TWI688203B - Wideband transimpedance amplifier circuit - Google Patents
Wideband transimpedance amplifier circuit Download PDFInfo
- Publication number
- TWI688203B TWI688203B TW106143937A TW106143937A TWI688203B TW I688203 B TWI688203 B TW I688203B TW 106143937 A TW106143937 A TW 106143937A TW 106143937 A TW106143937 A TW 106143937A TW I688203 B TWI688203 B TW I688203B
- Authority
- TW
- Taiwan
- Prior art keywords
- coupled
- amplifier circuit
- bias
- transimpedance amplifier
- circuit
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims description 22
- 239000013078 crystal Substances 0.000 claims description 22
- 230000003287 optical effect Effects 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 11
- 241001125929 Trisopterus luscus Species 0.000 description 6
- 230000008859 change Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/04—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
- H03F3/08—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light
- H03F3/082—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light with FET's
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/42—Modifications of amplifiers to extend the bandwidth
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/56—Modifications of input or output impedances, not otherwise provided for
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/04—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
- H03F3/08—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light
- H03F3/087—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light with IC amplifier blocks
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/181—Low-frequency amplifiers, e.g. audio preamplifiers
- H03F3/183—Low-frequency amplifiers, e.g. audio preamplifiers with semiconductor devices only
- H03F3/185—Low-frequency amplifiers, e.g. audio preamplifiers with semiconductor devices only with field-effect devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45076—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
- H03F3/45179—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45076—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
- H03F3/45179—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
- H03F3/45183—Long tailed pairs
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03G—CONTROL OF AMPLIFICATION
- H03G3/00—Gain control in amplifiers or frequency changers
- H03G3/20—Automatic control
- H03G3/30—Automatic control in amplifiers having semiconductor devices
- H03G3/3084—Automatic control in amplifiers having semiconductor devices in receivers or transmitters for electromagnetic waves other than radiowaves, e.g. lightwaves
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/408—Indexing scheme relating to amplifiers the output amplifying stage of an amplifier comprising three power stages
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45031—Indexing scheme relating to differential amplifiers the differential amplifier amplifying transistors are compositions of multiple transistors
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45154—Indexing scheme relating to differential amplifiers the bias at the input of the amplifying transistors being controlled
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Multimedia (AREA)
- Amplifiers (AREA)
Abstract
Description
本發明係關於一放大器電路,特別關於一種寬頻轉阻放大器電路。 The invention relates to an amplifier circuit, in particular to a broadband transimpedance amplifier circuit.
在一般光接收器電路中,都會配置轉阻放大器(Transinpedance Anplifier,TIA),以將電流訊號轉換為電壓訊號。更舉體來說,當光接收器的光二極體接收到光訊號後,會先將光訊號轉換為電流訊號,並將電流信號傳送給轉阻放大器。轉阻放大器接收到電流訊號後,就會再將電流訊號轉為電壓訊號,並且放大電壓振幅。 In general optical receiver circuits, a transimpedance amplifier (Transinpedance Anplifier, TIA) is configured to convert a current signal into a voltage signal. More specifically, when the optical diode of the optical receiver receives the optical signal, it will first convert the optical signal into a current signal and transmit the current signal to the transimpedance amplifier. After receiving the current signal, the transimpedance amplifier converts the current signal into a voltage signal and amplifies the voltage amplitude.
在傳統轉阻放大器之輸入阻抗匹配之設計,通常會是以回授(Feedback)電阻或串接電感的方式來實現。然而,使用回授電阻的方式會產生較大的熱雜訊。使用串接電感的方式則是會使得品質因子(Q值)會較差,且轉阻放大器之面積會較大。 The input impedance matching design of the traditional transimpedance amplifier is usually implemented by means of a feedback resistor or a series inductance. However, the use of feedback resistors will generate greater thermal noise. The use of series inductors results in a poor quality factor (Q value) and a large transimpedance amplifier area.
本發明提供了藉由一共閘極電晶體作為輸入阻抗,並適應性調整輸入阻抗之寬頻轉阻放大器電路。 The present invention provides a wide-band transimpedance amplifier circuit that uses a common gate transistor as an input impedance and adaptively adjusts the input impedance.
本發明提供了一種寬頻轉阻放大器電路。上述寬頻轉阻放大器電路包括一共閘極電晶體、一偏壓電流控制電路以及一放大器電路。偏壓電流控制電路會耦接上述共閘極電晶體之一源極。上述放大器電路會耦接上述閘極電晶體之一汲極。上述偏壓電流控制電路根據上述放大器電路之一輸出信號,調整上述寬頻轉阻放大器電路之一輸入阻抗。 The invention provides a broadband transimpedance amplifier circuit. The broadband transimpedance amplifier circuit includes a common gate transistor, a bias current control circuit, and an amplifier circuit. The bias current control circuit is coupled to one source of the above common gate transistor. The amplifier circuit is coupled to a drain of the gate transistor. The bias current control circuit adjusts the input impedance of one of the broadband transimpedance amplifier circuits according to the output signal of one of the amplifier circuits.
在一實施例中,上述寬頻轉阻放大器電路,更包括一並聯尖峰調整電路。上述並聯尖峰調整電路耦接上述共閘極電晶體之汲極。在一實施例中,上述並聯尖峰調整電路包括一電阻以及一電感串接。 In an embodiment, the wideband transimpedance amplifier circuit further includes a parallel spike adjustment circuit. The parallel spike adjustment circuit is coupled to the drain of the common gate transistor. In an embodiment, the parallel spike adjustment circuit includes a resistor and an inductor connected in series.
在一實施例中,上述偏壓電流控制電路包括一偏壓電晶體以及一偏壓調整電路。在一實施例中,上述偏壓調整電路包括一比較器。上述比較器比較上述放大器電路之輸出信號和一參考信號,以產生一調整信號。在一實施例中,上述偏壓電晶體耦接上述共閘極電晶體之源極,且根據上述調整信號調整上述偏壓電晶體之閘極偏壓。當上述偏壓電晶體之閘極偏壓被調整時,上述共閘極電晶體之一偏壓電流被改變,以調整上述輸入阻抗。 In an embodiment, the bias current control circuit includes a bias piezoelectric crystal and a bias voltage adjustment circuit. In one embodiment, the bias voltage adjustment circuit includes a comparator. The comparator compares the output signal of the amplifier circuit with a reference signal to generate an adjustment signal. In one embodiment, the bias piezoelectric crystal is coupled to the source of the common gate transistor, and the gate bias voltage of the bias piezoelectric crystal is adjusted according to the adjustment signal. When the gate bias voltage of the bias piezoelectric crystal is adjusted, the bias current of one of the common gate transistors is changed to adjust the input impedance.
在一實施例中,上述放大器電路可係一多級放大器電路。 In an embodiment, the above-mentioned amplifier circuit may be a multi-stage amplifier circuit.
關於本發明其他附加的特徵與優點,此領域之熟習技術人士,在不脫離本發明之精神和範圍內,當可根據本案實施方法中所揭露之寬頻轉阻放大器電路,做些許的更動與潤飾而得到。 With regard to other additional features and advantages of the present invention, those skilled in the art can make some changes and modifications according to the wide-band transimpedance amplifier circuit disclosed in the implementation method of the present invention without departing from the spirit and scope of the present invention. And get.
100‧‧‧寬頻轉阻放大器電路 100‧‧‧Broadband transimpedance amplifier circuit
110‧‧‧共閘極電晶體 110‧‧‧Common gate transistor
120‧‧‧偏壓電流控制電路 120‧‧‧bias current control circuit
121‧‧‧偏壓電晶體 121‧‧‧bias piezoelectric crystal
122‧‧‧偏壓調整電路 122‧‧‧bias adjustment circuit
130‧‧‧放大器電路 130‧‧‧Amplifier circuit
140‧‧‧並聯尖峰調整電路 140‧‧‧ Parallel spike adjustment circuit
200‧‧‧光二極體 200‧‧‧Photodiode
300‧‧‧比較器 300‧‧‧Comparator
Cds‧‧‧寄生電容 C ds ‧‧‧ Parasitic capacitance
C1~C13‧‧‧電容 C1~C13‧‧‧Capacitance
L1~L9電感M1~M3‧‧‧電晶體 L1~L9 Inductance M1~M3 ‧‧‧Transistor
PIN‧‧‧輸入端 PIN‧‧‧input
POUT‧‧‧輸出端 POUT‧‧‧Output
R1~R11‧‧‧電阻 R1~R11‧‧‧Resistance
VD1、VD2‧‧‧汲極電源 VD1, VD2 ‧‧‧ Drain power supply
VG1‧‧‧閘極電源 VG1‧‧‧Gate power supply
VG2‧‧‧調整電壓 VG2‧‧‧adjust voltage
Vout‧‧‧輸出電壓 Vout‧‧‧Output voltage
Vref‧‧‧參考電壓 Vref‧‧‧Reference voltage
第1圖係本發明寬頻轉阻放大器電路之方塊圖。 FIG. 1 is a block diagram of the broadband transimpedance amplifier circuit of the present invention.
第2圖係本發明寬頻轉阻放大器電路之電路圖。 FIG. 2 is a circuit diagram of the broadband transimpedance amplifier circuit of the present invention.
第3圖係本發明偏壓調整電路之電路圖。 FIG. 3 is a circuit diagram of the bias adjustment circuit of the present invention.
第4圖係本發明放大器電路之電路圖。 Fig. 4 is a circuit diagram of the amplifier circuit of the present invention.
本章節所敘述的是實施本發明之最佳方式,目的在於說明本發明之精神而非用以限定本發明之保護範圍,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 This section describes the best way to implement the present invention, the purpose is to illustrate the spirit of the present invention and not to limit the scope of protection of the present invention, the scope of protection of the present invention shall be subject to the scope of the attached patent application shall prevail .
第1圖係本發明寬頻轉阻放大器電路之方塊圖。本發明寬頻轉阻放大器電路100可應用於一光接收器或一射頻寬頻放大器,但本發明不以此為限。在本發明中之實施例係以寬頻轉阻放大器電路100應用在光接收器來做說明。如第1圖所示,寬頻轉阻放大器電路100中可包括了一共閘極電晶體(common gate transistor)110、一偏壓電流控制電路120,以及一放大器電路130。在第1圖中之方塊圖,係為了方便說明本發明之實施例,但本發明並不以此為限。上述寬頻轉阻放大器電路100亦可包括其他元件。
FIG. 1 is a block diagram of the broadband transimpedance amplifier circuit of the present invention. The broadband
如第1圖所示,上述偏壓電流控制電路120會耦接至上述共閘極電晶體110之源極,且上述放大器電路130耦接至上述共閘極電晶體110之汲極。上述共閘極電晶體110之
汲極耦接一汲極電源VD1,且上述共閘極電晶體110之閘極耦接一閘極電源VG1。此外,上述共閘極電晶體110之源極與上述偏壓電流控制電路120間耦接一光二極體(photodiode)200。上述光二極體200將接收到之光訊號轉換為電流訊號,並把電流訊號傳送至上述寬頻轉阻放大器電路100之輸入端PIN。
As shown in FIG. 1, the bias
在一實施例中,上述共閘極電晶體110可用來將來自上述光二極體200之電流信號轉換為一電壓信號。上述共閘極電晶體110可作為上述寬頻轉阻放大器電路100之一輸入阻抗。上述輸入阻抗根據上述共閘極電晶體110之尺寸和操作電流之不同而做適應性之調整。
In one embodiment, the
在一實施例中,上述偏壓電流控制電路120根據上述放大器電路130之一輸出信號,產生一調整信號。上述調整信號可用來調整上述共閘極電晶體110的偏壓電流,以改變輸入阻抗,以使得輸入阻抗和上述光二極體200會達成阻抗匹配,以增加信號傳輸之效益。更詳細之內容會在底下做說明。
In one embodiment, the bias
第2圖係本發明寬頻轉阻放大器電路之電路圖。在第2圖中之電路圖,係為了說明本發明之實施例,但本發明並不以此為限。 FIG. 2 is a circuit diagram of the broadband transimpedance amplifier circuit of the present invention. The circuit diagram in FIG. 2 is for explaining the embodiment of the present invention, but the present invention is not limited thereto.
如第2圖所示,上述寬頻轉阻放大器電路100更可包括一電阻R2以及電容C1和C2。上述汲極電源VD1會耦接至一接地以及上述電容C1,且上述閘極電源VG1會耦接至一接地以及上述電阻R2。上述電阻R2會耦接上述共閘極電晶體110之閘極,以及串聯上述電容C2。上述電容C2還會耦接至一接地。
As shown in FIG. 2, the wideband
如第2圖所示,上述寬頻轉阻放大器電路100之偏壓電流控制電路120可包括一偏壓電晶體121、一偏壓調整電路122、一電阻R3以及一電容C3。上述偏壓電晶體121之閘極會耦接至上述偏壓調整電路122。電阻R3會耦接上述偏壓電晶體121之閘極,以及串聯電容C3。電阻R3還會耦接偏壓調整電路122以及一接地。此外,在本實施例中,上述寬頻轉阻放大器電路100更可包括一並聯尖峰(shunt-peaking)調整電路140,且上述並聯尖峰調整電路140耦接上述共閘極電晶體110之汲極。
As shown in FIG. 2, the bias
在一實施例中,上述偏壓調整電路122根據從上述寬頻轉阻放大器電路100之輸出端POUT(或從放大器電路130)輸出之輸出信號,產生一調整信號,並將上述調整信號傳送至上述偏壓電晶體121之閘極,以調整上述偏壓電晶體121之閘極偏壓。當上述偏壓電晶體121之閘極偏壓被調整後,上述共閘極電晶體110的偏壓電流會跟著改變,以使得輸入阻抗因而被調整。因此,當輸入阻抗和上述光二極體200未達成阻抗匹配時(例如:串接的光二極體200之型號和原先串接之光二極體之型號不同,或操作頻率不同時),調整後之輸入阻抗將會和光二極體200達成阻抗匹配。底下將以第3圖為例來做說明。
In one embodiment, the
第3圖係本發明偏壓調整電路之電路圖。在第3圖中之電路圖,係為了說明本發明之實施例,但本發明並不以此為限。 FIG. 3 is a circuit diagram of the bias adjustment circuit of the present invention. The circuit diagram in FIG. 3 is for explaining the embodiment of the present invention, but the present invention is not limited thereto.
如第3圖所示,上述偏壓調整電路122可包括一
比較器300、一電阻R4以及一電容C4。電阻R4會耦接上述比較器300之一輸入端以及上述寬頻轉阻放大器電路100之輸出端POUT,以及串聯電容C4。電容C4還會耦接至一接地。上述比較器300之輸入端接收來自上述放大器電路130之輸出端之輸出信號(即輸出電壓Vout),以及上述比較器300之另一接收端接收一參考信號(即參考電壓Vref)。接著,上述比較器300比較上述放大器電路130之輸出端之輸出信號和上述參考信號,以產生一調整信號(即調整電壓VG2),並將上述調整信號輸出至上述偏壓電晶體121。
As shown in FIG. 3, the
舉例來說,當輸入阻抗將和光二極體200未達成阻抗匹配,造成上述放大器電路130的輸出端下降,所以上述輸出電壓Vout也會下降,上述比較器300經比較上述輸出電壓Vout和上述參考電壓Vref後,就會將上述調整電壓VG2提高。當上述偏壓電晶體121之閘極收到調整之調整電壓VG2後,上述偏壓電晶體121之閘極偏壓就會被改變。當上述偏壓電晶體121之閘極偏壓被改變後,上述共閘極電晶體110的偏壓電流亦會改變,因而使得輸入阻抗將適應性地被進行調整。因此,經調整後之輸入阻抗將可和光二極體200達成阻抗匹配。
For example, when the input impedance does not match the impedance of the
回到第2圖,在一實施例中,上述並聯尖峰調整電路140可包括一電阻R1以及一電感L1串連。上述並聯尖峰調整電路140補償上述共閘極電晶體110之汲極和源極間的寄生電容Cds所產生之影響,以增加上述寬頻轉阻放大器電路100之操作頻寬。
Returning to FIG. 2, in an embodiment, the parallel
在一實施例中,上述放大器電路130可用來放大上述共閘極電晶體110輸入之信號。在一實施例中,上述放大器電路130可為一多級放大器電路。第4圖係本發明放大器電路之電路圖。如第4圖所示,上述放大器電路130可為一4級放大器電路,但本發明並不以此為限。上述放大器電路130包括電晶體M1、M2以及M3、電阻R5、R6、R7、R8、R9、R10以及R11、電容C5、C6、C7、C8、C9以及C10,以及電感L2、L3、L4、L5、L6、L7、L8、L9。一汲極電源VD2會耦接上述電晶體M1、M2以及M3之汲極。上述電容C5、C6、C7都會耦接上述汲極電源VD1以及一接地。上述電阻R5會和上述電感L2串聯,且耦接至上述電晶體M1之汲極。上述電阻R6會和上述電感L3串聯,且耦接至上述電晶體M2之汲極。上述電阻R7會和上述電感L4串聯,且耦接至上述電晶體M3之汲極。上述電阻R8會和上述電感L5串聯,且耦接至上述寬頻轉阻放大器電路100之輸出端POUT。
In one embodiment, the
上述電晶體M1之閘極會經由串聯之上述電容C8以及上述電感L6耦接至上述共閘極電晶體110之汲極。上述電晶體M1之汲極會經由串聯之上述電容C9以及上述電感L7耦接至上述電晶體M2之閘極。上述電晶體M2之汲極會經由串聯之上述電容C10以及上述電感L8耦接至上述電晶體M3之閘極。上述電晶體M3之汲極會經由上述電感L9耦接至上述寬頻轉阻放大器電路100之輸出端POUT。上述電晶體M1、M2以及M3之源極都會耦接至一接地。此外,第4圖所示之上述放大器電路130會藉由上述電阻R9、R10以及R11耦接
至偏壓電流控制電路120。上述電阻R9、R10以及R11會分別和電容C11、C12以及C13串聯,並經由上述電容C11、C12以及C13耦接至一接地。
The gate of the transistor M1 is coupled to the drain of the
本發明之共閘極電晶體110可被作為輸入阻抗,且上述偏壓電流控制電路120可根據上述寬頻轉阻放大器電路100對應上述光二極體輸入之電流訊號所產生之輸入訊號,改變上述共閘極電晶體110之偏壓電流,以適應性地調整輸入阻抗。因此,即使上述寬頻轉阻放大器電路100耦接不同型號之光二極體,或光二極體操作在不同的操作頻率時,經適應性調整後之輸入阻抗都可和光二極體達成阻抗匹配。此外,相較於傳統寬頻轉阻放大器電路之設計,由於本發明所提出之寬頻轉阻放大器電路100係藉由共閘極電晶體110來作為輸入阻抗,因此所需製程之面積會較小。
The
在本說明及申請專利範圍中會使用到耦接及連接等詞,以及他們的衍生詞句。在特定的實施例中,連接用來代表二個或多個元件間互相有直接實體或電性接觸。耦接是表示二個或多個元件是直接實體接觸或電接觸。但是,耦接亦可表示二個或多個元件相互間並非直接接觸,但他們仍互相配合或互動。 In this description and the scope of patent application, the words coupling and connection will be used, as well as their derivatives. In a specific embodiment, the connection is used to indicate that two or more elements are in direct physical or electrical contact with each other. Coupling means that two or more elements are in direct physical or electrical contact. However, coupling can also mean that two or more components are not in direct contact with each other, but they still cooperate or interact with each other.
本說明書中所提到的「一實施例」或「實施例」,表示與實施例有關之所述特定的特徵、結構、或特性是包含根據本發明的至少一實施例中,但並不表示它們存在於每一個實施例中。因此,在本說明書中不同地方出現的「在一實施例中」或「在實施例中」詞組並不必然表示本發明的相同實施例。 "One embodiment" or "embodiment" mentioned in this specification means that the specific feature, structure, or characteristic related to the embodiment is included in at least one embodiment according to the present invention, but does not mean They are present in every embodiment. Therefore, the phrases "in one embodiment" or "in an embodiment" appearing in different places in this specification do not necessarily mean the same embodiment of the present invention.
以上段落使用多種層面描述。顯然的,本文的教示可以多種方式實現,而在範例中揭露之任何特定架構或功能僅為一代表性之狀況。根據本文之教示,任何熟知此技藝之人士應理解在本文揭露之各層面可獨立實作或兩種以上之層面可以合併實作。 The above paragraphs use multiple levels of description. Obviously, the teachings in this article can be implemented in many ways, and any specific architecture or function disclosed in the example is only a representative situation. According to the teaching of this article, anyone who is familiar with this skill should understand that each level disclosed in this article can be implemented independently or two or more levels can be implemented in combination.
雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Anyone who is familiar with this skill can make some modifications and retouching without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection shall be deemed as defined by the scope of the attached patent application.
100‧‧‧寬頻轉阻放大器電路 100‧‧‧Broadband transimpedance amplifier circuit
110‧‧‧共閘極電晶體 110‧‧‧Common gate transistor
120‧‧‧偏壓電流控制電路 120‧‧‧bias current control circuit
130‧‧‧放大器電路 130‧‧‧Amplifier circuit
200‧‧‧光二極體 200‧‧‧Photodiode
PIN‧‧‧輸入端 PIN‧‧‧input
POUT‧‧‧輸出端 POUT‧‧‧Output
VD1‧‧‧汲極電源 VD1‧‧‧ Drain power supply
VG1‧‧‧閘極電源 VG1‧‧‧Gate power supply
Claims (7)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106143937A TWI688203B (en) | 2017-12-14 | 2017-12-14 | Wideband transimpedance amplifier circuit |
CN201711373943.9A CN109962685B (en) | 2017-12-14 | 2017-12-19 | Broadband transimpedance amplifier circuit |
US15/872,911 US10348255B1 (en) | 2017-12-14 | 2018-01-16 | Wideband transimpedance amplifier circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106143937A TWI688203B (en) | 2017-12-14 | 2017-12-14 | Wideband transimpedance amplifier circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201929422A TW201929422A (en) | 2019-07-16 |
TWI688203B true TWI688203B (en) | 2020-03-11 |
Family
ID=66816457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106143937A TWI688203B (en) | 2017-12-14 | 2017-12-14 | Wideband transimpedance amplifier circuit |
Country Status (3)
Country | Link |
---|---|
US (1) | US10348255B1 (en) |
CN (1) | CN109962685B (en) |
TW (1) | TWI688203B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020077956A (en) * | 2018-11-07 | 2020-05-21 | 住友電気工業株式会社 | Optical receiving circuit |
CN110621061B (en) * | 2019-09-30 | 2023-03-10 | 上海华虹宏力半导体制造有限公司 | Current multiplexing radio frequency front end structure |
TWI706631B (en) * | 2019-11-14 | 2020-10-01 | 財團法人工業技術研究院 | Distributed amplifier with low supply voltage and low power consumption for full-chip high-speed communication |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6806777B2 (en) * | 2003-01-02 | 2004-10-19 | Intel Corporation | Ultra wide band low noise amplifier and method |
US20040222855A1 (en) * | 2002-12-20 | 2004-11-11 | Shivakumar Seetharaman | Transimpedance amplifier |
US7123098B2 (en) * | 2004-03-15 | 2006-10-17 | Intel Corporation | Transimpedance amplifier with differential peak detector |
US20070096973A1 (en) * | 2005-11-02 | 2007-05-03 | Sehat Sutardja | High-bandwidth high-gain amplifier |
US20070229162A1 (en) * | 2006-03-30 | 2007-10-04 | Eudyna Devices Inc. | Electronic circuit |
US7362175B2 (en) * | 2003-07-17 | 2008-04-22 | Commissariat A L'energie Atomique | Low-consumption voltage amplifier |
JP4886725B2 (en) * | 2008-03-31 | 2012-02-29 | 富士通株式会社 | Transimpedance amplifier circuit |
US20150145597A1 (en) * | 2013-11-25 | 2015-05-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Multi-stage transimpedance amplifier and a method of using the same |
US20160226456A1 (en) * | 2015-02-02 | 2016-08-04 | International Business Machines Corporation | Implementing enhanced cmos inverter based optical transimpedence amplifer |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3885746D1 (en) * | 1988-09-15 | 1993-12-23 | Siemens Ag | Circuit arrangement with an amplifier connected to an opto-electrical converter. |
US6037841A (en) | 1997-10-07 | 2000-03-14 | Applied Micro Circuits Corporation | Impedance matched CMOS transimpedance amplifier for high-speed fiber optic communications |
US6218905B1 (en) | 1998-11-30 | 2001-04-17 | Vitesse Semiconductor | Common-gate transimpedance amplifier with dynamically controlled input impedance |
US6359517B1 (en) | 2000-01-28 | 2002-03-19 | Integration Associates Incorporated | Photodiode transimpedance circuit |
US6862322B1 (en) | 2000-05-19 | 2005-03-01 | International Business Machines Corporation | Switchable-bandwidth optical receiver |
CN1162708C (en) * | 2000-09-13 | 2004-08-18 | 中华电信股份有限公司电信研究所 | Broad-band low-noise efficient impedance-transforming amplifier with isolated background DC. |
US6538245B1 (en) | 2000-10-26 | 2003-03-25 | Rockwell Science Center, Llc. | Amplified CMOS transducer for single photon read-out of photodetectors |
US6587003B2 (en) * | 2001-04-18 | 2003-07-01 | Canberra Industries. Inc. | Charge sensitive preamplifier with pulsed source reset |
US7042295B2 (en) * | 2004-03-31 | 2006-05-09 | Cornell Research Foundation, Inc. | Low-voltage, low-power transimpedance amplifier architecture |
TWI305976B (en) | 2005-12-30 | 2009-02-01 | Ind Tech Res Inst | Transimpedance amplifier using negative impedance compensation |
US7525391B2 (en) * | 2007-05-17 | 2009-04-28 | Finisar Corporation | Linear transimpedance amplifier with multiplexed gain stage |
US7609115B2 (en) | 2007-09-07 | 2009-10-27 | Raytheon Company | Input circuitry for transistor power amplifier and method for designing such circuitry |
US7839219B2 (en) * | 2007-10-24 | 2010-11-23 | Industrial Technology Research Institute | Low-noise amplifier circuit including band-stop filter |
TWI356410B (en) | 2007-11-15 | 2012-01-11 | Ind Tech Res Inst | Light transmitter and an automatic power control c |
TW201421926A (en) | 2012-11-20 | 2014-06-01 | Yung-Shun Wu | A photo detecting device for enhancing the sensitivity of optical receivers |
US9035697B2 (en) * | 2013-03-15 | 2015-05-19 | Qualcomm Incorporated | Split amplifiers with improved linearity |
JP6263104B2 (en) | 2013-08-27 | 2018-01-17 | セムテック・コーポレーション | Closed loop optical modulation amplitude control |
US9219447B2 (en) * | 2013-09-11 | 2015-12-22 | Qualcomm Incorporated | Wideband bias circuits and methods |
CN106571780B (en) * | 2016-11-17 | 2019-11-15 | 锐迪科微电子(上海)有限公司 | A kind of adaptive-biased radio-frequency power amplifier |
-
2017
- 2017-12-14 TW TW106143937A patent/TWI688203B/en active
- 2017-12-19 CN CN201711373943.9A patent/CN109962685B/en active Active
-
2018
- 2018-01-16 US US15/872,911 patent/US10348255B1/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040222855A1 (en) * | 2002-12-20 | 2004-11-11 | Shivakumar Seetharaman | Transimpedance amplifier |
US6864749B2 (en) * | 2002-12-20 | 2005-03-08 | Intel Corporation | Transimpedance amplifier |
US6806777B2 (en) * | 2003-01-02 | 2004-10-19 | Intel Corporation | Ultra wide band low noise amplifier and method |
US7362175B2 (en) * | 2003-07-17 | 2008-04-22 | Commissariat A L'energie Atomique | Low-consumption voltage amplifier |
US7123098B2 (en) * | 2004-03-15 | 2006-10-17 | Intel Corporation | Transimpedance amplifier with differential peak detector |
US20070096973A1 (en) * | 2005-11-02 | 2007-05-03 | Sehat Sutardja | High-bandwidth high-gain amplifier |
US20070229162A1 (en) * | 2006-03-30 | 2007-10-04 | Eudyna Devices Inc. | Electronic circuit |
JP4886725B2 (en) * | 2008-03-31 | 2012-02-29 | 富士通株式会社 | Transimpedance amplifier circuit |
US20150145597A1 (en) * | 2013-11-25 | 2015-05-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Multi-stage transimpedance amplifier and a method of using the same |
US20160226456A1 (en) * | 2015-02-02 | 2016-08-04 | International Business Machines Corporation | Implementing enhanced cmos inverter based optical transimpedence amplifer |
Also Published As
Publication number | Publication date |
---|---|
CN109962685A (en) | 2019-07-02 |
US10348255B1 (en) | 2019-07-09 |
TW201929422A (en) | 2019-07-16 |
CN109962685B (en) | 2023-05-26 |
US20190190466A1 (en) | 2019-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI688203B (en) | Wideband transimpedance amplifier circuit | |
US9467106B2 (en) | Wideband bias circuits and methods | |
US7420423B2 (en) | Active balun device | |
US9641251B1 (en) | Transimpedance amplifier, and related integrated circuit and optical receiver | |
TWI305976B (en) | Transimpedance amplifier using negative impedance compensation | |
CN105305979B (en) | A kind of distributed amplifier circuit for improving the linearity | |
US9369091B2 (en) | Dual feedback low noise amplifier | |
US8258867B2 (en) | Front-end equalizer and amplifier circuit | |
US8180306B2 (en) | VSWR compensation circuits for RF transmit chain | |
CN104242830A (en) | Reconfigurable ultra-broadband low noise amplifier with active inductor | |
TW202029658A (en) | High-speed full-duplex transceiver | |
JP6288607B2 (en) | Power amplification module | |
CN109889165B (en) | Amplifier with adjustable output common-mode voltage | |
US8242846B2 (en) | Power amplifier | |
WO2019161655A1 (en) | Feedback control circuit for power amplifier | |
TWI474614B (en) | Power amplifier | |
CN107104647B (en) | Power amplifier based on neural network | |
CN110212870B (en) | Integrated circuit of current multiplexing type gm-boost low noise amplifier | |
TW202316792A (en) | Power amplifier | |
CN107733383B (en) | Transimpedance amplifying circuit and design method thereof | |
CN104506146B (en) | Wideband low noise amplifier based on on-chip inductor | |
JP2012099914A (en) | Wideband amplifier | |
RU195241U1 (en) | Active antenna | |
CN113595515B (en) | High-linearity biasing circuit applied to radio frequency amplifier | |
KR101060937B1 (en) | Push-Pull Broadband Power Amplifiers |