TWI684681B - Electronic apparatus, light emitting device, and growth substrate and manufacturing method thereof - Google Patents

Electronic apparatus, light emitting device, and growth substrate and manufacturing method thereof Download PDF

Info

Publication number
TWI684681B
TWI684681B TW107124781A TW107124781A TWI684681B TW I684681 B TWI684681 B TW I684681B TW 107124781 A TW107124781 A TW 107124781A TW 107124781 A TW107124781 A TW 107124781A TW I684681 B TWI684681 B TW I684681B
Authority
TW
Taiwan
Prior art keywords
metal layer
substrate
layer
carbon atoms
manufacturing
Prior art date
Application number
TW107124781A
Other languages
Chinese (zh)
Other versions
TW202006197A (en
Inventor
詹世豪
曾少澤
黃耀賢
Original Assignee
進化光學有限公司
黃耀賢
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 進化光學有限公司, 黃耀賢 filed Critical 進化光學有限公司
Priority to TW107124781A priority Critical patent/TWI684681B/en
Publication of TW202006197A publication Critical patent/TW202006197A/en
Application granted granted Critical
Publication of TWI684681B publication Critical patent/TWI684681B/en

Links

Images

Abstract

An electronic apparatus, a light emitting device, and a growth substrate and a manufacturing method thereof are provided. The substrate is adapted for epitaxial growth to form the light emitting device. The light emitting device can be implemented in the electronic apparatus. The manufacturing method of the growth substrate includes the steps of providing a base and forming a composite film on the base, in which the composite film includes a metal layer and a crystalline carbon layer, and the metal layer is interposed between the base and the crystalline carbon layer.

Description

電子裝置、發光元件、成長基板及其製造方法 Electronic device, light emitting element, growth substrate and manufacturing method thereof

本發明涉及一種電子裝置、發光元件、成長基板及其製造方法,特別是涉及一種用以成長磊晶層的成長基板及其製造方法,以及應用前述成長基板的發光元件以及電子裝置。 The invention relates to an electronic device, a light emitting element, a growth substrate and a manufacturing method thereof, in particular to a growth substrate for growing an epitaxial layer and a manufacturing method thereof, as well as a light emitting element and an electronic device using the growth substrate.

發光二極體(LED)目前被廣泛應用於照明裝置以及做為液晶顯示器裝置中的背光模組。隨著發光二極體製作技術的發展,目前的發光二極體的晶粒尺寸(邊長)已可縮小至100微米以下,被稱為微發光二極體(Micro LED),而可被應用於顯示面板中做為自發光的顯示畫素。 Light emitting diodes (LEDs) are currently widely used in lighting devices and as backlight modules in liquid crystal display devices. With the development of light-emitting diode manufacturing technology, the grain size (side length) of current light-emitting diodes can be reduced to less than 100 microns, which is called Micro LED and can be applied. Used as self-illuminating display pixels in the display panel.

微發光二極體包括多層三五族半導體磊晶層,前述的三五族半導體可以是砷化鎵(GaAs)、磷化鋁(AlP)、氮化鎵(GaN)等。為了成長三五族半導體磊晶層,一般會使用和磊晶層的晶格常數相互匹配的基板,以減少磊晶層中的晶格缺陷。一般常用於成長三五族半導體磊晶層的基底例如是砷化鎵晶圓或者是藍寶石基底。 The microluminescent diode includes multiple epitaxial layers of Group III-V semiconductors. The aforementioned Group III-V semiconductors may be gallium arsenide (GaAs), aluminum phosphide (AlP), gallium nitride (GaN), or the like. In order to grow the epitaxial layer of the group III-V semiconductor, a substrate that matches the lattice constant of the epitaxial layer is generally used to reduce lattice defects in the epitaxial layer. The substrate commonly used for growing the epitaxial layer of the group III-V semiconductor is, for example, a gallium arsenide wafer or a sapphire substrate.

然而,砷化鎵晶圓或藍寶石基底的價格較為昂貴,且尺寸有限,而應用於顯示面板的微發光二極體的數量超過百萬個。若要應用這些基板來製造應用於顯示面板的微發光二極體,須使用大量的基板。如此,將使顯示面板的成本過高,而降低市場競爭力。 However, gallium arsenide wafers or sapphire substrates are more expensive and have a limited size, and the number of micro light-emitting diodes used in display panels exceeds one million. To use these substrates to manufacture micro-emitting diodes for display panels, a large number of substrates must be used. In this way, the cost of the display panel will be too high, and the market competitiveness will be reduced.

此外,目前是通過有機金屬化學氣相沉積(Metal Organic Chemical.Vapor Phase Deposition,MOCVD)來製造三五族半導體磊晶層的製程溫度高達1000℃以上,導致製程成本較高。因此, 目前仍待研發出其他可用來成長磊晶層的基板以及製程,以進一步降低微發光二極體等半導體元件的製造成本。 In addition, currently, the process temperature for manufacturing the epitaxial layer of the group III-V semiconductor through metal organic chemical vapor deposition (MOCVD) is as high as 1000°C or more, which results in a high process cost. therefore, At present, other substrates and manufacturing processes that can be used to grow epitaxial layers are still to be developed to further reduce the manufacturing cost of semiconductor devices such as micro-emitting diodes.

本發明所要解決的技術問題在於,降低用來成長磊晶層的成長基板成本以及製造成本,以使發光元件易於大量生產。如此,可進一步降低微發光二極體顯示裝置的生產成本。 The technical problem to be solved by the present invention is to reduce the cost of the growth substrate and the manufacturing cost for growing the epitaxial layer, so that the light-emitting device can be easily mass-produced. In this way, the production cost of the micro light-emitting diode display device can be further reduced.

為了解決上述的技術問題,本發明所採用的其中一技術方案是,提供一種用以成長磊晶層的成長基板的製造方法,其包括:提供一基底以及形成複合膜於基底上。複合膜包括金屬層以及結晶碳層,且金屬層位於基底與結晶碳層之間。 In order to solve the above technical problems, one of the technical solutions adopted by the present invention is to provide a method for manufacturing a growth substrate for growing an epitaxial layer, which includes: providing a substrate and forming a composite film on the substrate. The composite film includes a metal layer and a crystalline carbon layer, and the metal layer is located between the substrate and the crystalline carbon layer.

為了解決上述的技術問題,本發明所採用的另外一技術方案是,提供一種用以成長磊晶層的成長基板,其包括基底以及設置於基底上的複合膜,複合膜包括金屬層以及結晶碳層,且金屬層位於基底與結晶碳層之間。 In order to solve the above technical problems, another technical solution adopted by the present invention is to provide a growth substrate for growing an epitaxial layer, which includes a substrate and a composite film disposed on the substrate, the composite film includes a metal layer and crystalline carbon Layer, and the metal layer is located between the substrate and the crystalline carbon layer.

為了解決上述的技術問題,本發明所採用的另外一技術方案是,提供一種發光元件,其包括成長基板以及設置於成長基板上的半導體發光結構。成長基板包括基底以及設置於基底上的複合膜。複合膜包括金屬層以及結晶碳層,且金屬層位於基底與結晶碳層之間。半導體發光結構設置在結晶碳層上。 In order to solve the above technical problems, another technical solution adopted by the present invention is to provide a light-emitting device, which includes a growth substrate and a semiconductor light-emitting structure disposed on the growth substrate. The growth substrate includes a substrate and a composite film disposed on the substrate. The composite film includes a metal layer and a crystalline carbon layer, and the metal layer is located between the substrate and the crystalline carbon layer. The semiconductor light emitting structure is disposed on the crystalline carbon layer.

為了解決上述的技術問題,本發明所採用的另外一技術方案是,提供一種電子裝置,其包括多個如上所述的發光元件。 In order to solve the above technical problem, another technical solution adopted by the present invention is to provide an electronic device including a plurality of light emitting elements as described above.

本發明的其中一有益效果在於,本發明所提供的電子裝置、發光元件、成長基板及其製造方法,其能通過“在一基底上形成具有結晶碳層以及金屬層的複合膜”的技術方案,可以形成用於成長磊晶層的成長基板。相較於現有的藍寶石基板以及砷化鎵基板,本發明實施例所提供的成長基板的成本較低,且可用以大面積製造半導體發光結構,而有利於發光元件的量產。如此,當本發明實施例的發光元件應用於電子裝置時,可使電子裝置具有較 低的製造成本。 One of the beneficial effects of the present invention is that the electronic device, light emitting element, growth substrate and manufacturing method thereof provided by the present invention can pass the technical solution of "forming a composite film with a crystalline carbon layer and a metal layer on a substrate" , A growth substrate for growing an epitaxial layer can be formed. Compared with existing sapphire substrates and gallium arsenide substrates, the growth substrate provided by the embodiments of the present invention has lower cost, and can be used to manufacture semiconductor light-emitting structures in a large area, which is beneficial to mass production of light-emitting devices. As such, when the light-emitting element of the embodiment of the present invention is applied to an electronic device, the electronic device can be made Low manufacturing cost.

為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與圖式,然而所提供的圖式僅用於提供參考與說明,並非用來對本發明加以限制。 In order to further understand the features and technical contents of the present invention, please refer to the following detailed description and drawings of the present invention. However, the drawings provided are for reference and explanation only, and are not intended to limit the present invention.

1‧‧‧成長基板 1‧‧‧Growth substrate

10‧‧‧基底 10‧‧‧ base

10a‧‧‧第一表面 10a‧‧‧First surface

10b‧‧‧第二表面 10b‧‧‧Second surface

11‧‧‧複合膜 11‧‧‧composite membrane

110‧‧‧金屬層 110‧‧‧Metal layer

111‧‧‧結晶碳層 111‧‧‧Crystal carbon layer

111S‧‧‧成長表面 111S‧‧‧Growth surface

111p‧‧‧碳原子 111p‧‧‧carbon atom

M1‧‧‧發光元件 M1‧‧‧Lighting element

BL‧‧‧緩衝層 BL‧‧‧Buffer layer

2‧‧‧半導體發光結構 2‧‧‧ semiconductor light emitting structure

20‧‧‧P型半導體層 20‧‧‧P-type semiconductor layer

21‧‧‧N型半導體層 21‧‧‧N-type semiconductor layer

22‧‧‧主動層 22‧‧‧Active layer

P1‧‧‧第一階段 P1‧‧‧ First stage

P2‧‧‧第二階段 P2‧‧‧Second stage

P3‧‧‧第三階段 P3‧‧‧The third stage

A1、A2‧‧‧溫度曲線 A1, A2‧‧‧Temperature curve

B1‧‧‧電漿功率曲線 B1‧‧‧ plasma power curve

C1、C2‧‧‧氣體流量曲線 C1, C2‧‧‧ gas flow curve

T1‧‧‧第一預定溫度 T1‧‧‧ First predetermined temperature

T2‧‧‧第二預定溫度 T2‧‧‧Second predetermined temperature

S100、S200、S201~S203‧‧‧流程步驟 S100, S200, S201~S203 ‧‧‧ flow steps

圖1顯示本發明一實施例的發光元件的製造方法的流程圖。 FIG. 1 shows a flowchart of a method for manufacturing a light-emitting device according to an embodiment of the invention.

圖2A顯示本發明的製造方法的步驟S100於一實施例中的示意圖。 FIG. 2A shows a schematic diagram of step S100 of the manufacturing method of the present invention in an embodiment.

圖2B顯示本發明的製造方法的步驟S201於一實施例的示意圖。 FIG. 2B shows a schematic diagram of an embodiment of step S201 of the manufacturing method of the present invention.

圖2C顯示本發明的製造方法的步驟S202於一實施例的示意圖。 FIG. 2C is a schematic diagram of an embodiment of step S202 of the manufacturing method of the present invention.

圖2D顯示本發明的製造方法的步驟S203於一實施例的示意圖。 FIG. 2D is a schematic diagram of an embodiment of step S203 of the manufacturing method of the present invention.

圖3顯示本發明一實施例在形成複合膜過程中的基底溫度與時間的曲線圖。 FIG. 3 shows a graph of substrate temperature and time during the formation of a composite film according to an embodiment of the invention.

圖4顯示本發明一實施例在形成複合膜過程中的電漿功率與時間的曲線圖。 FIG. 4 shows a graph of plasma power and time during the formation of a composite film according to an embodiment of the invention.

圖5顯示本發明一實施例在形成複合膜過程中的氣體流量與時間的曲線圖。 FIG. 5 shows a graph of gas flow rate and time during the formation of a composite film according to an embodiment of the invention.

圖6顯示本發明實施例的發光元件的示意圖。 FIG. 6 shows a schematic diagram of a light emitting device according to an embodiment of the invention.

以下是通過特定的具體實施例來說明本發明所公開有關“電子裝置、發光元件、成長基板及其製造方法”的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本發明的優點與效果。本發明可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不悖離本發明的構思下進行各種修改與變更。另外,本發明的附圖僅為簡單示意 說明,並非依實際尺寸的描繪,事先聲明。以下的實施方式將進一步詳細說明本發明的相關技術內容,但所公開的內容並非用以限制本發明的保護範圍。 The following is a specific specific example to illustrate the implementation of the "electronic device, light emitting element, growth substrate and manufacturing method thereof" disclosed by the present invention. Those skilled in the art can understand the advantages and advantages of the present invention from the content disclosed in this specification effect. The present invention can be implemented or applied through other different specific embodiments. Various details in this specification can also be based on different viewpoints and applications, and various modifications and changes can be made without departing from the concept of the present invention. In addition, the drawings of the present invention are only a simple illustration The description is not based on the actual size, and it is declared in advance. The following embodiments will further describe the related technical content of the present invention, but the disclosed content is not intended to limit the protection scope of the present invention.

請參照圖1以及圖2A至2D。圖1顯示本發明一實施例的成長基板的製造方法的流程圖,圖2A至2D繪示製造本發明其中一實施例的成長基板的詳細步驟。在本發明實施例所提供的成長基板的製造方法中,可以形成用於成長磊晶層且成本較低的成長基板。 Please refer to FIGS. 1 and 2A to 2D. 1 shows a flowchart of a method for manufacturing a growth substrate according to an embodiment of the invention, and FIGS. 2A to 2D illustrate detailed steps for manufacturing a growth substrate according to an embodiment of the invention. In the method for manufacturing a growth substrate provided by the embodiments of the present invention, a growth substrate for growing an epitaxial layer and having a lower cost can be formed.

請參照圖1,在步驟S100中,提供一基底。如圖2A所示,基底10具有兩相對的第一表面10a與第二表面10b。另外,基底10的材料可以是單晶材料或者是非晶材料。單晶材料例如是矽、鍺、砷化鎵或是藍寶石,而非晶材料例如是塑膠、玻璃或是金屬。在本實施例中,基底10的材料為非晶材料。 Referring to FIG. 1, in step S100, a substrate is provided. As shown in FIG. 2A, the substrate 10 has two opposing first surfaces 10a and second surfaces 10b. In addition, the material of the substrate 10 may be a single crystal material or an amorphous material. The single crystal material is, for example, silicon, germanium, gallium arsenide, or sapphire, and the amorphous material is, for example, plastic, glass, or metal. In this embodiment, the material of the substrate 10 is an amorphous material.

接著,在步驟S200中,形成複合膜於基底上。形成複合膜的步驟詳細說明如下。請先參照圖1以及圖2B。在步驟S201中,形成金屬層於基底上。具體而言,金屬層110是被形成在基底10的第一表面10a上,如圖2B所示。 Next, in step S200, a composite film is formed on the substrate. The steps of forming the composite film are described in detail below. Please refer to FIG. 1 and FIG. 2B first. In step S201, a metal layer is formed on the substrate. Specifically, the metal layer 110 is formed on the first surface 10a of the substrate 10, as shown in FIG. 2B.

在一實施例中,金屬層110是通過物理氣相沉積法形成於基底10上。本實施例中,金屬層110可通過濺鍍或者蒸鍍形成於基底10上。另外,由於金屬層110的熱膨脹係數與基底10的熱膨脹係數之間的差異,在製造複合膜的過程中的溫度變化可能會造成金屬層110收縮,並且使表面粗糙度增加。因此,本實施例的金屬層110的厚度介於450奈米至700奈米之間,可避免金屬層110因熱膨脹係數差異而變形。金屬層110的材料可選自銅、鎳、銠、鈷、金、銀、鉑及其任意組合所組成的群組。 In one embodiment, the metal layer 110 is formed on the substrate 10 by physical vapor deposition. In this embodiment, the metal layer 110 may be formed on the substrate 10 by sputtering or evaporation. In addition, due to the difference between the thermal expansion coefficient of the metal layer 110 and the thermal expansion coefficient of the substrate 10, the temperature change during the manufacturing of the composite film may cause the metal layer 110 to shrink and increase the surface roughness. Therefore, the thickness of the metal layer 110 in this embodiment is between 450 nm and 700 nm, which can prevent the metal layer 110 from being deformed due to the difference in thermal expansion coefficient. The material of the metal layer 110 may be selected from the group consisting of copper, nickel, rhodium, cobalt, gold, silver, platinum, and any combination thereof.

接著,請參照圖1,在步驟S202中,在第一預定溫度下,暴露金屬層於碳前驅氣體中。配合參照圖2C,須說明的是,金屬層110可作為觸媒,以使碳前驅氣體在第一預定溫度下被分解而產生 碳原子。具體而言,碳前驅氣體可以是碳氫化合物氣體,例如:甲烷或是乙炔。碳前驅氣體在第一預定溫度下會進行脫氫反應(dehydrogenation),從而產生碳原子。據此,第一預定溫度最好能大於可使碳前驅氣體被分解的最低溫度。 Next, referring to FIG. 1, in step S202, at a first predetermined temperature, the metal layer is exposed to the carbon precursor gas. With reference to FIG. 2C, it should be noted that the metal layer 110 can be used as a catalyst to cause the carbon precursor gas to be decomposed and generated at the first predetermined temperature carbon atom. Specifically, the carbon precursor gas may be a hydrocarbon gas, such as methane or acetylene. The carbon precursor gas undergoes dehydrogenation at a first predetermined temperature, thereby generating carbon atoms. Accordingly, the first predetermined temperature is preferably greater than the lowest temperature at which the carbon precursor gas can be decomposed.

在一實施例中,第一預定溫度是至少大於400℃。若基底10為非晶材料,進一步考量基底10的熔點,第一預定溫度可介於400℃至700℃之間。若基底10的材料為矽、鍺或藍寶石,第一預定溫度也可以在700℃以上。在碳前驅氣體被分解之後,碳原子111p會溶入金屬層110中,形成固溶體(solid solution),如圖2C所示。也就是說,多個碳原子111p固溶於金屬層110的表層內,且位於遠離基底10的一側。 In one embodiment, the first predetermined temperature is at least greater than 400°C. If the substrate 10 is an amorphous material, further considering the melting point of the substrate 10, the first predetermined temperature may be between 400°C and 700°C. If the material of the substrate 10 is silicon, germanium or sapphire, the first predetermined temperature may also be above 700°C. After the carbon precursor gas is decomposed, carbon atoms 111p will dissolve into the metal layer 110 to form a solid solution, as shown in FIG. 2C. That is to say, a plurality of carbon atoms 111p are solid-dissolved in the surface layer of the metal layer 110 and located on the side far from the substrate 10.

接著,請參照圖1以及圖2D。在步驟S203中,冷卻基底以及金屬層至一第二預定溫度,以驅使金屬層內的碳原子被析出於金屬層的表面,而形成結晶碳層。 Next, please refer to FIGS. 1 and 2D. In step S203, the substrate and the metal layer are cooled to a second predetermined temperature to drive carbon atoms in the metal layer to be deposited on the surface of the metal layer to form a crystalline carbon layer.

如圖2D所示,在基底10以及金屬層110被降溫至第二預定溫度後,金屬層110內的碳原子111p會被析出於金屬層110的表面。第二預定溫度可介於15℃至35℃之間。 As shown in FIG. 2D, after the substrate 10 and the metal layer 110 are cooled to the second predetermined temperature, the carbon atoms 111p in the metal layer 110 will be deposited on the surface of the metal layer 110. The second predetermined temperature may be between 15°C and 35°C.

須說明的是,碳原子在金屬層110內的溶解度(後文中稱為碳溶解度),會隨著溫度下降而減少。既然第一預定溫度大於第二預定溫度,在第一預定溫度下的碳溶解度會大於在第二溫度下的碳溶解度。也就是說,在降溫過程中,金屬層110內的碳原子因濃度過飽和而析出於金屬層110的表面。 It should be noted that the solubility of carbon atoms in the metal layer 110 (hereinafter referred to as carbon solubility) will decrease as the temperature decreases. Since the first predetermined temperature is greater than the second predetermined temperature, the carbon solubility at the first predetermined temperature will be greater than the carbon solubility at the second temperature. That is to say, during the cooling process, the carbon atoms in the metal layer 110 are deposited on the surface of the metal layer 110 due to the supersaturation of the concentration.

另外,析出於金屬層110表面的碳原子會有序地排列,而形成結晶碳層111。須說明的是,結晶碳層111的晶體結構是介於非晶結構與單晶結構之間。結晶碳層111可能包含石墨、石墨烯或者類鑽碳。在一實施例中,結晶碳層111包含石墨烯,且具有六角晶格結構。由於結晶碳層111的晶格常數和部分三五族半導體材料(如:氮化鎵)的晶格常數可相互匹配,因而適合於成長這類三 五族半導體材料的磊晶層。所述的晶格常數匹配是指兩種異質材料的晶格常數之間的差異不超過5%。據此,通過形成結晶碳層111,可以使成長基板1具有可用以成長磊晶層的成長表面111S。 In addition, the carbon atoms deposited on the surface of the metal layer 110 are arranged in an orderly manner to form the crystalline carbon layer 111. It should be noted that the crystal structure of the crystalline carbon layer 111 is between the amorphous structure and the single crystal structure. The crystalline carbon layer 111 may include graphite, graphene, or diamond-like carbon. In one embodiment, the crystalline carbon layer 111 includes graphene and has a hexagonal lattice structure. Since the lattice constant of the crystalline carbon layer 111 and the lattice constant of part of the Group III-V semiconductor materials (such as gallium nitride) can be matched with each other, it is suitable for the growth of such three Epitaxial layer of Group V semiconductor material. The lattice constant matching means that the difference between the lattice constants of the two heterogeneous materials does not exceed 5%. Accordingly, by forming the crystalline carbon layer 111, the growth substrate 1 can have a growth surface 111S that can be used to grow the epitaxial layer.

在降溫過程中,幾乎大部分的碳原子都會被析出於金屬層110表面,但少量的碳原子有可能留在金屬層110內而未被析出。因此,金屬層110內含有微量的碳原子。如圖2D所示,金屬層110包括多個碳原子111p,且碳原子111p分布於金屬層110的表層內,並位於遠離基底10的一側。 During the cooling process, almost most of the carbon atoms will be deposited on the surface of the metal layer 110, but a small amount of carbon atoms may remain in the metal layer 110 without being precipitated. Therefore, the metal layer 110 contains a small amount of carbon atoms. As shown in FIG. 2D, the metal layer 110 includes a plurality of carbon atoms 111p, and the carbon atoms 111p are distributed in the surface layer of the metal layer 110 and located on the side far from the substrate 10.

在其他實施例中,若金屬層110的碳溶解度低於0.01%,再通過控制溫度參數(包括第一預定溫度、第二預定溫度以及降溫速率)以及碳前驅氣體的流量,也有可能在降溫至第二預定溫度後,使金屬層110內的碳原子全部析出。另外,結晶碳層111的厚度大約介於10奈米至20奈米,可通過控制溫度參數以及碳前驅氣體的流量來調整。 In other embodiments, if the carbon solubility of the metal layer 110 is less than 0.01%, then by controlling the temperature parameters (including the first predetermined temperature, the second predetermined temperature, and the cooling rate) and the flow rate of the carbon precursor gas, it is also possible to cool the temperature to After the second predetermined temperature, all carbon atoms in the metal layer 110 are precipitated. In addition, the thickness of the crystalline carbon layer 111 is approximately between 10 nm and 20 nm, which can be adjusted by controlling the temperature parameter and the flow rate of the carbon precursor gas.

如圖2D所示,通過上述步驟,可形成用以成長磊晶層的成長基板1。成長基板1包括基底10以及位於基底10上的複合膜11,且複合膜11具有金屬層110以及結晶碳層111,其中金屬層110位於結晶碳層111與基底10之間,且結晶碳層111具有可成長磊晶層的成長表面111S。 As shown in FIG. 2D, through the above steps, a growth substrate 1 for growing an epitaxial layer can be formed. The growth substrate 1 includes a base 10 and a composite film 11 on the base 10, and the composite film 11 has a metal layer 110 and a crystalline carbon layer 111, wherein the metal layer 110 is located between the crystalline carbon layer 111 and the base 10, and the crystalline carbon layer 111 It has a growth surface 111S that can grow an epitaxial layer.

也就是說,即便基底10的材料是非晶材料,通過在基底10上形成具有金屬層110以及結晶碳層111的複合膜11,可形成適合於磊晶的成長表面111S。 That is, even if the material of the substrate 10 is an amorphous material, by forming the composite film 11 having the metal layer 110 and the crystalline carbon layer 111 on the substrate 10, a growth surface 111S suitable for epitaxial growth can be formed.

接著,以濺鍍製程為例,來詳細說明本發明實施例形成複合膜11的步驟。請一併參照圖3至圖5。圖3顯示本發明一實施例在形成複合膜過程中的基底溫度與時間的曲線圖。圖4顯示本發明一實施例在形成複合膜過程中的電漿功率與時間的曲線圖。圖5顯示本發明一實施例在形成複合膜過程中的氣體流量與時間的曲線圖。 Next, taking the sputtering process as an example, the steps of forming the composite film 11 according to the embodiment of the present invention will be described in detail. Please refer to FIGS. 3 to 5 together. FIG. 3 shows a graph of substrate temperature and time during the formation of a composite film according to an embodiment of the invention. FIG. 4 shows a graph of plasma power and time during the formation of a composite film according to an embodiment of the invention. FIG. 5 shows a graph of gas flow rate and time during the formation of a composite film according to an embodiment of the invention.

需先說明的是,圖3中所繪示的溫度曲線僅是用來表示在形成複合膜的過程中,被預先設定的溫度變化趨勢,並非反映實際的溫度曲線。相似地,圖4以及圖5中的電漿功率曲線以及氣體流量曲線也僅是分別用來表示在形成複合膜的過程中,被預先設定的電漿功率變化趨勢以及氣體流量的變化趨勢。 It should be noted that the temperature curve shown in FIG. 3 is only used to indicate the predetermined temperature change trend during the formation of the composite film, and does not reflect the actual temperature curve. Similarly, the plasma power curves and the gas flow curves in FIG. 4 and FIG. 5 are only used to represent the predetermined change trend of the plasma power and the gas flow rate during the formation of the composite film, respectively.

另外,在形成複合膜11之前,基底10已被設置在真空腔體內。如圖3至圖5所示,在形成複合膜的步驟中,分為三個階段。在第一階段P1中,是在基底10上形成金屬層110。在第二階段P2中,是使碳原子固溶在金屬層110內。在第三階段P3中,是使碳原子析出於金屬層110的表面,而形成結晶碳層111。 In addition, before the composite film 11 is formed, the substrate 10 has been set in the vacuum chamber. As shown in FIGS. 3 to 5, in the step of forming the composite film, there are three stages. In the first stage P1, the metal layer 110 is formed on the substrate 10. In the second stage P2, carbon atoms are dissolved in the metal layer 110. In the third stage P3, carbon atoms are deposited on the surface of the metal layer 110 to form a crystalline carbon layer 111.

圖3中的溫度曲線A1、A2分別表示不同的實施方式。溫度曲線A1代表在形成金屬層110之前,基底10一開始就被加熱到第一預定溫度T1。之後,基底10被維持在第一預定溫度T1直到第二階段P2結束。在第三階段P3中,基底10是由第一預定溫度T1降溫至第二預定溫度T2,以驅使碳原子析出於金屬層110的表面。 The temperature curves A1 and A2 in FIG. 3 respectively show different embodiments. The temperature curve A1 represents that the substrate 10 is heated to the first predetermined temperature T1 at the beginning before the metal layer 110 is formed. Thereafter, the substrate 10 is maintained at the first predetermined temperature T1 until the end of the second stage P2. In the third stage P3, the substrate 10 is lowered from the first predetermined temperature T1 to the second predetermined temperature T2 to drive the carbon atoms out of the surface of the metal layer 110.

另一溫度曲線A2代表在形成金屬層110的過程中,基底10也可以先不加熱,而維持在較低的第二預定溫度T2。在進入第二階段P2之前,再將基底10加熱至第一預定溫度T1,並使基底10維持在第一預定溫度T1,直到第二階段P2結束。之後,在第三階段P3,基底10同樣是由第一預定溫度T1降溫至第二預定溫度T2,以驅使碳原子析出於金屬層110的表面。 Another temperature curve A2 represents that during the formation of the metal layer 110, the substrate 10 may not be heated first, but maintained at a lower second predetermined temperature T2. Before entering the second stage P2, the substrate 10 is heated to the first predetermined temperature T1, and the substrate 10 is maintained at the first predetermined temperature T1 until the end of the second stage P2. Afterwards, in the third stage P3, the substrate 10 is also cooled from the first predetermined temperature T1 to the second predetermined temperature T2 to drive the carbon atoms out of the surface of the metal layer 110.

圖4中的電漿功率曲線可顯示產生電漿以形成金屬層110的時間點。配合圖3以及圖4,在一實施例中,根據溫度曲線A1以及電漿功率曲線B1,在第一階段P1時,可在基底10被加熱至第一預定溫度T1後,開啟電源增加電漿功率,以在真空腔體內產生電漿,以撞擊靶材形成金屬層110於基底10上。在另一實施例中,也可以在基底10尚未被加熱到第一預定溫度T1之前,開啟電源 增加電漿功率。當金屬層110的厚度達到一預設值時,再將電源關閉。 The plasma power curve in FIG. 4 may show the time point when the plasma is generated to form the metal layer 110. 3 and 4, in one embodiment, according to the temperature curve A1 and the plasma power curve B1, in the first stage P1, after the substrate 10 is heated to the first predetermined temperature T1, the power is turned on to increase the plasma Power to generate plasma in the vacuum chamber to strike the target to form the metal layer 110 on the substrate 10. In another embodiment, the power supply may be turned on before the substrate 10 has not been heated to the first predetermined temperature T1 Increase plasma power. When the thickness of the metal layer 110 reaches a preset value, the power is turned off.

請配合參照圖5,在本實施例中,其中一氣體流量曲線C1代表通入真空腔體內的氬氣氣體流量在不同階段的變化。另一氣體流量曲線C2代表通入真空腔體內的碳前驅氣體的氣體流量在不同階段的變化。 Please refer to FIG. 5. In this embodiment, one of the gas flow curves C1 represents the change of the argon gas flow into the vacuum chamber at different stages. Another gas flow curve C2 represents the change of the gas flow rate of the carbon precursor gas into the vacuum chamber at different stages.

參照圖3至圖5,根據電漿功率曲線B1以及氣體流量曲線C1,在第一階段P1以及第二階段P2,通入真空腔體內的氬氣氣體流量達到一預設值,以產生氬氣電漿。根據另一氣體流量曲線C2,在第一階段P1並未通入碳前驅氣體。在第二階段P2時,才於真空腔體內通入碳前驅氣體。換言之,在第二階段P2中,氬氣與碳前驅氣體會共同通入真空腔體內。氬氣與碳前驅氣體的比例可以根據實際需求來設定。 3 to 5, according to the plasma power curve B1 and the gas flow curve C1, in the first stage P1 and the second stage P2, the flow of argon gas into the vacuum chamber reaches a preset value to generate argon gas Plasma. According to another gas flow curve C2, no carbon precursor gas is introduced in the first stage P1. At the second stage P2, the carbon precursor gas was introduced into the vacuum chamber. In other words, in the second stage P2, the argon gas and the carbon precursor gas will pass into the vacuum chamber together. The ratio of argon gas to carbon precursor gas can be set according to actual needs.

根據電漿功率曲線B1,由於在第二階段P2中電漿電源尚未被關閉,因此金屬層110的厚度仍持續增加。此時,電漿也可輔助分解碳前驅氣體,從而使碳原子111p溶入金屬層110內,而形成固溶體(如圖2C)。 According to the plasma power curve B1, since the plasma power supply has not been turned off in the second stage P2, the thickness of the metal layer 110 continues to increase. At this time, the plasma can also assist in decomposing the carbon precursor gas, so that the carbon atoms 111p dissolve into the metal layer 110 to form a solid solution (see FIG. 2C).

配合參照圖3至圖5,根據溫度曲線A1、A2、電漿功率曲線B1以及氣體流量曲線C1、C2,在進入第三階段P3之前,也就是在冷卻基底10的步驟之前,停止供應碳前驅氣體以及氬氣氣體,並關閉電漿電源。之後,在第三階段P3中,隨著基底10的溫度下降,可驅使金屬層110內的碳原子因濃度過飽和而析出於金屬層110的表面,從而形成結晶碳層(如圖2D)。 With reference to FIGS. 3 to 5, according to the temperature curves A1, A2, the plasma power curve B1, and the gas flow curves C1, C2, before entering the third stage P3, that is, before the step of cooling the substrate 10, the supply of the carbon precursor is stopped Gas and argon gas, and turn off the plasma power. Then, in the third stage P3, as the temperature of the substrate 10 decreases, the carbon atoms in the metal layer 110 may be driven to precipitate on the surface of the metal layer 110 due to oversaturation in concentration, thereby forming a crystalline carbon layer (see FIG. 2D).

本發明實施例的成長基板1可應用於成長磊晶層,而形成半導體元件。前述的半導體元件例如是發光二極體或者是三五族太陽能電池。請參照圖6,以下以發光元件為例,來進一步說明本發明實施例的成長基板之應用。 The growth substrate 1 of the embodiment of the present invention can be applied to grow an epitaxial layer to form a semiconductor device. The aforementioned semiconductor element is, for example, a light-emitting diode or a group III-V solar cell. Please refer to FIG. 6. The following uses light-emitting devices as an example to further illustrate the application of the growth substrate according to an embodiment of the present invention.

發光元件M1包括通過前述製造方法所形成的成長基板1、緩 衝層BL以及半導體發光結構2,其中緩衝層BL位於結晶碳層111與半導體發光結構2之間。具體而言,可在成長基板1上依序形成緩衝層BL以及半導體發光結構2,來形成本發明實施例的發光元件M1。 The light-emitting element M1 includes the growth substrate 1 formed by the aforementioned manufacturing method, and The buffer layer BL and the semiconductor light emitting structure 2, wherein the buffer layer BL is located between the crystalline carbon layer 111 and the semiconductor light emitting structure 2. Specifically, the buffer layer BL and the semiconductor light emitting structure 2 may be formed on the growth substrate 1 in order to form the light emitting element M1 of the embodiment of the present invention.

在一實施例中,緩衝層BL的材料為氮化鎵、氮化鋁、氧化鋅、砷化鎵、矽或鍺。成長在結晶碳層111上的緩衝層BL可具有較佳的結晶性,從而使後續成長在緩衝層BL上的半導體發光結構2也具有較好的磊晶品質。 In one embodiment, the material of the buffer layer BL is gallium nitride, aluminum nitride, zinc oxide, gallium arsenide, silicon, or germanium. The buffer layer BL grown on the crystalline carbon layer 111 may have better crystallinity, so that the semiconductor light emitting structure 2 subsequently grown on the buffer layer BL also has better epitaxial quality.

緩衝層BL的晶格常數,可以和半導體發光結構2的晶格常數相互匹配。在一實施例中,當半導體發光結構2的材料為氮化鎵時,緩衝層BL的材料為氮化鋁或氧化鋅。 The lattice constant of the buffer layer BL can match the lattice constant of the semiconductor light emitting structure 2. In one embodiment, when the material of the semiconductor light emitting structure 2 is gallium nitride, the material of the buffer layer BL is aluminum nitride or zinc oxide.

除此之外,在形成半導體發光結構2的步驟中,緩衝層BL可以減少因為成長基板1與半導體發光結構之間的熱膨脹係數差異而產生的熱應力。在一實施例中,緩衝層BL的厚度可介於50至200nm(奈米)。 In addition, in the step of forming the semiconductor light emitting structure 2, the buffer layer BL can reduce the thermal stress generated due to the difference in thermal expansion coefficient between the growth substrate 1 and the semiconductor light emitting structure. In an embodiment, the thickness of the buffer layer BL may be between 50 and 200 nm (nm).

另外,在本實施例中,緩衝層BL也可通過濺鍍形成於成長基板1上,且形成緩衝層BL的加工溫度是介於500℃至600℃之間。相較於有機金屬化學氣相沉積而言,通過濺鍍來形成緩衝層BL,可使加工溫度較低,且有利於大面積製作。 In addition, in this embodiment, the buffer layer BL can also be formed on the growth substrate 1 by sputtering, and the processing temperature for forming the buffer layer BL is between 500°C and 600°C. Compared with organometallic chemical vapor deposition, forming the buffer layer BL by sputtering can lower the processing temperature and facilitate large-area fabrication.

半導體發光結構2包括多層磊晶層,且多層磊晶層至少包括P型半導體層20、N型半導體層21以及一主動層22。主動層22位於P型半導體層20以及N型半導體層21之間,並可包括單個或者多個量子阱(quantum well)。在一實施例中,半導體發光結構2的材料可以是氮化鎵(GaN)、砷化鎵(GaAs)、磷化鋁(AlP)等三五族半導體材料。 The semiconductor light emitting structure 2 includes multiple epitaxial layers, and the multiple epitaxial layers include at least a P-type semiconductor layer 20, an N-type semiconductor layer 21, and an active layer 22. The active layer 22 is located between the P-type semiconductor layer 20 and the N-type semiconductor layer 21, and may include a single or multiple quantum wells. In an embodiment, the material of the semiconductor light-emitting structure 2 may be a group III-V semiconductor material such as gallium nitride (GaN), gallium arsenide (GaAs), and aluminum phosphide (AlP).

半導體發光結構2是通過物理氣相沉積形成於緩衝層BL上。進一步而言,半導體發光結構2可通過濺鍍形成於緩衝層BL上。須說明的是,在現有的技術中,較少使用濺鍍來製作半導體發光 結構,主要因為目前通過濺鍍形成品質較高的磊晶層仍有一定的困難度,而磊晶層的品質又影響發光元件M1的發光效率以及亮度。據此,以往在製造半導體發光結構2時,濺鍍通常不會是優先選用的製作方式。 The semiconductor light emitting structure 2 is formed on the buffer layer BL by physical vapor deposition. Further, the semiconductor light emitting structure 2 may be formed on the buffer layer BL by sputtering. It should be noted that in the prior art, sputtering is rarely used to make semiconductor light emitting The structure is mainly due to the difficulty in forming an epitaxial layer of higher quality by sputtering at present, and the quality of the epitaxial layer affects the luminous efficiency and brightness of the light emitting element M1. According to this, in the past when manufacturing the semiconductor light emitting structure 2, sputtering is generally not the preferred manufacturing method.

但是,在將發光元件M1應用在顯示裝置中作為顯示畫素時,由於發光元件M1的數量巨大(可能多達數百萬個),因此對於單個發光元件M1的亮度以及發光效率的要求較為寬鬆。在以能夠大面積地形成半導體發光結構2作為主要考量的前提下,本發明實施例中,是選擇通過濺鍍來製造半導體發光結構2。另一方面,應用本發明實施例的成長基板1,並通過濺鍍來成長半導體發光結構2時,可使半導體發光結構2具有符合要求的磊晶品質。如此,有利於發光元件M1大量生產,而可進一步降低顯示裝置的成本。 However, when the light-emitting element M1 is applied to a display device as a display pixel, since the number of light-emitting elements M1 is huge (possibly as many as millions), the requirements for the brightness and luminous efficiency of a single light-emitting element M1 are relatively loose . On the premise that the semiconductor light emitting structure 2 can be formed in a large area as a main consideration, in the embodiment of the present invention, the semiconductor light emitting structure 2 is selected to be manufactured by sputtering. On the other hand, when the growth substrate 1 of the embodiment of the present invention is applied and the semiconductor light emitting structure 2 is grown by sputtering, the semiconductor light emitting structure 2 can have epitaxial quality that meets the requirements. In this way, mass production of the light-emitting element M1 is facilitated, and the cost of the display device can be further reduced.

另外,相較於有機金屬化學氣相沉積製程,通過濺鍍來製造半導體發光結構2的製程溫度也相對較低。因此,用於形成成長基板1的基底10的材料的選擇也較多。本發明實施例所提供的發光元件M1可被應用於電子裝置(未圖示)中,前述的電子裝置例如是顯示裝置或者照明裝置。 In addition, compared with the organic metal chemical vapor deposition process, the process temperature for manufacturing the semiconductor light emitting structure 2 by sputtering is relatively low. Therefore, there are many choices of materials for forming the base 10 of the growth substrate 1. The light emitting element M1 provided by the embodiment of the present invention can be applied to an electronic device (not shown). The aforementioned electronic device is, for example, a display device or a lighting device.

換句話說,電子裝置可以包括多個發光元件M1。當電子裝置為顯示裝置時,多個發光元件M1可以成陣列排列,以作為顯示畫素,或者是作為顯示裝置的背光源。在另一實施例中,當電子裝置為照明裝置時,多個成陣列排列的發光元件M1可以形成一面光源。 In other words, the electronic device may include a plurality of light emitting elements M1. When the electronic device is a display device, the plurality of light-emitting elements M1 may be arranged in an array to serve as a display pixel or as a backlight of the display device. In another embodiment, when the electronic device is a lighting device, a plurality of light-emitting elements M1 arranged in an array may form a surface light source.

綜上所述,本發明的其中一有益效果在於,本發明所提供的電子裝置、發光元件、成長基板及其製造方法,其能通過其能通過“在一基底10上形成具有結晶碳層111以及金屬層110的複合膜11”的技術方案,可以形成用於成長磊晶層的成長基板1。 In summary, one of the beneficial effects of the present invention is that the electronic device, the light-emitting element, the growth substrate and the manufacturing method thereof provided by the present invention can pass through the formation of a crystalline carbon layer 111 on a substrate 10 In addition, the technical solution of the composite film 11" of the metal layer 110 can form the growth substrate 1 for growing the epitaxial layer.

相較於現有的藍寶石基板以及砷化鎵基板,本發明實施例所提供的成長基板1的成本較低,且可用以大面積製造半導體發光 結構2,而有利於發光元件M1的量產。如此,當本發明實施例的發光元件應用於電子裝置時,可使電子裝置具有較低的製造成本。另外,本發明實施例中,成長基板1的基底10可選擇金屬材料,因此對於發光元件M1而言,具有更好的散熱效果。 Compared with the existing sapphire substrates and gallium arsenide substrates, the growth substrate 1 provided by the embodiments of the present invention has lower cost and can be used to manufacture semiconductor light-emitting devices in a large area Structure 2 is beneficial to mass production of the light-emitting element M1. As such, when the light-emitting element of the embodiment of the present invention is applied to an electronic device, the electronic device can have a lower manufacturing cost. In addition, in the embodiment of the present invention, the base 10 of the growth substrate 1 can be selected from a metal material, so that the light emitting element M1 has a better heat dissipation effect.

以上所公開的內容僅為本發明的優選可行實施例,並非因此侷限本發明的申請專利範圍,所以凡是運用本發明說明書及圖式內容所做的等效技術變化,均包含於本發明的申請專利範圍內。 The content disclosed above is only a preferred and feasible embodiment of the present invention, and therefore does not limit the scope of the patent application of the present invention, so any equivalent technical changes made by using the description and drawings of the present invention are included in the application of the present invention. Within the scope of the patent.

S100、S200、S201~S203‧‧‧流程步驟 S100, S200, S201~S203 ‧‧‧ flow steps

Claims (17)

一種成長基板的製造方法,其中,所述成長基板用以成長磊晶層,且所述製造方法包括:提供一基底;以及形成一複合膜於所述基底上,其中,所述複合膜包括一金屬層以及一結晶碳層,且所述金屬層位於所述基底與所述結晶碳層之間;其中,在形成所述結晶碳層之前,多個碳原子固溶於所述金屬層的表層內,且位於遠離所述基底的一側。 A method for manufacturing a growth substrate, wherein the growth substrate is used to grow an epitaxial layer, and the manufacturing method includes: providing a substrate; and forming a composite film on the substrate, wherein the composite film includes a A metal layer and a crystalline carbon layer, and the metal layer is located between the substrate and the crystalline carbon layer; wherein, before forming the crystalline carbon layer, a plurality of carbon atoms are solid dissolved in the surface layer of the metal layer Inside, and located on the side away from the substrate. 如請求項1所述的製造方法,其中,形成所述複合膜的步驟包括:形成所述金屬層於所述基底上;在一第一預定溫度下,增厚所述金屬層,並同步地暴露所述金屬層於一碳前驅氣體中,以使所述碳前驅氣體在所述第一預定溫度下被分解而產生碳原子,且使所述碳原子溶入所述金屬層內,其中,所述第一預定溫度至少大於400℃;以及冷卻所述基底以及所述金屬層至一第二預定溫度,以驅使所述金屬層內的碳原子被析出於所述金屬層的表面,而形成所述結晶碳層。 The manufacturing method according to claim 1, wherein the step of forming the composite film includes: forming the metal layer on the substrate; thickening the metal layer at a first predetermined temperature, and simultaneously Exposing the metal layer to a carbon precursor gas, so that the carbon precursor gas is decomposed at the first predetermined temperature to generate carbon atoms, and the carbon atoms are dissolved into the metal layer, wherein, The first predetermined temperature is at least greater than 400°C; and the substrate and the metal layer are cooled to a second predetermined temperature to drive carbon atoms in the metal layer to be deposited on the surface of the metal layer to form The crystalline carbon layer. 如請求項2所述的製造方法,其中,在形成所述金屬層的步驟中,所述基底被加熱至所述第一預定溫度,且所述第一預定溫度介於400℃至700℃。 The manufacturing method according to claim 2, wherein, in the step of forming the metal layer, the substrate is heated to the first predetermined temperature, and the first predetermined temperature is between 400°C and 700°C. 如請求項2所述的製造方法,其中,所述碳前驅氣體為碳氫化合物氣體。 The manufacturing method according to claim 2, wherein the carbon precursor gas is a hydrocarbon gas. 如請求項2所述的製造方法,其中,在冷卻所述基底的步驟之前,停止供應所述碳前驅氣體。 The manufacturing method according to claim 2, wherein the supply of the carbon precursor gas is stopped before the step of cooling the substrate. 如請求項2所述的製造方法,其中,所述金屬層是通過物理氣相沉積法而形成。 The manufacturing method according to claim 2, wherein the metal layer is formed by a physical vapor deposition method. 如請求項1所述的製造方法,其中,所述基底的材料為非晶材料,且所述金屬層的材料選自銅、鎳、銠、鈷、金、銀、鉑及其任意組合所組成的群組,且所述金屬層含有碳原子。 The manufacturing method according to claim 1, wherein the material of the substrate is an amorphous material, and the material of the metal layer is selected from copper, nickel, rhodium, cobalt, gold, silver, platinum and any combination thereof Group, and the metal layer contains carbon atoms. 一種成長基板,其用以成長磊晶層,所述成長基板包括:一基底;以及一複合膜,其設置於所述基底上,其中,所述複合膜包括一金屬層以及一結晶碳層,所述金屬層位於所述基底與所述結晶碳層之間;其中,所述金屬層包括多個碳原子,多個所述碳原子分布於所述金屬層的表層內,並位於遠離所述基底的一側。 A growth substrate for growing an epitaxial layer. The growth substrate includes: a substrate; and a composite film disposed on the substrate, wherein the composite film includes a metal layer and a crystalline carbon layer, The metal layer is located between the substrate and the crystalline carbon layer; wherein the metal layer includes a plurality of carbon atoms, and the plurality of carbon atoms are distributed in the surface layer of the metal layer and are located away from the The side of the base. 如請求項8所述的成長基板,其中,所述基底的材料為非晶材料,且所述金屬層的材料選自銅、鎳、銠、鈷、金、銀、鉑及其任意組合所組成的群組,且所述金屬層含有碳原子。 The growth substrate according to claim 8, wherein the material of the base is an amorphous material, and the material of the metal layer is selected from copper, nickel, rhodium, cobalt, gold, silver, platinum, and any combination thereof Group, and the metal layer contains carbon atoms. 如請求項8所述的成長基板,其中,所述金屬層的厚度介於450nm至700nm之間,所述結晶碳層的厚度介於10nm至20nm之間。 The growth substrate according to claim 8, wherein the thickness of the metal layer is between 450 nm and 700 nm, and the thickness of the crystalline carbon layer is between 10 nm and 20 nm. 一種發光元件,其包括:一成長基板,其包括一基底以及一設置於所述基底上的複合膜,其中,所述複合膜包括一金屬層以及一結晶碳層,所 述金屬層位於所述基底與所述結晶碳層之間,所述金屬層包括多個碳原子,多個所述碳原子分布於所述金屬層的表層內,並位於遠離所述基底的一側;以及一半導體發光結構,其設置於所述結晶碳層上,其中,所述半導體發光結構包括多層濺鍍磊晶層。 A light-emitting device includes a growth substrate including a substrate and a composite film disposed on the substrate, wherein the composite film includes a metal layer and a crystalline carbon layer. The metal layer is located between the substrate and the crystalline carbon layer. The metal layer includes a plurality of carbon atoms. The plurality of carbon atoms are distributed in the surface layer of the metal layer and are located at a distance from the substrate. Side; and a semiconductor light emitting structure, which is disposed on the crystalline carbon layer, wherein the semiconductor light emitting structure includes multiple layers of sputtered epitaxial layer. 如請求項11所述的發光元件,其中,所述基底的材料為非晶基底,所述金屬層的材料選自銅、鎳、銠、鈷、金、銀、鉑及其任意組合所組成的群組,且所述金屬層含有碳原子。 The light-emitting element according to claim 11, wherein the material of the substrate is an amorphous substrate, and the material of the metal layer is selected from the group consisting of copper, nickel, rhodium, cobalt, gold, silver, platinum, and any combination thereof Group, and the metal layer contains carbon atoms. 如請求項11所述的發光元件,其中,所述金屬層的厚度介於450nm至700nm之間,所述結晶碳層的厚度介於10nm至20nm之間。 The light-emitting element according to claim 11, wherein the thickness of the metal layer is between 450 nm and 700 nm, and the thickness of the crystalline carbon layer is between 10 nm and 20 nm. 如請求項11所述的發光元件,還進一步包括:一緩衝層,位於所述結晶碳層與所述半導體發光結構之間,所述緩衝層的材料為氮化鎵、氮化鋁、氧化鋅、砷化鎵、矽或鍺。 The light-emitting element according to claim 11, further comprising: a buffer layer between the crystalline carbon layer and the semiconductor light-emitting structure, and the material of the buffer layer is gallium nitride, aluminum nitride, zinc oxide , Gallium arsenide, silicon or germanium. 如請求項11所述的發光元件,其中,所述半導體發光結構包括多層磊晶層,且每一所述磊晶層的材料為三五族半導體材料。 The light-emitting element according to claim 11, wherein the semiconductor light-emitting structure includes multiple epitaxial layers, and the material of each epitaxial layer is a group III-V semiconductor material. 一種電子裝置,所述電子裝置包括多個發光元件,每一所述發光元件包括:一成長基板,其包括一基底以及一設置於所述基底上的複合膜,其中,所述複合膜包括一金屬層以及一結晶碳層,所述金屬層位於所述基底與所述結晶碳層之間,所述金屬層包括多個碳原子,多個所述碳原子分布於所述金屬層的表層內,並位於遠離所述基底的一側;以及 一半導體發光結構,其設置於所述結晶碳層上,其中,所述半導體發光結構包括多層濺鍍磊晶層。 An electronic device including a plurality of light-emitting elements, each of which includes: a growth substrate including a substrate and a composite film disposed on the substrate, wherein the composite film includes a A metal layer and a crystalline carbon layer, the metal layer is located between the substrate and the crystalline carbon layer, the metal layer includes a plurality of carbon atoms, and the plurality of carbon atoms are distributed in the surface layer of the metal layer And located on the side far from the base; and A semiconductor light emitting structure is disposed on the crystalline carbon layer, wherein the semiconductor light emitting structure includes multiple layers of sputtered epitaxial layers. 如請求項16所述的電子裝置,其中,所述電子裝置為顯示裝置或者照明裝置。 The electronic device according to claim 16, wherein the electronic device is a display device or a lighting device.
TW107124781A 2018-07-18 2018-07-18 Electronic apparatus, light emitting device, and growth substrate and manufacturing method thereof TWI684681B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107124781A TWI684681B (en) 2018-07-18 2018-07-18 Electronic apparatus, light emitting device, and growth substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107124781A TWI684681B (en) 2018-07-18 2018-07-18 Electronic apparatus, light emitting device, and growth substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW202006197A TW202006197A (en) 2020-02-01
TWI684681B true TWI684681B (en) 2020-02-11

Family

ID=70412655

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107124781A TWI684681B (en) 2018-07-18 2018-07-18 Electronic apparatus, light emitting device, and growth substrate and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI684681B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201341554A (en) * 2012-04-06 2013-10-16 Academia Sinica Process for forming carbon film or inorganic material film on substrate by physical vapor deposition
TW201600459A (en) * 2014-06-19 2016-01-01 H & H T Co Ltd Graphene manufacturing method
TW201712891A (en) * 2015-07-13 2017-04-01 卡亞奈米公司 Device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201341554A (en) * 2012-04-06 2013-10-16 Academia Sinica Process for forming carbon film or inorganic material film on substrate by physical vapor deposition
TW201600459A (en) * 2014-06-19 2016-01-01 H & H T Co Ltd Graphene manufacturing method
TW201712891A (en) * 2015-07-13 2017-04-01 卡亞奈米公司 Device

Also Published As

Publication number Publication date
TW202006197A (en) 2020-02-01

Similar Documents

Publication Publication Date Title
CN104037287B (en) LED epitaxial wafer grown on Si substrate and preparation method thereof
JP2018087128A (en) Method for growing nitride semiconductor layer
CN101378015B (en) Group III nitride semiconductor and a manufacturing method thereof
KR102547293B1 (en) Ion Beam Assisted Deposition Epitaxial Hexagonal Materials on Textured Substrates
TWI303847B (en)
CN112768571A (en) Manufacturing method of micro light-emitting diode structure
TWI505498B (en) A film forming method, a vacuum processing apparatus, a manufacturing method of a semiconductor light emitting element, a semiconductor light emitting element, a lighting device
WO2013186749A1 (en) Method for depositing a group iii nitride semiconductor film
JP2019524982A (en) IIIA nitride growth system and method
CN104393128A (en) Nitride LED epitaxial structure with SiC substrate and preparation method of nitride LED epitaxial structur
CN204303857U (en) A kind of nitride LED epitaxial slice structure using the derivative film of two dimension
WO2007011193A1 (en) Method for manufacturing compliant substrate, compliant substrate manufactured thereby, gallium nitride based compound semiconductor device having the compliant substrate and manufacturing method thereof
US8466472B2 (en) Semiconductor device, method of manufacturing the same, and electronic device including the semiconductor device
US20140151714A1 (en) Gallium nitride substrate and method for fabricating the same
TWI684681B (en) Electronic apparatus, light emitting device, and growth substrate and manufacturing method thereof
TWI240430B (en) Group III nitrides semiconductor device and manufacturing process
CN109411580B (en) Gallium nitride-based power device and preparation method thereof
US20140335683A1 (en) Method for producing gallium nitride
TWI648875B (en) Substrate, electronic apparatus, and light emitting device and manufacturing method thereof
TW202002331A (en) Electronic apparatus, and light-emitting device and manufacturing method thereof
USRE49869E1 (en) Group-III nitride devices and systems on IBAD-textured substrates
CN213327795U (en) Semiconductor epitaxial structure and application thereof
US20240234141A9 (en) Semiconductor substrate, method for manufacturing the same, apparatus for manufacturing the same, and template substrate
US20240136181A1 (en) Semiconductor substrate, method for manufacturing the same, apparatus for manufacturing the same, and template substrate
KR102094990B1 (en) Method for growing nitride semiconductor