TWI689704B - Magnetic position sensing device and method - Google Patents

Magnetic position sensing device and method Download PDF

Info

Publication number
TWI689704B
TWI689704B TW107146322A TW107146322A TWI689704B TW I689704 B TWI689704 B TW I689704B TW 107146322 A TW107146322 A TW 107146322A TW 107146322 A TW107146322 A TW 107146322A TW I689704 B TWI689704 B TW I689704B
Authority
TW
Taiwan
Prior art keywords
pattern
voltage
induced voltage
processing
scale
Prior art date
Application number
TW107146322A
Other languages
Chinese (zh)
Other versions
TW202024557A (en
Inventor
王裕銘
杜陳忠
柏安 陳
張禎元
胡竹生
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW107146322A priority Critical patent/TWI689704B/en
Priority to CN201811596977.9A priority patent/CN111351420B/en
Application granted granted Critical
Publication of TWI689704B publication Critical patent/TWI689704B/en
Publication of TW202024557A publication Critical patent/TW202024557A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques

Abstract

A magnetic position sensing device and method for generating an induced voltage change by changing a relative position of an stimulated magnetic component and a pattern of an inductive ruler, and further analyzing a position of the stimulated magnetic component by a technical means of voltage resolution for positions.

Description

磁性位置感知裝置與方法 Magnetic position sensing device and method

本案係有關位置感知技術,尤指一種磁性位置感知裝置與方法。 This case is about position sensing technology, especially a magnetic position sensing device and method.

高精度位置檢知元件包括光學尺與磁性尺等,其廣泛應用於精密機械產業(如工具機)以及智慧製造產業(如精密機械手臂)等,其中因應加工設備常需在惡劣環境進行產品加工,磁性尺相較光學尺之抗污染能力佳且結構簡單,近年來高階磁性尺研發日益積極,逐漸有取代中階光學尺市場趨勢。 High-precision position detection components include optical scales and magnetic scales, etc., which are widely used in the precision machinery industry (such as machine tools) and smart manufacturing industries (such as precision mechanical arms), etc., where processing equipment often requires product processing in harsh environments Compared with the optical ruler, the magnetic ruler has better anti-pollution ability and simple structure. In recent years, the research and development of high-end magnetic ruler has become more and more active, and it has gradually replaced the market of middle-order optical ruler.

然而,傳統磁性尺遭遇磁極寬度微細化瓶頸,以及電壓相位差解析圖案位置因組裝控制造成檢知穩定度問題,致使一般磁性尺精度不高且穩定性不佳,另一方面,充磁耗時問題也使高階磁性尺更不易於長尺寸化(Scale up)。 However, the conventional magnetic ruler has encountered a bottleneck in miniaturizing the magnetic pole width and the detection stability of the voltage phase difference analysis pattern position due to assembly control, resulting in a general magnetic ruler with low accuracy and poor stability. On the other hand, magnetization takes time The problem also makes the high-order magnetic ruler less prone to scale up.

因此,如何有效改善充磁耗時、安裝精度不易控制以及生產長度受限等問題,實為目前業界所亟待解決的課題之一。 Therefore, how to effectively improve the magnetization time-consuming, the installation accuracy is difficult to control, and the production length is limited, etc., is really one of the issues that the industry urgently needs to solve.

為克服習知技術之缺失,本案係提供一種磁性位置感知裝置,係包括:一激磁元件,係產生一交變磁場;一感應尺,係形成有圖案,且該圖案與激磁元件的相對位置變化產生感應電壓,該圖案係週期性波形圖案;以及一位置解析元件,係擷取該感應電壓,該位置解析元件係連接該感應尺,以依據該感應電壓解析出該激磁元件位於該感應尺上的位置。 In order to overcome the deficiency of the conventional technology, this case provides a magnetic position sensing device, which includes: an exciting element, which generates an alternating magnetic field; and an inductive ruler, a pattern is formed, and the relative position of the pattern and the exciting element changes To generate an induced voltage, the pattern is a periodic waveform pattern; and a position analysis element to capture the induced voltage, the position analysis element is connected to the sensing ruler to resolve the excitation element on the sensing ruler based on the induced voltage s position.

本案另提供一種磁性位置感知方法,係包括:於一感應尺上形成圖案;令一激磁元件產生一交變磁場;利用該感應尺的圖案與激磁元件的相對位置變化產生感應電壓,該圖案係週期性波形圖案;以及利用一位置解析元件擷取該感應電壓,該位置解析元件係連接該感應尺,並依據該感應電壓解析出該激磁元件位於該感應尺上的位置。 This case also provides a magnetic position sensing method, which includes: forming a pattern on a sensing ruler; causing an exciting element to generate an alternating magnetic field; using the relative position change of the pattern of the sensing ruler and the exciting element to generate an induced voltage, the pattern is A periodic waveform pattern; and using a position analyzing element to capture the induced voltage, the position analyzing element is connected to the sensing ruler, and the position of the excitation element on the sensing ruler is resolved based on the sensing voltage.

由上述可得知,本案利用感應尺之圖案與激磁元件的相對位置變化產生感應電壓,進而以電壓值解析位置之技術手段,提高位置檢出精度與穩定度,以及金屬線圖案轉印製程易於長尺寸化(Scale up)等優點,以解決現有技術採用磁極圖案感知以及電壓相位差解析所遭遇的充磁耗時、安裝精度不易控制以及生產長度受限之問題。 It can be seen from the above that the present case uses the relative position change of the pattern of the sensing ruler and the exciting element to generate an induced voltage, and then uses the voltage value to analyze the position to improve the position detection accuracy and stability, and the metal wire pattern transfer process is easy Advantages such as scale up can solve the problems of time-consuming magnetization, difficult installation accuracy control, and limited production length encountered in the prior art using magnetic pole pattern sensing and voltage phase difference analysis.

1:磁性位置感知裝置 1: magnetic position sensing device

10:激磁元件 10: Excitation element

20:感應尺 20: Induction ruler

21:正面 21: Positive

22:反面 22: reverse side

30,30’:圖案 30,30’: pattern

31:方波圖形 31: Square wave graphics

31’:第一圖形 31’: the first graphic

32:第二圖形 32: Second graphic

40:位置解析元件 40: Position resolution element

41:感應電壓訊號處理單元 41: Induced voltage signal processing unit

42:感應電壓解析位置單元 42: Inductive voltage analysis position unit

61:正方波區域 61: square wave area

62:負方波區域 62: negative square wave area

63:交變磁場 63: alternating magnetic field

101:導磁部 101: Magnetic Conduction Department

102:繞線部 102: Winding Department

103:交流電源供應單元 103: AC power supply unit

104:第一磁極部 104: first magnetic pole

105:第二磁極部 105: second magnetic pole

106:開口 106: opening

311:處理電壓 311: Processing voltage

311’:第一處理電壓 311’: First processing voltage

313,313’:第一峰谷水平部 313,313’: Level 1 of the first peak and valley

314,314’:第一垂直部 314,314’: the first vertical section

315,315’:第一峰頂水平部 315,315’: horizontal part of the first peak

321:第二處理電壓 321: Second processing voltage

323:第二峰谷水平部 323: Second Peak Valley Level

324:第二垂直部 324: Second vertical section

325:第二峰頂水平部 325: second peak level

411:濾波器 411: filter

412:包絡檢波器 412: Envelope detector

511:第一非轉折曲線區段 511: The first non-turning curve section

512:第一轉折曲線區段 512: first turning curve section

513:第一上升線段 513: The first ascending line segment

514:第一下降線段 514: first descending line

515:第一山峰區域 515: First Mountain Area

516:第一低谷區域 516: the first trough area

521:第二非轉折曲線區段 521: Second non-turning curve section

522:第二轉折曲線區段 522: Second turning curve section

523:第二上升線段 523: Second rising line

524:第二下降線段 524: Second descending line

525:第二山峰區域 525: Second Mountain Area

526:第二低谷區域 526: Second trough area

B:波峰轉折區 B: Crest turning zone

X:距離 X: distance

VS,VS1,VS2:感應電壓 V S , V S1 , V S2 : induced voltage

VP,VP1,VP2:處理電壓 V P , V P1 , V P2 : processing voltage

S71~S74,S81~S82:步驟 S71~S74, S81~S82: Steps

第1圖為本案之磁性位置感知裝置之第一實施例之示意圖;第2圖為本案之磁性位置感知裝置之第一實施例之激磁元件之示意圖;第3圖為本案之磁性位置感知裝置之第一實施例之位置解析元件之示意圖; 第4圖為本案之磁性位置感知裝置之第一實施例之感應電壓訊號處理單元之示意圖;第5A圖為本案之磁性位置感知裝置之第一實施例之感應尺的圖案之示意圖;第5B~5C圖為本案之磁性位置感知裝置之第一實施例之感應電壓進行訊號處理之示意圖;第5D圖為本案之磁性位置感知裝置之第一實施例之磁性位置感知圖之示意圖;第5E圖為本案之磁性位置感知裝置之第一實施例之方波圖形與處理電壓的關係之示意圖;第5F圖為本案之磁性位置感知裝置之第一實施例之處理電壓之轉折處放大之示意圖;第6A圖為本案之磁性位置感知裝置之第二實施例之感應尺的圖案之示意圖;第6B圖為本案之磁性位置感知裝置之第二實施例之磁性位置感知圖之示意圖;第6C圖為本案之磁性位置感知裝置之第二實施例之分析區段之示意圖;第7圖為本案之磁性位置感知方法之第一實施例之流程示意圖;以及第8圖為本案之磁性位置感知方法之第一實施例之步驟S74之流程示意圖。 Fig. 1 is a schematic diagram of the first embodiment of the magnetic position sensing device of the present case; Fig. 2 is a schematic diagram of the exciting element of the first embodiment of the magnetic position sensing device of the present case; Fig. 3 is a diagram of the magnetic position sensing device of the present case A schematic diagram of the position resolution element of the first embodiment; Figure 4 is a schematic diagram of the induced voltage signal processing unit of the first embodiment of the magnetic position sensing device of this case; Figure 5A is a schematic diagram of the pattern of the sensing ruler of the first embodiment of the magnetic position sensing device of this case; FIG. 5C is a schematic diagram of signal processing of the induced voltage of the first embodiment of the magnetic position sensing device of this case; FIG. 5D is a schematic diagram of the magnetic position sensing map of the first embodiment of the magnetic position sensing device of this case; FIG. 5E is A schematic diagram of the relationship between the square wave pattern and the processing voltage of the first embodiment of the magnetic position sensing device of this case; FIG. 5F is an enlarged schematic diagram of the turning point of the processing voltage of the first embodiment of the magnetic position sensing device of this case; 6A The figure is a schematic diagram of the pattern of the induction ruler of the second embodiment of the magnetic position sensing device of this case; FIG. 6B is a diagram of the magnetic position sensing diagram of the second embodiment of the magnetic position sensing device of this case; FIG. 6C is the diagram of this case A schematic diagram of the analysis section of the second embodiment of the magnetic position sensing device; FIG. 7 is a schematic flowchart of the first embodiment of the magnetic position sensing method of this case; and FIG. 8 is a first implementation of the magnetic position sensing method of this case An example flow chart of step S74.

以下藉由特定的具體實施例說明本案之實施方式,熟悉此技藝之人士可由本說明書所揭示之內容輕易地瞭解本案之其他優點及功效。 The following describes the implementation of this case by specific specific embodiments, and those skilled in the art can easily understand other advantages and effects of this case by the contents disclosed in this specification.

須知,本說明書所附圖式所繪示之結構、比例、大小等,均僅用以配合說明書所揭示之內容,以供熟悉此技藝之人士之瞭解與閱讀,並非用以限定本案可實施之限定條件,故不具技術上之實質意義,任何結構之修飾、比例關係之改變或大小之調整,在不影響本案所能產生之功效及所能達成之目的下,均應仍落在本案所揭示之技術內容得能涵蓋之範圍內。同時,本說明書中所引用之如「第一」及「第二」等之用語,亦僅為便於敘述之明瞭,而非用以限定本案可實施之範圍,其相對關係之改變或調整,在無實質變更技術內容下,當視為本案可實施之範疇。 It should be noted that the structure, ratio, size, etc. shown in the drawings of this specification are only used to match the contents disclosed in the specification, for those familiar with this skill to understand and read, not to limit the implementation of this case. Limited conditions, so it has no technical significance, any modification of structure, change of proportional relationship or adjustment of size should still fall within the disclosure of this case without affecting the efficacy and purpose of this case. The technical content can be covered. At the same time, the terms such as "first" and "second" cited in this specification are only for the convenience of description, not to limit the scope of this case, the change or adjustment of the relative relationship. Without substantial changes in technical content, it should be regarded as the scope of this case.

第1圖係本案之磁性位置感知裝置1之第一實施例之示意圖。如圖所示,該磁性位置感知裝置1係包括激磁元件10,係被施加交流電源以產生交變磁場;感應尺20,係形成有圖案30,且圖案30與激磁元件10的相對位置變化產生感應電壓;以及位置解析元件40,係與感應尺20連接,以讀取該感應尺20所產生之該感應電壓,並依據該感應電壓解析出激磁元件10位於感應尺20上的位置。 FIG. 1 is a schematic diagram of the first embodiment of the magnetic position sensing device 1 of this case. As shown in the figure, the magnetic position sensing device 1 includes an excitation element 10 to which an alternating current power is applied to generate an alternating magnetic field; the induction scale 20 is formed with a pattern 30 and the relative position of the pattern 30 and the excitation element 10 changes The induced voltage; and the position analyzing element 40 are connected to the sensing scale 20 to read the induced voltage generated by the sensing scale 20 and analyze the position of the excitation element 10 on the sensing scale 20 according to the induced voltage.

於一實施例中,感應尺20的圖案30係由金屬線構成。 In one embodiment, the pattern 30 of the sensor scale 20 is composed of metal wires.

於一實施例中,感應尺20的圖案30係為週期性波形圖案,且該週期性波形圖案的兩端皆與位置解析元件40連接,以供位置解析元件40讀取該圖案30與激磁元件10的相對位置變化產生之該感應電壓。 In one embodiment, the pattern 30 of the sensing ruler 20 is a periodic waveform pattern, and both ends of the periodic waveform pattern are connected to the position analysis element 40 for the position analysis element 40 to read the pattern 30 and the excitation element The induced voltage caused by the relative position change of 10.

第2圖係本案之該第一實施例之激磁元件10之側示圖。如圖所示,激磁元件10係包括導磁部101、繞線部102、交流電源供應單元103、第一磁極部104、第二磁極部105及開口106。 FIG. 2 is a side view of the excitation element 10 of the first embodiment of this case. As shown in the figure, the exciting element 10 includes a magnetic conductive portion 101, a winding portion 102, an AC power supply unit 103, a first magnetic pole portion 104, a second magnetic pole portion 105, and an opening 106.

導磁部101係呈具開口106之環狀,第一磁極部104及第二磁極部105係位於導磁部101之兩端,開口106係位於第一磁極部104及第二磁極部105之間,且繞線部102係為線圈結構並纏繞於導磁部101上。同時,激磁元件10係透過開口106在感應尺20的圖案30上移動,或激磁元件10係予固定而使感應尺20在開口106中移動。 The magnetic permeable portion 101 has a ring shape with an opening 106, the first magnetic pole portion 104 and the second magnetic pole portion 105 are located at both ends of the magnetic permeable portion 101, and the opening 106 is located between the first magnetic pole portion 104 and the second magnetic pole portion 105 At the same time, the winding part 102 has a coil structure and is wound on the magnetic conductive part 101. At the same time, the excitation element 10 moves through the opening 106 on the pattern 30 of the induction scale 20, or the excitation element 10 is fixed to move the induction scale 20 in the opening 106.

交流電源供應單元103施加交流電源至繞線部102產生該交變磁場,以使感應尺20的圖案30與激磁元件10的相對位置變化而產生該感應電壓。 The alternating-current power supply unit 103 applies alternating-current power to the winding part 102 to generate the alternating magnetic field, so that the relative position of the pattern 30 of the induction scale 20 and the exciting element 10 changes to generate the induced voltage.

第3圖係本案之磁性位置感知裝置1之位置解析元件40之示意圖。如圖所示,位置解析元件40係包括感應電壓訊號處理單元41,係與感應尺20上的圖案30連接,以讀取圖案30與激磁元件10的相對位置變化產生的該感應電壓VS,並對該感應電壓VS進行濾波及檢波的訊號處理,以得到處理電壓VP;以及感應電壓解析位置單元42,係與感應電壓訊號處理單元41連接,以接收該處理電壓VP,並依據該處理電壓VP之週期對應於X座標上之長度等於感應尺20上的圖案30之週期對應於X座標上之距離的關係,以解析出該激磁元件10位於該感應尺20上的位置。 FIG. 3 is a schematic diagram of the position analyzing element 40 of the magnetic position sensing device 1 of this case. As shown in the figure, the position analysis element 40 includes an induced voltage signal processing unit 41 connected to the pattern 30 on the sensing scale 20 to read the induced voltage V S generated by the relative position change of the pattern 30 and the excitation element 10, And filtering and detecting signal processing of the induced voltage V S to obtain the processed voltage V P ; and the induced voltage analysis position unit 42 is connected to the induced voltage signal processing unit 41 to receive the processed voltage V P according to The period of the processing voltage V P corresponds to the relationship that the length on the X coordinate is equal to the period of the pattern 30 on the sensing scale 20 corresponds to the distance on the X coordinate, so as to analyze the position of the exciting element 10 on the sensing scale 20.

第4圖係本案之感應電壓訊號處理單元41第一實施例之示意圖。如圖所示,感應電壓訊號處理單元41係包括濾波器411,係對該感應電壓VS進行濾波,以將該感應電壓VS中的交流電源之載波頻率過濾掉;以及包絡檢波器 (envelope detector)412,係與濾波器(filter)411連接,以將過濾掉載波頻率的感應電壓VS進行檢波,以得到該處理電壓VPFIG. 4 is a schematic diagram of the first embodiment of the induced voltage signal processing unit 41 in this case. As shown, the induced voltage signal processing unit 41 includes a filter system 411, the system for filtering the induced voltage V S, the carrier frequency of the induced AC voltage V S is filtered; and the envelope detector (Envelope A detector 412 is connected to a filter 411 to detect the induced voltage V S with the carrier frequency filtered to obtain the processing voltage V P.

於本實施例中,濾波器411係為低通濾波器。 In this embodiment, the filter 411 is a low-pass filter.

於本實施例中,感應電壓訊號處理單元41更包括:第一放大器(amplifier,未圖示),該第一號放大器的輸出端連接於濾波器411的輸入端,該第一放大器的輸入端與感應尺20的圖案30連接,以自感應尺20取得圖案30與激磁元件10的相對位置變化所產生的感應電壓,並將該感應電壓進行訊號放大後輸出至濾波器411中,但不以此為限。 In this embodiment, the induced voltage signal processing unit 41 further includes: a first amplifier (not shown), the output of the first amplifier is connected to the input of the filter 411, and the input of the first amplifier It is connected to the pattern 30 of the sensor scale 20 to obtain the induced voltage generated by the change in the relative position of the pattern 30 and the exciting element 10 from the sensor scale 20, and amplify the induced voltage to output it to the filter 411, but not This is limited.

於本實施例中,感應電壓訊號處理單元41更包括:位準偏移器(level shifter,未圖示),係與包絡檢波器412連接,並將完成濾波及檢波之訊號處理的處理電壓VP進行位準偏移之處理,以取得該處理電壓VP於後續工作所需的位準(此處係指電壓位準);以及第二放大器(未圖示),係與該位準偏移器連接,以將完成位準偏移處理的處理電壓VP放大輸出至感應電壓解析位置單元42,但不以此為限。 In this embodiment, the induced voltage signal processing unit 41 further includes: a level shifter (not shown), which is connected to the envelope detector 412, and processes the processed voltage V for the signal processing of filtering and detection P performs level shift processing to obtain the level required by the processing voltage V P for subsequent work (referred to herein as the voltage level); and a second amplifier (not shown), which deviates from the level shifter are connected so as to complete the processing of the level-shift processing to the amplified output voltage V P of the induced voltage position parsing unit 42, but is not limited thereto.

於本實施例中,該位置解析元件40更包括:類比數位轉換器(analog digital converter,未圖示),係位於感應電壓訊號處理單元41與感應電壓解析位置單元42之間,以將感應電壓訊號處理單元41所得該處理電壓VP轉換成數位訊號的處理電壓VP並傳送給感應電壓解析位置單元42,但不以此為限。 In this embodiment, the position analysis element 40 further includes: an analog digital converter (not shown), which is located between the induced voltage signal processing unit 41 and the induced voltage resolution position unit 42 to convert the induced voltage the signal processing unit 41 processing the resulting voltage V P is converted into the digital signal processing the voltage V P to the induction voltage, and transmits the position parsing unit 42, but is not limited thereto.

第5A圖係本案之感應尺20之圖案30第一實施例之示意圖。如圖所示,該第一實施例之圖案30係為方波圖形31且只形成在第1圖所示感應尺20之正面21或與正面21相對的反面22的其中一面,方波圖形31係由複數第一峰谷水平部313、複數第一垂直部314及複數第一峰頂水平部315所組成,且方波圖 形31的線寬為1mm,各該第一垂直部314之間的線距(A)為4mm,而方波圖形31之週期(TD)對應於X座標上之距離為8mm,且方波圖形31之開口朝下的區域為正方波區域61而開口朝上的區域為負方波區域62。 FIG. 5A is a schematic diagram of the first embodiment of the pattern 30 of the sensor ruler 20 in this case. As shown in the figure, the pattern 30 of the first embodiment is a square wave pattern 31 and is formed only on one side of the front surface 21 or the reverse surface 22 opposite to the front surface 21 of the sensing ruler 20 shown in FIG. It consists of a complex first peak-valley horizontal portion 313, a complex first vertical portion 314, and a complex first peak-top horizontal portion 315, and the line width of the square wave pattern 31 is 1 mm. The line distance (A) is 4 mm, and the period (T D ) of the square wave pattern 31 corresponds to the distance on the X coordinate of 8 mm, and the area where the opening of the square wave pattern 31 faces downward is the square wave area 61 and the opening faces upward The area is a negative square wave area 62.

第5B圖係本發明之位置解析元件40解析圖案30與激磁元件10的相對位置變化產生的第一實施例的感應電壓的波形示意圖。如圖所示,激磁元件10在感應尺20上移動距離△X後,進而使感應尺20上的圖案30與激磁元件10的相對位置變化產生對應的該感應電壓之變化(波形的振幅改變)。因此,感應電壓VS1到感應電壓VS2的關係為激磁元件10在感應尺20上移動距離△X的關係,且由於感應電壓包含有交流電源103之載波頻率的振幅,故感應電壓VS1移動距離△X到感應電壓VS2會有振幅的變化。 FIG. 5B is a schematic waveform diagram of the induced voltage of the first embodiment caused by the relative position change of the pattern 30 and the excitation element 10 of the position analysis element 40 of the present invention. As shown in the figure, after the excitation element 10 moves a distance ΔX on the induction ruler 20, the relative position of the pattern 30 on the induction ruler 20 and the excitation element 10 changes to produce a corresponding change in the induced voltage (the amplitude of the waveform changes) . Therefore, the relationship between the induced voltage V S1 and the induced voltage V S2 is the relationship of the exciter element 10 moving distance ΔX on the induction scale 20, and because the induced voltage includes the amplitude of the carrier frequency of the AC power source 103, the induced voltage V S1 moves Amplitude changes from the distance ΔX to the induced voltage V S2 .

第5C圖係為第5B圖中的感應電壓經由位置解析元件40解析後所得到的處理電壓之示意圖。如圖所示,具有振幅變化的感應電壓VS1及VS2經由感應電壓訊號處理單元41進行濾波及檢波的訊號處理後,得到沒有該載波頻率的處理電壓VP1及VP2,由於該處理電壓是對應該感應電壓,因此處理電壓VP1到處理電壓VP2的變化△V關係亦為該△X距離的變化。 FIG. 5C is a schematic diagram of the processed voltage obtained after the induced voltage in FIG. 5B is analyzed by the position analysis element 40. As shown in the figure, after the induced voltages V S1 and V S2 with amplitude changes are filtered and detected by the induced voltage signal processing unit 41, the processed voltages V P1 and V P2 without the carrier frequency are obtained due to the processed voltage It corresponds to the induced voltage, so the change ΔV relationship between the processing voltage V P1 and the processing voltage V P2 is also the change of the ΔX distance.

激磁元件10產生該交變磁場後,經由該感應電壓訊號處理單元41對各該圖案30與激磁元件10的相對位置變化產生的該感應電壓VS進行濾波及檢波之訊號處理,以取得如第5D圖所示呈類三角波的該處理電壓311後,感應電壓解析位置單元42係擷取第5D圖所示的該呈類三角波的處理電壓311的所有區段作為分析區段,並將該分析區段的處理電壓之週期(TL)對應於X座標上之長度,以方波圖形31之週期(TD)對應於X座標上之距離單位表示,再令該分析區 段的處理電壓隨該距離單位的變化即為激磁元件10在感應尺20上的移動距離,進而從該分析區段的中解析出該激磁元件10位於該感應尺20上的位置。 After the exciting element 10 generates the alternating magnetic field, the induced voltage signal processing unit 41 performs filtering and detection signal processing on the induced voltage V S generated by the relative position change of each pattern 30 and the exciting element 10 to obtain After the processing voltage 311 in the form of a triangular wave shown in FIG. 5D, the induced voltage analysis position unit 42 extracts all sections of the processing voltage 311 in the form of a triangular wave shown in FIG. 5D as analysis sections, and analyzes The period of the processing voltage of the section (T L ) corresponds to the length on the X coordinate, and the period (T D ) of the square wave pattern 31 corresponds to the distance unit on the X coordinate, and then the processing voltage of the analysis section follows The change of the distance unit is the moving distance of the exciting element 10 on the induction scale 20, and the position of the excitation element 10 on the induction scale 20 is analyzed from the analysis section.

需理解的是,由於處理電壓VP1對應感應電壓VS1,而感應電壓VS1的變化相對於該激磁元件10在圖案30上移動的距離,因此,第5D圖所示的處理電壓的週期(TL)對應於X座標上之長度係以圖案30的週期(TD)對應於X座標上的距離單位表示,X=S×TL+X0=S×TL+(Vt-V0)/m,其中,X為激磁元件10在感應尺20上的位置,S為分析區段的週期數(0、0.5、1、1.5、...),TL為分析區段之週期的距離,X0為第S週期處理電壓至X的距離,Vt為處理電壓值,V0為第S週期線性起始電壓值,m為(X,Vt)的斜率值。 It should be understood that since the processing voltage V P1 corresponds to the induced voltage V S1 , and the change in the induced voltage V S1 is relative to the distance that the exciting element 10 moves on the pattern 30, the period of the processing voltage shown in FIG. 5D ( T L ) The length corresponding to the X coordinate is expressed in terms of the period of the pattern 30 (T D ) corresponding to the distance unit on the X coordinate, X=S×T L +X 0 =S×T L +(V t -V 0 )/m, where X is the position of the excitation element 10 on the induction scale 20, S is the number of cycles of the analysis section (0, 0.5, 1, 1.5, ...), and T L is the period of the analysis section , X 0 is the distance from the processing voltage in the Sth period to X, V t is the processing voltage value, V 0 is the linear starting voltage value in the Sth period, and m is the slope value of (X, V t ).

第5E圖係本案之第一實施例之感應尺20上的方波圖形31與處理電壓311的關係之示意圖。如圖所示,方波圖形31與激磁元件10的相對位置變化產生對應類三角波形的處理電壓311,第5F圖所示為類三角波形的處理電壓311於波峰與波谷轉折區(如第5E圖所示波峰轉折區B)呈現類圓弧狀。 FIG. 5E is a schematic diagram of the relationship between the square wave pattern 31 on the sensor scale 20 and the processing voltage 311 in the first embodiment of the present invention. As shown in the figure, the relative position of the square wave pattern 31 and the exciting element 10 changes to produce a processing voltage 311 corresponding to a triangular-like waveform. FIG. 5F shows a processing voltage 311 of a triangular-like waveform at the peak-to-valley transition area (as shown in the 5E The peak transition zone B) shown in the figure is arc-like.

第6A圖係本案之磁性位置感知裝置1之第二實施例之圖案30’之示意圖。如圖所示,本實施例與第一實施例之差異在於圖案30’,故以下將說明相異處,而不再贅述相同處。本實施例之圖案30’係包含第一圖形31’及第二圖形32,第一圖形31’係形成在第1圖所示感應尺20之正面21上,而第二圖形32係形成在第1圖所示感應尺20之反面22上,其中,該第一圖形31’及第二圖形32係位於同一水平線上,且第一圖形31’及第二圖形32的圖形相同並彼此相差1/2線距(A)或1/4週期(TD),其中,第一圖形31’係由複數第一峰谷水平部313’、複數第一垂直部314’及複數第一峰頂水平部315’所組成的方波圖形,第二圖形32係 由複數第二峰谷水平部323、複數第二垂直部324及複數第二峰頂水平部325所組成的方波圖形。 FIG. 6A is a schematic diagram of the pattern 30 ′ of the second embodiment of the magnetic position sensing device 1 of this case. As shown in the figure, the difference between this embodiment and the first embodiment lies in the pattern 30', so the differences will be described below, and the similarities will not be repeated. The pattern 30' in this embodiment includes a first pattern 31' and a second pattern 32. The first pattern 31' is formed on the front surface 21 of the sensor scale 20 shown in FIG. 1, and the second pattern 32 is formed on the first 1 shows the opposite side 22 of the sensor scale 20, wherein the first pattern 31' and the second pattern 32 are located on the same horizontal line, and the first pattern 31' and the second pattern 32 are the same and are different from each other by 1/ 2 line spacing (A) or 1/4 period (T D ), wherein the first pattern 31' is composed of a plurality of first peak and valley horizontal parts 313', a plurality of first vertical parts 314' and a plurality of first peak top horizontal parts A square wave pattern composed of 315', the second pattern 32 is a square wave pattern composed of a plurality of second peak-valley horizontal portions 323, a plurality of second vertical portions 324, and a plurality of second peak-top horizontal portions 325.

該第二實施例的第一圖形31’與激磁元件10的相對位置變化產生第一感應電壓及第二圖形32與激磁元件10的相對位置變化產生第二感應電壓後,各該感應電壓再經由感應電壓訊號處理單元41的處理,得到如第6B圖所示位於同一水平線且彼此相差1/4週期的兩個呈類三角波的處理電壓,第一處理電壓311’係對應第一圖形31’而第二處理電壓321係對應第二圖形32,第一處理電壓311’及第二處理電壓321皆呈類三角波之波形,由第6A圖所示可知,第一圖形31’及第二圖形32彼此相差1/2線距(A)或1/4週期(TD),因此,第一處理電壓311’與第二處理電壓321之間亦彼此相差1/4週期(TD)。 After the relative position of the first pattern 31' and the exciting element 10 of the second embodiment changes to generate a first induced voltage and the relative position of the second pattern 32 and the exciting element 10 changes to generate a second induced voltage, each of the induced voltages The induced voltage signal processing unit 41 processes two triangular wave-like processing voltages located on the same horizontal line and different from each other by 1/4 cycle as shown in FIG. 6B. The first processing voltage 311' corresponds to the first pattern 31' The second processing voltage 321 corresponds to the second pattern 32, and the first processing voltage 311' and the second processing voltage 321 both exhibit a triangular wave-like waveform. As shown in FIG. 6A, the first pattern 31' and the second pattern 32 are mutually The phase difference is 1/2 line spacing (A) or 1/4 cycle (T D ). Therefore, the first processing voltage 311 ′ and the second processing voltage 321 also differ from each other by 1/4 cycle (T D ).

第一處理電壓311’的第一非轉折曲線區段511及第二處理電壓321的第二非轉折曲線區段521的波形為非反轉部,故斜率趨近定值,第一處理電壓311’的第一轉折曲線區段512及第二處理電壓321的第二轉折曲線區段522的波形為反轉部,故斜率會因正負斜率交換而無法趨近定值。第一非轉折曲線區段511係包含第一上升線段513及第一下降線段514,第二非轉折曲線區段521係包含第二上升線段523及第二下降線段524,第一轉折曲線區段512係包含第一山峰區域515及第一低谷區域516,第二轉折曲線區段522係包含第二山峰區域525及第二低谷區域526。 The waveforms of the first non-turning curve section 511 of the first processing voltage 311' and the second non-turning curve section 521 of the second processing voltage 321 are non-inverted portions, so the slope approaches a fixed value, and the first processing voltage 311 The waveforms of the first turning curve section 512 and the second turning curve section 522 of the second processing voltage 321 are inversion parts, so the slope cannot be approached to a fixed value due to the exchange of positive and negative slopes. The first non-inflection curve segment 511 includes a first ascending line segment 513 and a first descending line segment 514, and the second non-inflection curve segment 521 includes a second ascending line segment 523 and a second descending line segment 524, the first inflection curve segment 512 includes a first mountain region 515 and a first trough region 516, and a second turning curve section 522 includes a second mountain region 525 and a second trough region 526.

接著,利用感應電壓解析位置單元42扣除第一處理電壓311’的第一山峰區域515與第一低谷區域516,只擷取第一上升線段513與第一下降線段514,同樣地,感應電壓解析位置單元42扣除第二處理電壓321的第二山峰區域525與第二低谷區域526,只擷取第二上升線段523與第二下降線段524(如第6B 圖之粗線段所示),以令第一處理電壓311和第二處理電壓321的所有上升線段與下降線段形成如第6C圖所示的正反交錯三角波的分析區段,並將該分析區段的處理電壓之週期(TL)對應於X座標上之長度,以第一圖形31’或第二圖形32之週期(TD)對應於X座標上的距離單位表示,以令該分析區段的處理電壓隨該距離單位的變化即為激磁元件10在感應尺20上的移動距離,以完成如第6C圖所示的位置感知波形圖,進而從該分析區段的中解析出該激磁元件10位於該感應尺20上的位置。 Next, the induced voltage analysis position unit 42 subtracts the first peak area 515 and the first trough area 516 of the first processing voltage 311 ′ to extract only the first rising line segment 513 and the first falling line segment 514. Similarly, the induced voltage analysis The position unit 42 subtracts the second peak region 525 and the second trough region 526 of the second processing voltage 321, and only extracts the second rising line segment 523 and the second falling line segment 524 (as shown by the thick line segment in FIG. 6B), so that All the rising and falling line segments of the first processing voltage 311 and the second processing voltage 321 form the analysis section of the forward and reverse interleaved triangle wave as shown in FIG. 6C, and the period (T L ) of the processing voltage of the analysis section Corresponding to the length on the X coordinate, the period (T D ) of the first graph 31 ′ or the second graph 32 corresponds to the distance unit on the X coordinate, so that the processing voltage of the analysis section changes with the distance unit It is the moving distance of the excitation element 10 on the induction scale 20 to complete the position sensing waveform shown in FIG. 6C, and then the position of the excitation element 10 on the induction scale 20 is analyzed from the analysis section .

需理解的是,由於第一圖形31’係對應第一處理電壓311’而第二圖形32係對應第二處理電壓321,因此,第6C圖所示的處理電壓之週期(TL)對應於X座標的長度係以第一圖形31’或第二圖形32的週期(TD)對應於X座標上的距離單位表示。 It should be understood that, since the first pattern 31′ corresponds to the first processing voltage 311′ and the second pattern 32 corresponds to the second processing voltage 321, the period (T L ) of the processing voltage shown in FIG. 6C corresponds to length to coordinate system X 'or the period (T D) of the first pattern 31 corresponding to the second pattern 32 on the X-coordinate distance units.

因感應電壓解析位置單元42只擷取斜率趨近定值的非轉折曲線區段511及521,因此,該第二實施例的圖案30’相較於該第一實施例的圖案30更能有效提高激磁元件10之位置感知的準確度,其中,在該第二實施例中,回到第6A圖,當第一圖形31’及第二圖形32的週期(TD)對應於X座標上的距離為8mm、線距(A)為4mm及線寬為1mm,且第一圖形31’及第二圖形32兩者錯位2mm(

Figure 107146322-A0305-02-0012-16
TD
Figure 107146322-A0305-02-0012-17
A)時,從第一處理電壓311’與第二處理電壓321之非轉折曲線區段的分析區段中,可取得激磁元件10之位置感知的最佳往覆精度誤差範圍及定位精度,其最佳往覆精度誤差範圍為±0.003mm及最佳定位精度為0.01mm。 Since the induced voltage analysis position unit 42 only captures non-inflection curve sections 511 and 521 whose slope approaches a fixed value, the pattern 30' of the second embodiment is more effective than the pattern 30 of the first embodiment excitation element 10 to improve the position accuracy of perception, wherein, in the second embodiment, back to Figure 6A, when the first pattern 31 'and the second pattern period (T D) 32 corresponding to the coordinates X The distance is 8mm, the line spacing (A) is 4mm and the line width is 1mm, and the first pattern 31' and the second pattern 32 are misaligned by 2mm (
Figure 107146322-A0305-02-0012-16
T D or
Figure 107146322-A0305-02-0012-17
A), from the analysis section of the non-inflection curve section of the first processing voltage 311' and the second processing voltage 321, the optimal repeating accuracy error range and positioning accuracy of the position sensing of the excitation element 10 can be obtained. The error range of the best repeat accuracy is ±0.003mm and the best positioning accuracy is 0.01mm.

在該第二實施例中第6C圖所示,感應電壓解析位置單元42更包括提供位置換算演算法直接換出激磁元件10在感應尺20上的位置(X),其中,X=S×1/2(TL)+X0=S×1/2(TL)+(Vt-V0)/m,其中,X為激磁元件10在感應尺20上的位置, S為分析區段的週期數(0、0.5、1、1.5,...),TL為分析區段之週期的距離,X0為第S週期處理電壓至X的距離,Vt為處理電壓值,V0為第S週期線性起始電壓值,m為(X,Vt)的斜率值,其位置換算演算法眾多,不以上述為限。計算經過幾個週期TL,可得知S×1/2(TL),由三角波的上升區段與下降區段已知斜率值m,第S週期線性起始電壓值V0為已知,量測到處理電壓值Vt後,可運算出第S週期感應電壓至X的距離X0,藉此可求出激磁元件10在感應尺20上的位置X。 As shown in FIG. 6C in the second embodiment, the induced voltage analysis position unit 42 further includes a position conversion algorithm to directly swap out the position (X) of the exciting element 10 on the induction scale 20, where X=S×1 /2(T L )+X 0 =S×1/2(T L )+(V t -V 0 )/m, where X is the position of the excitation element 10 on the induction scale 20, and S is the analysis section The number of cycles (0, 0.5, 1, 1.5, ...), T L is the distance of the cycle of the analysis section, X 0 is the distance from the processing voltage of the Sth cycle to X, V t is the processing voltage value, V 0 It is the linear starting voltage value of the Sth period, m is the slope value of (X, V t ), and there are many position conversion algorithms, which are not limited to the above. After several cycles T L are calculated, we can know S×1/2(T L ), the slope value m is known from the rising and falling sections of the triangular wave, and the linear starting voltage value V 0 in the S period is known After measuring the processing voltage value V t , the distance X 0 of the induced voltage from the Sth period to X can be calculated, whereby the position X of the excitation element 10 on the induction scale 20 can be obtained.

第7圖係本案之磁性位置感知方法之第一實施例(亦即第5A圖單面圖案尺)之流程示意圖。如圖所示,係包括下列步驟:在步驟S71中,於一感應尺20上形成圖案30;在步驟S72中,令一激磁元件10產生一交變磁場;在步驟S73中,利用感應尺20的圖案30與激磁元件10的相對位置變化產生感應電壓;以及在步驟S74中,利用一位置解析元件40擷取該感應電壓,並依據該感應電壓解析出該激磁元件10位於該感應尺20上的位置。 FIG. 7 is a schematic flowchart of the first embodiment of the magnetic position sensing method of the present case (that is, the single-sided pattern ruler in FIG. 5A). As shown in the figure, it includes the following steps: in step S71, a pattern 30 is formed on a sensing ruler 20; in step S72, an exciting element 10 is generated to generate an alternating magnetic field; in step S73, the sensing ruler 20 is used The relative position of the pattern 30 and the excitation element 10 changes to generate an induced voltage; and in step S74, a position analysis element 40 is used to capture the induced voltage, and the excitation element 10 is located on the induction scale 20 according to the induced voltage s position.

該步驟S72係令一交流電源供應單元103施加交流電源至該激磁元件10產生該交變磁場。 In step S72, an AC power supply unit 103 applies AC power to the excitation element 10 to generate the alternating magnetic field.

第8圖係該步驟S74的步驟流程圖。如圖所示,係包括下列步驟:在步驟S81中,令一感應電壓訊號處理單元41向該感應尺20讀取該圖案30與激磁元件10的相對位置變化產生的該感應電壓VS,並對該感應電壓VS進行濾波及檢波的訊號處理,以得到處理電壓VP;以及在步驟S82中,令一感應電壓解析位置單元42讀取該處理電壓VP,依據該處理電壓之週期對應於X座標上之長度等於感應尺20上的圖案30之週期對應於X座標上之距離的關係,以從該處理電壓中解析出該激磁元件10位於該感應尺20上的位置。 FIG. 8 is a flowchart of the step S74. As shown in the figure, it includes the following steps: In step S81, an induced voltage signal processing unit 41 reads the induced voltage V S generated by the relative position change of the pattern 30 and the exciting element 10 to the sensing scale 20, and Filtering and detecting the signal of the induced voltage V S to obtain the processed voltage V P ; and in step S82, causing an induced voltage analysis position unit 42 to read the processed voltage V P according to the period of the processed voltage The length on the X coordinate is equal to the relationship between the period of the pattern 30 on the sensing scale 20 and the distance on the X coordinate, so as to resolve the position of the exciting element 10 on the sensing scale 20 from the processing voltage.

於本實施例中,該步驟S81係包括:利用低通濾波器(亦即第4圖的濾波器411)對該感應電壓進行濾波,以將該感應電壓VS中的該交流電源之載波頻率過濾掉;利用包絡檢波器(亦即第4圖的包絡檢波器412)將過濾掉該載波頻率的感應電壓VS進行檢波,以得到該處理電壓VPIn this embodiment, the step S81 includes: filtering the induced voltage with a low-pass filter (that is, the filter 411 in FIG. 4), so that the carrier frequency of the AC power supply in the induced voltage V S Filter out; use the envelope detector (that is, the envelope detector 412 in FIG. 4) to detect the induced voltage V S at which the carrier frequency is filtered to obtain the processing voltage V P.

於第一實施例中,該步驟S71係於該感應尺20的正面21或與正面21相對的反面22的其中一面上形成方波圖形31的圖案30;使該步驟S81中的感應電壓訊號處理單元41向該感應尺20讀取方波圖形31與激磁元件10的相對位置變化產生的該感應電壓,並對該感應電壓VS進行濾波及檢波的訊號處理,以取得呈類三角波的該處理電壓311;以及使該步驟S82中的感應電壓解析位置單元42讀取該呈類三角波的處理電壓311,及令該呈類三角波的處理電壓311之所有區段為分析區段,並依據該處理電壓之週期對應於X座標上之長度等於感應尺20上的方波圖形31之週期對應於X座標上之距離的關係,將該分析區段的處理電壓之週期(TL)對應於X座標上長度以方波圖形31之週期(TD)對應於X座標上的距離單位表示,以完成如第5D圖所示的位置感知波形圖,並令該分析區段的處理電壓隨該距離單位的變化即為激磁元件10在感應尺20上的移動距離,進而從該分析區段中解析出激磁元件10位於感應尺20上的位置。 In the first embodiment, the step S71 is to form the pattern 30 of the square wave pattern 31 on one of the front surface 21 of the sensing scale 20 or the opposite surface 22 opposite to the front surface 21; the induced voltage signal in the step S81 is processed The unit 41 reads the induced voltage generated by the change in the relative position of the square wave pattern 31 and the exciting element 10 from the sensing ruler 20, and performs signal processing of filtering and detecting the induced voltage V S to obtain the processing in the form of a triangular wave Voltage 311; and the induced voltage analysis position unit 42 in step S82 reads the processing voltage 311 of the triangular wave-like processing, and makes all sections of the processing voltage 311 of the triangular wave-like processing as analysis sections, and according to the processing The period of the voltage corresponds to the relationship that the length on the X coordinate is equal to the period of the square wave pattern 31 on the induction scale 20 corresponds to the distance on the X coordinate, and the period (T L ) of the processing voltage of the analysis section corresponds to the X coordinate The upper length is expressed by the distance unit on the X coordinate corresponding to the period (T D ) of the square wave pattern 31 to complete the position-aware waveform shown in FIG. 5D, and the processing voltage of the analysis section varies with the distance unit The change of is the moving distance of the exciting element 10 on the induction scale 20, and the position of the excitation element 10 on the induction scale 20 is analyzed from the analysis section.

本案復提供磁性位置感知方法之第二實施例(亦即第6A圖雙面圖案尺),本實施例與前述之第一實施例之差異在於圖案30’,故以下將說明相異處,而不再贅述相同處。該步驟S71係於該感應尺20的正面21及反面22上各形成具有同一水平線上的圖案,各該圖案係為方波圖形的第一圖形31’及第二圖形32且彼此相差1/2線距或1/4週期(如第6A圖所示);使該步驟S81中的該感應電壓訊號處理單元41對各該圖案與激磁元件10的相對位置變化產生的該感應電壓進 行該訊號處理,以取得位於同一水平線且彼此相差1/4週期的兩個呈類三角波的該處理電壓(即第一處理電壓311’及第二處理電壓321);以及使該步驟S82中的感應電壓解析位置單元42讀取該兩個呈類三角波的處理電壓(即第一處理電壓311’及第二處理電壓321),並擷取該兩個呈類三角波的處理電壓(即第一處理電壓311’及第二處理電壓321)的非轉折曲線區段(即第一非轉折曲線區段511及第二非轉折曲線區段521),以得到正反交錯三角波的分析區段(如第6C圖所示),並依據該處理電壓之週期對應於X座標上之長度等於感應尺20上的第一圖形31’或第二圖形32之週期對應於X座標上之距離的關係,將該分析區段的處理電壓之週期(TL)對應於X座標上長度以第一圖形31’或第二圖形32之週期(TD)對應於X座標上的距離單位表示,以完成如第6C圖所示的位置感知波形圖,並令該分析區段的處理電壓隨該距離單位的變化即為激磁元件10在感應尺20上的移動距離,進而從該分析區段中解析出激磁元件10位於感應尺20上的位置。 This case provides a second embodiment of the magnetic position sensing method (that is, the double-sided pattern ruler in FIG. 6A). The difference between this embodiment and the first embodiment described above is the pattern 30′, so the following will describe the differences, and The details are not repeated. In this step S71, the front surface 21 and the back surface 22 of the sensor scale 20 are respectively formed with patterns on the same horizontal line, and each of the patterns is a first pattern 31' and a second pattern 32 of a square wave pattern, which are different from each other by 1/2 Line pitch or 1/4 cycle (as shown in FIG. 6A); causing the induced voltage signal processing unit 41 in step S81 to perform the signal processing on the induced voltage generated by the relative position change of each pattern and the excitation element 10 To obtain the two triangular wave-like processing voltages (ie, the first processing voltage 311' and the second processing voltage 321) that are located on the same horizontal line and differ from each other by 1/4 cycle; and the induced voltage in the step S82 is resolved The unit 42 reads the two triangular-wave-like processing voltages (ie, the first processing voltage 311' and the second processing voltage 321), and extracts the two triangular-wave-like processing voltages (ie, the first processing voltage 311' and The second processing voltage 321) of the non-turning curve section (that is, the first non-turning curve section 511 and the second non-turning curve section 521) to obtain the analysis section of the forward and reverse interleaved triangle wave (as shown in FIG. 6C) ), and based on the relationship between the period of the processing voltage corresponding to the length on the X coordinate equal to the first pattern 31' or the second pattern 32 on the sensor scale 20 corresponding to the distance on the X coordinate, the analysis section The period of the processing voltage (T L ) corresponding to the length on the X coordinate is expressed in terms of the distance unit on the X coordinate corresponding to the period of the first pattern 31 ′ or the second pattern 32 (T D ) to complete as shown in FIG. 6C The position-aware waveform graph, and the change of the processing voltage of the analysis section with the distance unit is the moving distance of the excitation element 10 on the induction scale 20, and then the excitation element 10 is located in the induction scale 20 from the analysis section On the location.

於該方法之第一實施例(亦即第5A圖單面圖案尺)時,該步驟S82更包括提供一位置換算演算法從該位置感知波形圖上直接換出激磁元件10在感應尺20上的位置(X),其中,X=S×TL+X0=S×TL+(Vt-V0)/m,其中,X為激磁元件10在感應尺20上的位置,S為分析區段的週期數(0、0.5、1、1.5、...),TL為分析區段之週期的距離,X0為第S週期處理電壓至X的距離,Vt為處理電壓值,V0為第S週期線性起始電壓值,m為(X,Vt)的斜率值,其位置換算演算法眾多,不以上述為限。 In the first embodiment of the method (that is, the single-sided pattern ruler in FIG. 5A), the step S82 further includes providing a replacement arithmetic algorithm to directly swap out the excitation element 10 on the induction ruler 20 from the position-aware waveform diagram position (X), wherein, X = S × T L + X 0 = S × T L + (V t -V 0) / m, where, X is the excitation element 10 in position on the foot sensor 20, S is The number of cycles of the analysis section (0, 0.5, 1, 1.5, ...), T L is the distance of the period of the analysis section, X 0 is the distance from the processing voltage of the Sth cycle to X, and V t is the value of the processing voltage , V 0 is the linear starting voltage value of the Sth period, m is the slope value of (X, V t ), and there are many position conversion algorithms, which are not limited to the above.

於該方法之二實施例(亦即第6A圖雙面圖案尺)時,該步驟S82更包括提供一位置換算演算法從該位置感知波形圖上直接換出激磁元件10在感應尺20上的位置(X),其中,X=S×1/2(TL)+X0=S×1/2(TL)+(Vt-V0)/m,其中,X為激 磁元件10在感應尺20上的位置,S為分析區段的週期數(0、0.5、1、1.5、...),TL為分析區段之週期的距離,X0為S×1/2(TL)到X點的距離,Vt為處理電壓值,V0為第S週期線性起始電壓值,m為(X,Vt)的斜率值,其位置換算演算法眾多,不以上述為限。 In the second embodiment of the method (that is, the double-sided pattern ruler in FIG. 6A), step S82 further includes providing a one-bit replacement algorithm to directly replace the excitation element 10 on the induction ruler 20 from the position-aware waveform diagram. Position (X), where X=S×1/2(T L )+X 0 =S×1/2(T L )+(V t -V 0 )/m, where X is the excitation element 10 in For the position on the sensor scale 20, S is the number of periods of the analysis section (0, 0.5, 1, 1.5, ...), T L is the distance of the period of the analysis section, X 0 is S × 1/2 (T L ) The distance from the point X, V t is the processing voltage value, V 0 is the linear starting voltage value of the Sth period, m is the slope value of (X, V t ), and there are many position conversion algorithms. limit.

本案由上述可得知,本案利用感應尺之圖案與激磁元件10的相對位置變化產生感應電壓,進而以電壓值解析位置之技術手段,提高位置檢出精度與穩定度,以及金屬線圖案轉印製程易於長尺寸化(Scale up)等優點,以解決現有技術採用磁極圖案感知以及電壓相位差解析所遭遇的充磁耗時、安裝精度不易控制以及生產長度受限之問題。 This case is known from the above. In this case, the induced voltage is generated by the relative position change of the pattern of the sensing ruler and the exciting element 10, and then the technical means of analyzing the position by voltage value is used to improve the position detection accuracy and stability, and the transfer of the metal wire pattern The process is easy to scale up and other advantages, to solve the problems of time-consuming magnetization, difficult installation accuracy control, and limited production length encountered in the prior art using magnetic pole pattern sensing and voltage phase difference analysis.

1:磁性位置感知裝置 1: magnetic position sensing device

10:激磁元件 10: Excitation element

20:感應尺 20: Induction ruler

21:正面 21: Positive

22:反面 22: reverse side

30:圖案 30: pattern

31:方波圖形 31: Square wave graphics

40:位置解析元件 40: Position resolution element

Claims (14)

一種磁性位置感知裝置,係包括:一激磁元件,係用以產生一交變磁場;一感應尺,係形成有圖案,且該圖案與該激磁元件的相對位置變化產生感應電壓,該圖案係週期性波形圖案;以及一位置解析元件,係擷取該感應電壓,該位置解析元件係連接該感應尺,以依據該感應電壓解析出該激磁元件位於該感應尺上的位置。 A magnetic position sensing device includes: an exciting element for generating an alternating magnetic field; an inductive ruler formed with a pattern, and the relative position of the pattern and the exciting element changes to generate an induced voltage, and the pattern is a period A waveform pattern; and a position resolution element that captures the induced voltage. The position resolution element is connected to the sensing ruler to resolve the position of the excitation element on the sensing ruler based on the induced voltage. 如申請專利範圍第1項所述之磁性位置感知裝置,其中,該感應尺的圖案係由金屬線構成。 The magnetic position sensing device as described in item 1 of the patent application range, wherein the pattern of the sensor scale is composed of metal wires. 如申請專利範圍第1項所述之磁性位置感知裝置,更包括:一交流電源供應單元,係施加交流電源至該激磁元件而產生該交變磁場。 The magnetic position sensing device described in item 1 of the scope of the patent application further includes: an AC power supply unit that applies AC power to the excitation element to generate the alternating magnetic field. 如申請專利範圍第3項所述之磁性位置感知裝置,該位置解析元件更包括:感應電壓訊號處理單元,係讀取該感應電壓,並對該感應電壓依序進行濾波及檢波的訊號處理,以得到處理電壓,其中,該濾波係將該感應電壓中所包含的該交流電源之載波頻率過濾掉;以及感應電壓解析位置單元,係依據該處理電壓之週期對應於X座標上之長度等於感應尺上的圖案之週期對應於X座標上之距離的關係,以解析出該激磁元件位於該感應尺上的位置。 According to the magnetic position sensing device described in item 3 of the patent application range, the position analysis element further includes: an induced voltage signal processing unit, which reads the induced voltage and sequentially performs signal processing for filtering and detecting the induced voltage, To obtain the processing voltage, wherein the filtering is to filter out the carrier frequency of the AC power contained in the induced voltage; and the induced voltage resolution position unit is based on the period of the processing voltage corresponding to the length on the X coordinate equal to the induction The period of the pattern on the ruler corresponds to the relationship of the distance on the X coordinate to resolve the position of the excitation element on the sensing ruler. 如申請專利範圍第4項所述之磁性位置感知裝置,其中,該感應尺上的圖案係為方波圖形且位於該感應尺的正面或反面上,以令該感應電壓訊號處理單元對該圖案與該激磁元件的該相對位置變化產生的該感應電壓進行訊 號處理取得呈類三角波的該處理電壓,且該感應電壓解析位置單元擷取該呈類三角波的處理電壓之所有區段,以得到分析區段,並依據該處理電壓之週期對應於X座標上之長度等於該感應尺上的圖案之週期對應於X座標上之距離的關係,從該分析區段中解析出該激磁元件位於該感應尺上的位置。 The magnetic position sensing device as described in item 4 of the patent application range, wherein the pattern on the sensor scale is a square wave pattern and is located on the front or back surface of the sensor scale, so that the induced voltage signal processing unit responds to the pattern Communicate with the induced voltage generated by the relative position change of the excitation element Signal processing to obtain the processing voltage in the form of a triangular wave, and the induced voltage analysis position unit extracts all sections of the processing voltage in the form of a triangular wave to obtain an analysis section, and corresponds to the X coordinate according to the period of the processing voltage The length is equal to the relationship between the period of the pattern on the sensor scale and the distance on the X coordinate, and the position of the excitation element on the sensor scale is resolved from the analysis section. 如申請專利範圍第4項所述之磁性位置感知裝置,其中,該感應尺的正面及反面各具有位於同一水平線上的圖案,各該圖案係為方波圖形且彼此相差1/2線距或1/4週期,以令該感應電壓訊號處理單元對各該圖案與該激磁元件的該相對位置變化產生的該感應電壓進行訊號處理,俾取得位於同一水平線且彼此相差1/4週期的兩個呈類三角波的該處理電壓,且該感應電壓解析位置單元擷取該兩個呈類三角波的處理電壓的非轉折曲線區段,以得到正反交錯三角波的分析區段,並依據該處理電壓之週期對應於X座標上之長度等於該感應尺上的圖案之週期對應於X座標上之距離的關係,從該分析區段中解析出該激磁元件位於該感應尺上的位置。 The magnetic position sensing device as described in item 4 of the patent application scope, wherein the front and back sides of the sensor scale each have a pattern on the same horizontal line, each of which is a square wave pattern and differs from each other by 1/2 line distance or 1/4 cycle, so that the induced voltage signal processing unit performs signal processing on the induced voltage generated by the relative position change of each of the pattern and the exciting element, so as to obtain two located on the same horizontal line and different from each other by 1/4 cycle The processing voltage in the form of a triangle wave, and the induced voltage analysis position unit extracts the two non-inflection curve sections of the processing voltage in the form of a triangle wave to obtain the analysis section of the forward and reverse interleaved triangular wave, and according to the processing voltage The period corresponds to the relationship that the length on the X coordinate is equal to the length of the pattern on the sensor scale corresponds to the distance on the X coordinate, and the position of the excitation element on the sensor scale is resolved from the analysis section. 如申請專利範圍第4項所述之磁性位置感知裝置,其中,該感應電壓訊號處理單元對具有振幅變化的該感應電壓進行濾波及檢波的訊號處理後,得到沒有該載波頻率的該處理電壓,該處理電壓的電壓變化對應該激磁元件在該感應尺上的移動距離變化。 The magnetic position sensing device as described in item 4 of the patent application scope, wherein the induced voltage signal processing unit obtains the processed voltage without the carrier frequency after filtering and detecting signal processing of the induced voltage with amplitude variation, The voltage change of the processing voltage corresponds to the change of the moving distance of the exciting element on the induction scale. 如申請專利範圍第1項所述之磁性位置感知裝置,其中,該激磁元件更包括第一磁極部、第二磁極部及位於該第一磁極部與第二磁極部之間的開口,使該激磁元件透過該第一磁極部與第二磁極部將該感應尺上的該圖案置於該開口中移動。 The magnetic position sensing device as described in item 1 of the patent application scope, wherein the excitation element further includes a first magnetic pole portion, a second magnetic pole portion, and an opening between the first magnetic pole portion and the second magnetic pole portion, so that the The excitation element moves the pattern on the induction scale through the first magnetic pole part and the second magnetic pole part in the opening. 一種磁性位置感知方法,係包括: 於一感應尺上形成圖案;令一激磁元件產生一交變磁場;利用該感應尺的圖案與該激磁元件的相對位置變化產生感應電壓,該圖案係週期性波形圖案;以及利用一位置解析元件擷取該感應電壓,該位置解析元件係連接該感應尺,並依據該感應電壓解析出該激磁元件位於該感應尺上的位置。 A magnetic position sensing method, including: Forming a pattern on an inductive ruler; causing an exciting element to generate an alternating magnetic field; using a change in the relative position of the inductive ruler pattern and the exciting element to generate an induced voltage, the pattern is a periodic waveform pattern; and using a position analysis element Extracting the induced voltage, the position analysis element is connected to the induction scale, and the position of the excitation element on the induction scale is resolved according to the induction voltage. 如申請專利範圍第9項所述之磁性位置感知方法,其中,該交變磁場係由一交流電源供應單元施加交流電源至該激磁元件而產生。 The magnetic position sensing method as described in item 9 of the patent application scope, wherein the alternating magnetic field is generated by an alternating current power supply unit applying alternating current power to the exciting element. 如申請專利範圍第10項所述之磁性位置感知方法,其中,該位置解析元件在解析出該激磁元件位於該感應尺上的位置之步驟,係包括:令一感應電壓訊號處理單元向該感應尺讀取該圖案與該激磁元件的該相對位置變化產生的該感應電壓,再對該感應電壓依序進行濾波及檢波的訊號處理,以得到處理電壓,其中,該濾波係將該感應電壓中所包含的該交流電源之載波頻率過濾掉;以及令一感應電壓解析位置單元依據該處理電壓之週期對應於X座標上之長度等於感應尺上的圖案之週期對應於X座標上之距離的關係,以從該處理電壓中解析出該激磁元件位於該感應尺上的位置。 The magnetic position sensing method as described in item 10 of the patent application range, wherein the step of the position analyzing element resolving the position of the excitation element on the induction scale includes: causing an induced voltage signal processing unit to sense The ruler reads the induced voltage generated by the relative position change of the pattern and the exciting element, and then performs filtering and detection signal processing on the induced voltage in sequence to obtain a processed voltage, wherein the filtering is to convert the induced voltage The carrier frequency of the included AC power supply is filtered out; and the relationship between the length of the induced voltage analysis position unit corresponding to the period of the processing voltage on the X coordinate is equal to the period of the pattern on the induction scale corresponding to the distance on the X coordinate To resolve the position of the excitation element on the induction scale from the processing voltage. 如申請專利範圍第11項所述之磁性位置感知方法,其中,該感應尺的正面或反面上形成方波圖形的圖案,使該感應電壓訊號處理單元對該圖案與該激磁元件的該相對位置變化產生的感應電壓進行訊號處理,以取得呈三角波的該處理電壓,且令該感應電壓解析位置單元擷取該呈類三角波的處理電壓之所有區段,以得到分析區段,並依據該處理電壓之週期對應於X座標上 之長度等於該感應尺上的圖案之週期對應於X座標上之距離的關係,從該分析區段中解析出該激磁元件位於該感應尺上的位置。 The magnetic position sensing method as described in item 11 of the patent application scope, wherein a square wave pattern is formed on the front or back surface of the sensor scale, so that the induced voltage signal processing unit has the relative position of the pattern and the exciting element The induced voltage generated by the change is subjected to signal processing to obtain the processed voltage in the form of a triangle wave, and the induced voltage analysis position unit is to extract all sections of the processed voltage in the form of a triangle wave to obtain an analysis section and based on the processing The period of the voltage corresponds to the X coordinate The length is equal to the relationship between the period of the pattern on the sensor scale and the distance on the X coordinate, and the position of the excitation element on the sensor scale is resolved from the analysis section. 如申請專利範圍第11項所述之磁性位置感知方法,其中,該感應尺的正面及反面上各形成具有位於同一水平線上的圖案,各該圖案係為方波圖形且彼此相差1/2線距或1/4週期,以令該感應電壓訊號處理單元對各該圖案與該激磁元件的該相對位置變化產生的該感應電壓進行訊號處理,以取得位於同一水平線且彼此相差1/4週期的兩個呈類三角波的處理電壓,且令該感應電壓解析位置單元擷取該兩個呈類三角波的處理電壓的非轉折曲線區段,以得到正反交錯三角波的分析區段,並依據該處理電壓之週期對應於X座標上之長度等於該感應尺上的圖案之週期對應於X座標上之距離的關係,從該分析區段中解析出該激磁元件位於該感應尺上的位置。 The magnetic position sensing method as described in item 11 of the patent application scope, wherein the front and back surfaces of the sensor scale are each formed with patterns on the same horizontal line, each of which is a square wave pattern and differs from each other by 1/2 line Distance or 1/4 cycle, so that the induced voltage signal processing unit performs signal processing on the induced voltage generated by the relative position change of each of the pattern and the excitation element to obtain the same horizontal line and the difference of 1/4 cycle from each other Two triangular voltage-like processing voltages, and the induced voltage analysis position unit is used to extract the two non-inflection curve sections of the triangular voltage-like processing voltages to obtain the forward and reverse interleaved triangular wave analysis sections, and according to the processing The period of the voltage corresponding to the length on the X coordinate is equal to the relationship between the period of the pattern on the sensing scale and the distance on the X coordinate, and the position of the exciting element on the sensing scale is analyzed from the analysis section. 如申請專利範圍第11項所述之磁性位置感知方法,其中,藉由該感應電壓訊號處理單元,對具有振幅變化的該感應電壓進行濾波及檢波的訊號處理後,得到沒有該載波頻率的該處理電壓,該處理電壓的電壓變化對應該激磁元件在該感應尺上的移動距離變化。 The magnetic position sensing method as described in item 11 of the patent application range, wherein the induced voltage signal processing unit filters and detects the induced voltage with amplitude change to obtain the signal without the carrier frequency Processing voltage, the voltage change of the processing voltage corresponds to the change of the moving distance of the excitation element on the induction scale.
TW107146322A 2018-12-21 2018-12-21 Magnetic position sensing device and method TWI689704B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW107146322A TWI689704B (en) 2018-12-21 2018-12-21 Magnetic position sensing device and method
CN201811596977.9A CN111351420B (en) 2018-12-21 2018-12-25 Magnetic position sensing device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107146322A TWI689704B (en) 2018-12-21 2018-12-21 Magnetic position sensing device and method

Publications (2)

Publication Number Publication Date
TWI689704B true TWI689704B (en) 2020-04-01
TW202024557A TW202024557A (en) 2020-07-01

Family

ID=71132525

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107146322A TWI689704B (en) 2018-12-21 2018-12-21 Magnetic position sensing device and method

Country Status (2)

Country Link
CN (1) CN111351420B (en)
TW (1) TWI689704B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3509469A (en) * 1967-05-17 1970-04-28 Nasa Position sensing device employing misaligned magnetic field generating and detecting apparatus
TWM312654U (en) * 2006-12-01 2007-05-21 Hiwin Mikrosystem Corp Induction magnetic head capable of anti-magnetic interference
TW200806956A (en) * 2006-07-26 2008-02-01 Hiwin Mikrosystem Corp Calibration device in magnetic sensor for inducting magnetic scale

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4262526A (en) * 1978-07-21 1981-04-21 Nippondenso Co., Ltd. Rotational position detecting apparatus
IE55855B1 (en) * 1984-10-19 1991-01-30 Kollmorgen Ireland Ltd Position and speed sensors
US5444370A (en) * 1993-03-18 1995-08-22 Honeywell Inc. Magnetic angular position sensor with two magnetically sensitive components arranged proximate two target tracks having complimentary magnetic and nonmagnetic segments
DE19506104A1 (en) * 1994-03-25 1995-09-28 Heidenhain Gmbh Dr Johannes Magnetic measurement system
US5841274A (en) * 1997-01-29 1998-11-24 Mitutoyo Corporation Induced current absolute position transducer using a code-track-type scale and read head
CN1201118A (en) * 1997-03-25 1998-12-09 三星重工业株式会社 Method for detecting absolute position of stroke sensitive cylinder
DE69925353T2 (en) * 1998-12-17 2006-01-12 Mitutoyo Corp., Kawasaki Inductive position encoder with high accuracy and reduced offset
WO2000046574A1 (en) * 1999-02-05 2000-08-10 Horst Siedle Gmbh & Co. Kg Displacement and/or angle sensor comprising a meandering measuring winding
GB0126014D0 (en) * 2001-10-30 2001-12-19 Sensopad Technologies Ltd Modulated field position sensor
AU2002349728A1 (en) * 2002-11-08 2004-06-18 Beijing Aerospace Feng Guang Electronic Technical Corp. Ltd. Magnetic displacement measurement device
JP4233958B2 (en) * 2003-08-29 2009-03-04 株式会社日本自動車部品総合研究所 Rotation angle detector
JP4487093B2 (en) * 2004-02-02 2010-06-23 日本電産サンキョー株式会社 Magnetic sensor
JP4079972B2 (en) * 2006-02-14 2008-04-23 ファナック株式会社 Linear drive
FR2898189B1 (en) * 2006-03-02 2008-10-17 Moving Magnet Tech POSITION SENSOR WITH VARIABLE MAGNET DIRECTION AND METHOD OF MAKING SAME
DE102006061577A1 (en) * 2006-12-27 2008-07-03 Robert Bosch Gmbh Crankshaft shaft rotation angle determining method for e.g. otto engine, involves utilizing output signals of sensor units for determining angle of rotation of crankshaft additional to output signal of differential sensor
EP2957872B1 (en) * 2014-06-18 2018-04-04 Caterpillar Global Mining Europe GmbH Sensing device for a digital linear position sensor
CN107796293B (en) * 2017-10-26 2019-10-15 重庆理工大学 A kind of induction linear displacement transducer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3509469A (en) * 1967-05-17 1970-04-28 Nasa Position sensing device employing misaligned magnetic field generating and detecting apparatus
TW200806956A (en) * 2006-07-26 2008-02-01 Hiwin Mikrosystem Corp Calibration device in magnetic sensor for inducting magnetic scale
TWM312654U (en) * 2006-12-01 2007-05-21 Hiwin Mikrosystem Corp Induction magnetic head capable of anti-magnetic interference

Also Published As

Publication number Publication date
CN111351420A (en) 2020-06-30
TW202024557A (en) 2020-07-01
CN111351420B (en) 2021-08-10

Similar Documents

Publication Publication Date Title
CN103940332B (en) Magnetic grating displacement transducer based on Hall magnetic sensitive element array
CN206339246U (en) A kind of high-precision rotating speed and rotation absolute angular position measurement sensor
CN101876557B (en) Position detecting device and signal processing device and method thereof
WO2018120335A1 (en) Capacitive sensor for absolute angular displacement measurement
JP5606941B2 (en) Fluxgate sensor
CN103822571A (en) Electric field type time grating linear displacement sensor based on single-row multilayered structure
CN105806201B (en) Displacement measuring device and displacement measurement method
CN105143831A (en) Magnetic position-detection device and magnetic position-detection method
US9581425B2 (en) Sensor for indicating a position or a change in position of a coupling element and method for operating the sensor
CN101614527A (en) Contour line quality detection method
CN106461422A (en) Inductive displacement sensor
TWI689704B (en) Magnetic position sensing device and method
CN103528625A (en) Gear sensor
CN104776791B (en) A kind of method of displacement sensor and measurement displacement
CN204405509U (en) Digital output bit moves sensor-type high-frequency reciprocating tester
CN206556673U (en) Displacement transducer
CN106643455B (en) A kind of condenser type rotation displacement transducer
JPS5856912B2 (en) 2D magnetic scale device
CN106338234B (en) Grating straight-line displacement sensor when a kind of double-row type
CN206208194U (en) Gating angular displacement sensor during absolute type
CN104132609B (en) A kind of electric magnetic railings ruler structure and its displacement information read method
CN205643512U (en) Frequency detecting system
CN201503273U (en) Position detection device and signal processing device thereof
WO2019184136A1 (en) Digital displacement sensor, and displacement measurement method for same
CN203981183U (en) A kind of gear sensor