芯之電壓值;步驟(2.2):外部系統或可充電電池模組之電池模組管理系統(BMS),判斷可充電電池模組中各單個可充電電池芯之電壓、可充電電池模組中之任意兩個以上可充電電池芯之間的電壓差,其中之一以上的參數值;其中,外部系統或電池模組管理系統,執行步驟(2.2)之程序判斷可充電電池模組中之單數或複數個可充電電池芯電壓低於一單個可充電電池芯過放電壓設定閥值、或可充電電池模組中之任意兩個以上可充電電池芯之間的電壓差大於一允許充電電壓差設定範圍閥值,其中之一以上的條件成立時,則判定可充電電池模組無法繼續充電使用,中止動態優化程序。 Fig. 8 shows the fourth embodiment of the method for dynamically optimizing the capacity of the battery module management system of the rechargeable battery module of the present invention, except for the method shown in Figs. 5 and 6, which includes the step (2) further Including: Step (2.1): Battery module of external system or rechargeable battery module Group management system (BMS), measuring and reading the voltage value of each single rechargeable battery cell in the rechargeable battery module; Step (2.2): external system or battery module management system (BMS) of the rechargeable battery module, Determine the voltage of each single rechargeable battery cell in the rechargeable battery module, the voltage difference between any two or more rechargeable battery cells in the rechargeable battery module, and the parameter value of more than one of them; where, the external system or The battery module management system executes the procedure of step (2.2) to determine whether the singular or plural rechargeable battery cells in the rechargeable battery module are lower than a single rechargeable battery cell over-discharge voltage setting threshold, or the rechargeable battery module The voltage difference between any two or more rechargeable battery cells in the group is greater than a threshold of the allowable charging voltage difference setting range. When more than one of the conditions is met, it is determined that the rechargeable battery module cannot continue to charge and the dynamic is suspended Optimize the program.

其中「過放電壓設定閥值」係為認定可充電電池模組中各單個可充電電池芯無法使用之電壓值,此可充電電池芯無法使用之電壓閥值為判斷可充電電池模組中各單個可充電電池芯是否無法繼續使用狀態的參考依據參數值,應依各種不同材料之可充電電池模組之氧化還原反應之電位特性來加以設定,此過放電壓設定閥值可固定存於外部系統或可充電電池模組之電池模組管理系統(BMS)中。「允許充電電壓差設定範圍閥值」係為認定可充電電池模組中之任意兩個以上可充電電池芯之間的電壓差距過大至已無法繼續使用之電壓值差範圍,此任意兩個以上可充電電池芯之間的電壓差距過大至已無法繼續使用之電壓值差範圍閥值為判斷可充電電池模組是否無法繼續使用狀態的參考依據參數值,應依影響可充電電池模組之可利用總電量的程度特性來加以設定,此允許充電電壓差設定範圍閥值可固定存於外部系統或可充電電池模組之電池模組管理系統(BMS)中。 The "over-discharge voltage setting threshold" is a voltage value that determines that each single rechargeable battery cell in the rechargeable battery module cannot be used. The voltage threshold value of this rechargeable battery cell is unusable. Whether the single rechargeable battery cell can no longer be used depends on the parameter value, and should be set according to the potential characteristics of the redox reaction of the rechargeable battery module of various materials. This over-discharge voltage setting threshold can be fixed and stored externally System or battery module management system (BMS) of rechargeable battery modules. "Allowable charging voltage difference setting range threshold" is the range of voltage difference that determines that the voltage difference between any two or more rechargeable battery cells in the rechargeable battery module is too large to be used anymore. The voltage difference between the rechargeable battery cells is too large to be used anymore. The threshold value of the voltage difference range is the reference value for judging whether the rechargeable battery module can no longer be used. According to the parameter value, it should affect the rechargeable battery module It is set by using the degree characteristic of the total power. This allows the threshold value of the charging voltage difference setting range to be fixedly stored in an external system or a battery module management system (BMS) of the rechargeable battery module.

第9圖所示係本發明之動態優化可充電電池模組之電池模組 管理系統電容量的方法實施例五,除包含第5、6圖所示之方法實施例外,其中步驟(2)進一步包含:步驟(2.1):外部系統判斷可充電電池模組之內阻值。其中,可充電電池模組之內阻值可作為除了可充電電池模組之電池模組管理系統(BMS)所提供之充放電循環次數、健康狀態、使用狀態...等的管理資訊之外,另一個可直接參考判斷可充電電池模組之使用壽命的參考依據參數值。另,除第8圖所示之利用可充電電池模組之各單個可充電電池芯之電壓或電壓差,來作為判斷可充電電池模組是否可繼續使用的依據之外,亦可利用可充電電池模組之內阻阻值,來作為判斷可充電電池模組是否可繼續使用的依據參數值。此外,在外部系統校準可充電電池模組的過程中,亦可將可充電電池模組之內阻阻值,作為校準的參考參數值之一,來提高校準可充電電池模組參數的精確度。 Fig. 9 shows the battery module of the dynamically optimized rechargeable battery module of the present invention Embodiment 5 of the method for managing the capacity of the system, except for the method implementation shown in Figures 5 and 6, wherein step (2) further includes: step (2.1): the external system determines the internal resistance of the rechargeable battery module. Among them, the internal resistance value of the rechargeable battery module can be used as management information in addition to the number of charge and discharge cycles, health status, use status, etc. provided by the battery module management system (BMS) of the rechargeable battery module , Another can directly refer to the reference basis parameter value to determine the service life of the rechargeable battery module. In addition, in addition to using the voltage or voltage difference of each single rechargeable battery cell shown in Figure 8 as a basis for determining whether the rechargeable battery module can continue to be used, it can also use rechargeable The internal resistance of the battery module is used as the basis for determining whether the rechargeable battery module can continue to be used. In addition, in the process of calibrating the rechargeable battery module by an external system, the internal resistance of the rechargeable battery module can also be used as one of the reference parameter values for calibration to improve the accuracy of calibrating the parameters of the rechargeable battery module .

第10圖所示係本發明之動態優化可充電電池模組之電池模組管理系統電容量的方法實施例六,除包含第5、6圖所示之方法實施例外,其中步驟(3)進一步包含:步驟(3.1):外部系統校準可充電電池模組之電池模組管理系統(BMS)之電流讀值、電流類比/數位轉換器(ADC)讀值,其中之一以上的參數值。其中校準可充電電池模組之電池模組管理系統(BMS)之電流讀值係為了使電池模組管理系統(BMS)之庫倫計數器能更精確的對電容量進行計數;透過外部系統之可充電電池模組充電單元所使用之充電電流值,來與電池模組管理系統(BMS)中讀取到之電流讀值進行校準,可提高校準可充電電池模組之電池模組管理系統(BMS)之效率。 Figure 10 shows a sixth embodiment of the method for dynamically optimizing the capacity of a battery module management system of a rechargeable battery module of the present invention, except for the method implementation shown in Figures 5 and 6, in which step (3) further Including: Step (3.1): the external system calibrates the current reading of the battery module management system (BMS) of the rechargeable battery module, the current analog/digital converter (ADC) reading, and more than one of the parameter values. Among them, the current reading of the battery module management system (BMS) for calibrating rechargeable battery modules is to enable the coulomb counter of the battery module management system (BMS) to count the capacitance more accurately; it can be charged through an external system The charging current value used by the battery module charging unit is calibrated with the current reading value read in the battery module management system (BMS), which can improve the calibration of the battery module management system (BMS) of rechargeable battery modules Of efficiency.

第11圖所示係本發明之動態優化可充電電池模組之電池模 組管理系統電容量的方法實施例七,除包含第5、6圖所示之方法實施例外,其中步驟(3)進一步包含:步驟(3.1):外部系統或可充電電池模組之電池模組管理系統(BMS),判斷可充電電池模組中之單數或複數個可充電電池芯電壓高於一單個可充電電池芯平衡電壓設定閥值、可充電電池模組中之任意兩個以上可充電電池芯之間的電壓差大於一平衡電壓差設定範圍閥值,其中之一以上的條件成立時,則執行各單個可充電電池芯間的電壓平衡程序。 Figure 11 shows the battery module of the dynamically optimized rechargeable battery module of the present invention The seventh embodiment of the method for managing the capacity of the system, except for the method implementation shown in Figures 5 and 6, wherein step (3) further includes: step (3.1): an external system or a battery module of a rechargeable battery module Management system (BMS) to determine whether the voltage of single or multiple rechargeable battery cells in a rechargeable battery module is higher than a single rechargeable battery cell balance voltage setting threshold, and any two or more rechargeable battery modules can be charged The voltage difference between the battery cells is greater than the threshold of a balance voltage difference setting range. When more than one of the conditions is satisfied, the voltage balancing process between the individual rechargeable battery cells is executed.

其中「單個可充電電池芯平衡電壓設定閥值」係為認定可充電電池模組中各單個可充電電池芯需要啟動平衡程序之電壓值,此可充電電池芯啟動平衡程序之電壓閥值為判斷可充電電池模組中是否需要平衡各單個可充電電池芯之電壓差距的參考依據參數值,應依各種不同材料之可充電電池芯的充電電壓特性來加以設定,此單個可充電電池芯平衡電壓設定閥值可固定存於外部系統或可充電電池模組之電池模組管理系統(BMS)中。「平衡電壓差設定範圍閥值」係為認定可充電電池模組中之任意兩個以上可充電電池芯之間的電壓差距過大至需要啟動平衡程序之電壓值差範圍,此任意兩個以上可充電電池芯之間的電壓差距過大至需要啟動平衡程序之電壓值差範圍閥值為判斷可充電電池模組是否需要平衡各單個可充電電池芯之電壓差距的參考依據參數值,應依影響可充電電池模組之可利用總電量的程度特性來加以設定,此平衡電壓差設定範圍閥值可固定存於外部系統或可充電電池模組之電池模組管理系統(BMS)中。 "Single rechargeable battery cell balance voltage setting threshold" is a voltage value that determines that each single rechargeable battery cell in the rechargeable battery module needs to start the balancing process. The voltage threshold of the rechargeable battery cell to start the balancing process is judged Whether it is necessary to balance the voltage difference of each single rechargeable battery cell in the rechargeable battery module is based on the parameter value, and should be set according to the charging voltage characteristics of the rechargeable battery cells of various materials. This single rechargeable battery cell balances the voltage The set threshold can be fixedly stored in an external system or a battery module management system (BMS) of a rechargeable battery module. "Balance voltage difference setting range threshold" is the voltage difference range between any two or more rechargeable battery cells in the rechargeable battery module that is too large to require the balance process to be started. Any two or more The voltage difference between the rechargeable battery cells is too large to start the balancing process. The threshold value of the voltage difference range threshold is used to determine whether the rechargeable battery module needs to balance the voltage difference of each single rechargeable battery cell. The reference is based on the parameter value. The rechargeable battery module can be set by using the degree characteristics of the total amount of electricity. The threshold value of the setting range of the balanced voltage difference can be fixedly stored in an external system or a battery module management system (BMS) of the rechargeable battery module.

可充電電池模組在反覆的充放電循環過程後,可充電電池模組之各單個可充電電池芯的電壓間的差異會逐漸加大,進而導致各單個可 充電電池芯的電壓值不平衡,無法趨於一致。此時,為了增加可充電電池模組的使用壽命及電容量,需要將可充電電池模組之各單個可充電電池芯的電壓值重新平衡,使電壓值趨於一致,此稱為可充電電池模組之可充電電池芯的平衡程序。 After the repeated charge and discharge cycle of the rechargeable battery module, the difference between the voltages of the individual rechargeable battery cells of the rechargeable battery module will gradually increase, resulting in the individual The voltage value of the rechargeable battery cell is unbalanced and cannot be consistent. At this time, in order to increase the service life and capacity of the rechargeable battery module, the voltage value of each single rechargeable battery core of the rechargeable battery module needs to be rebalanced to make the voltage value tend to be consistent. This is called a rechargeable battery The balancing procedure of the rechargeable battery core of the module.

第12圖所示係本發明之動態優化可充電電池模組之電池模組管理系統電容量的方法實施例八,除包含第6圖所示之方法實施例外,其中步驟(8)進一步包含:步驟(8.1):可充電電池模組之電池模組管理系統(BMS)判斷由目前庫倫計數器值換算得之目前已消耗電容量值,是否高於一最低消耗電容量設定閥值;若目前已消耗電容量值已高於最低消耗電容量設定閥值,則設定成為目前額定電容量設定值。 Figure 12 shows Embodiment 8 of the method for dynamically optimizing the capacity of a battery module management system of a rechargeable battery module of the present invention, except for the method implementation shown in Figure 6, wherein step (8) further includes: Step (8.1): The battery module management system (BMS) of the rechargeable battery module determines whether the current power consumption value converted from the current Coulomb counter value is higher than a minimum power consumption setting threshold; If the power consumption value is higher than the minimum power consumption setting threshold, the setting becomes the current rated power setting value.

其中「由目前庫倫計數器值換算得之目前已消耗電容量值」係指可充電電池模組已放出的電量總額,如前述公式(1)、公式(2)所述;而「目前額定電容量設定值」係為可充電電池模組之電池模組管理系統(BMS)中所設定之可充電電池模組可利用的總電容量,此參數值於本發明之方法中將隨著可充電電池模組的充/放電使用循環而動態調整,當可充電電池模組已達截止放電狀態,即表示可充電電池模組已完全放電,此時由目前庫倫計數器值換算得之目前已消耗電容量值,即為可充電電池模組完全放電的總電容量,此時將目前額定電容量設定值更新為目前已消耗電容量值,更可精確掌握可充電電池模組可利用的總電容量。「最低消耗電容量設定閥值」係為認定電池模組管理系統(BMS)之目前已消耗電容量值是否已達到可更新目前額定電容量設定值的消耗電容量值,此消耗電容量閥值為判斷電池模組管理系統(BMS)之目前額定電容量設定值是否可被 更新為目前已消耗電容量值的重要參考依據,此最低消耗電容量設定閥值可固定存於外部系統或可充電電池模組之電池模組管理系統(BMS)中。最低消耗電容量設定閥值係為了補償電池模組管理系統(BMS)之庫倫計數器,在計數可充電電池模組之細微小放電電流時所造成的誤差。舉例而言,當可充電電池模組非常長時間靜置未使用時,可充電電池模組之電池模組管理系統(BMS)本身之消耗電流將非常細微小,此時電池模組管理系統(BMS)之庫倫計數器極可能產生計數上之誤差。為避免電池模組管理系統(BMS)本身之內耗所產生之可充電電池模組之電壓低於前述之第二電壓閥值,而更新電池模組管理系統(BMS)之目前額定電容量設定值,進一步利用最低消耗電容量設定閥值來限制目前額定電容量設定值更新的條件。 Among them, "the current consumed power value converted from the current Coulomb counter value" refers to the total amount of electricity discharged by the rechargeable battery module, as described in the foregoing formula (1), formula (2); and "current rated power capacity The "setting value" is the total available capacity of the rechargeable battery module set in the battery module management system (BMS) of the rechargeable battery module. This parameter value will be changed with the rechargeable battery in the method of the present invention. The charge/discharge cycle of the module is dynamically adjusted. When the rechargeable battery module has reached the cut-off discharge state, it means that the rechargeable battery module has been completely discharged. At this time, the current consumed power capacity converted from the current Coulomb counter value The value is the total capacity of the fully discharged rechargeable battery module. At this time, the current rated capacity setting value is updated to the current consumed capacity value, and the total available capacity of the rechargeable battery module can be accurately grasped. "Minimum power consumption setting threshold" is to determine whether the current power consumption capacity value of the battery module management system (BMS) has reached the power consumption capacity value that can update the current rated power capacity setting value. This power consumption capacity threshold To determine whether the current rated capacity setting of the battery module management system (BMS) can be It is updated as an important reference basis for the current power consumption value. This minimum power consumption setting threshold can be fixedly stored in the external system or the battery module management system (BMS) of the rechargeable battery module. The minimum power consumption setting threshold is to compensate the error caused by the coulomb counter of the battery module management system (BMS) when counting the minute discharge current of the rechargeable battery module. For example, when the rechargeable battery module is left unused for a long time, the current consumption of the battery module management system (BMS) of the rechargeable battery module itself will be very small. At this time, the battery module management system ( BMS) Coulomb counters are likely to produce counting errors. In order to avoid the internal consumption of the battery module management system (BMS) itself, the voltage of the rechargeable battery module is lower than the aforementioned second voltage threshold, and the current rated capacity setting value of the battery module management system (BMS) is updated To further use the minimum power consumption setting threshold to limit the conditions under which the current rated capacity setting is updated.

以上所述僅為本發明之較佳實施例而已,並不用以限制本發明,凡在本發明的精神和原則之內,所作的任何修改、等同替換、改進等,均應包含在本發明的保護範圍之內。 The above are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention should be included in the present invention. Within the scope of protection.

Claims (10)

一種動態優化電池模組管理系統電容量的系統,係至少包含:一可充電電池模組、一可充電電池模組充電單元、一可充電電池模組校準裝置;其中上述可充電電池模組校準裝置,至少包含:一校準模組、一電源供應單元、一微控制單元、一可充電電池模組通訊單元;其中,上述校準模組至少包含有:一電壓量測單元、一溫度量測單元;其中,上述可充電電池模組通訊單元、校準模組透過一或複數個連接埠與上述可充電電池模組進行對接;其中,上述校準模組對上述可充電電池模組之電池模組管理系統中至少包含電壓、溫度之一之訊號值,執行量測、校準程序。 A system for dynamically optimizing the capacity of a battery module management system, which at least includes: a rechargeable battery module, a rechargeable battery module charging unit, and a rechargeable battery module calibration device; wherein the above rechargeable battery module calibration The device includes at least: a calibration module, a power supply unit, a micro control unit, and a rechargeable battery module communication unit; wherein, the calibration module at least includes: a voltage measurement unit and a temperature measurement unit Wherein the rechargeable battery module communication unit and the calibration module interface with the rechargeable battery module through one or more ports; wherein the calibration module manages the battery module of the rechargeable battery module The system contains at least one of the voltage and temperature signal values, and performs the measurement and calibration procedures. 如請求項1所述之動態優化電池模組管理系統電容量的系統,其中上述校準模組進一步包含:一可充電電池模組內阻量測單元;其中,上述可充電電池模組內阻量測單元,亦透過上述一或複數個連接埠與上述可充電電池模組進行對接; 其中,上述可充電電池模組內阻量測單元量測之微電阻範圍介於10μΩ至10Ω之間。 The system for dynamically optimizing the capacity of a battery module management system according to claim 1, wherein the calibration module further comprises: a rechargeable battery module internal resistance measuring unit; wherein, the rechargeable battery module internal resistance The test unit is also connected to the rechargeable battery module through the one or more ports; Wherein, the micro resistance measured by the internal resistance measuring unit of the rechargeable battery module ranges from 10 μΩ to 10 Ω. 一種動態優化電池模組管理系統電容量的方法,至少包含步驟:步驟(1):外部系統讀取可充電電池模組之電池模組管理系統之可充電電池種類、目前額定電容量設定值、目前庫倫計數器值、目前剩餘電容量值、目前荷電狀態(SOC),其中之一以上的參數值;步驟(2):上述外部系統判斷目前可充電電池模組之電壓、充放電循環次數、可充電電池模組之電池模組管理系統之使用記錄,其中之一以上的參數值;步驟(3):連接上述可充電電池模組至上述外部系統之可充電電池模組充電單元,上述電池模組管理系統進入充電程序;步驟(4):上述外部系統或上述電池模組管理系統,判斷上述可充電電池模組電壓是否高於一第一電壓閥值,若上述可充電電池模組電壓高於上述第一電壓閥值,則上述可充電電池模組停止充電;步驟(5):上述外部系統或上述電池模組管理系統,設定重置上述目前庫倫計數器值、上述目前剩餘電容量值的參數值為充飽電預設值。 A method for dynamically optimizing the capacity of a battery module management system includes at least the following steps: step (1): the external system reads the type of rechargeable battery of the battery module management system of the rechargeable battery module, the current rated capacity setting value, Current coulomb counter value, current remaining capacity value, current state of charge (SOC), more than one of the parameter values; Step (2): the above external system determines the current voltage of the rechargeable battery module, the number of charge and discharge cycles, the available Usage records of the battery module management system of the rechargeable battery module, one or more of the parameter values; Step (3): connect the rechargeable battery module to the rechargeable battery module charging unit of the external system, the battery module The group management system enters the charging procedure; step (4): the external system or the battery module management system determines whether the voltage of the rechargeable battery module is higher than a first voltage threshold, and if the voltage of the rechargeable battery module is high At the first voltage threshold, the rechargeable battery module stops charging; step (5): the external system or the battery module management system sets a value to reset the current Coulomb counter value and the current remaining capacity value The parameter value is the preset value of full charge. 如請求項3所述之動態優化電池模組管理系統電容量的方法,進一步包含:步驟(6):由上述外部系統之可充電電池模組充電單元移除上述可充電電池模組,上述電池模組管理系統進入放電剩餘電容量計數程序;步驟(7):上述電池模組管理系統判斷上述可充電電池模組電壓是否低於一第二電壓閥值,若上述可充電電池模組電壓低於上述第二電壓閥值,則上述可充電電池模組停止放電; 步驟(8):上述電池模組管理系統,設定由上述目前庫倫計數器值換算得之目前已消耗電容量值,成為上述目前額定電容量設定值,並設定上述目前剩餘電容量值為停止放電容量預設值。 The method for dynamically optimizing the capacity of a battery module management system according to claim 3, further comprising: step (6): removing the rechargeable battery module from the rechargeable battery module charging unit of the external system, the battery The module management system enters the discharge remaining capacity counting procedure; step (7): the battery module management system determines whether the voltage of the rechargeable battery module is lower than a second voltage threshold, if the voltage of the rechargeable battery module is low At the second voltage threshold, the rechargeable battery module stops discharging; Step (8): The battery module management system sets the current consumed capacity value converted from the current Coulomb counter value to become the current rated capacity setting value, and sets the current remaining capacity value as the stop discharge capacity default value. 如請求項3或4所述之動態優化電池模組管理系統電容量的方法,其中上述步驟(2)進一步包含:步驟(2.1):上述外部系統校準上述可充電電池模組之上述電池模組管理系統之電壓讀值、溫度讀值、類比/數位轉換器(ADC)讀值,其中之一以上的參數值。 The method for dynamically optimizing the capacity of a battery module management system according to claim 3 or 4, wherein the step (2) further comprises: step (2.1): the external system calibrates the battery module of the rechargeable battery module Management system voltage readings, temperature readings, analog/digital converter (ADC) readings, more than one of the parameter values. 如請求項3或4所述之動態優化電池模組管理系統電容量的方法,其中上述步驟(2)進一步包含:步驟(2.1):上述外部系統或上述電池模組管理系統,量測讀取上述可充電電池模組中各單個可充電電池芯之電壓值;步驟(2.2):上述外部系統或上述電池模組管理系統,判斷上述可充電電池模組中各單個可充電電池芯之電壓、上述可充電電池模組中之任意兩個以上可充電電池芯之間的電壓差,其中之一以上的參數值;其中,上述外部系統或上述電池模組管理系統,執行步驟(2.2)之程序判斷上述可充電電池模組中之單數或複數個可充電電池芯電壓低於一單個可充電電池芯過放電壓設定閥值、或上述可充電電池模組中之任意兩個以上可充電電池芯之間的電壓差大於一允許充電電壓差設定範圍閥值,其中之一以上的條件成立時,則判定上述可充電電池模組無法繼續充電使用,中止動態優化程序。 The method for dynamically optimizing the capacity of a battery module management system according to claim 3 or 4, wherein the step (2) further comprises: step (2.1): the external system or the battery module management system, measurement reading The voltage value of each single rechargeable battery cell in the above rechargeable battery module; Step (2.2): the external system or the battery module management system determines the voltage of each single rechargeable battery cell in the above rechargeable battery module, The voltage difference between any two or more rechargeable battery cells in the above rechargeable battery module, and one or more of the parameter values; wherein, the external system or the battery module management system performs the procedure of step (2.2) Determine that the singular or plural rechargeable battery cells in the above rechargeable battery module are lower than a single rechargeable battery cell over-discharge voltage setting threshold, or any two or more rechargeable battery cells in the above rechargeable battery module The voltage difference between them is greater than a threshold of the allowable charging voltage difference setting range. When more than one of the conditions is met, it is determined that the rechargeable battery module cannot continue to be charged and the dynamic optimization process is terminated. 如請求項3或4所述之動態優化電池模組管理系統電容量的方法,其中上述步驟(2)進一步包含:步驟(2.1):上述外部系統判斷上述可充電電池模組之內阻值。 The method for dynamically optimizing the capacity of a battery module management system according to claim 3 or 4, wherein the step (2) further comprises: step (2.1): the external system determines the internal resistance of the rechargeable battery module. 如請求項3或4所述之動態優化電池模組管理系統電容量的方法,其中上述步驟(3)進一步包含:步驟(3.1):上述外部系統校準上述可充電電池模組之上述電池模組管理系統之電流讀值、電流類比/數位轉換器(ADC)讀值,其中之一以上的參數值。 The method for dynamically optimizing the capacity of a battery module management system according to claim 3 or 4, wherein the step (3) further comprises: step (3.1): the external system calibrates the battery module of the rechargeable battery module The current reading of the management system, the current analog/digital converter (ADC) reading, and more than one of the parameter values. 如請求項3或4所述之動態優化電池模組管理系統電容量的方法,其中上述步驟(3)進一步包含:步驟(3.1):上述外部系統或上述電池模組管理系統,判斷上述可充電電池模組中之單數或複數個可充電電池芯電壓高於一單個可充電電池芯平衡電壓設定閥值、上述可充電電池模組中之任意兩個以上可充電電池芯之間的電壓差大於一平衡電壓差設定範圍閥值,其中之一以上的條件成立時,則執行上述各單個可充電電池芯間的電壓平衡程序。 The method for dynamically optimizing the capacity of a battery module management system according to claim 3 or 4, wherein the step (3) further comprises: step (3.1): the external system or the battery module management system determines the rechargeable The singular or plural rechargeable battery cells in the battery module have a voltage higher than a single rechargeable battery cell balancing voltage setting threshold, and the voltage difference between any two or more rechargeable battery cells in the above rechargeable battery module is greater than A threshold value for the setting range of the balance voltage difference, when more than one of the conditions is met, the voltage balance procedure between the individual rechargeable battery cores is executed. 如請求項4所述之動態優化電池模組管理系統電容量的方法,其中上述步驟(8)進一步包含:步驟(8.1):上述電池模組管理系統判斷由上述目前庫倫計數器值換算得之目前已消耗電容量值,是否高於一最低消耗電容量設定閥值;若上述目前已消耗電容量值已高於上述最低消耗電容量設定閥值,則設定成為上述目前額定電容量設定值。 The method for dynamically optimizing the capacity of a battery module management system according to claim 4, wherein the step (8) further comprises: step (8.1): the battery module management system determines the current value converted from the current Coulomb counter value Whether the consumed power value is higher than a minimum power consumption setting threshold; if the current power consumption value is higher than the minimum power consumption setting threshold, the current rated capacity setting value is set.
TW108100140A 2019-01-03 2019-01-03 System and method for dynamically optimizing the capacity of battery module management system TWI691143B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108100140A TWI691143B (en) 2019-01-03 2019-01-03 System and method for dynamically optimizing the capacity of battery module management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108100140A TWI691143B (en) 2019-01-03 2019-01-03 System and method for dynamically optimizing the capacity of battery module management system

Publications (2)

Publication Number Publication Date
TWI691143B true TWI691143B (en) 2020-04-11
TW202027367A TW202027367A (en) 2020-07-16

Family

ID=71134561

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108100140A TWI691143B (en) 2019-01-03 2019-01-03 System and method for dynamically optimizing the capacity of battery module management system

Country Status (1)

Country Link
TW (1) TWI691143B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI754943B (en) * 2020-05-28 2022-02-11 廣達電腦股份有限公司 Smart battery device
TWI758760B (en) * 2020-06-24 2022-03-21 仁寶電腦工業股份有限公司 Battery control device and battery capacity estimation method
TWI822428B (en) * 2022-10-31 2023-11-11 連恩微電子有限公司 Distributed battery management system and battery record device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI736373B (en) * 2020-07-28 2021-08-11 三陽工業股份有限公司 Dynamic battery health detection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201427230A (en) * 2012-12-28 2014-07-01 Tien Yuan Enertek Ltd Power management method and apparatus for battery module of electric vehicle
TW201528653A (en) * 2014-01-15 2015-07-16 Hycon Technology Corp Method of searching for full charge capacity of stacked recargeable battery cells in recargeable battery pack and battery management system made of the same
CN105277898A (en) * 2015-10-27 2016-01-27 浙江大学 Battery charge state detecting method
TW201612539A (en) * 2014-09-25 2016-04-01 Nat Inst Chung Shan Science & Technology Method and apparatus for battery states detection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201427230A (en) * 2012-12-28 2014-07-01 Tien Yuan Enertek Ltd Power management method and apparatus for battery module of electric vehicle
TW201528653A (en) * 2014-01-15 2015-07-16 Hycon Technology Corp Method of searching for full charge capacity of stacked recargeable battery cells in recargeable battery pack and battery management system made of the same
TW201612539A (en) * 2014-09-25 2016-04-01 Nat Inst Chung Shan Science & Technology Method and apparatus for battery states detection
CN105277898A (en) * 2015-10-27 2016-01-27 浙江大学 Battery charge state detecting method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI754943B (en) * 2020-05-28 2022-02-11 廣達電腦股份有限公司 Smart battery device
TWI758760B (en) * 2020-06-24 2022-03-21 仁寶電腦工業股份有限公司 Battery control device and battery capacity estimation method
TWI822428B (en) * 2022-10-31 2023-11-11 連恩微電子有限公司 Distributed battery management system and battery record device

Also Published As

Publication number Publication date
TW202027367A (en) 2020-07-16

Similar Documents

Publication Publication Date Title
TWI691143B (en) System and method for dynamically optimizing the capacity of battery module management system
CN107991623B (en) Battery ampere-hour integral SOC estimation method considering temperature and aging degree
WO2020135481A1 (en) Battery charging method and device
CN110011374B (en) Control method and system for battery charging and discharging current and terminal equipment
CN110109030B (en) Battery pack consistency evaluation method and battery pack balancing strategy
CN110506215A (en) A kind of method and device of determining battery internal short-circuit
US9018912B2 (en) System and method for managing parallel-connected battery cells
JP2012029417A (en) Battery control system and battery control method
CN115101840B (en) Battery system and battery pack connection state identification method
WO2012100540A1 (en) Lithium ion battery management system
US20210391742A1 (en) Charging method, electronic apparatus, and storage medium
WO2019125916A1 (en) Cell balancing in batteries
JP3841001B2 (en) Battery control system
CN207753126U (en) A kind of lithium battery management system
CN108020788A (en) A kind of lithium ion battery internal resistance rapid screening method
CN107294163B (en) Storage battery state inspection method and device with storage battery monomer balancing function
TWI613455B (en) Expandable modular battery capacity estimation system
CN209592234U (en) A kind of cell equalization compensation device
TWI664771B (en) Li-ion battery module remote calibration system
CN112578289B (en) DC-DC battery simulator of bidirectional power supply and testing method
CN108054450A (en) A kind of lithium battery management system
CN114035071A (en) SOC (system on chip) online correction method for water system secondary battery system
WO2022183459A1 (en) Method and apparatus for estimating soc of battery pack, and battery management system
CN114879053A (en) Method for predicting service life of energy storage lithium iron phosphate battery
CN114552039A (en) Control method for battery constant-charge self-maintenance and constant-charge self-maintenance battery

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees