TWI682060B - Gas supply apparatus - Google Patents

Gas supply apparatus Download PDF

Info

Publication number
TWI682060B
TWI682060B TW107146937A TW107146937A TWI682060B TW I682060 B TWI682060 B TW I682060B TW 107146937 A TW107146937 A TW 107146937A TW 107146937 A TW107146937 A TW 107146937A TW I682060 B TWI682060 B TW I682060B
Authority
TW
Taiwan
Prior art keywords
gas
raw material
dilution
container
chamber
Prior art date
Application number
TW107146937A
Other languages
Chinese (zh)
Other versions
TW201930643A (en
Inventor
竹本菊郎
石川亨一
三平博
Original Assignee
日商Ace股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Ace股份有限公司 filed Critical 日商Ace股份有限公司
Publication of TW201930643A publication Critical patent/TW201930643A/en
Application granted granted Critical
Publication of TWI682060B publication Critical patent/TWI682060B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

A gas supply apparatus (60) includes a material container (Zn), a thinned gas container (Xn), and a valve (Yn). The material container (Zn) accommodates a material gas (Gn). The material gas (Gn) introduced from the material container (Zn) and a carrier gas (CG) for thinning the material gas (Gn) are mixed together in the thinned gas container (Xn) to be accommodated in the thinned gas container (Xn) as a thinned material gas (Dn). The valve (Yn) is operated to allow the material gas (Gn) and the carrier gas (CG) to be introduced into the thinned gas container (Xn) at different timings. After the material gas (Gn) and the carrier gas (CG) are mixed together, the valve (Yn) is operated to allow the thinned material gas (Dn) to be released from the thinned gas container (Xn).

Description

氣體供給裝置 Gas supply device

本發明係有關一種氣體供給裝置。 The invention relates to a gas supply device.

在發明專利文獻1所記載的成膜裝置中,將原料供給至起泡器(Bubbler)內。接著,一邊以加熱器加熱起泡器,一邊使載體氣體流至起泡器,藉此在起泡器內由原料生成原料氣體。進一步地,原料氣體係透過載體氣體而自起泡器供給至成膜室。原料氣體為被供給至成膜室的對象。 In the film forming apparatus described in Invention Patent Document 1, raw materials are supplied into a bubbler. Next, while the bubbler is heated by the heater, the carrier gas is flowed to the bubbler, whereby raw material gas is generated from the raw materials in the bubbler. Further, the raw gas system is supplied from the bubbler to the film forming chamber through the carrier gas. The raw material gas is an object to be supplied to the film forming chamber.

[先前技術文獻][Prior Technical Literature] [發明專利文獻][Invention Patent Literature]

[發明專利文獻1]日本特開第2002-167672號公報。 [Invention Patent Document 1] Japanese Unexamined Patent Publication No. 2002-167672.

然而,在發明專利文獻1所記載的成膜裝置中,流量控制器(Mass Flow Controller)藉由邊使載體氣體流動邊控制載體氣體的流量,以調整原料氣體的供給量。此外,在起泡器內自原料生成原料氣體,並由起泡器直接將原 料氣體供給至成膜室。因此,難以高精度地調整原料氣體的供給量。 However, in the film forming apparatus described in Patent Document 1, the flow controller (Mass Flow Controller) controls the flow rate of the carrier gas while flowing the carrier gas to adjust the supply amount of the source gas. In addition, raw material gas is generated from raw materials in the bubbler, and the raw material gas is directly supplied to the film forming chamber by the bubbler. Therefore, it is difficult to adjust the supply amount of the raw material gas with high accuracy.

本發明係有鑑於上述問題,以提供可高精度地調整被供給之氣體的供給量之氣體供給裝置為目的。 In view of the above problems, the present invention aims to provide a gas supply device that can adjust the supply amount of supplied gas with high accuracy.

根據本發明的一態樣,氣體供給裝置係具備氣體容器、稀釋容器以及導入部。氣體容器係收容氣體。稀釋容器係混合自該氣體容器所導入的該氣體及稀釋該氣體的載體氣體,並作為稀釋氣體而收容。導入部係將該氣體及該載體氣體以不同的時間點導入該稀釋容器。該導入部係在該氣體及該載體氣體被混合之後,將該稀釋氣體自該稀釋容器排出。 According to an aspect of the present invention, the gas supply device includes a gas container, a dilution container, and an introduction portion. The gas container contains gas. The dilution container mixes the gas introduced from the gas container and the carrier gas that dilutes the gas, and is accommodated as a dilution gas. The introduction part introduces the gas and the carrier gas into the dilution container at different time points. The introduction part discharges the dilution gas from the dilution container after the gas and the carrier gas are mixed.

在本發明的氣體供給裝置中,較佳地,該氣體容器係收容作為該氣體之原料氣體。較佳地,該原料氣體係藉由化學反應而產生物質之氣體。 In the gas supply device of the present invention, preferably, the gas container contains a raw material gas as the gas. Preferably, the raw material gas system generates a substance gas by chemical reaction.

在本發明的氣體供給裝置中,較佳地,係具備複數個該氣體容器、分別對應於該複數個氣體容器的複數個該稀釋容器,以及分別對應於該複數個稀釋容器的複數個該導入部。較佳地,該複數個氣體容器係分別收容彼此不同的複數個該氣體。較佳地,各個該稀釋容器係混合自該對應的氣體容器所導入之該氣體及該載體氣體,並作為該稀釋氣體而收容。較佳地,各個該導入部係將該氣體及該載體氣體以不同的時間點導入該對應的稀釋容器,且在該氣體及該載體氣體被混合之後,將該稀釋氣體自該對應的稀 釋容器排出。 In the gas supply device of the present invention, preferably, a plurality of the gas containers, a plurality of the dilution containers respectively corresponding to the plurality of gas containers, and a plurality of the introductions corresponding to the plurality of dilution containers respectively unit. Preferably, the plurality of gas containers respectively contain a plurality of different gases. Preferably, each of the dilution containers mixes the gas and the carrier gas introduced from the corresponding gas container, and stores it as the dilution gas. Preferably, each of the introduction parts introduces the gas and the carrier gas into the corresponding dilution container at different time points, and after the gas and the carrier gas are mixed, the dilution gas is removed from the corresponding dilution container discharge.

在本發明的氣體供給裝置中,較佳地,係具備對應於該氣體容器的複數個該稀釋容器。較佳地,各個該稀釋容器係混合自該氣體容器所導入之該氣體及該載體氣體,並作為該稀釋氣體而收容。較佳地,該導入部係在該複數個稀釋容器被各自分配的不同之複數個時段中,針對每一個該稀釋容器,將該氣體及該載體氣體以不同時間點導入該稀釋容器。較佳地,該導入部係針對每一個該稀釋容器,在該氣體及該載體氣體被混合之後,將該稀釋氣體自該稀釋容器排出。 In the gas supply device of the present invention, preferably, a plurality of the dilution containers corresponding to the gas container are provided. Preferably, each of the dilution containers mixes the gas and the carrier gas introduced from the gas container, and stores it as the dilution gas. Preferably, the introduction part introduces the gas and the carrier gas into the dilution container at different time points for each of the dilution containers in different time periods in which the plurality of dilution containers are allocated respectively. Preferably, the introduction part is for each of the dilution containers, and after the gas and the carrier gas are mixed, the dilution gas is discharged from the dilution container.

在本發明的氣體供給裝置中,較佳地,係具備複數個該氣體容器。較佳地,該複數個氣體容器係分別收容彼此不同之複數個該氣體。較佳地,該稀釋容器係混合自該複數個氣體容器所導入之該複數個氣體及該載體氣體,並作為該稀釋氣體而收容。較佳地,該導入部係將該複數個氣體以不同時間點導入該稀釋容器,且在該複數個氣體及該載體氣體被混合之後,將該稀釋氣體自該稀釋容器排出。 In the gas supply device of the present invention, preferably, a plurality of the gas containers are provided. Preferably, the plurality of gas containers respectively contain a plurality of different gases. Preferably, the dilution container mixes the plurality of gases and the carrier gas introduced from the plurality of gas containers, and stores it as the dilution gas. Preferably, the introduction part introduces the plurality of gases into the dilution container at different time points, and after the plurality of gases and the carrier gas are mixed, the dilution gas is discharged from the dilution container.

較佳地,本發明的氣體供給裝置係進一步具備容積變更部。較佳地,容積變更部係變更該稀釋容器之氣體收容空間的容積。較佳地,該氣體收容空間係可收容氣體之空間。較佳地,該容積變更部係配置於該稀釋容器的內部,並透過變更該容積變更部的大小而變更該氣體收容空間的容積。 Preferably, the gas supply device of the present invention further includes a volume changing unit. Preferably, the volume changing unit changes the volume of the gas storage space of the dilution container. Preferably, the gas containing space is a space that can contain gas. Preferably, the volume changing section is arranged inside the dilution container, and the volume of the gas storage space is changed by changing the size of the volume changing section.

較佳地,本發明的氣體供給裝置係進一步具備控制該氣體容器的溫度之第1溫度控制部,以及控制該導入部的溫度之第2溫度控制部。 Preferably, the gas supply device of the present invention further includes a first temperature control unit that controls the temperature of the gas container, and a second temperature control unit that controls the temperature of the introduction unit.

較佳地,本發明的氣體供給裝置係進一步具備流量控制部,其用以控制該導入部所排出的該稀釋氣體的流量。 Preferably, the gas supply device of the present invention further includes a flow rate control section for controlling the flow rate of the dilution gas discharged from the introduction section.

較佳地,本發明的氣體供給裝置係進一步具備量測該稀釋容器的內部之溫度的溫度計,以及量測該稀釋容器的內部之壓力的壓力計。 Preferably, the gas supply device of the present invention further includes a thermometer for measuring the temperature inside the dilution container, and a pressure gauge for measuring the pressure inside the dilution container.

藉由本發明,可高精度地調整被供給之氣體的供給量。 According to the present invention, the supply amount of the supplied gas can be adjusted with high accuracy.

1‧‧‧氣相成長裝置 1‧‧‧gas growth device

3‧‧‧腔室 3‧‧‧ chamber

4a‧‧‧內底面 4a‧‧‧Inner bottom

4b‧‧‧內壁面 4b‧‧‧Inner wall

4c‧‧‧內頂面 4c‧‧‧Inner top surface

5‧‧‧保持部 5‧‧‧Maintaining Department

7‧‧‧加熱部 7‧‧‧Heating

8‧‧‧壁部 8‧‧‧ Wall

8a‧‧‧最內側的壁部 8a‧‧‧The innermost wall

8b‧‧‧最外側的壁部 8b‧‧‧The outermost wall

9‧‧‧溫度控制部 9‧‧‧Temperature Control Department

9a‧‧‧電源 9a‧‧‧Power

10‧‧‧開口 10‧‧‧ opening

11‧‧‧電源線 11‧‧‧Power cord

13‧‧‧副產物偵測部 13‧‧‧ Byproduct Detection Department

15‧‧‧副產物排氣部 15‧‧‧ By-product exhaust department

15a‧‧‧閥部 15a‧‧‧Valve

15b‧‧‧吸引幫浦 15b‧‧‧Attract the pump

15c‧‧‧控制部 15c‧‧‧Control Department

17‧‧‧冷卻部 17‧‧‧Cooling Department

19‧‧‧載體導入管 19‧‧‧Carrier introduction tube

21‧‧‧蝕刻導入管 21‧‧‧Etching inlet tube

23‧‧‧電源線引出管 23‧‧‧Power cord outlet tube

25‧‧‧殘留物排出管 25‧‧‧residue discharge pipe

27‧‧‧副產物排氣管 27‧‧‧by-product exhaust pipe

60、60A‧‧‧氣體供給裝置 60、60A‧‧‧Gas supply device

61‧‧‧真空幫浦 61‧‧‧Vacuum pump

62‧‧‧控制部 62‧‧‧Control Department

63‧‧‧恆溫槽 63‧‧‧Constant temperature bath

63A‧‧‧第1恆溫槽 63A‧‧‧The first constant temperature bath

63Bn‧‧‧第2恆溫槽 63Bn‧‧‧The second constant temperature bath

64A、64n、64nA、64nB‧‧‧壓力調整單元 64A, 64n, 64nA, 64nB ‧‧‧ pressure adjustment unit

72‧‧‧第2流量控制部 72‧‧‧ 2nd Flow Control Department

73‧‧‧第3流量控制部 73‧‧‧ Third Flow Control Department

75、75a‧‧‧第1閥單元 75, 75a‧‧‧First valve unit

77、77n‧‧‧第2閥單元 77, 77n‧‧‧ 2nd valve unit

80‧‧‧殘留物排出裝置 80‧‧‧ Residue discharge device

90‧‧‧容積變更部 90‧‧‧Volume change department

91‧‧‧壓力調整部 91‧‧‧Pressure Adjustment Department

92‧‧‧氣體收容空間 92‧‧‧ gas containment space

100‧‧‧氣相成長系統 100‧‧‧gas growth system

An、A1、A2‧‧‧原料導入管 An, A1, A2‧‧‧ Raw material introduction tube

BG‧‧‧驅動用氣體 BG‧‧‧Drive gas

b1、b2、b3、b4、b5、b6、b7、b8、b8n‧‧‧閥 b1, b2, b3, b4, b5, b6, b7, b8, b8n

CG‧‧‧載體氣體 CG‧‧‧Carrier gas

CP‧‧‧載體導入口 CP‧‧‧Carrier inlet

Dn、D1、D2‧‧‧稀釋原料氣體 Dn, D1, D2

EG‧‧‧蝕刻氣體 EG‧‧‧Etching gas

EP‧‧‧蝕刻導入口 EP‧‧‧Etching inlet

EX‧‧‧氣體 EX‧‧‧gas

FG‧‧‧副產物 FG‧‧‧byproduct

FP‧‧‧副產物排氣口 FP‧‧‧by-product exhaust

Gn‧‧‧原料氣體 Gn‧‧‧ raw gas

GPn、GP1‧‧‧原料導入口 GPn, GP1‧‧‧ Raw material inlet

HS‧‧‧保持面 HS‧‧‧Keep

MG‧‧‧混合氣體 MG‧‧‧gas mixture

PM1‧‧‧第1壓力計 PM1‧‧‧The first pressure gauge

PM2‧‧‧第2壓力計 PM2‧‧‧The second pressure gauge

Qn、Q1、Q2‧‧‧第1流量控制部 Qn, Q1, Q2‧‧‧The first flow control unit

S‧‧‧基板 S‧‧‧Substrate

SP‧‧‧內部空間 SP‧‧‧Internal space

TM‧‧‧溫度計 TM‧‧‧thermometer

t1、t2、t3、t4、t5、t5n‧‧‧管 t1, t2, t3, t4, t5, t5n‧‧‧‧tube

UM‧‧‧稀釋混合氣體 UM‧‧‧Dilute mixed gas

WD‧‧‧窗部 WD‧‧‧Window

WT‧‧‧冷卻液體 WT‧‧‧cooling liquid

Xn、Xmn、X1、X2‧‧‧稀釋容器 Xn, Xmn, X1, X2‧‧‧‧Dilution container

Yn、Y1‧‧‧閥部(導入部) Yn, Y1‧‧‧ valve part (introduction part)

Zn‧‧‧原料容器 Zn‧‧‧Raw material container

ZG‧‧‧殘留物 ZG‧‧‧ Residue

ZP‧‧‧殘留物排出口 ZP‧‧‧Residue discharge

圖1係有關於本發明實施態樣1的氣相成長系統之示意圖。 FIG. 1 is a schematic diagram of a vapor phase growth system according to Embodiment 1 of the present invention.

圖2係有關於實施態樣1的氣體供給裝置之示意圖。 FIG. 2 is a schematic diagram of the gas supply device of Embodiment 1. FIG.

圖3係有關於實施態樣1的氣體供給裝置之一部分的示意圖。 FIG. 3 is a schematic diagram of a part of the gas supply device of Embodiment 1. FIG.

圖4係有關於實施態樣1的氣相成長系統之一部分的示意圖。 FIG. 4 is a schematic diagram of a part of the gas-phase growth system of Embodiment 1. FIG.

圖5係有關於實施態樣1之第1變形例的氣體供給裝置之一部分的示意圖。 FIG. 5 is a schematic diagram of a part of the gas supply device according to the first modification of Embodiment 1. FIG.

圖6係有關於實施態樣1之第2變形例的氣體供給裝置之一部分的示意圖。 FIG. 6 is a schematic diagram of a part of the gas supply device according to the second modification of Embodiment 1. FIG.

圖7係有關於本發明的實施態樣2之氣相成長系統之示意圖。 7 is a schematic diagram of a vapor phase growth system according to Embodiment 2 of the present invention.

圖8係有關於實施態樣2之氣體供給裝置之示意圖。 FIG. 8 is a schematic diagram of the gas supply device of Embodiment 2. FIG.

圖9係有關於實施態樣2之氣體供給裝置之一部分的示意圖。 FIG. 9 is a schematic diagram of a part of the gas supply device of Embodiment 2. FIG.

圖10係有關於實施態樣2之氣相成長系統之一部分的示意圖。 FIG. 10 is a schematic diagram of a part of the gas-phase growth system of Embodiment 2. FIG.

圖11係有關於實施態樣2之變形例的氣體供給裝置之一部分的示意圖。 FIG. 11 is a schematic diagram of a part of a gas supply device according to a modification of Embodiment 2. FIG.

以下將對於本發明的實施態樣,邊參考圖式邊作說明。順帶一提的是,對於圖中相同或是同等部分,係標上相同的參考符號而不重複說明。 The embodiment of the present invention will be described below with reference to the drawings. Incidentally, for the same or equivalent parts in the figure, the same reference symbols are attached without repeating the description.

(實施態樣1) (Embodiment 1)

圖1係有關於本發明實施態樣1的氣相成長系統100之示意圖。如圖1所示,氣相成長系統100具備氣相成長裝置1、氣體供給裝置60以及殘留物排出裝置80。順帶一提的是,在圖1中為便於理解,氣相成長裝置1的一部分係以截面表示。截面係以斜線標示。 FIG. 1 is a schematic diagram of a vapor phase growth system 100 according to Embodiment 1 of the present invention. As shown in FIG. 1, the vapor-phase growth system 100 includes a vapor-phase growth device 1, a gas supply device 60, and a residue discharge device 80. Incidentally, in FIG. 1, for easy understanding, a part of the vapor-phase growth device 1 is shown in cross section. Sections are marked with diagonal lines.

氣相成長裝置1係具備腔室3。接著,氣相成長裝置1係在腔室3的內部執行化學氣相成長法,使物質成長在基板S上,以在基板S上形成物質(以下稱為「目的物質」)。亦即,氣相成長裝置1在腔室3的內部,使不同之複數個原料氣體Gn產生化學反應並在基板S上形成目的物質。目的物質係,例如III-V族化合物半導體。目的物質係,例如固體。原料氣體Gn係,藉由化學反應而形成目的物質之氣體。亦即,原料氣體Gn係,藉由化學反應而生成目的物質之氣體。此外,區別並說明複數個原料氣體Gn時,係以原料氣體 G1、...、GN(N為2以上之整數)描述。例如,N=2時,原料氣體G1係含有第III族(第13族)元素之化合物;原料氣體G2係含有第V族(第15族)元素之化合物。 The vapor-phase growth device 1 includes a chamber 3. Next, the vapor-phase growth device 1 executes a chemical vapor-phase growth method inside the chamber 3 to grow a substance on the substrate S to form a substance on the substrate S (hereinafter referred to as “target substance”). That is, the vapor-phase growth device 1 causes a plurality of different raw material gases Gn to chemically react inside the chamber 3 and form a target substance on the substrate S. Target substance system, such as III-V compound semiconductors. Target substance system, such as solid. The raw material gas Gn is a gas that forms a target substance by chemical reaction. That is, the raw material gas Gn is a gas that generates a target substance through a chemical reaction. In addition, when distinguishing and explaining a plurality of raw material gases Gn, the raw material gases G1, ..., GN (N is an integer of 2 or more) are described. For example, when N=2, the raw material gas G1 is a compound containing a group III (Group 13) element; the raw material gas G2 is a compound containing a group V (Group 15) element.

當氣相成長裝置1在基板S上形成目的物質的一部分或是全部之期間RP(以下係稱為「反應期間RP」。),阻斷原料氣體Gn自腔室3的內部向外部的流出。因此,在一部分或是全部的反應期間RP之時,腔室3係被密閉。亦即,氣相成長裝置1係使不同之複數個原料氣體Gn滯留於腔室3的內部而產生化學反應,並在基板S上形成目的物質。 When the vapor-phase growth device 1 forms part or all of the target substance RP (hereinafter referred to as "reaction period RP") on the substrate S, the outflow of the raw material gas Gn from the inside of the chamber 3 to the outside is blocked. Therefore, during a part or all of the reaction period RP, the chamber 3 is sealed. That is, the vapor-phase growth device 1 causes a plurality of different raw material gases Gn to stay in the chamber 3 to generate a chemical reaction, and form a target substance on the substrate S.

其結果為,相較於如一般的氣相成長裝置係使原料氣體流通而形成目的物質的情況下,藉由實施態樣1可提升原料氣體Gn的利用效率。原料氣體Gn的利用效率係指相對於導入至腔室3之原料氣體Gn的量,反應原料氣體的量之比率。反應原料氣體係指在原料氣體Gn中,有參與產生化學反應以形成目的物質之原料氣體Gn。「量」係表示例如物質量(莫耳)、質量或是體積。 As a result, compared with the case where a general gas-phase growth device circulates a raw material gas to form a target substance, the use efficiency of the raw material gas Gn can be improved by the first embodiment. The utilization efficiency of the raw material gas Gn refers to the ratio of the amount of the reacted raw material gas relative to the amount of the raw material gas Gn introduced into the chamber 3. The reaction raw material gas system refers to the raw material gas Gn in which there is a raw material gas Gn that participates in generating a chemical reaction to form a target substance. "Quantity" means, for example, mass (mole), mass, or volume.

再者,相較於一般的氣相成長裝置,在實施態樣1中,可使氣相成長裝置1小型化,藉此可降低氣相成長裝置1的成本。此外,在一般的氣相成長裝置中,為使原料氣體流通,需要具有複數個區域之較長的反應管,因而難以使其小型化。 In addition, compared to a general gas-phase growth device, in Embodiment 1, the gas-phase growth device 1 can be miniaturized, thereby reducing the cost of the gas-phase growth device 1. In addition, in a general vapor-phase growth apparatus, in order to circulate the raw material gas, a long reaction tube having a plurality of regions is required, and it is difficult to miniaturize it.

更進一步,相較於如一般的氣相成長裝置之控制反應管中的每一個區域之溫度的情況下,在實施態樣1中,藉由加熱部7來控制基板S的溫度即足夠,因而能夠容易地執行溫度控制。 Furthermore, compared to the case where the temperature of each region in the reaction tube is controlled as in a general vapor growth device, in Embodiment 1, it is sufficient to control the temperature of the substrate S by the heating section 7, so The temperature control can be easily performed.

更進一步,相較於一般的氣相成長裝置,在實施態樣1中,由於係使不同之複數個原料氣體Gn導入以及滯留於腔室3的內部而形成目的物質,藉此在將原料氣體Gn導入腔室3的內部時,更容易控制。此外,在一般的氣相成長裝置中,為了形成目的物質,需透過原料氣體流通於反應管中的複數個區域而執行複數個步驟以形成目的物質,使得原料氣體流通於反應管的控制變得複雜。 Furthermore, compared to a general gas-phase growth device, in the first embodiment, a plurality of different raw material gases Gn are introduced and retained in the chamber 3 to form a target substance, thereby the raw material gas When Gn is introduced into the chamber 3, it is easier to control. In addition, in a general vapor phase growth device, in order to form the target substance, it is necessary to perform a plurality of steps through the plurality of areas in the reaction tube through the source gas to form the target substance, so that the control of the source gas flowing through the reaction tube becomes complex.

更進一步,相較於一般的氣相成長裝置,在實施態樣1中,由於係使不同之複數個原料氣體Gn滯留於腔室3的內部而形成目的物質,藉此目的物質的成長速度不易受到腔室3的結構之影響。此外,在一般的氣相成長裝置中,由於目的物質係透過在具有複數個區域之較長的反應管而形成,使得目的物質的成長速度易受到反應管結構的影響。 Furthermore, compared to a general vapor phase growth apparatus, in the first embodiment, since a plurality of different raw material gases Gn are retained in the chamber 3 to form the target substance, the growth rate of the target substance is not easy Influenced by the structure of the chamber 3. In addition, in a general vapor phase growth device, since the target substance is formed through a long reaction tube having a plurality of regions, the growth rate of the target substance is easily affected by the structure of the reaction tube.

更進一步,相較於如一般的氣相成長裝置之使原料氣體流通而執行複數個步驟的情況下,在實施態樣1中,由於係使不同之複數個原料氣體Gn導入以及滯留於腔室3的內部而形成目的物質,藉此可降低殘留物的量以及副產物的生成量。因此,使得殘留物的排出處理以及副產物的排氣處理更為容易。 Furthermore, compared with the case where a plurality of steps are performed by circulating a raw material gas as in a general gas phase growth device, in the first embodiment, a plurality of different raw material gases Gn are introduced and retained in the chamber The target substance is formed inside 3, whereby the amount of residue and the amount of by-products can be reduced. Therefore, the discharge processing of the residue and the exhaust processing of the by-products are made easier.

較佳地,氣相成長裝置1係於全部之反應期間RP阻斷原料氣體Gn自腔室3的內部向外部的流出。又,較佳地,氣相成長裝置1係於一部分或全部之反應期間RP阻斷複數個原料氣體Gn自腔室3的內部向外部的流出。進一步更佳地,氣相成長裝置1係於全部之反應期間RP阻斷複數個原料氣體Gn自腔室3的內部向外部的流出。此外,氣相成長裝置1亦可阻斷複數個原料氣體Gn之中的單數個原料氣體Gn的流出。 Preferably, the vapor-phase growth device 1 blocks the outflow of the raw material gas Gn from the inside of the chamber 3 to the outside during the entire reaction period. Further, preferably, the vapor phase growth device 1 is configured to block the outflow of a plurality of raw material gases Gn from the inside of the chamber 3 to the outside during a part or all of the reaction period RP. Even more preferably, the vapor-phase growth device 1 blocks the outflow of the plurality of raw material gases Gn from the inside of the chamber 3 to the outside during all the reaction periods. In addition, the gas-phase growth device 1 can also block the outflow of a single plurality of raw gas Gn among the plurality of raw gas Gn.

具體而言,氣相成長裝置1除了腔室3之外,還進一步具備保持部5、加熱部7、複數個壁部8、溫部控制部9、電源線11、副產物偵測部13、副產物排氣部15、冷卻部17、複數個原料導入管An、載體導入管19、蝕刻導入管21、電源線引出管23、殘留物排出管25以及副產物排氣管27。此外,區別並說明複數個原料導入管An之時,係描述為原料導入管A1、...、AN(N為2以上之整數)。 Specifically, the vapor-phase growth device 1 further includes a holding part 5, a heating part 7, a plurality of wall parts 8, a temperature part control part 9, a power cord 11, and a by-product detection part 13, in addition to the chamber 3 The by-product exhaust unit 15, the cooling unit 17, a plurality of raw material introduction pipes An, the carrier introduction pipe 19, the etching introduction pipe 21, the power cord extraction pipe 23, the residue discharge pipe 25, and the by-product discharge pipe 27. In addition, when distinguishing and explaining a plurality of raw material introduction pipes An, it is described as the raw material introduction pipes A1, ..., AN (N is an integer of 2 or more).

腔室3係反應爐,具有內部空間SP。腔室3係具有例如中空之大致呈圓柱狀的形狀,但腔室3的形狀並不特別限定。腔室3係包括複數個原料導入口GPn、載體導入口CP、蝕刻導入口EP、殘留物排出口ZP以及副產物排氣口FP。腔室3係由例如石英形成。此外,區別並說明複數個原料導入口GPn時,係以原料導入口GP1、...、GPN(N為2以上之整數)描述。再者,腔室3具有互為對向之一對窗部WD。窗部WD係由透明元件形成,其以氣密狀態設置於腔室3。 The chamber 3 is a reaction furnace and has an internal space SP. The chamber 3 has, for example, a hollow substantially cylindrical shape, but the shape of the chamber 3 is not particularly limited. The chamber 3 includes a plurality of raw material introduction ports GPn, a carrier introduction port CP, an etching introduction port EP, a residue discharge port ZP, and a by-product exhaust port FP. The chamber 3 is formed of, for example, quartz. In addition, when distinguishing and explaining a plurality of raw material inlets GPn, the raw material inlets GP1, ..., GPN (N is an integer of 2 or more) are described. Furthermore, the chamber 3 has a pair of window portions WD that are opposed to each other. The window portion WD is formed of a transparent element, and is provided in the chamber 3 in an airtight state.

複數個原料導入口GPn係分別對應於複數個原料導入管An而配置。原料導入口GPn係以氣密狀態連接相對應之原料導入管An。接著,複數個原料導入管An係分別供給彼此不同之複數個原料氣體Gn。因此,複數個原料導入口GPn係分別導入彼此不同之複數個原料氣體Gn至腔室3。 The plural raw material introduction ports GPn are respectively arranged corresponding to the plural raw material introduction pipes An. The raw material introduction port GPn is connected to the corresponding raw material introduction pipe An in an airtight state. Next, a plurality of raw material introduction tubes An supply a plurality of raw material gases Gn different from each other. Therefore, the plurality of raw material introduction ports GPn respectively introduce a plurality of different raw material gases Gn into the chamber 3.

其結果為,藉由實施態樣1,複數個原料氣體Gn可自針對複數個原料氣體Gn所分別準備的複數個原料容器各自導入腔室3。特別是,由於可減少在將複數個原料氣體Gn導入腔室3前的預先混合之步驟,藉此可簡化將複數個原料氣體Gn導入腔室3前之步驟。 As a result, according to Embodiment 1, the plurality of raw material gases Gn can be introduced into the chamber 3 from the plurality of raw material containers prepared for the plurality of raw material gases Gn, respectively. In particular, the step of premixing before introducing a plurality of source gases Gn into the chamber 3 can be reduced, thereby simplifying the step before introducing the plurality of source gases Gn into the chamber 3.

載體導入口CP係對應載體導入管19而配置。載體導入口CP係以氣密狀態連接載體導入管19。接著,載體導入管19係供給載體氣體CG。因此,載體導入口CP係將載體氣體CG導入腔室3。載體氣體CG係例如非活性氣體。 非活性氣體係例如氮氣。藉由實施態樣1,由於係將載體氣體CG導入腔室3,藉此可均一地混合腔室3的內部之複數個原料氣體Gn。 The carrier introduction port CP is arranged corresponding to the carrier introduction tube 19. The carrier introduction port CP is connected to the carrier introduction tube 19 in an airtight state. Next, the carrier gas introduction tube 19 supplies the carrier gas CG. Therefore, the carrier introduction port CP introduces the carrier gas CG into the chamber 3. The carrier gas CG is, for example, an inert gas. Inert gas systems such as nitrogen. According to the first embodiment, since the carrier gas CG is introduced into the chamber 3, a plurality of raw material gases Gn in the chamber 3 can be uniformly mixed.

蝕刻導入口EP係對應蝕刻導入管21而配置。蝕刻導入口EP係以氣密狀態連接蝕刻導入管21。接著,蝕刻導入管21係供給蝕刻氣體EG。因此,蝕刻導入口EP係將蝕刻氣體EG導入腔室3。蝕刻氣體EG係例如鹵素氣體。藉由實施態樣1,由於係將蝕刻氣體EG導入腔室3,藉此可洗淨腔室3的內壁、保持部5的表面、基板S的表面以及在基板S上成長的目的物質之表面。 The etching introduction port EP is arranged corresponding to the etching introduction tube 21. The etching introduction port EP is connected to the etching introduction tube 21 in an airtight state. Next, the etching introduction tube 21 supplies the etching gas EG. Therefore, the etching introduction port EP introduces the etching gas EG into the chamber 3. The etching gas EG is a halogen gas, for example. According to Embodiment 1, the etching gas EG is introduced into the chamber 3, whereby the inner wall of the chamber 3, the surface of the holding portion 5, the surface of the substrate S, and the target substance grown on the substrate S can be washed surface.

殘留物排出口ZP係將腔室3的內部之殘留物ZG排出至腔室3的外部。殘留物ZG係例如氣體、液體以及/或是固體,其為目的物質在基板S上形成完畢之後,殘留在腔室3的內部之物質。具體而言,殘留物排出口ZP係對應殘留物排出管25而配置。殘留物排出口ZP係以氣密狀態連接殘留物排出管25。接著,殘留物排出口ZP係透過殘留物排出管25而將殘留物ZG自腔室3的內部排出至外部。 The residue discharge port ZP discharges the residue ZG inside the chamber 3 to the outside of the chamber 3. The residue ZG is, for example, a gas, a liquid, and/or a solid, which is a substance remaining in the chamber 3 after the target substance is formed on the substrate S. Specifically, the residue discharge port ZP is arranged corresponding to the residue discharge pipe 25. The residue discharge port ZP is connected to the residue discharge pipe 25 in an airtight state. Next, the residue discharge port ZP discharges the residue ZG from the inside of the chamber 3 to the outside through the residue discharge pipe 25.

副產物排氣口FP係將腔室3的內部之副產物FG排氣至腔室3的外部。副產物FG係例如氣體,其為複數個原料氣體Gn產生化學反應所生成之物質,不同於目的物質。副產物FG係例如妨礙目的物質之成長的氣體。妨礙目的物質之成長的氣體係例如蝕刻物質之氣體,其為使三氯化鎵氣體與氨氣產生化學反應而生成氮化鎵時,所生成的氯化氫。 The by-product exhaust port FP exhausts the by-product FG inside the chamber 3 to the outside of the chamber 3. The by-product FG is, for example, a gas, which is a substance generated by a chemical reaction of a plurality of raw material gases Gn, and is different from the target substance. The by-product FG is, for example, a gas that hinders the growth of the target substance. A gas system that hinders the growth of a target substance, such as a gas for etching a substance, is hydrogen chloride generated when gallium trichloride gas and ammonia gas are chemically reacted to form gallium nitride.

具體而言,副產物排氣口FP係對應副產物排氣管27而配置。副產物排氣口FP係以氣密狀態連接副產物排氣管27。接著,副產物排氣口FP係透過副產物排氣管27而將副產物FG自腔室3的內部排氣至外部。 Specifically, the by-product exhaust port FP is arranged corresponding to the by-product exhaust pipe 27. The by-product exhaust port FP is connected to the by-product exhaust pipe 27 in an airtight state. Next, the by-product exhaust port FP exhausts the by-product FG from the inside of the chamber 3 to the outside through the by-product exhaust pipe 27.

電源線引出管23係以氣密狀態連接腔室3。另一方面,電源線11係連接加熱部7。接著,電源線11係通過電源線引出管23自腔室3的內部引出至外部。 The power supply lead-out tube 23 is connected to the chamber 3 in an airtight state. On the other hand, the power cord 11 is connected to the heating unit 7. Next, the power cord 11 is drawn out from the inside of the chamber 3 to the outside through the power cord extraction tube 23.

保持部5係配置於腔室3的內部。在實施態樣1中,保持部5係設置於腔室3之內底面4a。保持部5係保持基板S。具體而言,保持部5具有保持面HS。接著,基板S係設置於保持面HS。保持部5係例如承受體(Susceptor)。承受體係由例如碳化矽(Silicon Carbide)所形成。基板S係例如種基板(Seed Substrate)。種基板係例如種結晶基板(Seed Crystal Substrate)。基板S係例如藍寶石基板(Sapphire Substrate)。 The holding portion 5 is arranged inside the chamber 3. In Embodiment 1, the holding portion 5 is provided on the inner bottom surface 4a of the chamber 3. The holding portion 5 holds the substrate S. Specifically, the holding portion 5 has a holding surface HS. Next, the substrate S is provided on the holding surface HS. The holding unit 5 is, for example, a susceptor. The bearing system is formed of, for example, silicon carbide (Silicon Carbide). The substrate S is, for example, a seed substrate. The seed substrate is, for example, a seed crystal substrate (Seed Crystal Substrate). The substrate S is, for example, a sapphire substrate (Sapphire Substrate).

加熱部7係配置於腔室3的內部。加熱部7係與保持面HS呈對向而配置於保持部5。在實施態樣1中,加熱部7係被保持部5所固定。接著,加熱部7係對保持部5加熱。亦即,加熱部7係透過保持部5對基板S加熱。加熱部7係例如加熱器。此外,加熱部7亦可藉由感應加熱而對保持部5加熱。 The heating unit 7 is arranged inside the chamber 3. The heating unit 7 is arranged on the holding unit 5 so as to face the holding surface HS. In Embodiment 1, the heating unit 7 is fixed by the holding unit 5. Next, the heating unit 7 heats the holding unit 5. That is, the heating unit 7 heats the substrate S through the holding unit 5. The heating unit 7 is, for example, a heater. In addition, the heating unit 7 may heat the holding unit 5 by induction heating.

加熱部7係連接有電源線11的一端。因此,加熱部7係透過電源線11經由溫度控制部9而被供給電源電壓及電源電流。具體而言,溫度控制部9係包括電源9a。接著,電源線11的另一端係連接有電源9a。因此,加熱部7係經由電源9a而被供給電源電壓及電源電流。 One end of the power cord 11 is connected to the heating unit 7. Therefore, the heating unit 7 is supplied with the power supply voltage and the power supply current through the power supply line 11 and the temperature control unit 9. Specifically, the temperature control unit 9 includes a power supply 9a. Next, a power supply 9a is connected to the other end of the power cord 11. Therefore, the heating unit 7 is supplied with the power supply voltage and the power supply current via the power supply 9a.

溫度控制部9係控制供給至加熱部7之電源電壓及電源電流以控制加熱部7。具體而言,溫度控制部9係控制加熱部7以控制保持部5之溫度。更具體而言,溫度控制部9係控制加熱部7,並透過保持部5以控制基板S之溫度。接著,溫度控制部9係控制加熱部7,並透過保持部5以將基板S之溫度保持在預定溫度。此外,溫度控制部9係包括處理器(Processor)及記憶裝置。因 此,處理器係藉由執行貯存在記憶裝置之電腦程式(Computer Program)以控制加熱部7。 The temperature control unit 9 controls the power supply voltage and the power supply current supplied to the heating unit 7 to control the heating unit 7. Specifically, the temperature control unit 9 controls the heating unit 7 to control the temperature of the holding unit 5. More specifically, the temperature control unit 9 controls the heating unit 7 and controls the temperature of the substrate S through the holding unit 5. Next, the temperature control unit 9 controls the heating unit 7 and passes through the holding unit 5 to maintain the temperature of the substrate S at a predetermined temperature. In addition, the temperature control unit 9 includes a processor and a memory device. Therefore, the processor controls the heating section 7 by executing a computer program stored in the memory device.

此外,氣相成長裝置1亦可具備溫度感測器(例如熱阻器(thermistor))。溫度感測器係固定於保持部5(例如保持面HS)。溫度感測器係偵測保持部5之溫度。保持部5之導熱性高,復於熱平衡狀態下,保持部5的溫度係與基板S的溫度相等。因此,溫度控制部9係經由溫度感測器接收表示保持部5之溫度的信號,以監視基板S之溫度。溫度控制部9係一邊監視基板S之溫度一邊控制加熱部7,以使基板S的溫度保持在預定溫度。此外,溫度感測器亦可直接偵測基板S之溫度。 In addition, the vapor-phase growth device 1 may also be provided with a temperature sensor (for example, a thermistor). The temperature sensor is fixed to the holding portion 5 (for example, holding surface HS). The temperature sensor detects the temperature of the holding part 5. The holding portion 5 has high thermal conductivity, and in the thermal equilibrium state, the temperature of the holding portion 5 is equal to the temperature of the substrate S. Therefore, the temperature control unit 9 receives the signal indicating the temperature of the holding unit 5 via the temperature sensor to monitor the temperature of the substrate S. The temperature control unit 9 controls the heating unit 7 while monitoring the temperature of the substrate S so that the temperature of the substrate S is maintained at a predetermined temperature. In addition, the temperature sensor can also directly detect the temperature of the substrate S.

每一壁部8係配置於配置有加熱部7的保持部5與腔室3之內壁面4b之間。每一壁部8具有露出基板S的開口10。在實施態樣1中,開口10係朝向腔室3的內頂面4c露出基板S。每一壁部8係具有例如大致呈圓筒狀的形狀。壁部8的材質係例如碳(Carbon)、氮化硼(Boron Nitride)或是石英。相對於內底面4a之複數個壁部8的高度可為不同或相同。較佳地,相對於內底面4a之壁部8的高度,係高於相對於內底面4a之保持部5的高度。鄰接的壁部8係以間隔隔開而配置。壁部8係包圍保持部5的側面。具體而言,複數個壁部8之中之最內側的壁部8a係以間隔隔開,以包圍保持部5的側面。複數個壁部8之中之最外側的壁部8b係以間隔隔開,並與腔室3的內壁面4b呈對向。此外,壁部8之數量不限於2個,亦可為3個以上。再者,亦可設有1個的壁部8。 Each wall portion 8 is arranged between the holding portion 5 where the heating portion 7 is arranged and the inner wall surface 4b of the chamber 3. Each wall portion 8 has an opening 10 exposing the substrate S. In Embodiment 1, the opening 10 exposes the substrate S toward the inner top surface 4c of the chamber 3. Each wall portion 8 has, for example, a substantially cylindrical shape. The material of the wall portion 8 is, for example, carbon, boron nitride, or quartz. The heights of the plurality of wall portions 8 relative to the inner bottom surface 4a may be different or the same. Preferably, the height of the wall portion 8 relative to the inner bottom surface 4a is higher than the height of the holding portion 5 relative to the inner bottom surface 4a. The adjacent wall portions 8 are arranged at intervals. The wall portion 8 surrounds the side surface of the holding portion 5. Specifically, the innermost wall portion 8 a among the plurality of wall portions 8 is spaced apart to surround the side surface of the holding portion 5. Among the plurality of wall portions 8, the outermost wall portion 8 b is spaced apart and faces the inner wall surface 4 b of the chamber 3. In addition, the number of wall portions 8 is not limited to two, and may be three or more. Furthermore, one wall portion 8 may be provided.

藉由實施態樣1,由於設有壁部8,藉此可抑制來自於加熱部7、保持部5以及基板S的熱直接傳達至腔室3。其結果為,可抑制腔室3變得高溫,還可提升腔室3的耐久性。再者,由於設有壁部8,來自於基板S及保持部5的熱之流出可被抑制,藉此可更高精度地使基板S的溫度保持恆定。 According to Embodiment 1, since the wall portion 8 is provided, it is possible to suppress the heat from the heating portion 7, the holding portion 5, and the substrate S from being directly transmitted to the chamber 3. As a result, the temperature of the chamber 3 can be suppressed from becoming high, and the durability of the chamber 3 can be improved. Furthermore, since the wall portion 8 is provided, the outflow of heat from the substrate S and the holding portion 5 can be suppressed, whereby the temperature of the substrate S can be kept constant with higher accuracy.

冷卻部17係冷卻腔室3。具體而言,冷卻部17係使冷卻液體WT(例如冷卻水)在腔室3中循環,以冷卻腔室3。其結果為,藉由實施態樣1,可減輕來自於加熱部7、保持部5以及基板S的熱之影響,故可更提升腔室3之耐久性。 The cooling unit 17 cools the chamber 3. Specifically, the cooling unit 17 circulates the cooling liquid WT (for example, cooling water) in the chamber 3 to cool the chamber 3. As a result, according to the first embodiment, the influence of the heat from the heating unit 7, the holding unit 5, and the substrate S can be reduced, so that the durability of the chamber 3 can be further improved.

氣體供給裝置60係連接複數個原料導入管An。接著,氣體供給裝置60係透過原料導入管An及原料導入口GPn將原料氣體Gn供給至腔室3。 The gas supply device 60 is connected to a plurality of raw material introduction pipes An. Next, the gas supply device 60 supplies the raw material gas Gn to the chamber 3 through the raw material introduction pipe An and the raw material introduction port GPn.

接著,氣體供給裝置60係在將第1預定量M1(預定量)之原料氣體Gn供給至腔室3之後,阻斷原料氣體Gn的流道,以停止向腔室3供給原料氣體Gn。換言之,第1預定量M1之原料氣體Gn被導入腔室3之後,原料氣體Gn之流道被阻斷,來自於原料導入管An及原料導入口GPn之原料氣體Gn的導入被停止。 Next, after supplying the first predetermined amount M1 (predetermined amount) of raw material gas Gn to the chamber 3, the gas supply device 60 blocks the flow path of the raw material gas Gn to stop the supply of the raw material gas Gn to the chamber 3. In other words, after the first predetermined amount M1 of raw material gas Gn is introduced into the chamber 3, the flow path of the raw material gas Gn is blocked, and the introduction of the raw material gas Gn from the raw material introduction pipe An and the raw material introduction port GPn is stopped.

因此,藉由實施態樣1,可更進一步地抑制原料氣體Gn流出腔室3的外部。其結果可進一步地提升原料氣體Gn之利用效率。 Therefore, according to Embodiment 1, it is possible to further suppress the outflow of the raw material gas Gn from the outside of the chamber 3. As a result, the utilization efficiency of the raw material gas Gn can be further improved.

第1預定量M1係以例如物質量(莫耳)、質量或是體積表示。第1預定量 M1可基於不同之複數個原料氣體Gn在進行化學反應時的化學反應式,而針對每種原料氣體Gn加以設定。亦即,在腔室3的內部係以各種原料氣體Gn之莫耳分率保持恆定的方式,使第1預定量M1可針對每種原料氣體Gn加以設定。在本說明書中,化學反應式係表示為了生成目的物質之化學反應式。 The first predetermined amount M1 is expressed by, for example, the mass (mol), mass, or volume. The first predetermined amount M1 can be set for each of the raw material gases Gn based on the chemical reaction formulas of a plurality of different raw material gases Gn during the chemical reaction. That is, the first predetermined amount M1 can be set for each raw material gas Gn so that the molar fraction of various raw material gases Gn is kept constant inside the chamber 3. In this specification, the chemical reaction formula means a chemical reaction formula for generating a target substance.

因此,藉由實施態樣1,複數個原料氣體Gn之過與不足係被抑制,因而能夠將正確量的原料氣體Gn導入腔室3。其結果係可抑制原料氣體Gn的浪費。原料氣體Gn之莫耳分率係表示複數個原料氣體Gn之物質量的合計對原料氣體Gn之物質量的比率。 Therefore, according to the first embodiment, the excess and deficiency of the plurality of source gases Gn are suppressed, so that the correct amount of source gases Gn can be introduced into the chamber 3. As a result, the waste of the raw material gas Gn can be suppressed. The molar fraction of the raw material gas Gn represents the ratio of the total amount of the raw material gas Gn to the raw material gas Gn.

再者,氣體供給裝置60係依據由腔室3的內部之化學反應所引起之原料氣體Gn的減少量,透過原料導入管An及原料導入口GPn,將原料氣體Gn補充至腔室3。 In addition, the gas supply device 60 replenishes the raw material gas Gn to the chamber 3 through the raw material introduction pipe An and the raw material introduction port GPn according to the reduction amount of the raw material gas Gn caused by the chemical reaction inside the chamber 3.

因此,藉由實施態樣1,由於可避免原料氣體Gn發生不足之狀況,藉此可抑制目的物質之成長不良。 Therefore, according to the first embodiment, the shortage of the raw material gas Gn can be avoided, thereby suppressing the growth failure of the target substance.

再者,氣體供給裝置60在補充原料氣體Gn時,係以各種原料氣體Gn之莫耳分率在腔室3的內部保持恆定的方式而補充原料氣體Gn。 In addition, when supplementing the raw material gas Gn, the gas supply device 60 supplements the raw material gas Gn so that the molar fraction of various raw material gases Gn is kept constant inside the chamber 3.

因此,藉由實施態樣1,複數個原料氣體Gn之過與不足係更進一步地被抑制,也因而能夠更進一步地將正確量的原料氣體Gn導入腔室3。其結果係 可更進一步地抑制原料氣體Gn的浪費。 Therefore, according to the first embodiment, the excesses and deficiencies of the plurality of raw material gases Gn are further suppressed, and thus the correct amount of the raw material gases Gn can be further introduced into the chamber 3. As a result, the waste of the raw material gas Gn can be further suppressed.

具體而言,氣體供給裝置60係依據腔室3的內部之原料氣體Gn的減少量,將第2預定量M2之原料氣體Gn供給至腔室3。 Specifically, the gas supply device 60 supplies the second predetermined amount M2 of raw material gas Gn to the chamber 3 according to the amount of reduction of the raw material gas Gn inside the chamber 3.

第2預定量M2係以,例如物質量(莫耳)、質量或是體積表示。較佳地,第2預定量M2係與例如原料氣體Gn的減少量相等。再者,第2預定量M2可基於不同之複數個原料氣體Gn在進行化學反應時的化學反應式,而針對每種原料氣體Gn加以設定。亦即,各種原料氣體Gn之莫耳分率以在腔室3的內部保持恆定的方式,使第2預定量M2針對每種原料氣體Gn加以設定。 The second predetermined amount M2 is expressed by, for example, the mass (mol), mass, or volume. Preferably, the second predetermined amount M2 is equal to, for example, the decrease amount of the raw material gas Gn. In addition, the second predetermined amount M2 can be set for each raw material gas Gn based on the chemical reaction formulas of the plural raw material gases Gn during the chemical reaction. That is, the molar fraction of each raw material gas Gn is set to be constant within the chamber 3 so that the second predetermined amount M2 is set for each raw material gas Gn.

接著,氣體供給裝置60係在第2預定量M2之原料氣體Gn被補充之後,阻斷原料氣體Gn的流道,以停止原料氣體Gn通過原料導入管An及原料導入口GPn向腔室3的補充。 Next, after the second predetermined amount M2 of raw material gas Gn is replenished, the gas supply device 60 blocks the flow path of the raw material gas Gn to stop the raw material gas Gn from passing through the raw material introduction pipe An and the raw material introduction port GPn to the chamber 3 supplement.

因此,依據實施態樣1,可更進一步地抑制原料氣體Gn流出腔室3的外部。其結果可進一步地提升原料氣體Gn之利用效率。 Therefore, according to Embodiment 1, the outflow of the raw material gas Gn from the outside of the chamber 3 can be further suppressed. As a result, the utilization efficiency of the raw material gas Gn can be further improved.

此外,氣體供給裝置60在第1預定量M1之原料氣體Gn被供給之後,可依據由腔室3的內部之化學反應所引起之原料氣體Gn的減少量,透過原料導入管An及原料導入口GPn而隨時補充原料氣體Gn。此情況下,藉由僅對於原料氣體Gn所減少的份量而隨時地補充原料氣體Gn,使得原料氣體Gn在腔 室3的內部能夠隨時保持一定的量。因此,可高精度地控制目的物質的成長。再者,在補充原料氣體Gn的另一方面,由於原料氣體Gn不會流出腔室3的外部,藉此可提升原料氣體Gn之利用效率。 In addition, after the first predetermined amount M1 of raw material gas Gn is supplied, the gas supply device 60 can pass through the raw material introduction pipe An and the raw material introduction port according to the reduced amount of the raw material gas Gn caused by the chemical reaction inside the chamber 3 GPn supplements the raw gas Gn at any time. In this case, the raw material gas Gn is replenished at any time by only reducing the amount of the raw material gas Gn, so that the raw material gas Gn can maintain a certain amount in the chamber 3 at any time. Therefore, the growth of the target substance can be controlled with high accuracy. Furthermore, on the other hand, when the raw material gas Gn is replenished, since the raw material gas Gn does not flow out of the outside of the chamber 3, the utilization efficiency of the raw material gas Gn can be improved.

例如,氣體供給裝置60係當腔室3的內部之原料氣體Gn的量變得較閾值Th1少的情況下,可依據腔室3的內部之原料氣體Gn的減少量而隨時自原料導入口GPn補充原料氣體Gn。較佳地,閾值Th1係與例如第1預定量M1設定為同一值。此情況下,係可使原料氣體Gn在腔室3的內部保持於第1預定量M1。其結果可高精度地控制目的物質之成長。 For example, when the amount of the raw material gas Gn in the chamber 3 becomes smaller than the threshold Th1, the gas supply device 60 can be replenished from the raw material introduction port GPn at any time according to the reduced amount of the raw material gas Gn in the chamber 3 Raw gas Gn. Preferably, the threshold Th1 is set to the same value as, for example, the first predetermined amount M1. In this case, the source gas Gn can be kept at the first predetermined amount M1 in the chamber 3. As a result, the growth of the target substance can be controlled with high precision.

再者,例如氣體供給裝置60可在隨時補充原料氣體Gn時,以各種原料氣體Gn之莫耳分率在腔室3的內部保持恆定的方式而隨時補充原料氣體Gn。此情況下,複數個原料氣體Gn之過與不足係被抑制,因而能夠將正確量的原料氣體Gn導入腔室3。其結果係可抑制原料氣體Gn的浪費。 In addition, for example, when the gas supply device 60 replenishes the raw material gas Gn at any time, the raw material gas Gn can be replenished at any time so that the molar fraction of various raw material gases Gn is kept constant inside the chamber 3. In this case, the excess and deficiency of the plurality of source gases Gn are suppressed, so that the correct amount of source gases Gn can be introduced into the chamber 3. As a result, the waste of the raw material gas Gn can be suppressed.

更進一步,氣體供給裝置60係與載體導入管19連接。接著,氣體供給裝置60係透過載體導入管19及載體導入口CP,以將載體氣體CG供給至腔室3。 Furthermore, the gas supply device 60 is connected to the carrier introduction pipe 19. Next, the gas supply device 60 passes through the carrier introduction tube 19 and the carrier introduction port CP to supply the carrier gas CG to the chamber 3.

具體而言,氣體供給裝置60係將第3預定量M3之載體氣體CG補充至腔室3之後,阻斷載體氣體CG的流道,以停止向腔室3供給載體氣體CG。 Specifically, the gas supply device 60 supplements the third predetermined amount M3 of carrier gas CG to the chamber 3 and then blocks the flow path of the carrier gas CG to stop the supply of the carrier gas CG to the chamber 3.

因此,依據實施態樣1,係可抑制原料氣體Gn自載體導入管19流出腔室3的外部。其結果係可更進一步提升原料氣體Gn之利用效率。 Therefore, according to Embodiment 1, it is possible to suppress the outflow of the raw material gas Gn from the carrier introduction pipe 19 to the outside of the chamber 3. As a result, the utilization efficiency of the raw material gas Gn can be further improved.

第3預定量M3係以,例如物質量(莫耳)、質量或是體積表示。此外,氣體供給裝置60係可依據腔室3的內部之載體氣體CG的減少量,透過載體導入管19及載體導入口CP,補充一定量的載體氣體CG。較佳地,一定量係與例如載體氣體CG的減少量相等的量。再者,氣體供給裝置60係可在隨時補充原料氣體Gn時,亦隨時補充載體氣體CG。 The third predetermined amount M3 is expressed by, for example, mass (mole), mass, or volume. In addition, the gas supply device 60 can replenish a certain amount of carrier gas CG through the carrier introduction pipe 19 and the carrier introduction port CP according to the reduction amount of the carrier gas CG inside the chamber 3. Preferably, the certain amount is an amount equal to, for example, the decrease amount of the carrier gas CG. Furthermore, the gas supply device 60 can replenish the carrier gas CG at any time when the source gas Gn is replenished at any time.

更進一步,氣體供給裝置60係與蝕刻導入管21連接。接著,氣體供給裝置60係透過蝕刻導入管21及蝕刻導入口EP,將蝕刻氣體EG供給至腔室3。 Furthermore, the gas supply device 60 is connected to the etching introduction pipe 21. Next, the gas supply device 60 supplies the etching gas EG to the chamber 3 through the etching introduction pipe 21 and the etching introduction port EP.

具體而言,氣體供給裝置60係將第4預定量M4之蝕刻氣體EG補充至腔室3之後,阻斷蝕刻氣體EG的流道,以停止向腔室3供給蝕刻氣體EG。 Specifically, after the fourth predetermined amount M4 of etching gas EG is added to the chamber 3, the gas supply device 60 blocks the flow path of the etching gas EG to stop the supply of the etching gas EG to the chamber 3.

因此,藉由實施態樣1,係可抑制原料氣體Gn自蝕刻導入管21流出腔室3的外部。其結果係可更進一步提升原料氣體Gn之利用效率。 Therefore, according to the first embodiment, the source gas Gn can be prevented from flowing out of the chamber 3 from the etching introduction tube 21. As a result, the utilization efficiency of the raw material gas Gn can be further improved.

第4預定量M4係以例如物質量(莫耳)、質量或是體積表示。此外,氣體供給裝置60係可依據腔室3的內部之蝕刻氣體EG的減少量,透過蝕刻導入管21及蝕刻導入口EP,補充一定量的蝕刻氣體EG。較佳地,一定量係與例如蝕刻氣體EG的減少量相等的量。再者,氣體供給裝置60係可在隨時補充原 料氣體Gn時,亦隨時補充蝕刻氣體EG。 The fourth predetermined amount M4 is expressed by, for example, the mass (mol), mass, or volume. In addition, the gas supply device 60 can supplement a certain amount of the etching gas EG through the etching introduction pipe 21 and the etching introduction port EP according to the reduction amount of the etching gas EG inside the chamber 3. Preferably, the certain amount is equal to the amount of reduction of the etching gas EG, for example. Furthermore, the gas supply device 60 can supplement the etching gas EG at any time when the raw gas Gn is replenished at any time.

殘留物排出裝置80係連接有殘留物排出管25。接著,殘留物排出裝置80係在基板S上完成目的物質之形成後,透過殘留物排出管25及殘留物排出口ZP,將殘留物ZG自腔室3的內部排出至外部。其結果為,藉由實施態樣1,可有效地洗淨腔室3的內部。 The residue discharge device 80 is connected to the residue discharge pipe 25. Next, the residue discharge device 80 completes the formation of the target substance on the substrate S, and then discharges the residue ZG from the inside of the chamber 3 to the outside through the residue discharge pipe 25 and the residue discharge port ZP. As a result, by implementing aspect 1, the inside of the chamber 3 can be efficiently cleaned.

具體而言,殘留物排出裝置80係具有單數個或複數個閥以及真空幫浦。接著,殘留物排出裝置80係在反應期間RP中,關閉閥以封閉殘留物排出管25,以阻斷氣體(原料氣體Gn、載體氣體CG、蝕刻氣體EG以及副產物FG)自腔室3的內部向外部之流出。因此,藉由實施態樣1,係可抑制反應期間RP中之原料氣體Gn自殘留物排出管25流出至腔室3的外部。其結果係可更進一步地提升原料氣體Gn之利用效率。 Specifically, the residue discharge device 80 has a singular or plural valves and a vacuum pump. Next, during the reaction period RP, the residue discharge device 80 closes the valve to close the residue discharge pipe 25 to block the gas (raw material gas Gn, carrier gas CG, etching gas EG, and by-product FG) from the chamber 3 Outflow from inside to outside. Therefore, according to Embodiment 1, it is possible to suppress the outflow of the raw material gas Gn in the RP from the residue discharge pipe 25 to the outside of the chamber 3 during the reaction. As a result, the utilization efficiency of the raw material gas Gn can be further improved.

接著,殘留物排出裝置80係在基板S上完成目的物質之形成之後,在驅動真空幫浦時,並打開閥以開放殘留物排出管25,而排出殘留物ZG。此外,殘留物排出裝置80係包括處理器及記憶裝置。因此,處理器係藉由執行貯存在記憶裝置之電腦程式,以控制閥及真空幫浦。 Next, after the residue discharge device 80 completes the formation of the target substance on the substrate S, when the vacuum pump is driven, the valve is opened to open the residue discharge pipe 25, and the residue ZG is discharged. In addition, the residue discharge device 80 includes a processor and a memory device. Therefore, the processor controls the valve and vacuum pump by executing the computer program stored in the memory device.

副產物偵測部13係偵測腔室3的內部之副產物FG的濃度。具體而言,副產物偵測部13係透過一對的窗部WD之中的一邊之窗部WD,使光照射存在於內部空間SP之氣體(原料氣體Gn、載體氣體CG、蝕刻氣體EG以及副產物 FG)。接著,副產物偵測部13係透過存在於內部空間SP之氣體,偵測自另一邊的窗部WD所射出的光。更進一步而言,副產物偵測部13係處理及分析已偵測到的光,並算出副產物FG之濃度。副產物偵測部13係包括例如傅立葉轉換紅外線光譜儀(FT-IR,Fourier ransform infrared spectrophotometer)。 The by-product detection unit 13 detects the concentration of the by-product FG in the chamber 3. Specifically, the by-product detection unit 13 transmits the gas (raw material gas Gn, carrier gas CG, etching gas EG, etc.) existing in the internal space SP through the window part WD on one side of the pair of window parts WD. By-product FG). Next, the by-product detection section 13 detects the light emitted from the window WD on the other side through the gas existing in the internal space SP. Furthermore, the by-product detection unit 13 processes and analyzes the detected light, and calculates the concentration of the by-product FG. The by-product detection unit 13 includes, for example, a Fourier transform infrared spectrophotometer (FT-IR, Fourier ransform infrared spectrophotometer).

副產物排氣部15係連接有副產物排氣管27。接著,副產物排氣部15係透過副產物排氣口FP及副產物排氣管27,將副產物FG自腔室3的內部排出外部。 The by-product exhaust unit 15 is connected with a by-product exhaust pipe 27. Next, the by-product exhaust unit 15 passes through the by-product exhaust port FP and the by-product exhaust pipe 27 to discharge the by-product FG from the inside of the chamber 3 to the outside.

藉由實施態樣1,由於對副產物FG進行排氣,藉此可提升目的物質之成長速度。特別是,當副產物FG具有妨礙目的物質的成長之性質(例如蝕刻目的物質之性質)的情況下,藉由對副產物FG進行排氣,能夠更進一步地提升目的物質之成長速度。 According to the first embodiment, the by-product FG is exhausted, thereby increasing the growth rate of the target substance. In particular, when the by-product FG has a property that hinders the growth of the target substance (for example, the property of etching the target substance), by exhausting the by-product FG, the growth rate of the target substance can be further increased.

具體而言,副產物排氣部15係自副產物偵測部13取得顯示有副產物FG之濃度的資訊。接著,副產物排氣部15係依據副產物FG之濃度而對副產物FG進行排氣。例如,當副產物FG之濃度變得較閾值Th2大的情況下,副產物排氣部15係對副產物FG進行排氣,直到副產物FG之濃度降至閾值Th2以下為止。其結果為,由於在腔室3的內部之副產物FG的濃度被維持在閾值Th2以下,藉此能夠更進一步地提升目的物質的成長速度。 Specifically, the by-product exhaust unit 15 obtains information indicating the concentration of by-product FG from the by-product detection unit 13. Next, the by-product exhaust unit 15 exhausts the by-product FG according to the concentration of the by-product FG. For example, when the concentration of the by-product FG becomes greater than the threshold Th2, the by-product exhaust unit 15 exhausts the by-product FG until the concentration of the by-product FG falls below the threshold Th2. As a result, since the concentration of the by-product FG in the chamber 3 is maintained below the threshold Th2, the growth rate of the target substance can be further increased.

特別是,藉由實施態樣1,由於副產物排氣部15係基於由副產物偵測部 13所取得之副產物FG的濃度而對副產物FG進行排氣,藉此不會作出無意義的操作,而可使得僅有在副產物FG的量增大時才需操作。其結果係可抑制副產物排氣部15之消耗電力。 In particular, according to Embodiment 1, since the by-product exhaust unit 15 exhausts the by-product FG based on the concentration of the by-product FG obtained by the by-product detection unit 13, it does not make meaningless The operation can only be performed when the amount of by-product FG increases. As a result, the power consumption of the by-product exhaust unit 15 can be suppressed.

更具體而言,副產物排氣部15係包括閥部15a、吸引幫浦15b以及控制部15c。閥部15a係包括單數個或複數個的閥。 More specifically, the by-product exhaust unit 15 includes a valve unit 15a, a suction pump 15b, and a control unit 15c. The valve portion 15a includes a singular or plural valves.

控制部15c係當副產物FG之濃度在閾值Th2以下的情況下,關閉閥以封閉副產物排氣管27,以阻擋氣體(原料氣體Gn、載體氣體CG、蝕刻氣體EG以及副產物FG)自腔室3的內部向外部的流出。 The control unit 15c closes the valve to close the by-product exhaust pipe 27 when the concentration of the by-product FG is below the threshold Th2 to block the gas (raw material gas Gn, carrier gas CG, etching gas EG, and by-product FG) from The inside of the chamber 3 flows out to the outside.

另一方面,控制部15c係當副產物FG之濃度變得較閾值Th2大的情況下,在驅動吸引幫浦15b時,並打開閥以開放副產物排氣管27,而對副產物FG進行排氣。接著,控制部15c係當副產物FG之濃度變成閾值Th2以下的情況下,關閉閥以封閉副產物排氣管27,使吸引幫浦15b停止。其結果為,可停止副產物FG之排氣。 On the other hand, when the concentration of the by-product FG becomes greater than the threshold Th2, the control unit 15c opens the valve to open the by-product exhaust pipe 27 when the suction pump 15b is driven, and performs the by-product FG exhaust. Next, when the concentration of the by-product FG becomes equal to or less than the threshold value Th2, the control unit 15c closes the valve to close the by-product exhaust pipe 27 to stop the suction pump 15b. As a result, the exhaust of the by-product FG can be stopped.

例如,控制部15c係當副產物FG之濃度變得較閾值Th2大的情況下,在驅動吸引幫浦15b時,並打開閥以開放副產物排氣管27,對腔室3的內部之氣體(原料氣體Gn、載體氣體CG、蝕刻氣體EG以及副產物FG)進行排氣。其結果為,副產物FG係與原料氣體Gn、載體氣體CG以及蝕刻氣體EG同時被排氣。 For example, when the concentration of the by-product FG becomes greater than the threshold value Th2, the control unit 15c opens the valve to open the by-product exhaust pipe 27 when the suction pump 15b is driven, and the gas inside the chamber 3 (The raw material gas Gn, the carrier gas CG, the etching gas EG, and the by-product FG) are exhausted. As a result, the by-product FG is exhausted simultaneously with the source gas Gn, the carrier gas CG, and the etching gas EG.

在此例之中,原料氣體Gn、載體氣體CG以及蝕刻氣體EG係由副產物排氣管27被排氣。在此,氣體供給裝置60係依據原料氣體Gn之減少量補充原料氣體Gn至腔室3。氣體供給裝置60在補充原料氣體Gn時,係以原料氣體Gn之莫耳分率在腔室3的內部被保持恆定的方式而補充原料氣體Gn。再者,氣體供給裝置60係依據載體氣體CG之減少量補充載體氣體CG至腔室3。更進一步,氣體供給裝置60係依據蝕刻氣體EG之減少量補充蝕刻氣體EG至腔室3。 In this example, the raw material gas Gn, the carrier gas CG, and the etching gas EG are exhausted by the by-product exhaust pipe 27. Here, the gas supply device 60 supplements the raw material gas Gn to the chamber 3 according to the reduction amount of the raw material gas Gn. When supplementing the raw material gas Gn, the gas supply device 60 supplements the raw material gas Gn so that the molar fraction of the raw gas Gn is kept constant inside the chamber 3. Furthermore, the gas supply device 60 replenishes the carrier gas CG to the chamber 3 according to the reduction of the carrier gas CG. Furthermore, the gas supply device 60 supplements the etching gas EG to the chamber 3 according to the reduction of the etching gas EG.

特別是,即便在此例之中,藉由實施態樣1,副產物排氣部15係基於自副產物偵測部13所取得之副產物FG的濃度而對副產物FG進行排氣,藉此可使得僅有在副產物FG的量增大時才需操作。因此,可抑制與副產物FG同時被排氣的原料氣體Gn的量。其結果可更進一步地提升原料氣體Gn之利用效率。 In particular, even in this example, by Embodiment 1, the by-product exhaust unit 15 exhausts the by-product FG based on the concentration of the by-product FG obtained from the by-product detection unit 13 by This may make it necessary to operate only when the amount of by-product FG increases. Therefore, the amount of the raw material gas Gn exhausted simultaneously with the by-product FG can be suppressed. As a result, the utilization efficiency of the raw material gas Gn can be further improved.

如以上參考圖1所述,藉由實施態樣1,由於係使不同之複數個原料氣體Gn導入及滯留於腔室3的內部以形成目的物質,可使得各種原料氣體Gn係以具有基於為了生成目的物質之化學反應式的莫耳分率之方式,而將不同之複數個原料氣體Gn導入腔室3。亦即,係以各種原料氣體Gn之莫耳分率在腔室3的內部保持恆定的方式,將不同之複數個原料氣體Gn導入腔室3。其結果係可抑制殘留物的量。此外,在一般的氣相成長裝置中,為使原料氣體流通,係難以使各種原料氣體之莫耳分率保持恆定的方式將原料氣 體導入反應管。 As described above with reference to FIG. 1, according to Embodiment 1, since a plurality of different raw material gases Gn are introduced and retained in the chamber 3 to form a target substance, various raw material gases Gn can be based on In the method of generating the mole fraction of the chemical reaction formula of the target substance, a plurality of different raw material gases Gn are introduced into the chamber 3. That is, a plurality of different raw material gases Gn are introduced into the chamber 3 in such a manner that the molar fractions of the various raw material gases Gn are kept constant in the chamber 3. As a result, the amount of residue can be suppressed. In addition, in a general vapor-phase growth apparatus, in order to circulate the raw material gas, it is difficult to introduce the raw material gas into the reaction tube so that the molar fraction of each raw material gas is kept constant.

此外,控制部15c係包括處理器及記憶裝置。因此,處理器係藉由執行貯存在記憶裝置之電腦程式,以控制閥部15a以及吸引幫浦15b。 In addition, the control unit 15c includes a processor and a memory device. Therefore, the processor controls the valve portion 15a and the suction pump 15b by executing the computer program stored in the memory device.

在此,較佳地,氣體供給裝置60係將取代了不同之複數個原料氣體Gn之不同之複數個稀釋原料氣體Dn供給至氣相成長裝置1。稀釋原料氣體Dn係混合原料氣體Gn與載體氣體CG,並藉由載體氣體CG稀釋原料氣體Gn之氣體。例如,在複數個稀釋原料氣體Dn中,原料氣體Gn雖係彼此不同,但載體氣體CG係相同。此外,區別並說明複數個稀釋原料氣體Dn時,係以稀釋原料氣體D1、...、DN(N為2以上之整數)描述。 Here, it is preferable that the gas supply device 60 supply a plurality of different diluted raw material gases Dn instead of a plurality of different raw material gases Gn to the gas phase growth device 1. The diluted raw material gas Dn is a gas in which the raw material gas Gn and the carrier gas CG are mixed, and the raw material gas Gn is diluted by the carrier gas CG. For example, in the plurality of diluted raw material gases Dn, although the raw material gases Gn are different from each other, the carrier gas CG is the same. In addition, when distinguishing and explaining a plurality of diluted raw material gases Dn, it is described by diluted raw material gases D1, ..., DN (N is an integer of 2 or more).

接下來,參考圖1主要針對將取代了原料氣體Gn之稀釋原料氣體Dn供給至氣相成長裝置1之態樣與將原料氣體Gn供給至氣相成長裝置1之態樣的不同之處進行說明。 Next, referring to FIG. 1, the difference between the state of supplying the diluted raw material gas Dn replacing the raw material gas Gn to the vapor phase growth device 1 and the state of supplying the raw material gas Gn to the vapor phase growth device 1 will be described. .

亦即,複數個原料導入管An係分別供給彼此不同之複數個稀釋原料氣體Dn。因此,複數個原料導入口GPn係分別將彼此不同之複數個稀釋原料氣體Dn導入腔室3。 That is, the plurality of raw material introduction pipes An respectively supply a plurality of different diluted raw material gases Dn that are different from each other. Therefore, the plurality of raw material introduction ports GPn respectively introduce a plurality of different diluted raw material gases Dn into the chamber 3.

氣體供給裝置60係透過原料導入管An及原料導入口GPn,將稀釋原料氣體Dn供給至腔室3。 The gas supply device 60 supplies the diluted raw material gas Dn to the chamber 3 through the raw material introduction pipe An and the raw material introduction port GPn.

具體而言,氣體供給裝置60係在將含有第1預定量M1之原料氣體Gn的稀釋原料氣體Dn供給至腔室3之後,阻斷稀釋原料氣體Dn的流道,以停止稀釋原料氣體Dn向腔室3之供給。換言之,在含有第1預定量M1之原料氣體Gn的稀釋原料氣體Dn被導入腔室3之後,稀釋原料氣體Dn的流道被阻斷,來自原料導入管An及原料導入口GPn的稀釋原料氣體Dn之導入被停止。 Specifically, after supplying the diluted raw material gas Dn containing the first predetermined amount M1 of raw material gas Gn to the chamber 3, the gas supply device 60 blocks the flow path of the diluted raw material gas Dn to stop the flow of the diluted raw material gas Dn. Supply of chamber 3. In other words, after the diluted raw material gas Dn containing the first predetermined amount of raw material gas Gn is introduced into the chamber 3, the flow path of the diluted raw material gas Dn is blocked, and the diluted raw material gas from the raw material introduction pipe An and the raw material introduction port GPn The import of Dn was stopped.

再者,氣體供給裝置60係依據由腔室3的內部之化學反應所引起之原料氣體Gn的減少量,透過原料導入管An以及原料導入口GPn,而將稀釋原料氣體Dn補充至腔室3。再者,氣體供給裝置60係在補充稀釋原料氣體Dn時,以原料氣體Gn之莫耳分率在腔室3的內部保持恆定的方式而補充稀釋原料氣體Dn。 Furthermore, the gas supply device 60 replenishes the diluted raw gas Dn to the chamber 3 through the raw material introduction pipe An and the raw material introduction port GPn according to the reduction amount of the raw material gas Gn caused by the chemical reaction inside the chamber 3 . Furthermore, when supplementing the diluted raw material gas Dn, the gas supply device 60 supplements the diluted raw material gas Dn so that the molar fraction of the raw material gas Gn remains constant inside the chamber 3.

具體而言,氣體供給裝置60係依據腔室3的內部之原料氣體Gn的減少量,透過原料導入管An以及原料導入口GPn,將含有第2預定量M2之原料氣體Gn的稀釋原料氣體Dn供給至腔室3。 Specifically, the gas supply device 60 passes the raw material introduction pipe An and the raw material introduction port GPn according to the reduction amount of the raw material gas Gn in the chamber 3 to dilute the diluted raw material gas Dn containing the second predetermined amount of raw material gas Gn Supply to the chamber 3.

接著,氣體供給裝置60係在含有第2預定量M2之原料氣體Gn的稀釋原料氣體Dn被補充之後,阻斷稀釋原料氣體Dn的流道,以停止透過原料導入管An以及原料導入口GPn向腔室3補充稀釋原料氣體Dn。 Next, the gas supply device 60 blocks the flow path of the diluted raw material gas Dn after the diluted raw material gas Dn containing the second predetermined amount of raw material gas Gn is replenished to stop the flow through the raw material introduction pipe An and the raw material introduction port GPn The chamber 3 is supplemented with diluted raw material gas Dn.

此外,氣體供給裝置60在含有第1預定量M1之原料氣體Gn的稀釋原料 氣體Dn被供給之後,亦可依據由腔室3的內部之化學反應所引起之原料氣體Gn的減少量,透過原料導入管An以及原料導入口GPn,隨時補充稀釋原料氣體Dn。 In addition, after supplying the diluted raw material gas Dn containing the first predetermined amount M1 of raw material gas Gn, the gas supply device 60 can also pass through the raw material according to the reduced amount of the raw material gas Gn caused by the chemical reaction inside the chamber 3 The introduction pipe An and the raw material introduction port GPn supplement the diluted raw material gas Dn at any time.

例如,氣體供給裝置60係當腔室3的內部之原料氣體Gn的量變得較閾值Th1少的情況下,亦可依據腔室3的內部之原料氣體Gn的減少量而隨時自原料導入口GPn補充含有原料氣體Gn之稀釋原料氣體Dn。 For example, in the gas supply device 60, when the amount of the raw material gas Gn inside the chamber 3 becomes smaller than the threshold value Th1, the raw material introduction port GPn may be used at any time according to the amount of reduction of the raw material gas Gn inside the chamber 3 The diluted raw gas Dn containing the raw gas Gn is replenished.

再者,例如,氣體供給裝置60係亦可在隨時補充稀釋原料氣體Dn時,以各種原料氣體Gn之莫耳分率在腔室3的內部保持恆定的方式而隨時補充稀釋原料氣體Dn。 Furthermore, for example, when the gas supply device 60 is replenished with the diluted raw material gas Dn at any time, the diluted raw material gas Dn may be replenished at any time so that the molar fraction of the various raw material gases Gn remains constant inside the chamber 3.

更進一步,氣體供給裝置60係在隨時補充稀釋原料氣體Dn時,亦可隨時補充載體氣體CG。更進一步,氣體供給裝置60係在隨時補充稀釋原料氣體Dn時,亦可隨時補充蝕刻氣體EG。 Furthermore, the gas supply device 60 may supplement the carrier gas CG at any time when the diluted raw material gas Dn is replenished at any time. Furthermore, when the gas supply device 60 supplements the diluted raw material gas Dn at any time, the etching gas EG may be supplemented at any time.

此外,副產物排氣部15係當副產物FG之濃度變得較閾值Th2大的情況下,使原料氣體Gn、載體氣體CG及蝕刻氣體EG排氣時對副產物FG亦進行排氣,在此情況下,氣體供給裝置60係依據原料氣體Gn的減少量而將稀釋原料氣體Dn補充至腔室3。氣體供給裝置60係在補充稀釋原料氣體Dn時,以各種原料氣體Gn之莫耳分率在腔室3的內部保持恆定的方式而補充稀釋原料氣體Dn。 In addition, when the concentration of the by-product FG becomes greater than the threshold value Th2, the by-product exhaust unit 15 exhausts the by-product FG when exhausting the source gas Gn, the carrier gas CG, and the etching gas EG. In this case, the gas supply device 60 supplements the diluted raw material gas Dn to the chamber 3 according to the amount of reduction of the raw material gas Gn. The gas supply device 60 supplements the diluted raw material gas Dn in such a manner that the molar fraction of the various raw material gases Gn is kept constant in the chamber 3 when the diluted raw material gas Dn is replenished.

在以下的實施態樣1中,若無特別說明,氣體供給裝置60係將取代了原料氣體Gn的稀釋原料氣體Dn供給至氣相成長裝置1。 In the following Embodiment 1, unless otherwise specified, the gas supply device 60 supplies the diluted raw material gas Dn instead of the raw material gas Gn to the gas phase growth device 1.

接下來,參考圖2針對氣體供給裝置60作說明。圖2係氣體供給裝置60之示意圖。如圖2所示,氣體供給裝置60係具備真空幫浦61、控制部62、恆溫槽63(溫度控制部)、複數個壓力調整單元64n、複數個第1流量控制部Qn(複數個流量控制部)、第2流量控制部72及第3流量控制部73。各個壓力調整單元64n係具備稀釋容器Xn、閥部Yn(導入部)及原料容器Zn(氣體容器)。接著,氣體供給裝置60係供給氣體(稀釋原料氣體Dn、載體氣體CG及蝕刻氣體EG)至氣相成長裝置1(圖1)。此外,在本說明書中,閥部Yn為導入部的一示例,且原料容器Zn為氣體容器的一示例。 Next, the gas supply device 60 will be described with reference to FIG. 2. FIG. 2 is a schematic diagram of the gas supply device 60. As shown in FIG. 2, the gas supply device 60 includes a vacuum pump 61, a control unit 62, a thermostat 63 (temperature control unit), a plurality of pressure adjustment units 64n, and a plurality of first flow control units Qn (a plurality of flow control Part), the second flow control unit 72 and the third flow control unit 73. Each pressure adjusting unit 64n includes a dilution container Xn, a valve portion Yn (introduction portion), and a raw material container Zn (gas container). Next, the gas supply device 60 supplies gas (diluted raw material gas Dn, carrier gas CG, and etching gas EG) to the vapor phase growth device 1 (FIG. 1 ). In addition, in this specification, the valve portion Yn is an example of the introduction portion, and the raw material container Zn is an example of the gas container.

此外,區別並說明複數個壓力調整單元64n之時,係描述為壓力調整單元641、...、64N(N為2以上之整數)。區別並說明複數個第1流量控制部Qn之時,係描述為第1流量控制部Q1、...、QN(N為2以上之整數)。區別並說明複數個稀釋容器Xn之時,係描述為稀釋容器X1、...、XN(N為2以上之整數)。區別並說明複數個閥部Yn之時,係描述為閥部Y1、...、YN(N為2以上之整數)。區別並說明複數個原料容器Zn之時,係描述為原料容器Z1、...、ZN(N為2以上之整數)。 In addition, when distinguishing and describing a plurality of pressure adjustment units 64n, it is described as pressure adjustment units 641, ..., 64N (N is an integer of 2 or more). When distinguishing and explaining a plurality of first flow control units Qn, it is described as the first flow control units Q1, ..., QN (N is an integer of 2 or more). When distinguishing and explaining a plurality of dilution containers Xn, it is described as dilution containers X1, ..., XN (N is an integer of 2 or more). When distinguishing and explaining a plurality of valve parts Yn, it is described as valve parts Y1, ..., YN (N is an integer of 2 or more). When distinguishing and explaining a plurality of raw material containers Zn, it is described as raw material containers Z1, ..., ZN (N is an integer of 2 or more).

控制部62係控制真空幫浦61、恆溫槽63、複數個閥部Yn、複數個第1 流量控制部Qn、第2流量控制部72及第3流量控制部73。亦即,真空幫浦61、恆溫槽63、複數個閥部Yn、複數個第1流量控制部Qn、第2流量控制部72及第3流量控制部73係受到控制部62的控制而動作。此外,控制部62係包括處理器及記憶裝置。因此,處理器係藉由執行貯存在記憶裝置之電腦程式,以控制真空幫浦61、恆溫槽63、複數個閥部Yn、複數個第1流量控制部Qn、第2流量控制部72及第3流量控制部73。 The control unit 62 controls the vacuum pump 61, the thermostat 63, the plurality of valve parts Yn, the plurality of first flow rate control parts Qn, the second flow rate control part 72, and the third flow rate control part 73. That is, the vacuum pump 61, the thermostat 63, the plurality of valve portions Yn, the plurality of first flow control portions Qn, the second flow control portion 72, and the third flow control portion 73 are controlled and operated by the control portion 62. In addition, the control unit 62 includes a processor and a memory device. Therefore, the processor controls the vacuum pump 61, the thermostat 63, the plurality of valve parts Yn, the plurality of first flow control parts Qn, the second flow control part 72 and the second by executing the computer program stored in the memory device 3Flow control unit 73.

恆溫槽63係控制複數個壓力調整單元64n之溫度,使複數個壓力調整單元64n之溫度保持在一定溫度。複數個壓力調整單元64n係配置於恆溫槽63的內部。 The constant temperature bath 63 controls the temperature of the plurality of pressure adjusting units 64n, so as to maintain the temperature of the plurality of pressure adjusting units 64n at a certain temperature. A plurality of pressure adjusting units 64n are arranged inside the thermostat 63.

壓力調整單元64n係藉由載體氣體CG將原料氣體Gn進行稀釋而產生稀釋原料氣體Dn。接著,壓力調整單元64n係排放含有原料氣體Gn之稀釋原料氣體Dn。再者,壓力調整單元64n係在產生稀釋原料氣體Dn時,調整稀釋容器Xn的內部之載體氣體CG的分壓及原料氣體Gn的分壓。 The pressure adjustment unit 64n generates the diluted raw material gas Dn by diluting the raw material gas Gn with the carrier gas CG. Next, the pressure adjusting unit 64n discharges the diluted raw material gas Dn containing the raw material gas Gn. Furthermore, the pressure adjusting unit 64n adjusts the partial pressure of the carrier gas CG and the partial pressure of the raw material gas Gn in the dilution container Xn when the diluted raw material gas Dn is generated.

具體而言,複數個稀釋容器Xn係分別對應於複數個原料容器Zn而設置。複數個閥部Yn係分別對應於複數個原料容器Zn而設置。亦即,複數個閥部Yn係分別對應於複數個稀釋容器Xn而設置。 Specifically, the plurality of dilution containers Xn are respectively provided corresponding to the plurality of raw material containers Zn. The plural valve portions Yn are respectively provided corresponding to the plural raw material containers Zn. That is, the plurality of valve portions Yn are respectively provided corresponding to the plurality of dilution containers Xn.

複數個原料容器Zn係分別收容彼此不同之複數個原料氣體Gn(彼此不同之複數個氣體)。原料氣體Gn係未被稀釋的單純之原料的氣體,其在原料 容器Zn的內部具有一定的壓力(蒸氣壓)。具體而言,原料容器Zn係氣化固體原料以產生原料氣體Gn,並收容原料氣體Gn。此外,原料容器Zn亦可氣化液體原料以產生原料氣體Gn,並收容原料氣體Gn。例如,恆溫槽63係控制原料容器Zn的溫度,以氣化原料容器Zn內的固體原料,亦或是氣化原料容器Zn內的液體原料。 The plurality of raw material containers Zn respectively contain a plurality of different raw material gases Gn (a plurality of different gas from each other). The raw material gas Gn is a pure raw material gas that has not been diluted, and has a certain pressure (vapor pressure) inside the raw material container Zn. Specifically, the raw material container Zn gasifies the solid raw material to generate the raw material gas Gn, and stores the raw material gas Gn. In addition, the raw material container Zn can also vaporize the liquid raw material to generate the raw material gas Gn and contain the raw material gas Gn. For example, the thermostat 63 controls the temperature of the raw material container Zn to vaporize the solid raw material in the raw material container Zn or the liquid raw material in the vaporized raw material container Zn.

此外,在本說明書中,原料氣體Gn係透過氣體供給裝置60而向氣相成長裝置1所供給的供給對象之氣體的一示例。因此,原料容器Zn係收容作為供給對象之氣體的原料氣體Gn。再者,氣相成長裝置1係透過氣體供給裝置60而供給的氣體被供給處之一示例。更進一步,載體氣體CG係與作為供給對象之氣體不同,例如運送作為供給對象之氣體,亦或是稀釋作為供給對象之氣體,又或者是攪拌作為供給對象之氣體。 In addition, in this specification, the raw material gas Gn is an example of the gas to be supplied to the gas-phase growth device 1 through the gas supply device 60. Therefore, the raw material container Zn contains the raw material gas Gn as the gas to be supplied. In addition, the gas-phase growth device 1 is an example of a place where the gas supplied through the gas supply device 60 is supplied. Furthermore, the carrier gas CG is different from the gas to be supplied, for example, to transport the gas to be supplied, or to dilute the gas to be supplied, or to stir the gas to be supplied.

各個閥部Yn係在不同的時間點,將原料氣體Gn及稀釋原料氣體Gn之載體氣體CG導入所對應的稀釋容器Xn。其結果係在稀釋容器Xn中產生混合了原料氣體Gn及載體氣體CG之稀釋原料氣體Dn。再者,閥部Yn係調整在稀釋容器Xn中之原料氣體Gn的分壓以及載體氣體CG的分壓。其結果係在稀釋容器Xn中,稀釋原料氣體Dn之總壓p被設定為預定總壓值,原料氣體Gn的分壓pg被設定為第1分壓值,以及載體氣體CG的分壓pc被設定為第2分壓值。即,p=pg+pc。 Each valve part Yn introduces the raw material gas Gn and the carrier gas CG diluting the raw material gas Gn into the corresponding dilution container Xn at different time points. As a result, the diluted raw material gas Dn in which the raw material gas Gn and the carrier gas CG are mixed is generated in the dilution container Xn. Furthermore, the valve portion Yn adjusts the partial pressure of the raw material gas Gn and the partial pressure of the carrier gas CG in the dilution container Xn. As a result, in the dilution container Xn, the total pressure p of the diluted raw material gas Dn is set to a predetermined total pressure value, the partial pressure pg of the raw gas Gn is set to the first partial pressure value, and the partial pressure pc of the carrier gas CG is set Set to the second partial pressure value. That is, p=pg+pc.

各個稀釋容器Xn係混合自相對應的原料容器Zn所導入之原料氣體Gn 及載體氣體CG,並作為稀釋原料氣體Dn(稀釋氣體)而收容。接著,各個閥部Yn係在原料氣體Gn及載體氣體CG被混合之後,自相對應的稀釋容器Xn排放稀釋原料氣體Dn。亦即,各個閥部Yn係在原料氣體Gn及載體氣體CG被混合,且原料氣體Gn的分壓pg及載體氣體CG的分壓pc被調整之後,將稀釋原料氣體Dn自相對應的稀釋容器Xn進行排氣。 Each dilution container Xn mixes the raw material gas Gn and the carrier gas CG introduced from the corresponding raw material container Zn, and is accommodated as the diluted raw material gas Dn (dilution gas). Next, after the raw material gas Gn and the carrier gas CG are mixed, each valve portion Yn discharges the diluted raw material gas Dn from the corresponding dilution container Xn. That is, after each of the valve portions Yn is mixed with the source gas Gn and the carrier gas CG, and the partial pressure pg of the source gas Gn and the partial pressure pc of the carrier gas CG are adjusted, the diluted source gas Dn is adjusted from the corresponding dilution container Xn exhausts.

此外,在本說明書中,稀釋原料氣體Dn為混合了透過氣體供給裝置60而向氣相成長裝置1所供給對象之氣體(具體而言為原料氣體Gn)與載體氣體CG的稀釋氣體之一示例。 In addition, in this specification, the diluted raw material gas Dn is an example of a diluted gas that mixes the gas (specifically, the raw material gas Gn) and the carrier gas CG supplied to the gas-phase growth device 1 through the gas supply device 60. .

複數個第1流量控制部Qn係分別對應於複數個閥部Yn而設置。再者,複數個第1流量控制部Qn係分別對應於複數個原料導入管An(圖1)而設置。 The plurality of first flow rate control units Qn are provided corresponding to the plurality of valve units Yn, respectively. In addition, the plurality of first flow rate control units Qn are respectively provided corresponding to the plurality of raw material introduction pipes An (FIG. 1 ).

第1流量控制部Qn係控制由對應的閥部Yn所排放之稀釋原料氣體Dn的流量。接著,第1流量控制部Qn係透過對應的原料導入管An,將稀釋原料氣體Dn供給至腔室3。具體而言,第1流量控制部Qn係具有層流元件(Laminar Flow Element)(具體而言係多孔組件)。層流元件係將流道劃分成上游及下游。接著,第1流量控制部Qn係利用哈根-佰意索意流(Hagen-Poiseuille Flow)之原理,以層流元件之上游與下游的差壓為基礎而控制稀釋原料氣體Dn之體積流量或質量流量。 The first flow rate control unit Qn controls the flow rate of the diluted raw material gas Dn discharged from the corresponding valve unit Yn. Next, the first flow control unit Qn passes through the corresponding raw material introduction pipe An, and supplies the diluted raw material gas Dn to the chamber 3. Specifically, the first flow control unit Qn has a laminar flow element (specifically, a porous element). The laminar flow element divides the flow channel into upstream and downstream. Next, the first flow control unit Qn uses the principle of Hagen-Poiseuille Flow to control the volume flow of the diluted raw gas Dn based on the differential pressure between the upstream and downstream of the laminar flow element or Mass Flow.

第2流量控制部72係控制載體氣體CG之流量。接著,第2流量控制部72 係透過載體導入管19(圖1)而將載體氣體CG供給至腔室3。第2流量控制部72的結構係與第1流量控制部Qn的結構相同。 The second flow rate control unit 72 controls the flow rate of the carrier gas CG. Next, the second flow rate control unit 72 supplies the carrier gas CG to the chamber 3 through the carrier introduction tube 19 (FIG. 1 ). The configuration of the second flow control unit 72 is the same as the configuration of the first flow control unit Qn.

第3流量控制部73係控制蝕刻氣體EG之流量。接著,第3流量控制部73係透過蝕刻導入管21(圖1),將蝕刻氣體EG供給至腔室3。第3流量控制部73的結構係與第1流量控制部Qn的結構相同。 The third flow rate control unit 73 controls the flow rate of the etching gas EG. Next, the third flow rate control unit 73 supplies the etching gas EG to the chamber 3 through the etching introduction pipe 21 (FIG. 1 ). The configuration of the third flow control unit 73 is the same as the configuration of the first flow control unit Qn.

如以上參考圖2所述,藉由實施態樣1,由於係將載體氣體CG導入稀釋容器Xn中,相較於僅將原料氣體Gn導入稀釋容器Xn的情況下,可增大稀釋原料氣體Dn之總壓p。因此,相較於僅將原料氣體Gn導入稀釋容器Xn的情況下,原料氣體Gn易朝向第1流量控制部Qn及氣相成長裝置1移動。亦即,藉由在稀釋容器Xn中之稀釋原料氣體Dn的總壓p,係確保移動原料氣體Gn的力量。另一方面,藉由調整由原料容器Zn導入至稀釋容器Xn之原料氣體Gn的量(物質量、體積量或是質量),可高精度地調整稀釋容器Xn中之稀釋原料氣體Dn所含有之原料氣體Gn的量(物質量、體積量或是質量)。 As described above with reference to FIG. 2, according to Embodiment 1, since the carrier gas CG is introduced into the dilution container Xn, the dilution raw material gas Dn can be increased compared to the case where only the raw material gas Gn is introduced into the dilution container Xn. The total pressure p. Therefore, compared with the case where only the raw material gas Gn is introduced into the dilution container Xn, the raw material gas Gn tends to move toward the first flow control unit Qn and the vapor phase growth device 1. That is, the total pressure p of the diluted raw material gas Dn in the dilution container Xn ensures the power to move the raw material gas Gn. On the other hand, by adjusting the amount (material mass, volume, or mass) of the raw material gas Gn introduced from the raw material container Zn to the dilution container Xn, the content of the diluted raw material gas Dn contained in the dilution container Xn can be adjusted with high accuracy The amount of raw material gas Gn (material mass, volume, or mass).

其結果為,相較於如發明專利文獻1所記載之成膜裝置(以下稱為「先前技術」。)係以一邊使載體氣體流動一邊控制載體氣體的流量以調整原料氣體之供給量的情況下,可高精度地調整使與載體氣體CG一起朝向第1流量控制部Qn及氣相成長裝置1移動之原料氣體Gn的量(物質量、體積量或是質量),亦即,原料氣體Gn的供給量。再者,相較於如先前技術係由起泡器直接供給原料氣體至氣體被供給處的情況下,因自稀釋容器Xn排放稀釋原料氣體 Dn,藉此可高精度地調整原料氣體Gn之供給量。由於可高精度地調整原料氣體Gn之供給量,使得氣相成長裝置1可形成品質良好之目的物質(例如缺陷少、純度高之目的物質)。 As a result, in comparison with the film forming apparatus described in Invention Patent Document 1 (hereinafter referred to as "prior art"), the flow rate of the carrier gas is controlled while flowing the carrier gas to adjust the supply amount of the source gas Next, the amount (material mass, volume amount, or mass) of the raw material gas Gn that moves along with the carrier gas CG toward the first flow control unit Qn and the vapor phase growth device 1 can be adjusted with high accuracy, that is, the raw material gas Gn Of supply. Furthermore, compared with the case where the raw material gas is directly supplied from the bubbler to the gas supply location as in the prior art, the diluted raw material gas Dn is discharged from the dilution container Xn, whereby the supply of the raw material gas Gn can be adjusted with high accuracy the amount. Since the supply amount of the raw material gas Gn can be adjusted with high precision, the vapor-phase growth device 1 can form a target substance of good quality (for example, a target substance with few defects and high purity).

再者,根據實施態樣1,係藉由在稀釋容器Xn中之稀釋原料氣體Dn的總壓p而確保使原料氣體Gn移動之力量,並自稀釋容器Xn排放含有原料氣體Gn之稀釋原料氣體Dn。因此,相較於先前技術,原料氣體Gn的供給量不易受溫度的影響,容易進行溫度管理。再者,由於原料氣體Gn之供給量不易受溫度的影響,藉此可更高精度地調整原料氣體Gn的供給量。更進一步,由於溫度管理容易,可降低氣體供給裝置60的成本。 Furthermore, according to Embodiment 1, the total pressure p of the diluted raw material gas Dn in the dilution container Xn is used to ensure the power to move the raw material gas Gn, and the diluted raw material gas containing the raw material gas Gn is discharged from the diluted container Xn Dn. Therefore, compared with the prior art, the supply amount of the raw material gas Gn is less susceptible to temperature, and temperature management is easier. Furthermore, since the supply amount of the raw material gas Gn is not easily affected by temperature, the supply amount of the raw material gas Gn can be adjusted with higher accuracy. Furthermore, since the temperature management is easy, the cost of the gas supply device 60 can be reduced.

此外,在先前技術中,由於使載體氣體流至起泡器以產生原料氣體,並透過載體氣體將原料氣體直接供給至氣體被供給處,故原料氣體之流量是由起泡器內溫度(原料之蒸氣壓)、起泡器內壓力以及載體氣體之流量而決定。因此,原料氣體之流量易受到溫度的影響。其結果為,若不精密地控制起泡器內的溫度,即無法高精度地控制原料氣體的流量。亦即,溫度管理變得困難。再者,在先前技術中,在精密地控制起泡器內溫度的情況下,用以控制起泡器溫度的溫度控制裝置(例如電子恆溫槽)變得高價而使成本提高。再者,由於此種溫度控制裝置所消耗的電力可能會變得較大,故有提高維護成本的可能性。相對於此,在實施態樣1中,係可抑制維護成本的提高。更進一步,此種溫度控制裝置的內部形狀可能受限於特別的形狀,故配置在溫度控制裝置的內部之起泡器的形狀可能受到限制。相對於此, 在實施態樣1中,可抑制原料容器Zn的形狀受到限制,故可採用任意形狀的原料容器Zn。 In addition, in the prior art, since the carrier gas is flowed to the bubbler to generate the raw material gas, and the raw material gas is directly supplied to the gas supply location through the carrier gas, the flow rate of the raw material gas is determined by the temperature in the bubbler (raw material The vapor pressure), the pressure in the bubbler and the flow rate of the carrier gas are determined. Therefore, the flow rate of the raw material gas is easily affected by temperature. As a result, if the temperature in the bubbler is not precisely controlled, the flow rate of the raw material gas cannot be controlled with high accuracy. That is, temperature management becomes difficult. Furthermore, in the prior art, when the temperature in the bubbler is precisely controlled, a temperature control device (for example, an electronic thermostat) for controlling the temperature of the bubbler becomes expensive, which increases the cost. Furthermore, since the power consumed by such a temperature control device may become larger, there is a possibility of increasing maintenance costs. In contrast, in the first embodiment, the maintenance cost can be suppressed from increasing. Furthermore, the internal shape of such a temperature control device may be limited to a special shape, so the shape of the bubbler disposed inside the temperature control device may be limited. On the other hand, in the first embodiment, the shape of the raw material container Zn can be suppressed from being restricted, so that the raw material container Zn of any shape can be used.

再者,根據實施態樣1,藉由在稀釋容器Xn中之稀釋原料氣體Dn的總壓p而確保使原料氣體Gn移動的力量,並自稀釋容器Xn排放含有原料氣體Gn之稀釋原料氣體Dn。因此,相較於先前技術,可容易地供給少量的原料氣體Gn。 Furthermore, according to Embodiment 1, the total pressure p of the diluted raw material gas Dn in the dilution container Xn ensures the power to move the raw material gas Gn, and the diluted raw material gas Dn containing the raw material gas Gn is discharged from the dilution container Xn . Therefore, compared with the prior art, a small amount of raw material gas Gn can be easily supplied.

此外,在先前技術中,由於原料氣體的流量是由起泡器內溫度(原料之蒸氣壓)、起泡器內壓力以及載體氣體之流量所決定,故在供給少量的原料氣體的情況下,必須減少載體氣體的流量,亦或是降低起泡器內的溫度。然而,若是減少載體氣體的流量,則無法生成連續的氣泡,而變為生成間歇的氣泡,故有使原料氣體的供給量變得不安定的可能性。相對於此,在實施態樣1中,由於係自稀釋容器Xn排放含有原料氣體Gn之稀釋原料氣體Dn,故使原料氣體Gn的供給量安定。再者,在先前技術中,欲降低起泡器內溫度的情況下,少量的原料氣體之供給會依賴溫度控制裝置(例如電子恆溫槽)的冷卻能力,故有對少量的原料氣體之供給產生極限的可能性。相對於此,根據實施態樣1,由於藉由稀釋容器Xn中之稀釋原料氣體Dn的總壓p而確保使原料氣體Gn移動的力量,故可容易地供給少量的原料氣體Gn。 In addition, in the prior art, since the flow rate of the raw material gas is determined by the temperature in the bubbler (the vapor pressure of the raw material), the pressure in the bubbler, and the flow rate of the carrier gas, when a small amount of raw material gas is supplied, The flow rate of the carrier gas must be reduced, or the temperature in the bubbler must be reduced. However, if the flow rate of the carrier gas is reduced, continuous bubbles cannot be generated and intermittent bubbles are generated, so there is a possibility that the supply amount of the raw material gas becomes unstable. On the other hand, in Embodiment 1, since the diluted raw material gas Dn containing the raw material gas Gn is discharged from the dilution container Xn, the supply amount of the raw material gas Gn is stabilized. Furthermore, in the prior art, when the temperature in the bubbler was to be reduced, the supply of a small amount of raw material gas would depend on the cooling capacity of a temperature control device (such as an electronic thermostat), so there was a supply of a small amount of raw material gas. Limit possibilities. On the other hand, according to Embodiment 1, since the total pressure p of the diluted raw material gas Dn in the dilution container Xn ensures the force to move the raw material gas Gn, a small amount of raw material gas Gn can be easily supplied.

再者,根據實施態樣1,藉由調整導入至稀釋容器Xn之載體氣體CG的導入量,則可調整稀釋原料氣體Dn之總壓p。亦即,可調整移動原料氣體 Gn的力量。 Furthermore, according to Embodiment 1, by adjusting the amount of carrier gas CG introduced into the dilution container Xn, the total pressure p of the diluted raw material gas Dn can be adjusted. That is, the power to move the raw material gas Gn can be adjusted.

更進一步,根據實施態樣1,藉由調整稀釋容器Xn中之原料氣體Gn的分壓pg,則可調整稀釋原料氣體Dn所含有之原料氣體Gn的量(物質量、體積量或是質量)。其結果係可更高精度地調整使與載體氣體CG一起朝向第1流量控制部Qn及氣相成長裝置1移動之原料氣體Gn的量(物質量、體積量或是質量)。 Furthermore, according to Embodiment 1, by adjusting the partial pressure pg of the raw gas Gn in the dilution container Xn, the amount (material mass, volume, or mass) of the raw gas Gn contained in the diluted raw gas Dn can be adjusted . As a result, the amount (material mass, volume amount, or mass) of the raw material gas Gn that moves together with the carrier gas CG toward the first flow rate control unit Qn and the vapor phase growth device 1 can be adjusted with higher accuracy.

更進一步,藉由實施態樣1,因具備複數個稀釋容器Xn,可針對每一個稀釋容器Xn調整導入稀釋容器Xn之原料氣體Gn的量。因此,各種原料氣體Gn係以具有基於為了生成目的物質之化學反應式的莫耳分率之方式,而可將原料氣體Gn導入至各個稀釋容器Xn。亦即,在將原料氣體Gn供給至氣相成長裝置1時,可容易地調整原料氣體Gn的莫耳分率。在此情況下,例如,以複數個稀釋容器Xn中之稀釋原料氣體Dn的總壓p成為彼此大致相同的方式,而將載體氣體CG導入至各個稀釋容器Xn。 Furthermore, according to Embodiment 1, since a plurality of dilution containers Xn are provided, the amount of raw gas Gn introduced into the dilution container Xn can be adjusted for each dilution container Xn. Therefore, the various raw material gases Gn can be introduced into each dilution container Xn so as to have a molar fraction based on the chemical reaction formula for generating the target substance. That is, when the raw material gas Gn is supplied to the vapor phase growth device 1, the mole fraction of the raw material gas Gn can be easily adjusted. In this case, for example, the carrier gas CG is introduced into each dilution container Xn in such a manner that the total pressure p of the dilution raw material gas Dn in the plurality of dilution containers Xn becomes substantially the same as each other.

更進一步,藉由實施態樣1,因具備複數個稀釋容器Xn,故可針對每一個稀釋容器Xn調整稀釋原料氣體Dn的總壓p。因此,各種原料氣體Gn係以具有基於為了生成目的物質之化學反應式的莫耳分率之方式,而可使原料氣體Gn自各個稀釋容器Xn朝向第1流量控制部Qn及氣相成長裝置1移動。亦即,在將原料氣體Gn供給至氣相成長裝置1時,可容易地調整原料氣體Gn的莫耳分率。在此情況下,例如,以基於為了生成目的物質之化學反應式 的各原料氣體Gn之莫耳分率為基礎,決定各稀釋容器Xn中之稀釋原料氣體Dn的總壓p。接著,以成為所決定的總壓p之方式,將載體氣體CG導入各個稀釋容器Xn。 Furthermore, according to Embodiment 1, since a plurality of dilution containers Xn are provided, the total pressure p of the diluted raw material gas Dn can be adjusted for each dilution container Xn. Therefore, each raw material gas Gn has a molar fraction based on the chemical reaction formula for generating the target substance, so that the raw material gas Gn can be directed from each dilution container Xn toward the first flow control unit Qn and the vapor phase growth device 1 mobile. That is, when the raw material gas Gn is supplied to the vapor phase growth device 1, the mole fraction of the raw material gas Gn can be easily adjusted. In this case, for example, the total pressure p of the diluted raw material gas Dn in each dilution container Xn is determined on the basis of the mole fraction of each raw material gas Gn based on the chemical reaction formula for generating the target substance. Next, the carrier gas CG is introduced into each dilution container Xn so as to become the determined total pressure p.

更進一步,藉由實施態樣1,利用原料容器Zn的內部之原料氣體Gn的壓力(蒸氣壓),則可使原料氣體Gn自原料容器Zn移動至稀釋容器Xn。因此,可抑制裝設為使原料氣體Gn自原料容器Zn移動至稀釋容器Xn的主動裝置。其結果係可簡化氣體供給裝置60,亦可降低氣體供給裝置60之成本。 Furthermore, according to the first embodiment, by using the pressure (vapor pressure) of the raw material gas Gn inside the raw material container Zn, the raw material gas Gn can be moved from the raw material container Zn to the dilution container Xn. Therefore, it is possible to suppress installation of an active device that moves the raw material gas Gn from the raw material container Zn to the dilution container Xn. As a result, the gas supply device 60 can be simplified, and the cost of the gas supply device 60 can be reduced.

更進一步,藉由實施態樣1,由於可減少在將複數個原料氣體Gn導入腔室3前的預先混合之步驟,藉此可簡化將複數個原料氣體Gn導入腔室3前之步驟。 Furthermore, by implementing aspect 1, the step of premixing before introducing a plurality of raw material gases Gn into the chamber 3 can be reduced, thereby simplifying the step before introducing the plurality of raw material gases Gn into the chamber 3.

更進一步,藉由實施態樣1,第1流量控制部Qn係利用稀釋原料氣體Dn的總壓p,而可容易地將稀釋原料氣體Dn供給至氣相成長裝置1。 Furthermore, in Embodiment 1, the first flow rate control unit Qn uses the total pressure p of the diluted raw material gas Dn to easily supply the diluted raw material gas Dn to the gas phase growth device 1.

此外,第1流量控制部Qn亦可控制其對應之閥部Yn自原料容器Zn所排放的原料氣體Gn之流量。接著,第1流量控制部Qn亦可透過所對應的原料導入管An以將原料氣體Gn供給至腔室3。具體而言,第1流量控制部Qn亦可利用哈根-佰意索意流之原理,基於層流元件之上游與下游的差壓而控制原料氣體Gn之體積流量或質量流量。 In addition, the first flow rate control unit Qn may also control the flow rate of the raw material gas Gn discharged from the raw material container Zn by the corresponding valve unit Yn. Next, the first flow rate control unit Qn may supply the raw material gas Gn to the chamber 3 through the corresponding raw material introduction pipe An. Specifically, the first flow control unit Qn may also use the principle of Hagen-Baiyi so-called flow to control the volume flow or mass flow of the raw material gas Gn based on the differential pressure between the upstream and downstream of the laminar flow element.

接下來,係參考圖3而對壓力調整單元64n作說明。圖3係壓力調整單元64n之示意圖。如圖3所示,各個壓力調整單元64n係進一步包括溫度計TM、第1壓力計PM1(壓力計)以及第2壓力計PM2。溫度計TM係量測稀釋容器Xn的內部之溫度。第1壓力計PM1係量測稀釋容器Xn的內部之壓力。第2壓力計PM2係量測壓力。第2壓力計PM2係可量測例如較第1壓力計PM1低之壓力。 Next, the pressure adjusting unit 64n will be described with reference to FIG. 3. FIG. 3 is a schematic diagram of the pressure adjusting unit 64n. As shown in FIG. 3, each pressure adjusting unit 64n further includes a thermometer TM, a first pressure gauge PM1 (pressure gauge), and a second pressure gauge PM2. Thermometer TM measures the temperature inside the dilution container Xn. The first pressure gauge PM1 measures the pressure inside the dilution container Xn. The second pressure gauge PM2 measures pressure. The second pressure gauge PM2 can measure, for example, a pressure lower than the first pressure gauge PM1.

閥部Yn係包括第1閥單元75以及第2閥單元77。第1閥單元75係包括閥b1至閥b7及管t1至管t4。第2閥單元77係包括閥b8及管t5。閥b1至閥b8係例如停止閥(Stop Valve)。 The valve portion Yn includes a first valve unit 75 and a second valve unit 77. The first valve unit 75 includes valves b1 to b7 and tubes t1 to t4. The second valve unit 77 includes a valve b8 and a tube t5. The valves b1 to b8 are, for example, stop valves.

管t1係連接於稀釋容器Xn及閥b4。管t2係使閥b3至閥b7相互連接。管t3係使閥b1至閥b3相互連接。管t4係連接於閥b7及閥b8。管t5係連接於閥b8及原料容器Zn。此外,閥b8亦可直接連接於原料容器Zn。閥b4亦可直接連接於稀釋容器Xn。 The tube t1 is connected to the dilution container Xn and the valve b4. The pipe t2 connects the valves b3 to b7 to each other. The pipe t3 connects the valves b1 to b3 to each other. The tube t4 is connected to the valve b7 and the valve b8. The tube t5 is connected to the valve b8 and the raw material container Zn. In addition, the valve b8 may be directly connected to the raw material container Zn. The valve b4 may also be directly connected to the dilution container Xn.

繼續參考圖3針對閥部Yn的控制步驟作說明。控制步驟係包括第1步驟至第16步驟。在閥部Yn的初期狀態中,閥b1至閥b8係關閉狀態。 The control procedure of the valve portion Yn will be described with reference to FIG. 3. The control step includes the first step to the sixteenth step. In the initial state of the valve portion Yn, the valves b1 to b8 are closed.

[真空吸引及沖洗] [Vacuum suction and flushing]

第1步驟:啟動真空幫浦61。 Step 1: Start the vacuum pump 61.

第2步驟:開啟閥b2、閥b3、閥b4及閥b7。 Step 2: Open valve b2, valve b3, valve b4 and valve b7.

第3步驟:開啟閥b6,且關閉閥b3。第2壓力計PM2量測稀釋容器Xn的內部之壓力。操作者藉由第2壓力計PM2確認稀釋容器Xn的內部之真空的程度。 Step 3: Open the valve b6, and close the valve b3. The second pressure gauge PM2 measures the pressure inside the dilution container Xn. The operator confirms the degree of vacuum inside the dilution container Xn with the second pressure gauge PM2.

第4步驟:關閉閥b2、閥b6,且開啟閥b1、閥b3。接著,將載體氣體CG自閥b1導入至稀釋容器Xn。其結果可透過載體氣體CG洗淨(Purge,沖洗)稀釋容器Xn的內部。 Step 4: Close the valves b2 and b6, and open the valves b1 and b3. Next, the carrier gas CG is introduced from the valve b1 to the dilution container Xn. As a result, the inside of the dilution container Xn can be washed (purge) with the carrier gas CG.

接著,將閥部Yn回復至初期狀態,重複初期狀態及第2步驟至第4步驟。其結果可透過載體氣體CG重複洗淨(Cycle Purge,循環沖洗)稀釋容器Xn的內部。藉由重複洗淨稀釋容器Xn的內部,可減少稀釋容器Xn的內部之殘留氣體的物質量(或是濃度)。重複初期狀態及第2步驟至第4步驟之後,將閥部Yn回復至初期狀態,再執行第2步驟及第3步驟。 Next, the valve portion Yn is returned to the initial state, and the initial state and the second to fourth steps are repeated. As a result, the inside of the container Xn can be diluted (Cycle Purge) by carrier gas CG. By repeatedly washing the inside of the dilution container Xn, the mass (or concentration) of the residual gas inside the dilution container Xn can be reduced. After repeating the initial state and the second to fourth steps, the valve portion Yn is returned to the initial state, and then the second and third steps are performed.

[原料氣體Gn向稀釋容器Xn的導入] [Introduction of Raw Gas Gn to Dilution Container Xn]

第5步驟:關閉閥b2、閥b6、閥b7,且開啟閥b8。 Step 5: Close valve b2, valve b6, and valve b7, and open valve b8.

第6步驟:重複閥b7的開啟關閉,將原料氣體Gn自原料容器Zn導入稀釋容器Xn。將原料氣體Gn導入稀釋容器Xn時,調整閥b7的開啟時間與關閉時間,將稀釋容器Xn的內部之原料氣體Gn的壓力pg設定至第1分壓值。壓力 pg係以式(1)表示。「V」係表示稀釋容器Xn的內部之體積;「ng」係表示原料氣體Gn的物質量(莫耳);「R」係表示氣體常數;「T」係表示稀釋容器Xn的內部之溫度。 Step 6: Repeat the opening and closing of the valve b7 to introduce the raw material gas Gn from the raw material container Zn into the dilution container Xn. When the raw material gas Gn is introduced into the dilution container Xn, the opening time and the closing time of the valve b7 are adjusted, and the pressure pg of the raw material gas Gn inside the dilution container Xn is set to the first partial pressure value. The pressure pg is expressed by formula (1). "V" represents the volume inside the dilution container Xn; "ng" represents the mass of the raw material gas Gn (mole); "R" represents the gas constant; "T" represents the temperature inside the dilution container Xn.

pg×V=ng×R×T...(1) pg×V=ng×R×T...(1)

由於體積V及溫度T為已知,且壓力pg可透過第1壓力計PM1量測,藉此可基於式(1)算出稀釋容器Xn的內部之原料氣體Gn的物質量。 Since the volume V and the temperature T are known, and the pressure pg can be measured by the first pressure gauge PM1, the mass of the raw material gas Gn inside the dilution container Xn can be calculated based on equation (1).

依據實施態樣1,藉由以溫度計TM監視稀釋容器Xn的溫度時,並以第1壓力計PM1監視稀釋容器Xn的壓力,可將稀釋容器Xn的溫度及原料氣體Gn的分壓pg控制在所欲的數值。其結果係可將所欲的物質量之原料氣體Gn導入至稀釋容器Xn。 According to Embodiment 1, by monitoring the temperature of the dilution container Xn with the thermometer TM and monitoring the pressure of the dilution container Xn with the first pressure gauge PM1, the temperature of the dilution container Xn and the partial pressure pg of the raw gas Gn can be controlled at The desired value. As a result, the raw material gas Gn of the desired physical mass can be introduced into the dilution container Xn.

此外,在原料氣體Gn的壓力pg低的情況下,可開啟閥b6,並藉由第2壓力計PM2而量測壓力pg。 In addition, when the pressure pg of the raw material gas Gn is low, the valve b6 may be opened, and the pressure pg may be measured by the second pressure gauge PM2.

第7步驟:當原料氣體Gn的壓力pg成為第1分壓值的時點,關閉閥b7。 Step 7: When the pressure pg of the source gas Gn becomes the first partial pressure value, the valve b7 is closed.

[載體氣體CG向稀釋容器Xn的導入] [Introduction of Carrier Gas CG to Dilution Container Xn]

第8步驟:關閉閥b4、閥b8,且開啟閥b2、閥b3、閥b7。 Step 8: Close the valves b4 and b8, and open the valves b2, b3 and b7.

第9步驟:開啟閥b6。第2壓力計PM2量測管t2、管t3、管t4的內部之壓力。操作者藉由第2壓力計PM2確認管t2、管t3、管t4的內部之真空的程度。 Step 9: Open the valve b6. The second pressure gauge PM2 measures the pressure inside the tube t2, the tube t3, and the tube t4. The operator confirms the degree of vacuum inside the tube t2, the tube t3, and the tube t4 with the second pressure gauge PM2.

第10步驟:關閉閥b2、閥b6,且開啟閥b1。 Step 10: Close valve b2 and valve b6, and open valve b1.

第11步驟:重複閥b4的開啟關閉,並將載體氣體CG導入至稀釋容器Xn。將載體氣體CG導入稀釋容器Xn時,調整閥b4的開啟時間與關閉時間,將稀釋容器Xn的內部之稀釋原料氣體Dn的總壓p設定至預定總壓值。總壓p係以式(2)表示。「V」係表示稀釋容器Xn的內部之體積;「n」係表示稀釋原料氣體Dn的物質量(莫耳);「R」係表示氣體常數;「T」係表示稀釋容器Xn的內部之溫度。具體而言,「n」係稀釋容器Xn的內部之載體氣體CG的物質量(莫耳)和原料氣體Gn的物質量(莫耳)之總合。 Step 11: Repeat the opening and closing of the valve b4, and introduce the carrier gas CG into the dilution container Xn. When the carrier gas CG is introduced into the dilution container Xn, the opening time and the closing time of the valve b4 are adjusted, and the total pressure p of the diluted raw material gas Dn inside the dilution container Xn is set to a predetermined total pressure value. The total pressure p is expressed by formula (2). "V" represents the volume inside the dilution container Xn; "n" represents the mass of the diluted raw material gas Dn (mole); "R" represents the gas constant; "T" represents the temperature inside the dilution container Xn . Specifically, "n" is the sum of the material mass (mole) of the carrier gas CG inside the dilution container Xn and the material mass (mole) of the raw material gas Gn.

p×V=n×R×T...(2) p×V=n×R×T...(2)

由於體積V及溫度T為已知,且總壓p可透過第1壓力計PM1量測,藉此可基於式(2)算出稀釋容器Xn的內部之稀釋原料氣體Dn的物質量n。更進一步,因已知原料氣體Gn的物質量ng,載體氣體CG的物質量nc係可基於式(3)而算出。 Since the volume V and the temperature T are known, and the total pressure p can be measured by the first pressure gauge PM1, the mass n of the diluted raw material gas Dn inside the dilution container Xn can be calculated based on equation (2). Furthermore, since the material mass ng of the source gas Gn is known, the material mass nc of the carrier gas CG can be calculated based on equation (3).

n=ng+nc...(3) n=ng+nc...(3)

依據實施態樣1,藉由以溫度計TM監視稀釋容器Xn的溫度時,並以第1壓力計PM1監視稀釋容器Xn的壓力,可將稀釋容器Xn的溫度及稀釋原料氣體Dn的總壓p控制在所欲的數值。其結果係可將所欲的物質量之載體氣體CG導入至稀釋容器Xn。 According to Embodiment 1, by monitoring the temperature of the dilution container Xn with the thermometer TM and monitoring the pressure of the dilution container Xn with the first pressure gauge PM1, the temperature of the dilution container Xn and the total pressure p of the diluted raw material gas Dn can be controlled At the desired value. As a result, the carrier gas CG of the desired physical mass can be introduced into the dilution container Xn.

再者,可由式(4)算出載體氣體CG的分壓pc。「pg」係表示稀釋容器Xn的內部之原料氣體Gn的壓力,亦即,原料氣體Gn的分壓。 Furthermore, the partial pressure pc of the carrier gas CG can be calculated from equation (4). "Pg" means the pressure of the raw material gas Gn inside the dilution container Xn, that is, the partial pressure of the raw material gas Gn.

p=pg+pc...(4) p=pg+pc...(4)

基於總壓p、分壓pg及分壓pc,或是物質量n、物質量ng及物質量nc,可算出原料氣體Gn的莫耳分率及載體氣體CG的莫耳分率。 Based on the total pressure p, partial pressure pg, and partial pressure pc, or the mass n, the mass ng, and the mass nc, the mole fraction of the raw gas Gn and the mole fraction of the carrier gas CG can be calculated.

第12步驟:當稀釋原料氣體Dn的總壓p成為預定總壓值的時點,關閉閥b4。亦即,載體氣體CG的分壓pc成為第2分壓值的時點,關閉閥b4。 Step 12: When the total pressure p of the diluted raw material gas Dn becomes a predetermined total pressure value, the valve b4 is closed. That is, when the partial pressure pc of the carrier gas CG becomes the second partial pressure value, the valve b4 is closed.

[稀釋原料氣體Dn向氣相成長裝置1的供給] [Supply of Dilution Raw Gas Dn to Gas Phase Growth Apparatus 1]

第13步驟:亦可開啟閥b5。其結果係可藉由載體氣體CG,洗淨(Purge,沖洗)閥b5直至第1流量控制部Qn為止的流道。 Step 13: You can also open the valve b5. As a result, the flow path up to the first flow control unit Qn can be purged (purge) by the carrier gas CG.

第14步驟:關閉閥b1、閥b5、閥b7,且開啟閥b2。 Step 14: Close valve b1, valve b5, and valve b7, and open valve b2.

第15步驟:開啟閥b6。第2壓力計PM2量測管t2、管t3的內部之壓力。操作者藉由第2壓力計PM2確認管t2、管t3的內部之真空的程度。此外,在管t2、管t3的流道容積較稀釋容器Xn的容積小的情況下,則不需第15步驟。 Step 15: Open the valve b6. The second pressure gauge PM2 measures the pressure inside the tubes t2 and t3. The operator confirms the degree of vacuum inside the tube t2 and the tube t3 with the second pressure gauge PM2. In addition, when the volume of the flow channels of the tubes t2 and t3 is smaller than the volume of the dilution container Xn, the fifteenth step is unnecessary.

第16步驟:關閉閥b2、閥b3、閥b6,且開啟閥b4、閥b5。其結果為稀釋原料氣體Dn係自稀釋容器Xn朝向第1流量控制部Qn(圖2)排放。 Step 16: Close the valves b2, b3 and b6, and open the valves b4 and b5. As a result, the diluted raw material gas Dn is discharged from the dilution container Xn toward the first flow control unit Qn (FIG. 2 ).

接下來參考圖4說明在基板S上形成作為目的物質之氮化鎵(GaN)的示例。圖4係氣相成長系統100之一部分的示意圖。如圖4所示,稀釋原料氣體D1係被收容於稀釋容器X1。稀釋原料氣體D1係含有作為原料氣體G1之三氯化鎵(GaCl3)以及作為載體氣體CG之氮氣(N2)。再者,稀釋原料氣體D2係被收容於稀釋容器X2。稀釋原料氣體D2係含有作為原料氣體G2之氨氣(NH3)以及作為載體氣體CG之氮氣(N2)。再者,作為載體氣體CG之氮氣(N2)係被供給至第2流量控制部72。作為蝕刻氣體EG之氯氣(Cl2)係被供給至第3流量控制部73。 Next, an example of forming gallium nitride (GaN) as a target substance on the substrate S will be described with reference to FIG. 4. FIG. 4 is a schematic diagram of a part of the vapor phase growth system 100. As shown in FIG. 4, the dilution raw material gas D1 is contained in the dilution container X1. The diluted raw material gas D1 contains gallium trichloride (GaCl 3 ) as the raw material gas G1 and nitrogen gas (N 2 ) as the carrier gas CG. In addition, the dilution raw material gas D2 is accommodated in the dilution container X2. The diluted raw material gas D2 contains ammonia gas (NH 3 ) as the raw material gas G2 and nitrogen gas (N 2 ) as the carrier gas CG. In addition, nitrogen gas (N 2 ) as the carrier gas CG is supplied to the second flow rate control unit 72. Chlorine gas (Cl 2 ) as the etching gas EG is supplied to the third flow rate control unit 73.

在初期狀態中,第1流量控制部Q1係關閉原料導入管A1;第1流量控制部Q2係關閉原料導入管A2;第2流量控制部72係關閉載體導入管19;第3流量控制部73係關閉載蝕刻導入管21;殘留物排出裝置80係關閉殘留物排出管25;副產物排氣部15係關閉副產物排氣管27。 In the initial state, the first flow control section Q1 closes the raw material introduction pipe A1; the first flow control section Q2 closes the raw material introduction pipe A2; the second flow control section 72 closes the carrier introduction pipe 19; the third flow control section 73 The etch introduction tube 21 is closed; the residue discharge device 80 closes the residue discharge tube 25; and the by-product exhaust unit 15 closes the by-product exhaust tube 27.

第1流量控制部Q1、第1流量控制部Q2、第2流量控制部72以及第3流量 控制部73係分別開放原料導入管A1、原料導入管A2、載體導入管19以及蝕刻導入管21。其結果為,稀釋原料氣體D1係自稀釋容器X1被導入腔室3;稀釋原料氣體D2係自稀釋容器X2被導入腔室3;載體氣體CG及蝕刻氣體EG係被導入腔室3。 The first flow control section Q1, the first flow control section Q2, the second flow control section 72, and the third flow control section 73 open the raw material introduction pipe A1, the raw material introduction pipe A2, the carrier introduction pipe 19, and the etching introduction pipe 21, respectively. As a result, the dilution raw material gas D1 is introduced into the chamber 3 from the dilution container X1; the dilution raw material gas D2 is introduced into the chamber 3 from the dilution container X2; and the carrier gas CG and the etching gas EG are introduced into the chamber 3.

在腔室3的內部之中,依據反應式(r1),三氯化鎵(G1)係與氨氣(G2)產生化學反應。其結果係在基板S上生成作為目的物質的氮化鎵(GaN)。 In the interior of the chamber 3, according to the reaction formula (r1), the gallium trichloride (G1) system and the ammonia gas (G2) produce a chemical reaction. As a result, gallium nitride (GaN) as a target substance is generated on the substrate S.

GaCl3+NH3→GaN+3HCl...(r1) GaCl 3 +NH 3 →GaN+3HCl...(r1)

在腔室3中,由於不具有三氯化鎵(G1)及氨氣(G2)的流出通道,藉此抑制三氯化鎵(G1)及氨氣(G2)自腔室3的流出。因此,可提升三氯化鎵(G1)及氨氣(G2)的利用效率。 In the chamber 3, since there is no outflow channel of gallium trichloride (G1) and ammonia gas (G2), the outflow of gallium trichloride (G1) and ammonia gas (G2) from the chamber 3 is suppressed. Therefore, the utilization efficiency of gallium trichloride (G1) and ammonia gas (G2) can be improved.

另一方面,副產物排氣部15係對作為副產物FG之氯化氫(HCl)進行排氣。因此,可提升氮化鎵的生成速度。再者,殘留物排出裝置80在基板S上完成氮化鎵的形成之後,係將腔室3的內部之殘留物ZG排出,以洗淨腔室3的內部。 On the other hand, the by-product exhaust unit 15 exhausts hydrogen chloride (HCl) as a by-product FG. Therefore, the generation speed of gallium nitride can be increased. Furthermore, after the residue discharge device 80 completes the formation of gallium nitride on the substrate S, the residue ZG inside the chamber 3 is discharged to clean the inside of the chamber 3.

(第1變形例) (First modification)

接下來參考圖5針對本發明之實施態樣1的第1變形例之壓力調整單元64nA作說明。圖5係壓力調整單元64nA的示意圖。如圖5所示,第1變形例 之壓力調整單元64nA因具有可變更容積的稀釋容器Xn,故與圖3所示之壓力調整單元64n不同。在其它方面,壓力調整單元64nA的結構係與壓力調整單元64n的結構相同。以下主要針對第1變形例與實施態樣1之不同之處作說明。 Next, the pressure adjusting unit 64nA according to the first modification of Embodiment 1 of the present invention will be described with reference to FIG. 5. FIG. 5 is a schematic diagram of the pressure adjusting unit 64nA. As shown in FIG. 5, the pressure adjusting unit 64nA of the first modification has a variable volume of the dilution container Xn, and therefore is different from the pressure adjusting unit 64n shown in FIG. In other respects, the structure of the pressure adjusting unit 64nA is the same as the structure of the pressure adjusting unit 64n. The following mainly describes the differences between the first modification and Embodiment 1.

各個壓力調整單元64nA係包括容積變更部90以及壓力調整部91。稀釋容器Xn具有氣體收容空間92。氣體收容空間92係可收容氣體的空間。 Each pressure adjusting unit 64 nA includes a volume changing unit 90 and a pressure adjusting unit 91. The dilution container Xn has a gas storage space 92. The gas storage space 92 is a space that can store gas.

容積變更部90係配置於稀釋容器Xn的內部。接著,容積變更部90係透過變更容積變更部90的容積而變更氣體收容空間92的容積。其結果係依據氣體收容空間92的容積而使稀釋容器Xn的內部之壓力產生變更。 The volume changing unit 90 is arranged inside the dilution container Xn. Next, the volume changing unit 90 changes the volume of the gas storage space 92 by changing the volume of the volume changing unit 90. As a result, the pressure inside the dilution container Xn changes according to the volume of the gas storage space 92.

具體而言,壓力調整部91係調整容積變更部90的內部之壓力以變更容積變更部90的容積。例如,壓力調整部91係將驅動用氣體BG送進容積變更部90的內部,以擴大容積變更部90的容積之方式驅動容積變更部90。此情況下,會增加稀釋容器Xn的內部之壓力。例如,壓力調整部91係使氣體EX自容積變更部90的內部排出,並以會縮小容積變更部90的容積之方式驅動容積變更部90。此情況下,會降低稀釋容器Xn的內部之壓力。此外,由於容積變更部90係自稀釋容器Xn的內部分離,因此不與驅動用氣體BG及稀釋原料氣體Dn接觸。 Specifically, the pressure adjusting unit 91 adjusts the pressure inside the volume changing unit 90 to change the volume of the volume changing unit 90. For example, the pressure adjusting unit 91 sends the driving gas BG into the volume changing unit 90 and drives the volume changing unit 90 so as to expand the volume of the volume changing unit 90. In this case, the pressure inside the dilution container Xn will increase. For example, the pressure adjusting unit 91 discharges the gas EX from inside the volume changing unit 90 and drives the volume changing unit 90 so as to reduce the volume of the volume changing unit 90. In this case, the pressure inside the dilution container Xn will be reduced. In addition, since the volume changing unit 90 is separated from the inside of the dilution container Xn, it does not come into contact with the driving gas BG and the diluted raw material gas Dn.

容積變更部90係例如伸縮管(Bellows)。容積變更部90係包括,例如有 底筒狀元件以及插入有底筒狀元件之活塞(Piston)。壓力調整部91係例如電動氣動轉換器(Electropneumatic Converter)。 The volume changing unit 90 is, for example, a bellows. The volume changing unit 90 includes, for example, a bottomed cylindrical element and a piston (Piston) into which the bottomed cylindrical element is inserted. The pressure adjustment unit 91 is, for example, an electro-pneumatic converter (Electropneumatic Converter).

如以上參考圖5所述,藉由實施態樣1之第1變形例,係可藉由容積變更部90,將稀釋容器Xn的內部之壓力調整至所欲的數值。亦即,即便將載體氣體CG及原料氣體Gn導入稀釋容器Xn後,亦可使稀釋原料氣體Dn的總壓p調整至所欲的數值。再者,在將載體氣體CG導入稀釋容器Xn之前,即便在將原料氣體Gn導入至稀釋容器Xn後,亦可使稀釋容器Xn中之原料氣體Gn的壓力,亦即分壓pg調整至所欲的數值。 As described above with reference to FIG. 5, in the first modification of Embodiment 1, the pressure inside the dilution container Xn can be adjusted to a desired value by the volume changing unit 90. That is, even after the carrier gas CG and the raw material gas Gn are introduced into the dilution container Xn, the total pressure p of the diluted raw material gas Dn can be adjusted to a desired value. Furthermore, before the carrier gas CG is introduced into the dilution container Xn, even after the raw material gas Gn is introduced into the dilution container Xn, the pressure of the raw material gas Gn in the dilution container Xn, that is, the partial pressure pg can be adjusted to the desired Value.

再者,壓力調整部91亦可接收來自於第1壓力計PM1的表示氣體收容空間92的壓力之資訊。因此,壓力調整部91亦可基於氣體收容空間92的壓力,變更容積變更部90之容積。其結果係因回饋控制(Feedback)被執行,故可高精度地調整氣體收容空間92的壓力。亦即,可高精度地調整稀釋原料氣體Dn的總壓p。再者,可高精度地調整原料氣體Gn的分壓pg。 In addition, the pressure adjustment unit 91 may also receive information indicating the pressure of the gas storage space 92 from the first pressure gauge PM1. Therefore, the pressure adjusting unit 91 may change the volume of the volume changing unit 90 based on the pressure of the gas storage space 92. As a result, the feedback control (Feedback) is executed, so that the pressure of the gas storage space 92 can be adjusted with high accuracy. That is, the total pressure p of the diluted raw material gas Dn can be adjusted with high accuracy. Furthermore, the partial pressure pg of the source gas Gn can be adjusted with high accuracy.

此外,在第1變形例中,氣體供給裝置60係具備圖5所示之壓力調整單元64nA以取代圖3所示之壓力調整單元64n。亦即,在第1變形例中,氣體供給裝置60係具備複數個壓力調整單元64nA以取代複數個壓力調整單元64n。此外,區別複數個壓力調整單元64nA時,可表示為壓力調整單元641A、...、64NA(N為2以上之整數)。 In addition, in the first modification, the gas supply device 60 includes the pressure adjustment unit 64nA shown in FIG. 5 instead of the pressure adjustment unit 64n shown in FIG. 3. That is, in the first modification, the gas supply device 60 includes a plurality of pressure adjustment units 64nA instead of the plurality of pressure adjustment units 64n. In addition, when distinguishing a plurality of pressure adjusting units 64nA, it can be expressed as pressure adjusting units 641A, ..., 64NA (N is an integer of 2 or more).

(第2變形例) (Second modification)

接下來,參考圖6針對本發明之實施態樣1的第2變形例之壓力調整單元64nB作說明。圖6係壓力調整單元64nB的示意圖。如圖6所示,第2變形例之壓力調整單元64nB由於相對於1個原料容器Zn係具有複數個稀釋容器Xmn,故與圖3所示之壓力調整單元64n不同。其它方面,壓力調整單元64nB的結構係與壓力調整單元64n的結構相同。以下主要針對第2變形例與實施態樣1之不同之處作說明。 Next, the pressure adjusting unit 64nB according to the second modification of Embodiment 1 of the present invention will be described with reference to FIG. 6. FIG. 6 is a schematic diagram of the pressure adjusting unit 64nB. As shown in FIG. 6, the pressure adjusting unit 64nB of the second modification has a plurality of dilution containers Xmn with respect to one raw material container Zn, and therefore is different from the pressure adjusting unit 64n shown in FIG. 3. Otherwise, the structure of the pressure adjusting unit 64nB is the same as the structure of the pressure adjusting unit 64n. The following mainly describes the differences between the second modification and Embodiment 1.

各個壓力調整單元64nB係對應1個原料容器Zn具備複數個稀釋容器Xmn,以取代圖3所示之稀釋容器Xn,且每一個稀釋容器Xmn具備溫度計TM及第1壓力計PM1(壓力計)。再者,各個壓力調整單元64nB係具備第1閥單元75a以取代圖3所示之第1閥單元75。第1閥單元75a係具備分別對應於複數個稀釋容器Xmn的複數個閥b4,以取代圖3所示之閥b4。再者,第1閥單元75a係具備分別對應於複數個稀釋容器Xmn的複數個管t1,以取代圖3所示之管t1。此外,區別並說明複數個稀釋容器Xmn之時,係描述為稀釋容器X1n、…、XMn(M為2以上之整數)。 Each pressure adjusting unit 64nB is provided with a plurality of dilution containers Xmn corresponding to one raw material container Zn instead of the dilution container Xn shown in FIG. 3, and each dilution container Xmn is provided with a thermometer TM and a first pressure gauge PM1 (pressure gauge). In addition, each pressure adjusting unit 64nB includes a first valve unit 75a instead of the first valve unit 75 shown in FIG. 3. The first valve unit 75a includes a plurality of valves b4 corresponding to the plurality of dilution containers Xmn, instead of the valve b4 shown in FIG. 3. Furthermore, the first valve unit 75a is provided with a plurality of tubes t1 corresponding to the plurality of dilution containers Xmn, respectively, instead of the tube t1 shown in FIG. 3. In addition, when distinguishing and explaining a plurality of dilution containers Xmn, it is described as dilution containers X1n, ..., XMn (M is an integer of 2 or more).

各個稀釋容器Xmn係藉由所對應的管t1連接於所對應的閥b4。管t2係與閥b3、複數個閥b4、閥b5、閥b6以及閥b7相互連接。各個稀釋容器Xmn係混合自原料容器Zn所導入之原料氣體Gn及載體氣體CG,並作為稀釋原料氣體Dn而收容。 Each dilution container Xmn is connected to the corresponding valve b4 via the corresponding tube t1. The pipe t2 is connected to the valve b3, the plurality of valves b4, the valve b5, the valve b6, and the valve b7. Each dilution container Xmn mixes the raw material gas Gn and the carrier gas CG introduced from the raw material container Zn, and is accommodated as the diluted raw material gas Dn.

閥部Yn(導入部)的控制步驟係與參考圖3而作說明的閥部Yn之控制步驟相同。 The control procedure of the valve portion Yn (introduction portion) is the same as the control procedure of the valve portion Yn described with reference to FIG. 3.

然而,閥部Yn係在複數個稀釋容器Xmn分別被分配的不同之複數個時時段當中,針對每一個稀釋容器Xmn,將原料氣體Gn及載體氣體CG以不同的時間點導入稀釋容器Xmn中。例如,在將原料氣體Gn及載體氣體CG導入稀釋容器X1n時,僅有稀釋容器X1n所對應的閥b4被開啟,而稀釋容器X2n至稀釋容器XMn所各自對應的閥b4則被關閉。 However, the valve portion Yn introduces the raw material gas Gn and the carrier gas CG into the dilution container Xmn at different time points for each dilution container Xmn during different time periods in which the plurality of dilution containers Xmn are allocated respectively. For example, when the source gas Gn and the carrier gas CG are introduced into the dilution container X1n, only the valve b4 corresponding to the dilution container X1n is opened, and the valves b4 corresponding to the dilution container X2n to the dilution container XMn are closed.

再者,針對每一個稀釋容器Xmn,閥部Yn係在原料氣體Gn及載體氣體CG被混合之後,將稀釋原料氣體Dn自稀釋容器Xmn排放。例如,將稀釋原料氣體Dn自稀釋容器X1n排放之時,僅有稀釋容器X1n所對應的閥b4被開啟,而稀釋容器X2n至稀釋容器XMn所各自對應的閥b4則被關閉。 Furthermore, for each dilution container Xmn, after the source gas Gn and the carrier gas CG are mixed, the valve portion Yn discharges the dilution source gas Dn from the dilution container Xmn. For example, when the dilution raw material gas Dn is discharged from the dilution container X1n, only the valve b4 corresponding to the dilution container X1n is opened, and the valves b4 corresponding to the dilution container X2n to the dilution container XMn are closed.

如以上參考圖6所述,藉由實施態樣1之第2變形例,每一個壓力調整單元64nB係設置有複數個稀釋容器Xmn。接著,複數個稀釋容器Xmn係被導入相同的原料氣體Gn。因此,例如在複數個稀釋容器Xmn所收容的原料氣體Gn的濃度為相同的情況下,可將某個稀釋容器Xmn利用作為使用中的稀釋容器Xmn之備用容器。再者,例如在複數個稀釋容器Xmn所收容的原料氣體Gn的濃度為不同的情況下,可自一個壓力調整單元64nB放出濃度不同的稀釋原料氣體Dn。 As described above with reference to FIG. 6, by the second modification of Embodiment 1, each pressure adjusting unit 64 nB is provided with a plurality of dilution containers Xmn. Next, the same raw material gas Gn is introduced into a plurality of dilution containers Xmn. Therefore, for example, when the concentration of the raw material gas Gn contained in the plurality of dilution containers Xmn is the same, a certain dilution container Xmn can be used as a spare container of the dilution container Xmn in use. Furthermore, for example, when the concentrations of the raw material gases Gn contained in the plurality of dilution containers Xmn are different, the diluted raw material gases Dn having different concentrations can be discharged from one pressure adjustment unit 64nB.

此外,在第2變形例中,氣體供給裝置60係具備圖6所示之壓力調整單元64nB,以取代圖3所示之壓力調整單元64n。亦即,在第2變形例中,氣體供給裝置60係具備複數個壓力調整單元64nB以取代複數個壓力調整單元64n。此外,區別複數個壓力調整單元64nB時,可表示為壓力調整單元641B、...、64NB(N為2以上之整數)。再者,對每一個壓力調整單元64nB區別稀釋容器Xmn時,可相對於壓力調整單元641B、...、64NB而分別表示為稀釋容器Xm1、...、XmN(N為2以上之整數)。 In addition, in the second modification, the gas supply device 60 includes the pressure adjustment unit 64nB shown in FIG. 6 instead of the pressure adjustment unit 64n shown in FIG. 3. That is, in the second modification, the gas supply device 60 includes a plurality of pressure adjustment units 64nB instead of the plurality of pressure adjustment units 64n. In addition, when distinguishing a plurality of pressure adjustment units 64nB, it can be expressed as pressure adjustment units 641B, ..., 64NB (N is an integer of 2 or more). Furthermore, when distinguishing the dilution container Xmn for each pressure adjustment unit 64nB, it can be expressed as the dilution containers Xm1, ..., XmN (N is an integer of 2 or more) relative to the pressure adjustment units 641B, ..., 64NB, respectively .

(實施態樣2) (Example 2)

參考圖7至圖11針對本發明之實施態樣2之氣相成長系統100作說明。在實施態樣2中,因氣相成長裝置1係導入混合了複數個原料氣體Gn之混合氣體MG,故與氣相成長裝置1個別導入複數個原料氣體Gn的實施態樣1不同。以下主要針對實施態樣2與實施態樣1之不同之處作說明。 7 to FIG. 11 for a gas-phase growth system 100 according to Embodiment 2 of the present invention. In the second embodiment, since the gas-phase growth device 1 introduces the mixed gas MG in which a plurality of raw material gases Gn are mixed, it is different from the first embodiment 1 in which the plurality of raw material gases Gn are individually introduced into the gas-phase growth device 1. The following mainly describes the differences between Embodiment 2 and Embodiment 1.

圖7係有關於本發明的實施態樣2之氣相成長系統100之示意圖。如圖7所示,氣相成長系統100係具備氣體供給裝置60A以取代圖1所示的氣體供給裝置60。再者,氣相成長系統100係具備單數個原料導入管A1。原料導入管A1係供給混合氣體MG。混合氣體MG係混合了不同之複數個原料氣體Gn之氣體。在導入腔室3之前的混合氣體MG中,複數個原料氣體Gn未產生化學反應。 FIG. 7 is a schematic diagram of a vapor phase growth system 100 according to Embodiment 2 of the present invention. As shown in FIG. 7, the gas-phase growth system 100 includes a gas supply device 60A instead of the gas supply device 60 shown in FIG. 1. Furthermore, the vapor-phase growth system 100 is equipped with a single number of raw material introduction pipes A1. The raw material introduction pipe A1 supplies the mixed gas MG. The mixed gas MG is a gas in which a plurality of different raw material gases Gn are mixed. In the mixed gas MG before being introduced into the chamber 3, a plurality of raw material gases Gn do not cause a chemical reaction.

氣相成長裝置1係具備與單數個原料導入管A1相對應的單數個原料導 入口GP1。因此,原料導入口GP1係透過原料導入管A1,將混合氣體MG導入腔室3。 The vapor-phase growth apparatus 1 is provided with the singular raw material inlet GP1 corresponding to the singular raw material introduction pipe A1. Therefore, the raw material introduction port GP1 passes through the raw material introduction pipe A1 to introduce the mixed gas MG into the chamber 3.

接著,氣相成長裝置1係在一部分或是全部之反應期間RP中,阻斷原料氣體Gn自腔室3的內部向外部的流出。因此,在一部分或是全部的反應期間RP中,腔室3係被密閉。亦即,氣相成長裝置1係使混合氣體MG(亦即,不同之複數個原料氣體Gn)滯留於腔室3的內部而產生化學反應,並在基板S上形成目的物質。 Next, the vapor-phase growth device 1 blocks the outflow of the raw material gas Gn from the inside of the chamber 3 to the outside during a part or all of the reaction period RP. Therefore, in a part or all of the reaction period RP, the chamber 3 is sealed. That is, the vapor-phase growth device 1 causes the mixed gas MG (that is, a plurality of different raw material gases Gn) to stay in the chamber 3 to generate a chemical reaction, and form a target substance on the substrate S.

其結果為,藉由實施態樣2,相較於使混合氣體流通而形成目的物質的情況下,可提升混合氣體MG所含有的原料氣體Gn的利用效率。另外,藉由實施態樣2,由於具有與實施態樣1相同的結構,故具有與實施態樣1相同的效果。 As a result, according to Embodiment 2, the utilization efficiency of the raw material gas Gn contained in the mixed gas MG can be improved compared to when the mixed gas is circulated to form the target substance. In addition, according to the second embodiment, since it has the same structure as the first embodiment, it has the same effect as the first embodiment.

再者,藉由實施態樣2,單數個原料導入口GP1係透過單數個原料導入管A1,將混合氣體MG導入腔室3。亦即,不同之複數個原料氣體Gn係自單數個原料導入口GP1被導入腔室3。因此,相較於分別自複數個原料導入口GPn導入複數個原料氣體Gn的情況,係可簡化腔室3的結構。其結果係可降低氣相成長裝置1的成本。再者,相較於設置有複數個原料導入管An的情況,因設置單數個原料導入管A1,故可簡化氣相成長系統100的結構。其結果係可降低氣相成長系統100的成本。 In addition, in the second embodiment, the singular raw material introduction ports GP1 pass through the singular raw material introduction tubes A1 to introduce the mixed gas MG into the chamber 3. That is, a plurality of different raw material gases Gn are introduced into the chamber 3 from a single raw material introduction port GP1. Therefore, the structure of the chamber 3 can be simplified compared to the case where a plurality of raw material gases Gn are introduced from the plurality of raw material introduction ports GPn, respectively. As a result, the cost of the vapor phase growth device 1 can be reduced. Furthermore, compared with the case where a plurality of raw material introduction pipes An are provided, since a single plurality of raw material introduction pipes A1 are provided, the structure of the vapor phase growth system 100 can be simplified. As a result, the cost of the vapor-phase growth system 100 can be reduced.

繼續參考圖7針對氣體供給裝置60A作說明。氣體供給裝置60A係透過原料導入管A1及原料導入口GP1,將混合氣體MG供給至腔室3。 Continuing to refer to FIG. 7, the gas supply device 60A will be described. The gas supply device 60A supplies the mixed gas MG to the chamber 3 through the raw material introduction pipe A1 and the raw material introduction port GP1.

具體而言,氣體供給裝置60A係在將第5預定量M5之混合氣體MG供給至腔室3之後,阻斷混合氣體MG的流道,以停止混合氣體MG向腔室3的供給。換言之,第5預定量M5之混合氣體MG被導入腔室3之後,混合氣體MG的流路被阻斷,自原料導入管A1及原料導入口GP1的混合氣體MG之導入係被停止。 Specifically, after supplying the fifth predetermined amount M5 of the mixed gas MG to the chamber 3, the gas supply device 60A blocks the flow path of the mixed gas MG to stop the supply of the mixed gas MG to the chamber 3. In other words, after the mixed gas MG of the fifth predetermined amount M5 is introduced into the chamber 3, the flow path of the mixed gas MG is blocked, and the introduction of the mixed gas MG from the raw material introduction pipe A1 and the raw material introduction port GP1 is stopped.

因此,依據實施態樣2,可進一步抑制原料氣體Gn流出至腔室3的外部。其結果係可更進一步提升原料氣體Gn的利用效率。 Therefore, according to Embodiment 2, the outflow of the raw material gas Gn to the outside of the chamber 3 can be further suppressed. As a result, the utilization efficiency of the raw material gas Gn can be further improved.

第5預定量M5係表示例如物質量(莫耳)、質量或是體積。第5預定量M5係針對複數個原料氣體Gn所分別設定的複數個第1預定量M1之合計。第1預定量M1係與實施態樣1的第1預定量M1相同。 The fifth predetermined amount M5 represents, for example, the mass (mol), mass, or volume. The fifth predetermined amount M5 is the total of the plurality of first predetermined amounts M1 set for the plurality of raw material gases Gn, respectively. The first predetermined amount M1 is the same as the first predetermined amount M1 of Embodiment 1.

因此,依據實施態樣2,混合氣體MG之過與不足係被抑制,故可將正確量的混合氣體MG導入腔室3。其結果係可抑制混合氣體MG之浪費。 Therefore, according to Embodiment 2, the excess and deficiency of the mixed gas MG are suppressed, so that the correct amount of the mixed gas MG can be introduced into the chamber 3. As a result, the waste of the mixed gas MG can be suppressed.

再者,氣體供給裝置60A係依據腔室3的內部之化學反應所引起之混合氣體MG的減少量,透過原料導入管A1及原料導入口GP1將混合氣體MG補充至腔室3。 Furthermore, the gas supply device 60A replenishes the mixed gas MG to the chamber 3 through the raw material introduction pipe A1 and the raw material introduction port GP1 according to the reduction amount of the mixed gas MG caused by the chemical reaction inside the chamber 3.

因此,依據實施態樣2,因可避免腔室3內之原料氣體Gn不足的狀況,而可抑制目的物質之成長不良。 Therefore, according to Embodiment 2, the shortage of the raw material gas Gn in the chamber 3 can be avoided, and the growth failure of the target substance can be suppressed.

再者,氣體供給裝置60A在補充混合氣體MG時,係以各種原料氣體Gn的莫耳分率在腔室3的內部保持恆定的方式,而補充混合氣體MG。 In addition, when supplementing the mixed gas MG, the gas supply device 60A supplements the mixed gas MG in such a manner that the molar fraction of various raw material gases Gn is kept constant inside the chamber 3.

因此,依據實施態樣2,原料氣體Gn的過與不足係被抑制,故可將正確量的原料氣體Gn導入腔室3。其結果係可抑制原料氣體Gn的浪費。 Therefore, according to Embodiment 2, the excess and deficiency of the raw material gas Gn are suppressed, so that the correct amount of the raw material gas Gn can be introduced into the chamber 3. As a result, the waste of the raw material gas Gn can be suppressed.

具體而言,氣體供給裝置60A係依據腔室3的內部之混合氣體MG的減少量,將第6預定量M6之混合氣體MG供給至腔室3。 Specifically, the gas supply device 60A supplies the sixth predetermined amount M6 of the mixed gas MG to the chamber 3 in accordance with the reduction amount of the mixed gas MG inside the chamber 3.

第6預定量M6係表示例如物質量(莫耳)、質量或是體積。第6預定量M6係針對複數個原料氣體Gn所分別設定的複數個第2預定量M2之合計。第2預定量M2係與實施態樣1的第2預定量M2相同。較佳地,第6預定量M6係與例如混合氣體MG的減少量相等。 The sixth predetermined amount M6 represents, for example, the mass (mol), mass, or volume. The sixth predetermined amount M6 is the total of the plurality of second predetermined amounts M2 set for the plurality of raw material gases Gn, respectively. The second predetermined amount M2 is the same as the second predetermined amount M2 of Embodiment 1. Preferably, the sixth predetermined amount M6 is equal to, for example, the decrease amount of the mixed gas MG.

接著,氣體供給裝置60A在第6預定量M6的混合氣體MG被補充之後,係阻斷混合氣體MG的流道,以停止透過原料導入管A1及原料導入口GP1之混合氣體MG向腔室3的補充。 Next, after the sixth predetermined amount M6 of mixed gas MG is replenished, the gas supply device 60A blocks the flow path of the mixed gas MG to stop the mixed gas MG passing through the raw material introduction pipe A1 and the raw material introduction port GP1 to the chamber 3 Supplement.

因此,藉由實施態樣2,可進一步抑制原料氣體Gn流出腔室3的外部。其結果係可進一步提升原料氣體Gn的利用效率。 Therefore, according to Embodiment 2, it is possible to further suppress the outflow of the raw material gas Gn from the outside of the chamber 3. As a result, the utilization efficiency of the raw material gas Gn can be further improved.

此外,氣體供給裝置60A亦可在第5預定量M5的混合氣體MG被供給之後,依據腔室3的內部之化學反應所引起的混合氣體MG的減少量,透過原料導入管A1及原料導入口GP1,而隨時補充混合氣體MG。此情況下,由於僅依據混合氣體MG所減少的分量而隨時補充混合氣體MG,藉此使混合氣體MG在腔室3的內部隨時被保持在一定量。因此,可高精度地控制目的物質的成長。再者,在補充混合氣體MG的另一方面,因混合氣體MG亦不會流出至腔室3的外部,藉此可提升混合氣體MG的利用效率。 In addition, the gas supply device 60A may also pass through the raw material introduction pipe A1 and the raw material introduction port after the fifth predetermined amount of mixed gas MG M5 is supplied, according to the amount of reduction of the mixed gas MG caused by the chemical reaction inside the chamber 3 GP1, and replenish the mixed gas MG at any time. In this case, since the mixed gas MG is replenished at any time based only on the reduced amount of the mixed gas MG, the mixed gas MG is kept within the chamber 3 by a certain amount at any time. Therefore, the growth of the target substance can be controlled with high accuracy. In addition, on the other hand, when the mixed gas MG is replenished, the mixed gas MG does not flow out to the outside of the chamber 3, thereby improving the utilization efficiency of the mixed gas MG.

例如,氣體供給裝置60A係當腔室3的內部之混合氣體MG的量變得較閾值Th3少的情況下,亦可依據腔室3的內部之混合氣體MG的減少量而隨時自原料導入口GP1補充混合氣體MG。較佳地,閾值Th3係與例如第5預定量M5設定為同一數值。此情況下,係可在腔室3的內部,使混合氣體MG保持在第5預定量M5。其結果係可高精度地控制目的物質的成長。 For example, in the gas supply device 60A, when the amount of the mixed gas MG in the chamber 3 becomes smaller than the threshold value Th3, the raw material introduction port GP1 can be used at any time according to the decrease in the mixed gas MG in the chamber 3 Supplement the mixed gas MG. Preferably, the threshold Th3 is set to the same value as, for example, the fifth predetermined amount M5. In this case, the mixed gas MG can be maintained at the fifth predetermined amount M5 inside the chamber 3. As a result, the growth of the target substance can be controlled with high accuracy.

再者,例如氣體供給裝置60A亦可在隨時補充混合氣體MG時,以各種原料氣體Gn的莫耳分率在腔室3的內部保持恆定的方式,而隨時補充混合氣體MG。此情況下,腔室3內的原料氣體Gn的過與不足係被抑制,故可將正確量的原料氣體Gn導入腔室3。其結果係可抑制原料氣體Gn的浪費。 Furthermore, for example, when the gas supply device 60A replenishes the mixed gas MG at any time, the mixed gas MG can be replenished at any time so that the molar fraction of various raw material gases Gn is kept constant inside the chamber 3. In this case, the excess and deficiency of the raw material gas Gn in the chamber 3 are suppressed, so that the correct amount of the raw material gas Gn can be introduced into the chamber 3. As a result, the waste of the raw material gas Gn can be suppressed.

此外,氣體供給裝置60A亦可在隨時補充混合氣體MG時,隨時補充載體氣體CG。再者,氣體供給裝置60A亦可在隨時補充混合氣體MG時,隨時補充蝕刻氣體EG。 In addition, the gas supply device 60A may replenish the carrier gas CG at any time when the mixed gas MG is replenished at any time. Furthermore, the gas supply device 60A may supplement the etching gas EG at any time when the mixed gas MG is replenished at any time.

再者,副產物排氣部15係當副產物FG之濃度變得較閾值Th2大的情況下,使原料氣體Gn、載體氣體CG及蝕刻氣體EG與副產物FG一起進行排氣時,氣體供給裝置60A係依據原料氣體Gn的減少量,而將混合氣體MG補充至腔室3。氣體供給裝置60A係在補充混合氣體MG時,以各種原料氣體Gn之莫耳分率在腔室3的內部保持恆定的方式而補充混合氣體MG。 In addition, the by-product exhaust section 15 is a system where the source gas Gn, the carrier gas CG, and the etching gas EG are exhausted together with the by-product FG when the concentration of the by-product FG becomes greater than the threshold Th2. The device 60A supplements the mixed gas MG to the chamber 3 according to the amount of reduction of the raw material gas Gn. The gas supply device 60A replenishes the mixed gas MG so that the molar fractions of various raw material gases Gn remain constant inside the chamber 3 when the mixed gas MG is replenished.

較佳地,在此,氣體供給裝置60A係將取代了混合氣體MG之稀釋混合氣體UM供給至氣相成長裝置1。稀釋混合氣體UM係將混合氣體MG及載體氣體CG進行混合,並藉由載體氣體CG稀釋混合氣體MG而得之氣體。 Preferably, here, the gas supply device 60A supplies the diluted mixed gas UM instead of the mixed gas MG to the gas-phase growth device 1. The diluted mixed gas UM is a gas obtained by mixing the mixed gas MG and the carrier gas CG, and diluting the mixed gas MG with the carrier gas CG.

接下來,參考圖7針對將取代了混合氣體MG之稀釋混合氣體UM供給至氣相成長裝置1的態樣與將混合氣體MG供給至氣相成長裝置1的態樣的不同之處作說明。 Next, with reference to FIG. 7, the difference between the state of supplying the diluted mixed gas UM instead of the mixed gas MG to the gas-phase growth device 1 and the state of supplying the mixed gas MG to the gas-phase growth device 1 will be described.

原料導入管A1係供給稀釋混合氣體UM。因此,原料導入口GP1係透過原料導入管A1,將稀釋混合氣體UM導入腔室3。亦即,氣體供給裝置60A係透過原料導入管A1及原料導入口GP1,將稀釋混合氣體UM供給至腔室3。 The raw material introduction pipe A1 supplies the diluted mixed gas UM. Therefore, the raw material introduction port GP1 passes through the raw material introduction pipe A1 to introduce the diluted mixed gas UM into the chamber 3. That is, the gas supply device 60A supplies the diluted mixed gas UM to the chamber 3 through the raw material introduction pipe A1 and the raw material introduction port GP1.

具體而言,氣體供給裝置60A在將含有第5預定量M5之混合氣體MG的稀釋混合氣體UM供給至腔室3後,阻斷稀釋混合氣體UM的流道,以停止向腔室3供給稀釋混合氣體UM。換言之,在含有第5預定量M5之混合氣體MG的稀釋混合氣體UM被導入腔室3之後,稀釋混合氣體UM的流道被阻斷,來自原料導入管A1及原料導入口GP1之稀釋混合氣體UM的導入係被停止。 Specifically, after supplying the diluted mixed gas UM containing the mixed gas MG of the fifth predetermined amount M5 to the chamber 3, the gas supply device 60A blocks the flow path of the diluted mixed gas UM to stop the supply of the diluted gas to the chamber 3 Mixed gas UM. In other words, after the diluted mixed gas UM containing the mixed gas MG of the fifth predetermined amount M5 is introduced into the chamber 3, the flow path of the diluted mixed gas UM is blocked, and the diluted mixed gas from the raw material introduction pipe A1 and the raw material introduction port GP1 The UM import system was stopped.

再者,氣體供給裝置60A係依據在腔室3的內部因化學反應所引起的混合氣體MG的減少量,透過原料導入管A1及原料導入口GP1,將稀釋混合氣體UM補充至腔室3。再者,氣體供給裝置60A在補充稀釋混合氣體UM時,以原料氣體Gn的莫耳分率在腔室3的內部保持恆定的方式補充稀釋混合氣體UM。 In addition, the gas supply device 60A replenishes the diluted gas mixture UM to the chamber 3 through the raw material introduction pipe A1 and the raw material introduction port GP1 according to the reduction amount of the mixed gas MG caused by the chemical reaction inside the chamber 3. In addition, when supplementing the diluted mixed gas UM, the gas supply device 60A supplements the diluted mixed gas UM so that the molar fraction of the raw material gas Gn remains constant inside the chamber 3.

具體而言,氣體供給裝置60A係依據腔室3的內部之混合氣體MG的減少量,透過原料導入管A1及原料導入口GP1,將含有第6預定量M6之混合氣體MG的稀釋混合氣體UM供給至腔室3。 Specifically, the gas supply device 60A passes through the raw material introduction pipe A1 and the raw material introduction port GP1 in accordance with the reduced amount of the mixed gas MG in the chamber 3 to dilute the mixed gas UM containing the sixth predetermined amount M6 of the mixed gas MG Supply to the chamber 3.

接著,氣體供給裝置60A在含有第6預定量M6之混合氣體MG的稀釋混合氣體UM被補充之後,阻斷稀釋混合氣體UM的流道,以停止透過原料導入管A1及原料導入口GP1向腔室3補充稀釋混合氣體UM。 Next, after the diluted gas mixture UM containing the mixed gas MG of the sixth predetermined amount M6 is replenished, the gas supply device 60A blocks the flow path of the diluted gas mixture UM to stop passing through the raw material introduction pipe A1 and the raw material introduction port GP1 toward the chamber Chamber 3 is supplemented with diluted mixed gas UM.

此外,氣體供給裝置60A亦可在含有第5預定量M5之混合氣體MG的稀釋混合氣體UM被供給之後,依據在腔室3的內部因化學反應所引起的混合 氣體MG的減少量,透過原料導入管A1及原料導入口GP1隨時補充稀釋混合氣體UM。 In addition, the gas supply device 60A may also pass through the raw material according to the reduced amount of the mixed gas MG caused by the chemical reaction in the chamber 3 after the diluted mixed gas UM containing the mixed gas MG of the fifth predetermined amount M5 is supplied. The introduction pipe A1 and the raw material introduction port GP1 supplement the diluted mixed gas UM at any time.

例如,氣體供給裝置60A係當腔室3的內部之混合氣體MG的量變得較閾值Th3少的情況下,亦可依據腔室3的內部之混合氣體MG的減少量而隨時自原料導入口GP1補充含有混合氣體MG的稀釋混合氣體UM。 For example, in the gas supply device 60A, when the amount of the mixed gas MG in the chamber 3 becomes smaller than the threshold value Th3, the raw material introduction port GP1 can be used at any time according to the decrease in the mixed gas MG in the chamber 3 The diluted mixed gas UM containing the mixed gas MG is replenished.

再者,例如,氣體供給裝置60A亦可在隨時補充稀釋混合氣體UM時,以各種原料氣體Gn之莫耳分率在腔室3的內部保持恆定的方式而隨時補充稀釋混合氣體UM。 In addition, for example, when the gas supply device 60A replenishes the diluted mixed gas UM at any time, the diluted mixed gas UM can be replenished at any time so that the molar fractions of various raw material gases Gn remain constant inside the chamber 3.

此外,氣體供給裝置60A亦可在隨時補充稀釋混合氣體UM時,隨時補充載體氣體CG。再者,氣體供給裝置60A亦可在隨時補充稀釋混合氣體UM時,隨時補充蝕刻氣體EG。 In addition, the gas supply device 60A may replenish the carrier gas CG at any time when the diluted mixed gas UM is replenished at any time. Furthermore, the gas supply device 60A may also supplement the etching gas EG at any time when the diluted mixed gas UM is supplemented at any time.

再者,副產物排氣部15係當副產物FG之濃度變得較閾值Th2大的情況下,使原料氣體Gn、載體氣體CG及蝕刻氣體EG與副產物FG一起進行排氣時,氣體供給裝置60A係依據原料氣體Gn的減少量將稀釋混合氣體UM補充至腔室3。氣體供給裝置60A係在補充稀釋混合氣體UM時,以原料氣體Gn之莫耳分率在腔室3的內部保持恆定的方式而補充稀釋混合氣體UM。 In addition, the by-product exhaust section 15 is a system where the source gas Gn, the carrier gas CG, and the etching gas EG are exhausted together with the by-product FG when the concentration of the by-product FG becomes greater than the threshold Th2. The device 60A replenishes the diluted mixed gas UM to the chamber 3 according to the reduction amount of the raw material gas Gn. The gas supply device 60A supplements the diluted mixed gas UM so that the molar fraction of the raw material gas Gn remains constant inside the chamber 3 when the diluted mixed gas UM is replenished.

以下若無特別說明,在實施態樣2中,氣體供給裝置60A係將取代了混 合氣體MG的稀釋混合氣體UM供給至氣相成長裝置1。 Unless otherwise specified, in Embodiment 2, the gas supply device 60A supplies the diluted gas mixture UM instead of the gas mixture MG to the gas phase growth device 1.

接下來,參考圖8針對氣體供給裝置60A作說明。圖8係氣體供給裝置60A之示意圖。如圖8所示,氣體供給裝置60A係具備真空幫浦61、控制部62、恆溫槽63(溫度控制部)、壓力調整單元64A、第1流量控制部Q1(流量控制部)、第2流量控制部72以及第3流量控制部73。壓力調整單元64A係具備稀釋容器X1、閥部Y1(導入部)以及複數個原料容器Zn(複數個氣體容器)。接著,氣體供給裝置60A係向氣相成長裝置1(圖7)供給氣體。此外,在本說明書中,閥部Y1為導入部的一示例,原料容器Zn為氣體容器的一示例。 Next, the gas supply device 60A will be described with reference to FIG. 8. 8 is a schematic diagram of the gas supply device 60A. As shown in FIG. 8, the gas supply device 60A includes a vacuum pump 61, a control unit 62, a thermostat 63 (temperature control unit), a pressure adjustment unit 64A, a first flow control unit Q1 (flow control unit), and a second flow rate The control unit 72 and the third flow control unit 73. The pressure adjusting unit 64A includes a dilution container X1, a valve portion Y1 (introduction portion), and a plurality of raw material containers Zn (a plurality of gas containers). Next, the gas supply device 60A supplies gas to the vapor phase growth device 1 (FIG. 7). In addition, in this specification, the valve portion Y1 is an example of the introduction portion, and the raw material container Zn is an example of the gas container.

控制部62係控制真空幫浦61、恆溫槽63、閥部Y1、第1流量控制部Q1、第2流量控制部72以及第3流量控制部73。亦即,真空幫浦61、恆溫槽63、閥部Y1、第1流量控制部Q1、第2流量控制部72及第3流量控制部73係受到控制部62的控制而動作。此外,控制部62係包括處理器及記憶裝置。因此,處理器係藉由執行貯存在記憶裝置之電腦程式,以控制真空幫浦61、恆溫槽63、閥部Y1、第1流量控制部Q1、第2流量控制部72及第3流量控制部73。 The control unit 62 controls the vacuum pump 61, the thermostat 63, the valve unit Y1, the first flow control unit Q1, the second flow control unit 72, and the third flow control unit 73. That is, the vacuum pump 61, the thermostatic bath 63, the valve section Y1, the first flow control section Q1, the second flow control section 72, and the third flow control section 73 are controlled and operated by the control section 62. In addition, the control unit 62 includes a processor and a memory device. Therefore, the processor controls the vacuum pump 61, the thermostat 63, the valve section Y1, the first flow control section Q1, the second flow control section 72 and the third flow control section by executing the computer program stored in the memory device 73.

恆溫槽63係控制壓力調整單元64A之溫度,使壓力調整單元64A之溫度保持在一定溫度。壓力調整單元64A係配置於恆溫槽63的內部。 The thermostat 63 controls the temperature of the pressure adjusting unit 64A, so that the temperature of the pressure adjusting unit 64A is maintained at a certain temperature. The pressure adjusting unit 64A is arranged inside the thermostat 63.

壓力調整單元64A係藉由載體氣體CG將混合了複數個原料氣體Gn之混合氣體MG進行稀釋而產生稀釋混合氣體UM。接著,壓力調整單元64A係 排放含有混合氣體MG之稀釋混合氣體UM。再者,壓力調整單元64A係在產生稀釋混合氣體UM時,調整稀釋容器X1的內部之載體氣體CG的分壓及各種原料氣體Gn的分壓。 The pressure adjustment unit 64A generates a diluted mixed gas UM by diluting the mixed gas MG in which a plurality of raw material gases Gn are mixed by the carrier gas CG. Next, the pressure adjusting unit 64A discharges the diluted mixed gas UM containing the mixed gas MG. Furthermore, the pressure adjusting unit 64A adjusts the partial pressure of the carrier gas CG and the partial pressures of various raw material gases Gn in the dilution container X1 when the diluted mixed gas UM is generated.

具體而言,複數個原料容器Zn係分別收容彼此不同之複數個原料氣體Gn(彼此不同之複數個氣體)。原料氣體Gn係未被稀釋的單純之原料的氣體,其在原料容器Zn的內部具有一定的壓力(蒸氣壓)。 Specifically, the plurality of raw material containers Zn respectively contain a plurality of different raw material gases Gn (a plurality of different gas). The raw material gas Gn is a pure raw material gas that has not been diluted, and has a certain pressure (vapor pressure) inside the raw material container Zn.

閥部Y1係將不同之複數個原料氣體Gn在不同時間點自複數個原料容器Zn導入稀釋容器X1,並以不同於複數個原料氣體Gn之時間點將用以稀釋複數個原料氣體Gn的載體氣體CG導入稀釋容器X1。其結果係在稀釋容器X1中產生混合了複數個原料氣體Gn及載體氣體CG的稀釋混合氣體UM。 The valve portion Y1 introduces a plurality of raw material gases Gn from a plurality of raw material containers Zn into a dilution container X1 at different time points, and uses a carrier gas for diluting the plurality of raw material gas Gn at a time point different from the plurality of raw material gas Gn CG is introduced into the dilution container X1. As a result, a dilution mixed gas UM in which a plurality of source gas Gn and carrier gas CG are mixed is generated in the dilution container X1.

例如,閥部Y1係將不同之複數個原料氣體Gn在不同時間點自複數個原料容器Zn導入稀釋容器X1。其結果係在稀釋容器X1中收容有混合了複數個原料氣體Gn的混合氣體MG。接著,閥部Y1係將載體氣體CG以不同於複數個原料氣體Gn的時間點導入稀釋容器X1。其結果係在稀釋容器X1中產生有混合了混合氣體MG及載體氣體CG的稀釋混合氣體UM。 For example, the valve portion Y1 introduces a plurality of different raw material gases Gn from the plurality of raw material containers Zn into the dilution container X1 at different time points. As a result, the mixed gas MG in which a plurality of raw material gases Gn are mixed is accommodated in the dilution container X1. Next, the valve portion Y1 introduces the carrier gas CG into the dilution container X1 at a time point different from the plurality of raw material gases Gn. As a result, the diluted mixed gas UM in which the mixed gas MG and the carrier gas CG are mixed is generated in the dilution container X1.

再者,閥部Y1係調整稀釋容器X1中之各原料氣體Gn的分壓以及載體氣體CG的分壓。其結果係在稀釋容器X1中,稀釋混合氣體UM之總壓p被設定為預定總壓值、原料氣體Gn的分壓pgn被設定為第1分壓值,以及載體氣體 CG的分壓pc被設定為第2分壓值。第1分壓值基於不同之複數個原料氣體Gn在產生化學反應時的化學反應式,而針對每種原料氣體Gn被設定。此外,區別並說明複數個分壓pgn時,係描述為分壓pg1、...、pgN(N為2以上之整數)。因此,即p=pg1+、...、+pgN+pc、。 In addition, the valve portion Y1 adjusts the partial pressure of each raw material gas Gn and the partial pressure of the carrier gas CG in the dilution container X1. As a result, in the dilution container X1, the total pressure p of the diluted mixed gas UM is set to a predetermined total pressure value, the partial pressure pgn of the raw material gas Gn is set to the first partial pressure value, and the partial pressure pc of the carrier gas CG is set Set to the second partial pressure value. The first partial pressure value is set for each raw material gas Gn based on the chemical reaction formula when a plurality of different raw material gases Gn generate a chemical reaction. In addition, when distinguishing and explaining a plurality of partial pressures pgn, it is described as partial pressures pg1, ..., pgN (N is an integer of 2 or more). Therefore, that is, p=pg1+, ..., +pgN+pc,.

稀釋容器X1係混合自複數個原料容器Zn所分別導入的複數個原料氣體Gn及載體氣體CG,並將其作為稀釋混合氣體UM(稀釋氣體)而收容。接著,閥部Y1在複數個原料氣體Gn及載體氣體CG被混合之後,係將稀釋混合氣體UM自稀釋容器X1排放。亦即,閥部Y1係在複數個原料氣體Gn及載體氣體CG被混合,且各種原料氣體Gn的分壓pgn及載體氣體CG的分壓pc被調整之後,將稀釋混合氣體UM自稀釋容器X1排放。 The dilution container X1 mixes a plurality of raw material gas Gn and a carrier gas CG introduced from the plurality of raw material containers Zn, and stores it as a dilution mixed gas UM (dilution gas). Next, after the plurality of source gas Gn and carrier gas CG are mixed, the valve portion Y1 discharges the diluted mixed gas UM from the dilution container X1. That is, the valve portion Y1 is to mix the plurality of raw gas Gn and the carrier gas CG, and adjust the partial pressure pgn of the various raw gas Gn and the partial pressure pc of the carrier gas CG, and then to dilute the mixed gas UM from the dilution container X1 emission.

此外,在本說明書中,稀釋混合氣體UM係混合了對於透過氣體供給裝置60A之氣相成長裝置1的供給對象之氣體(具體而言為混合氣體MG)與載體氣體CG的稀釋氣體之一示例。 In addition, in this specification, the diluted mixed gas UM is an example of a diluted gas in which the gas (specifically, the mixed gas MG) supplied to the gas-phase growth device 1 passing through the gas supply device 60A and the carrier gas CG are mixed .

第1流量控制部Q1可對應閥部Y1而設置。再者,第1流量控制部Q1可對應原料導入管A1(圖7)而設置。 The first flow control unit Q1 may be provided corresponding to the valve unit Y1. Furthermore, the first flow control unit Q1 may be provided corresponding to the raw material introduction pipe A1 (FIG. 7 ).

第1流量控制部Q1係控制閥部Y1所排放的稀釋混合氣體UM的流量。接著,第1流量控制部Q1係透過原料導入管A1將稀釋混合氣體UM供給至腔室3。具體而言,第1流量控制部Q1係利用哈根-佰意索意流之原理,基於層流 元件之上游與下游的差壓而控制稀釋混合氣體UM之體積流量或質量流量。 The first flow control unit Q1 controls the flow rate of the diluted mixed gas UM discharged from the valve unit Y1. Next, the first flow control unit Q1 supplies the diluted mixed gas UM to the chamber 3 through the raw material introduction pipe A1. Specifically, the first flow control unit Q1 controls the volume flow or mass flow of the diluted mixed gas UM based on the differential pressure between the upstream and downstream of the laminar flow element using the principle of Hagen-Baiyi flow.

如以上參考圖8所述,藉由實施態樣2,由於係將載體氣體CG導入稀釋容器X1中,相較於僅將混合氣體MG導入稀釋容器X1的情況下,可增大稀釋混合氣體UM之總壓p。因此,相較於僅將混合氣體MG導入稀釋容器X1的情況下,混合氣體MG易朝向第1流量控制部Q1及氣相成長裝置1移動。亦即,藉由在稀釋容器X1中之稀釋混合氣體UM的總壓p,係確保移動混合氣體MG(亦即,原料氣體Gn)的力量。另一方面,藉由調整自原料容器Zn導入至稀釋容器X1之原料氣體Gn的量(物質量、體積量或是質量),可針對每種原料氣體Gn高精度地調整稀釋容器X1中之稀釋混合氣體UM所含有之原料氣體Gn的量(物質量、體積量或是質量)。 As described above with reference to FIG. 8, according to Embodiment 2, since the carrier gas CG is introduced into the dilution container X1, the dilution mixed gas UM can be increased compared to the case where only the mixed gas MG is introduced into the dilution container X1. The total pressure p. Therefore, compared with the case where only the mixed gas MG is introduced into the dilution container X1, the mixed gas MG tends to move toward the first flow control unit Q1 and the vapor-phase growth device 1. That is, the total pressure p of the diluted mixed gas UM in the dilution container X1 ensures the power to move the mixed gas MG (that is, the raw material gas Gn). On the other hand, by adjusting the amount (material mass, volume, or mass) of the raw material gas Gn introduced from the raw material container Zn to the dilution container X1, the dilution in the dilution container X1 can be adjusted with high precision for each raw material gas Gn The amount (material mass, volume, or mass) of the raw gas Gn contained in the mixed gas UM.

其結果為,相較於如先前技術係以一邊使載體氣體流動一邊控制載體氣體的流量以調整原料氣體之供給量的情況下,可高精度地調整使與載體氣體CG一起朝向第1流量控制部Q1及氣相成長裝置1移動之原料氣體Gn的量(物質量、體積量或是質量),亦即,原料氣體Gn的供給量。再者,相較於如先前技術係自起泡器直接供給原料氣體至氣體被供給處的情況下,因係自稀釋容器X1排放稀釋混合氣體UM,藉此可高精度地調整原料氣體Gn之供給量。由於可高精度地調整原料氣體Gn之供給量,使得氣相成長裝置1可形成品質良好之目的物質(例如缺陷少、純度高之目的物質)。 As a result, compared to the case where the carrier gas flow rate is controlled while the carrier gas is being flown to adjust the supply amount of the raw material gas as in the prior art, the first flow rate control along with the carrier gas CG can be adjusted with high accuracy The amount (material mass, volume amount, or mass) of the raw material gas Gn moved by the part Q1 and the vapor-phase growth device 1, that is, the supply amount of the raw material gas Gn. Furthermore, compared with the case where the raw material gas is directly supplied from the bubbler to the gas supply point as in the prior art, the diluted mixed gas UM is discharged from the dilution container X1, whereby the raw gas Gn can be adjusted with high accuracy Supply amount. Since the supply amount of the raw material gas Gn can be adjusted with high precision, the vapor-phase growth device 1 can form a target substance of good quality (for example, a target substance with few defects and high purity).

再者,根據實施態樣2,係藉由在稀釋容器X1中之稀釋混合氣體UM的 總壓p而確保使原料氣體Gn移動之力量,並自稀釋容器X1排放含有原料氣體Gn之稀釋混合氣體UM。因此,同於實施態樣1,原料氣體Gn的供給量不易受溫度的影響,故容易進行溫度管理。再者,在實施態樣2中,依據與實施態樣1相同之理由,可更高精度地調整原料氣體Gn的供給量;再者,可降低氣體供給裝置60A的成本。更進一步,在實施態樣2中,依據與實施態樣1相同之理由,可抑制維護成本的提高;再者,可抑制原料容器Zn的形狀受到限制。 Furthermore, according to Embodiment 2, the total pressure p of the diluted mixed gas UM in the dilution container X1 ensures the power to move the raw gas Gn, and the diluted mixed gas containing the raw gas Gn is discharged from the diluted container X1 UM. Therefore, as in the first embodiment, the supply amount of the raw material gas Gn is not easily affected by temperature, so temperature management is easy. In addition, in the second embodiment, for the same reason as the first embodiment, the supply amount of the raw material gas Gn can be adjusted with higher accuracy; further, the cost of the gas supply device 60A can be reduced. Furthermore, in the second embodiment, for the same reason as the first embodiment, it is possible to suppress the increase in maintenance cost; further, it is possible to suppress the shape of the raw material container Zn from being restricted.

更進一步,藉由實施態樣2,同於實施態樣1,可容易地供給少量的混合氣體MG(亦即,少量的原料氣體Gn)。再者,在實施態樣2中,由於係自稀釋容器X1排放含有原料氣體Gn之稀釋混合氣體UM,故與實施態樣1同樣地使原料氣體Gn的供給量安定。 Furthermore, according to the second embodiment, as in the first embodiment, a small amount of mixed gas MG (that is, a small amount of raw material gas Gn) can be easily supplied. In addition, in the second embodiment, since the dilution mixed gas UM containing the raw material gas Gn is discharged from the dilution container X1, the supply amount of the raw material gas Gn is stabilized in the same manner as in the first embodiment.

再者,根據實施態樣2,藉由調整導入至稀釋容器X1之載體氣體CG的導入量,則可調整稀釋混合氣體UM之總壓p。亦即,可調整移動混合氣體MG(亦即,原料氣體Gn)的力量。 Furthermore, according to Embodiment 2, by adjusting the introduction amount of the carrier gas CG introduced into the dilution container X1, the total pressure p of the diluted mixed gas UM can be adjusted. That is, the power of the mobile mixed gas MG (that is, the raw material gas Gn) can be adjusted.

更進一步,根據實施態樣2,藉由調整稀釋容器X1中之原料氣體Gn的分壓pgn,則可調整稀釋混合氣體UM所含有之原料氣體Gn的量(物質量、體積量或是質量)。其結果係可更高精度地調整使與載體氣體CG一起朝向第1流量控制部Q1及氣相成長裝置1移動之原料氣體Gn的量(物質量、體積量或是質量)。 Furthermore, according to Embodiment 2, by adjusting the partial pressure pgn of the raw gas Gn in the dilution container X1, the amount (material mass, volume, or mass) of the raw gas Gn contained in the diluted mixed gas UM can be adjusted . As a result, the amount (material mass, volume amount, or mass) of the raw material gas Gn that moves along with the carrier gas CG toward the first flow control unit Q1 and the vapor phase growth device 1 can be adjusted with higher accuracy.

更進一步,根據實施態樣2,因具備複數個原料容器Zn,可針對每一個原料容器Zn調整導入稀釋容器X1之原料氣體Gn的量。因此,各種原料氣體Gn係以具有基於為了生成目的物質之化學反應式的莫耳分率之方式,而可將原料氣體Gn導入至稀釋容器X1。亦即,在將原料氣體Gn供給至氣相成長裝置1時,可容易地調整原料氣體Gn的莫耳分率。 Furthermore, according to Embodiment 2, since a plurality of raw material containers Zn are provided, the amount of raw material gas Gn introduced into the dilution container X1 can be adjusted for each raw material container Zn. Therefore, the various raw material gases Gn can be introduced into the dilution container X1 so as to have a molar fraction based on the chemical reaction formula for generating the target substance. That is, when the raw material gas Gn is supplied to the vapor phase growth device 1, the mole fraction of the raw material gas Gn can be easily adjusted.

更進一步,根據實施態樣2,藉由在1個稀釋容器X1中混合來自於複數個原料容器Zn的複數個原料氣體Gn,並進一步將載體氣體CG導入,則在1個稀釋容器X1中產生有稀釋混合氣體UM。因此,相較於對應複數個原料容器Zn而分別設置複數個稀釋容器Xn的情況,可簡化氣體供給裝置60A的結構。例如,可減少稀釋容器Xn的數量及閥部Yn的數量。 Furthermore, according to Embodiment 2, by mixing a plurality of raw material gases Gn from a plurality of raw material containers Zn in one dilution container X1 and further introducing a carrier gas CG, it is generated in one dilution container X1 There is diluted mixed gas UM. Therefore, the structure of the gas supply device 60A can be simplified compared to the case where a plurality of dilution containers Xn are provided respectively corresponding to the plurality of raw material containers Zn. For example, the number of dilution containers Xn and the number of valve portions Yn can be reduced.

更進一步,根據實施態樣2,利用原料容器Zn的內部之原料氣體Gn的壓力(蒸氣壓),則可使原料氣體Gn自原料容器Zn移動至稀釋容器X1。因此,可抑制設置為使原料氣體Gn自原料容器Zn移動至稀釋容器X1的主動裝置。其結果係可簡化氣體供給裝置60A,亦可降低氣體供給裝置60A之成本。 Furthermore, according to Embodiment 2, by using the pressure (vapor pressure) of the raw material gas Gn inside the raw material container Zn, the raw material gas Gn can be moved from the raw material container Zn to the dilution container X1. Therefore, the active device provided to move the raw material gas Gn from the raw material container Zn to the dilution container X1 can be suppressed. As a result, the gas supply device 60A can be simplified, and the cost of the gas supply device 60A can be reduced.

更進一步,根據實施態樣2,第1流量控制部Q1係利用稀釋混合氣體UM的總壓p,而可容易地將稀釋混合氣體UM供給至氣相成長裝置1。 Furthermore, according to Embodiment 2, the first flow rate control unit Q1 uses the total pressure p of the diluted mixed gas UM to easily supply the diluted mixed gas UM to the gas-phase growth device 1.

此外,稀釋容器X1亦可不導入載體氣體CG,而分別自複數個原料容器 Zn導入複數個原料氣體Gn,並收容混合氣體MG。此情況下,第1流量控制部Q1亦可控制由閥部Y1所排放之混合氣體MG的流量。接著,第1流量控制部Q1亦可透過原料導入管A1以將混合氣體MG供給至腔室3。具體而言,第1流量控制部Q1亦可利用哈根-佰意索意流之原理,基於層流元件之上游與下游的差壓而控制混合氣體MG之體積流量或質量流量。 In addition, the dilution container X1 may not introduce the carrier gas CG, but may respectively introduce a plurality of raw material gases Gn from the plurality of raw material containers Zn and accommodate the mixed gas MG. In this case, the first flow rate control unit Q1 may control the flow rate of the mixed gas MG discharged from the valve unit Y1. Next, the first flow control unit Q1 may supply the mixed gas MG to the chamber 3 through the raw material introduction pipe A1. Specifically, the first flow control unit Q1 may also use the principle of Hagen-Baiyi flow to control the volume flow or mass flow of the mixed gas MG based on the differential pressure between the upstream and downstream of the laminar flow element.

接下來,參閱圖9針對壓力調整單元64A作說明。圖9係壓力調整單元64A之示意圖。如圖9所示,壓力調整單元64A係進一步包括溫度計TM、第1壓力計PM1(壓力計)、第2壓力計PM2、管t1至管t4以及複數個管t5n。 Next, the pressure adjustment unit 64A will be described with reference to FIG. 9. 9 is a schematic diagram of the pressure adjusting unit 64A. As shown in FIG. 9, the pressure adjustment unit 64A further includes a thermometer TM, a first pressure gauge PM1 (pressure gauge), a second pressure gauge PM2, tubes t1 to t4, and a plurality of tubes t5n.

閥部Y1係包括第1閥單元75以及複數個第2閥單元77n。第1閥單元75係包括閥b1至閥部b7及管t1至管t4。第2閥單元77n係包括閥b8n及管t5n。閥b1至閥b7及閥b8n係例如停止閥。複數個第2閥單元77n係分別對應複數個原料容器Zn而設置。 The valve portion Y1 includes a first valve unit 75 and a plurality of second valve units 77n. The first valve unit 75 includes valves b1 to b7 and tubes t1 to t4. The second valve unit 77n includes a valve b8n and a tube t5n. The valves b1 to b7 and the valve b8n are, for example, stop valves. The plurality of second valve units 77n are respectively provided corresponding to the plurality of raw material containers Zn.

管t1係連接於稀釋容器X1及閥b4。管t2係使閥b3至閥b7相互連接。管t3係使閥b1至閥b3相互連接。管t4係使閥b7及複數個閥b8n相互連接。管t5n係連接於閥b8n及原料容器Zn。此外,閥b8n亦可直接連接於原料容器Zn。閥b4亦可直接連接於稀釋容器X1。 The tube t1 is connected to the dilution container X1 and the valve b4. The pipe t2 connects the valves b3 to b7 to each other. The pipe t3 connects the valves b1 to b3 to each other. The tube t4 connects the valve b7 and the plurality of valves b8n to each other. The tube t5n is connected to the valve b8n and the raw material container Zn. In addition, the valve b8n may also be directly connected to the raw material container Zn. The valve b4 may also be directly connected to the dilution container X1.

此外,區別並說明複數個第2閥單元77n時,係描述為第2閥單元771、...、77N(N為2以上之整數)。區別並說明複數個閥b8n時,係描述為閥 b81、...、b8N(N為2以上之整數)。區別並說明複數個管t5n時,係描述為管t51、...、t5N(N為2以上之整數)。 In addition, when distinguishing and explaining a plurality of second valve units 77n, it is described as the second valve units 771, ..., 77N (N is an integer of 2 or more). When distinguishing and explaining a plurality of valves b8n, they are described as valves b81, ..., b8N (N is an integer of 2 or more). When distinguishing and explaining a plurality of tubes t5n, it is described as tubes t51, ..., t5N (N is an integer of 2 or more).

繼續參考圖9針對閥部Y1的控制步驟作說明。控制步驟係包括第1步驟至第22步驟。在閥部Y1的初期狀態中,閥b1至閥b7及閥b8n係關閉狀態。以下為便於理解,係以具備有2個的原料容器Zn及2個的第2閥單元77n時之閥部Y1的操作步驟作說明。 The control procedure of the valve portion Y1 will be described with continued reference to FIG. 9. The control step includes the first step to the 22nd step. In the initial state of the valve portion Y1, the valves b1 to b7 and the valve b8n are closed. For ease of understanding, the following will describe the operation procedure of the valve portion Y1 when two raw material containers Zn and two second valve units 77n are provided.

[真空吸引及沖洗] [Vacuum suction and flushing]

第1步驟至第4步驟係與實施態樣1的第1步驟至第4步驟相同。 The first step to the fourth step are the same as the first step to the fourth step of Embodiment 1.

[原料氣體G1向稀釋容器X1的導入] [Introduction of Raw Gas G1 to Dilution Container X1]

第5步驟:關閉閥b2、閥b6、閥b7,且開啟閥b81。 Step 5: Close valve b2, valve b6, and valve b7, and open valve b81.

第6步驟:重複閥b7的開啟關閉,將原料氣體G1自原料容器Z1導入稀釋容器X1。將原料氣體G1導入稀釋容器X1時,調整閥b7的開啟時間與關閉時間,將稀釋容器X1的內部之原料氣體G1的壓力pg1設定至第1分壓值。壓力pg1係以式(5)表示。「V」係表示稀釋容器X1的內部之體積;「ng1」係表示原料氣體G1的物質量(莫耳);「R」係表示氣體常數;「T」係表示稀釋容器X1的內部之溫度。 Step 6: Repeat the opening and closing of the valve b7 to introduce the raw material gas G1 from the raw material container Z1 into the dilution container X1. When the raw material gas G1 is introduced into the dilution container X1, the opening time and the closing time of the valve b7 are adjusted, and the pressure pg1 of the raw material gas G1 inside the dilution container X1 is set to the first partial pressure value. The pressure pg1 is expressed by formula (5). "V" represents the volume inside the dilution container X1; "ng1" represents the mass of the raw material gas G1 (mole); "R" represents the gas constant; "T" represents the temperature inside the dilution container X1.

pg1×V=ng1×R×T...(5) pg1×V=ng1×R×T...(5)

由於體積V及溫度T為已知,且壓力pg1可透過第1壓力計PM1量測,藉此可基於式(5)算出稀釋容器X1的內部之原料氣體G1的物質量。 Since the volume V and the temperature T are known, and the pressure pg1 can be measured by the first pressure gauge PM1, the mass of the raw material gas G1 inside the dilution container X1 can be calculated based on equation (5).

依據實施態樣2,藉由以溫度計TM監視稀釋容器X1的溫度時,並透過第1壓力計PM1監視稀釋容器X1的壓力,可將稀釋容器X1的溫度及原料氣體G1的分壓pg1控制在所欲的數值。其結果係可將所欲的物質量之原料氣體G1導入至稀釋容器X1。 According to Embodiment 2, by monitoring the temperature of the dilution container X1 with a thermometer TM and monitoring the pressure of the dilution container X1 through the first pressure gauge PM1, the temperature of the dilution container X1 and the partial pressure pg1 of the raw gas G1 can be controlled at The desired value. As a result, the raw material gas G1 of the desired physical mass can be introduced into the dilution container X1.

此外,在原料氣體G1的壓力pg1低的情況下,亦可開啟閥b6,並藉由第2壓力計PM2而量測壓力pg1。 In addition, when the pressure pg1 of the raw material gas G1 is low, the valve b6 may be opened, and the pressure pg1 may be measured by the second pressure gauge PM2.

第7步驟:當原料氣體G1的壓力pg1成為第1分壓值的時點,關閉閥b7。 Step 7: When the pressure pg1 of the raw material gas G1 becomes the first partial pressure value, the valve b7 is closed.

第8步驟:關閉閥b4、閥b81,且開啟閥b2、閥b3、閥b7。 Step 8: Close the valves b4 and b81, and open the valves b2, b3 and b7.

第9步驟:開啟閥b6。第2壓力計PM2係量測管t2、管t3、管t4的內部之壓力。操作者藉由第2壓力計PM2確認管t2、管t3、管t4的內部之真空的程度。 Step 9: Open the valve b6. The second pressure gauge PM2 measures the pressure inside the tube t2, the tube t3, and the tube t4. The operator confirms the degree of vacuum inside the tube t2, the tube t3, and the tube t4 with the second pressure gauge PM2.

[原料氣體G2向稀釋容器X1的導入] [Introduction of Raw Gas G2 to Dilution Vessel X1]

第10步驟:關閉閥b2、閥b3、閥b6、閥b7,且開啟閥b82。 Step 10: Close valve b2, valve b3, valve b6, and valve b7, and open valve b82.

第11步驟:開啟閥b4。 Step 11: Open the valve b4.

第12步驟:重複閥b7的開啟關閉,將原料氣體G2自原料容器Z2導入稀釋容器X1。將原料氣體G2導入稀釋容器X1時,調整閥b7的開啟時間與關閉時間,將稀釋容器X1的內部之混合氣體MG的總壓pm設定至第1總壓值。總壓pm係以式(6)表示。「pg1」係表示稀釋容器X1中之原料氣體G1的壓力,亦即原料氣體G1的分壓;「pg2」係表示稀釋容器X1中之原料氣體G2的分壓。 Step 12: Repeat the opening and closing of the valve b7 to introduce the raw material gas G2 from the raw material container Z2 into the dilution container X1. When the raw material gas G2 is introduced into the dilution container X1, the opening time and the closing time of the valve b7 are adjusted, and the total pressure pm of the mixed gas MG inside the dilution container X1 is set to the first total pressure value. The total pressure pm is expressed by equation (6). "Pg1" indicates the pressure of the raw material gas G1 in the dilution container X1, that is, the partial pressure of the raw gas G1; "pg2" indicates the partial pressure of the raw material gas G2 in the dilution container X1.

pm=pg1+pg2...(6) pm=pg1+pg2...(6)

由於總壓pm及分壓pg1係已完成量測,故可基於式(6)而算出原料氣體G2的分壓pg2。 Since the total pressure pm and the partial pressure pg1 have been measured, the partial pressure pg2 of the raw material gas G2 can be calculated based on equation (6).

再者,總壓pm係以式(7)表示。「V」係表示稀釋容器X1的內部之體積;「ng1」係表示原料氣體G1的物質量(莫耳);「ng2」係表示原料氣體G2的物質量(莫耳);「R」係表示氣體常數;「T」係表示稀釋容器X1的內部之溫度。 Furthermore, the total pressure pm is expressed by equation (7). "V" means the volume inside the dilution container X1; "ng1" means the mass of the raw material gas G1 (mole); "ng2" means the mass of the raw material gas G2 (mole); "R" means the Gas constant; "T" means the temperature inside the dilution container X1.

pm×V=(ng1+ng2)×R×T...(7) pm×V=(ng1+ng2)×R×T...(7)

體積V及溫度T為已知,由於總壓pm可透過第1壓力計PM1量測,物質量ng1可基於式(5)算出,故稀釋容器X1的內部之原料氣體G2的物質量ng2係可基於式(7)而算出。 The volume V and the temperature T are known. Since the total pressure pm can be measured by the first pressure gauge PM1, the mass ng1 can be calculated based on equation (5), so the mass ng2 of the raw material gas G2 inside the dilution container X1 can be It is calculated based on equation (7).

依據實施態樣2,藉由透過溫度計TM監視稀釋容器X1的溫度時,並透過第1壓力計PM1監視稀釋容器X1的壓力,可將稀釋容器X1的溫度及原料氣體G2的分壓pg2控制在所欲的數值。其結果係可將所欲的物質量之原料氣體G2導入至稀釋容器X1。 According to Embodiment 2, by monitoring the temperature of the dilution container X1 through the thermometer TM and monitoring the pressure of the dilution container X1 through the first pressure gauge PM1, the temperature of the dilution container X1 and the partial pressure pg2 of the raw gas G2 can be controlled at The desired value. As a result, the raw material gas G2 of the desired physical mass can be introduced into the dilution container X1.

此外,在原料氣體G2的壓力pg2低的情況下,亦可開啟閥b6,並藉由第2壓力計PM2而量測總壓pm。 In addition, when the pressure pg2 of the raw material gas G2 is low, the valve b6 may be opened, and the total pressure pm may be measured by the second pressure gauge PM2.

第13步驟:當混合氣體MG的總壓pm成為第1總壓值的時點,關閉閥b7。 亦即,原料氣體G2的分壓pg2成為第1分壓值的時點,關閉閥b7。此外,第1分壓值係就原料氣體G1及原料氣體G2個別地設定。 Step 13: When the total pressure pm of the mixed gas MG becomes the first total pressure value, the valve b7 is closed. That is, when the partial pressure pg2 of the raw material gas G2 becomes the first partial pressure value, the valve b7 is closed. In addition, the first partial pressure value is set individually for the raw material gas G1 and the raw material gas G2.

[載體氣體CG向稀釋容器X1的導入] [Introduction of Carrier Gas CG to Dilution Container X1]

第14步驟:關閉閥b4、閥b82,且開啟閥b2、閥b3、閥b7。 Step 14: Close valve b4 and valve b82, and open valve b2, valve b3 and valve b7.

第15步驟:開啟閥b6。第2壓力計PM2係量測管t2、管t3、管t4的內部之壓力。操作者藉由第2壓力計PM2確認管t2、管t3、管t4的內部之真空的程度。 Step 15: Open the valve b6. The second pressure gauge PM2 measures the pressure inside the tube t2, the tube t3, and the tube t4. The operator confirms the degree of vacuum inside the tube t2, the tube t3, and the tube t4 with the second pressure gauge PM2.

第16步驟:關閉閥b2、閥b6,且開啟閥b1。 Step 16: Close valve b2 and valve b6, and open valve b1.

第17步驟:重複閥b4的開啟關閉,並將載體氣體CG導入至稀釋容器 X1。將載體氣體CG導入稀釋容器X1時,調整閥b4的開啟時間與關閉時間,將稀釋容器X1的內部之稀釋混合氣體UM的總壓p設定至第2總壓值(亦即,預定總壓值)。總壓p係以式(8)表示。「V」係表示稀釋容器X1的內部之體積;「n」係表示稀釋混合氣體UM的物質量(莫耳);「R」係表示氣體常數;「T」係表示稀釋容器X1的內部之溫度。具體而言,「n」係稀釋容器X1的內部之載體氣體CG的物質量(莫耳)和原料氣體G1的物質量(莫耳)和原料氣體G2的物質量(莫耳)之總合。 Step 17: Repeat the opening and closing of the valve b4, and introduce the carrier gas CG into the dilution container X1. When the carrier gas CG is introduced into the dilution container X1, the opening time and the closing time of the valve b4 are adjusted, and the total pressure p of the diluted mixed gas UM inside the dilution container X1 is set to the second total pressure value (that is, the predetermined total pressure value ). The total pressure p is expressed by formula (8). "V" represents the volume inside the dilution container X1; "n" represents the mass of the diluted mixed gas UM (mole); "R" represents the gas constant; "T" represents the temperature inside the dilution container X1 . Specifically, "n" is the sum of the material mass (mole) of the carrier gas CG inside the dilution container X1, the material mass (mole) of the raw material gas G1 and the material mass (mole) of the raw material gas G2.

p×V=n×R×T...(8) p×V=n×R×T...(8)

由於體積V及溫度T為已知,且總壓p可透過第1壓力計PM1量測,藉此可基於式(8)算出稀釋容器X1的內部之稀釋混合氣體UM的物質量n。更進一步,由於原料氣體G1的物質量ng1及原料氣體G2的物質量ng2為已知,藉此可基於式(9)算出載體氣體CG的物質量nc。 Since the volume V and the temperature T are known, and the total pressure p can be measured by the first pressure gauge PM1, the mass n of the diluted mixed gas UM inside the dilution container X1 can be calculated based on equation (8). Furthermore, since the material mass ng1 of the source gas G1 and the material mass ng2 of the source gas G2 are known, the material mass nc of the carrier gas CG can be calculated based on equation (9).

n=ng1+ng2+nc...(9) n=ng1+ng2+nc...(9)

依據實施態樣2,藉由透過溫度計TM監視稀釋容器X1的溫度時,並透過第1壓力計PM1監視稀釋容器X1的壓力,可將稀釋容器X1的溫度及稀釋混合氣體UM的總壓p控制在所欲的數值。 According to Embodiment 2, by monitoring the temperature of the dilution container X1 through the thermometer TM and monitoring the pressure of the dilution container X1 through the first pressure gauge PM1, the temperature of the dilution container X1 and the total pressure p of the diluted mixed gas UM can be controlled At the desired value.

再者,可自式(10)計算出載體氣體CG的分壓pc。「pg1」係表示稀釋容 器X1的內部之原料氣體G1的壓力,亦即原料氣體G1的分壓;「pg2」係表示稀釋容器X1的內部之原料氣體G2的壓力,亦即原料氣體G2的分壓。 Furthermore, the partial pressure pc of the carrier gas CG can be calculated from equation (10). "Pg1" means the pressure of the raw material gas G1 inside the dilution container X1, that is, the partial pressure of the raw gas G1; "pg2" means the pressure of the raw material gas G2 inside the dilution container X1, that is, the fraction of the raw gas G2 Pressure.

p=pg1+pg2+pc...(10) p=pg1+pg2+pc...(10)

基於總壓p、分壓pg1、分壓pg2及分壓pc,或是物質量n、物質量ng1、物質量ng2及物質量nc,可計算出原料氣體G1的莫耳分率、原料氣體G2的莫耳分率以及載體氣體CG的莫耳分率。 Based on the total pressure p, partial pressure pg1, partial pressure pg2 and partial pressure pc, or the mass n, mass ng1, mass ng2 and mass nc, the mole fraction of the raw gas G1 and the raw gas G2 can be calculated Molar fraction of the carrier gas and the carrier gas CG.

第18步驟:在稀釋混合氣體UM的總壓p達到第2總壓值的時點,關閉閥b4。亦即,在載體氣體CG的分壓pc達到第2預定值的時點,關閉閥b4。 Step 18: When the total pressure p of the diluted mixed gas UM reaches the second total pressure value, the valve b4 is closed. That is, when the partial pressure pc of the carrier gas CG reaches the second predetermined value, the valve b4 is closed.

[稀釋原料氣體Dn向氣相成長裝置1的供給] [Supply of Dilution Raw Gas Dn to Gas Phase Growth Apparatus 1]

第19步驟:亦可開啟閥b5。其結果係可藉由載體氣體CG洗淨(沖洗)閥b5直至第1流量控制部Q1為止的流道。 Step 19: The valve b5 can also be opened. As a result, the flow path from the valve b5 up to the first flow control unit Q1 can be washed (rinsed) by the carrier gas CG.

第20步驟:關閉閥b1、閥b5、閥b7,且開啟閥b2。 Step 20: Close valve b1, valve b5, and valve b7, and open valve b2.

第21步驟:開啟閥b6。第2壓力計PM2係量測管t2、管t3的內部之壓力。操作者藉由第2壓力計PM2確認管t2、管t3的內部之真空的程度。此外,在管t2、管t3的流道容積較稀釋容器X1的容積小的情況下,則不需第15步驟。 Step 21: Open the valve b6. The second pressure gauge PM2 measures the pressure inside the tubes t2 and t3. The operator confirms the degree of vacuum inside the tube t2 and the tube t3 with the second pressure gauge PM2. In addition, when the volume of the flow channels of the tubes t2 and t3 is smaller than the volume of the dilution container X1, step 15 is not required.

第22步驟:關閉閥b2、閥b3、閥b6,且開啟閥b4、閥b5。其結果為,稀釋混合氣體UM係自稀釋容器X1朝向第1流量控制部Q1(圖8)排放。 Step 22: Close valve b2, valve b3, and valve b6, and open valve b4, valve b5. As a result, the diluted mixed gas UM is discharged from the dilution container X1 toward the first flow control unit Q1 (FIG. 8 ).

接下來參考圖10,說明在基板S上形成作為目的物質之氮化鎵(GaN)的示例。圖10係氣相成長系統100之一部分的示意圖。如圖10所示,稀釋混合氣體UM係被收容於稀釋容器X1。稀釋混合氣體UM係含有作為原料氣體G1之三氯化鎵(GaCl3)、作為原料氣體G2之氨氣(NH3)以及作為載體氣體CG之氮氣(N2)。再者,作為載體氣體CG之氮氣(N2)係被供給至第2流量控制部72。作為蝕刻氣體EG之氯氣(Cl2)係被供給至第3流量控制部73。 Next, an example of forming gallium nitride (GaN) as a target substance on the substrate S will be described with reference to FIG. 10. FIG. 10 is a schematic diagram of a part of the vapor-phase growth system 100. As shown in FIG. 10, the dilution mixed gas UM is accommodated in the dilution container X1. The diluted mixed gas UM contains gallium trichloride (GaCl 3 ) as the source gas G1, ammonia gas (NH 3 ) as the source gas G2, and nitrogen gas (N 2 ) as the carrier gas CG. In addition, nitrogen gas (N 2 ) as the carrier gas CG is supplied to the second flow rate control unit 72. Chlorine gas (Cl 2 ) as the etching gas EG is supplied to the third flow rate control unit 73.

在初期狀態中,第1流量控制部Q1係關閉原料導入管A1;第2流量控制部72係關閉載體導入管19;第3流量控制部73係關閉蝕刻導入管21;殘留物排出裝置80係關閉殘留物排出管25;副產物排氣部15係關閉副產物排氣管27。 In the initial state, the first flow control section Q1 closes the raw material introduction pipe A1; the second flow control section 72 closes the carrier introduction pipe 19; the third flow control section 73 closes the etching introduction pipe 21; the residue discharge device 80 series The residue discharge pipe 25 is closed; the by-product exhaust section 15 closes the by-product exhaust pipe 27.

第1流量控制部Q1、第2流量控制部72以及第3流量控制部73係分別開啟原料導入管A1、載體導入管19以及蝕刻導入管21。其結果為,稀釋混合氣體UM係自稀釋容器X1被導入腔室3;載體氣體CG及蝕刻氣體EG係被導入腔室3。 The first flow control unit Q1, the second flow control unit 72, and the third flow control unit 73 open the raw material introduction pipe A1, the carrier introduction pipe 19, and the etching introduction pipe 21, respectively. As a result, the dilution mixed gas UM is introduced into the chamber 3 from the dilution container X1; the carrier gas CG and the etching gas EG are introduced into the chamber 3.

在參考圖10作說明的實施態樣2中,係與參考圖4作說明的實施態樣1同樣地,作為目的物質之氮化鎵(GaN)在基板S上成長。接著,與實施態樣1同 樣地,可提升三氯化鎵(G1)及氨氣(G2)的利用效率。再者,與實施態樣1同樣地,可提升氮化鎵的成長速度。更進一步地,與實施態樣1同樣地,可將腔室3的內部之殘留物ZG進行排氣以洗淨腔室3的內部。 In the embodiment 2 described with reference to FIG. 10, in the same manner as the embodiment 1 described with reference to FIG. 4, gallium nitride (GaN) as a target substance grows on the substrate S. Next, as in the first embodiment, the utilization efficiency of gallium trichloride (G1) and ammonia gas (G2) can be improved. In addition, as in the first embodiment, the growth rate of gallium nitride can be increased. Furthermore, as in Embodiment 1, the residue ZG inside the chamber 3 can be exhausted to clean the inside of the chamber 3.

(變形例) (Modification)

接下來參考圖11針對本發明的實施態樣2之變形例的氣體供給裝置60A作說明。在變形例中,稀釋容器X1及第1閥單元75之溫度控制與原料容器Zn及第2閥單元77n之溫度控制可分別執行,在此點上係與無法分別執行溫度控制之實施態樣2不同。以下主要以變形例與實施態樣2之不同之處作說明。 Next, a gas supply device 60A according to a modification of Embodiment 2 of the present invention will be described with reference to FIG. 11. In a modified example, the temperature control of the dilution container X1 and the first valve unit 75 and the temperature control of the raw material container Zn and the second valve unit 77n can be performed separately, and at this point, it is the implementation example 2 that the temperature control cannot be performed separately different. The following mainly describes the differences between the modified example and Embodiment 2.

圖11係氣體供給裝置60A之一部分的示意圖。如圖11所示,變形例之氣體供給裝置60A係具備第1恆溫槽63A(第1溫度控制部)及複數個第2恆溫槽63Bn(第2溫度控制部)以取代圖9所示之恆溫槽63。此外,區別並說明複數個第2恆溫槽63Bn時,係描述為第2恆溫槽63B1、...、63BN(N為2以上之整數)。 FIG. 11 is a schematic view of a part of the gas supply device 60A. As shown in FIG. 11, the gas supply device 60A of the modified example includes a first constant temperature bath 63A (first temperature control unit) and a plurality of second constant temperature baths 63Bn (second temperature control unit) instead of the constant temperature shown in FIG. 9槽63。 Groove 63. In addition, when distinguishing and explaining a plurality of second constant temperature baths 63Bn, it is described as the second constant temperature baths 63B1, ..., 63BN (N is an integer of 2 or more).

第1恆溫槽63A係統一控制稀釋容器X1的溫度及第1閥單元75的溫度,並將稀釋容器X1的溫度及第1閥單元75的溫度保持在一定溫度(例如第1溫度)。第1恆溫槽63A係與第2恆溫槽63Bn獨立,以控制稀釋容器X1及第1閥單元75的溫度。稀釋容器X1及第1閥單元75係配置於第1恆溫槽63A的內部。 The first thermostat 63A system controls the temperature of the dilution container X1 and the temperature of the first valve unit 75, and maintains the temperature of the dilution container X1 and the temperature of the first valve unit 75 at a constant temperature (for example, the first temperature). The first thermostat 63A is independent of the second thermostat 63Bn and controls the temperature of the dilution container X1 and the first valve unit 75. The dilution container X1 and the first valve unit 75 are arranged inside the first thermostat 63A.

較佳地,第1恆溫槽63A係將稀釋容器X1及第1閥單元75的溫度保持在比起可獲得相當於稀釋容器X1的內部之原料氣體Gn的分壓之蒸氣壓的溫 度還高之溫度。其係為了抑制原料氣體Gn的液化或是固化。 Preferably, the first constant temperature bath 63A keeps the temperature of the dilution container X1 and the first valve unit 75 higher than the temperature at which the vapor pressure equivalent to the partial pressure of the raw material gas Gn inside the dilution container X1 can be obtained. temperature. This is to suppress the liquefaction or solidification of the raw material gas Gn.

複數個第2恆溫槽63Bn係分別對應複數個原料容器Zn而設置。亦即,複數個第2恆溫槽63Bn係分別對應複數個第2閥單元77n而設置。原料容器Zn及第2閥單元77n係配置於相對應之第2恆溫槽63Bn的內部。 The plurality of second constant temperature baths 63Bn are provided corresponding to the plurality of raw material containers Zn, respectively. That is, the plurality of second constant temperature baths 63Bn are provided corresponding to the plurality of second valve units 77n, respectively. The raw material container Zn and the second valve unit 77n are arranged inside the corresponding second constant temperature bath 63Bn.

第2恆溫槽63Bn係統一控制所對應的原料容器Zn之溫度及所對應的第2閥單元77n之溫度,並將所對應的原料容器Zn之溫度及所對應的第2閥單元77n之溫度保持在一定溫度(例如第2溫度)。每個第2恆溫槽63Bn係各自獨立,並控制所對應的原料容器Zn及所對應的第2閥單元77n之溫度。再者,每個第2恆溫槽63Bn係與第1恆溫槽63A獨立,並控制所對應的原料容器Zn及所對應的第2閥單元77n之溫度。 The second thermostat 63Bn system 1 controls the temperature of the corresponding raw material container Zn and the corresponding temperature of the second valve unit 77n, and maintains the temperature of the corresponding raw material container Zn and the temperature of the corresponding second valve unit 77n At a certain temperature (for example, the second temperature). Each second constant temperature bath 63Bn is independent and controls the temperature of the corresponding raw material container Zn and the corresponding second valve unit 77n. Furthermore, each second thermostat 63Bn is independent of the first thermostat 63A, and controls the temperature of the corresponding raw material container Zn and the corresponding second valve unit 77n.

如以上參考圖11所述,根據實施態樣2的變形例,由於第2恆溫槽63Bn係與第1恆溫槽63A各自分別設置,因此不會依賴稀釋容器X1及第1閥單元75的溫度,藉此可控制原料容器Zn的溫度。因此,可將原料容器Zn的內部之原料氣體Gn的壓力(蒸氣壓)調整至所欲的數值。例如,第2恆溫槽63Bn係將原料容器Zn的溫度設定在較稀釋容器X1的溫度還高的溫度。其結果係可增加原料容器Zn的內部之原料氣體Gn的壓力(蒸氣壓)。 As described above with reference to FIG. 11, according to the modification of Embodiment 2, since the second thermostat 63Bn and the first thermostat 63A are provided separately, they do not depend on the temperature of the dilution container X1 and the first valve unit 75. This can control the temperature of the raw material container Zn. Therefore, the pressure (vapor pressure) of the raw material gas Gn in the raw material container Zn can be adjusted to a desired value. For example, the second constant temperature bath 63Bn sets the temperature of the raw material container Zn to a temperature higher than the temperature of the dilution container X1. As a result, the pressure (vapor pressure) of the raw material gas Gn inside the raw material container Zn can be increased.

若能將原料容器Zn的內部之原料氣體Gn的壓力(蒸氣壓)調整至所欲的數值,則可擴大稀釋容器X1內之原料氣體Gn的壓力範圍。其結果可提升稀 釋混合氣體UM的供給量之自由度,故可擴充將目的物質形成在基板S上時的條件。再者,因可確保稀釋容器X1內充足的稀釋混合氣體UM之總壓p,故可穩定地供給稀釋混合氣體UM至第1流量控制部Q1。 If the pressure (vapor pressure) of the raw material gas Gn inside the raw material container Zn can be adjusted to a desired value, the pressure range of the raw material gas Gn in the dilution container X1 can be expanded. As a result, the degree of freedom of the supply amount of the diluted mixed gas UM can be increased, so that the conditions when the target substance is formed on the substrate S can be expanded. Furthermore, since the sufficient total pressure p of the diluted mixed gas UM in the diluted container X1 can be ensured, the diluted mixed gas UM can be stably supplied to the first flow control unit Q1.

再者,根據變形例,由於設置有複數個第2恆溫槽63Bn,故可對每一個原料容器Zn控制其溫度。因此,可針對每一個原料容器Zn,將原料容器Zn的內部之原料氣體Gn的壓力(蒸氣壓)調整至所欲的數值。 Furthermore, according to the modification, since a plurality of second constant temperature baths 63Bn are provided, the temperature of each raw material container Zn can be controlled. Therefore, the pressure (vapor pressure) of the raw material gas Gn in the raw material container Zn can be adjusted to a desired value for each raw material container Zn.

此外,亦可將複數個原料容器Zn及複數個第2閥單元77n配置於1個第2恆溫槽63B1的內部。接著,第2恆溫槽63B1亦可統一控制複數個原料容器Zn及複數個第2閥單元77n的溫度。 In addition, a plurality of raw material containers Zn and a plurality of second valve units 77n may be arranged inside one second constant temperature bath 63B1. Next, the temperature of the plurality of raw material containers Zn and the plurality of second valve units 77n may be collectively controlled by the second constant temperature bath 63B1.

以上係已邊參考圖式邊說明本發明之實施態樣。然而,本發明並不限於上述實施態樣,在不脫離其要旨的範圍下,可實施各種態樣(例如下述(1)至(4))。再者,藉由將記載於上述之實施態樣的複數個組成元件適當地組合,可形成各種發明。例如,可自實施態樣所示全部的組成元件刪除若干個組成元件。為使圖式容易理解,係將各自的組成元件以主體示意性地表示,由圖所示的各組成元件的個數等亦有因作圖的呈現而與實際有不同的情況。再者,在上述實施態樣所示的各組成元件僅為一示例,並非用以特別限定,在不實質脫離本發明的功效之範圍內,可有各種變化。 The above has described the embodiment of the present invention with reference to the drawings. However, the present invention is not limited to the above-mentioned embodiments, and various embodiments (for example, (1) to (4) below) can be implemented without departing from the gist thereof. Furthermore, various inventions can be formed by appropriately combining a plurality of constituent elements described in the above-described embodiment. For example, several constituent elements may be deleted from all constituent elements shown in the embodiment. In order to make the drawings easy to understand, the respective constituent elements are schematically shown in the main body, and the number of each constituent element shown in the drawings may be different from the actual one due to the drawing. In addition, each component shown in the above embodiment is only an example and is not intended to be particularly limited. Various changes can be made within a range that does not substantially deviate from the effect of the present invention.

(1)可將參考圖5所說明的容積變更部90及壓力調整部91設置於參考圖6 所說明的壓力調整單元64nB,或是設置於參考圖9及圖11所說明的壓力調整單元64A。再者,亦可將參考圖6所說明的複數個稀釋容器Xmn及複數個閥b4設置於參考圖9及圖11所說明的壓力調整單元64A。進一步地,亦可將參考圖11所說明的第1恆溫槽63A及第2恆溫槽63B1取代參考圖3、圖5及圖6所說明的恆溫槽63,而設置於參考圖3、圖5及圖6所說明的氣體供給裝置60。其它方面,可適當地組合實施態樣1、實施態樣1的第1變形例、實施態樣1的第2變形例、實施態樣2及實施態樣2的變形例。 (1) The volume change section 90 and the pressure adjustment section 91 described with reference to FIG. 5 may be provided in the pressure adjustment unit 64nB described with reference to FIG. 6, or the pressure adjustment unit 64A described with reference to FIGS. 9 and 11 . Furthermore, the plurality of dilution containers Xmn and the plurality of valves b4 described with reference to FIG. 6 may be provided in the pressure adjustment unit 64A described with reference to FIGS. 9 and 11. Further, the first thermostatic bath 63A and the second thermostatic bath 63B1 described with reference to FIG. 11 may be replaced by the thermostatic bath 63 described with reference to FIGS. 3, 5 and 6 and provided with reference to FIGS. 3, 5 and 6. The gas supply device 60 illustrated in FIG. 6. In other respects, the first modification of the first embodiment, the first modification of the first embodiment, the second modification of the first embodiment, the second embodiment and the second modification of the second embodiment can be combined as appropriate.

(2)在參考圖1至圖11所說明的氣相成長裝置1中,於基板S上所形成的目的物質可以是無機化合物,亦可以是有機化合物,並無特別限定。再者,目的物質可以是薄膜,亦可以是塊材(Bulk),並無特別限定。進一步地,原料氣體Gn的種類亦無特別限定。再者,副產物排氣部15亦可將液體或固體之副產物排出。 (2) In the vapor-phase growth device 1 described with reference to FIGS. 1 to 11, the target substance formed on the substrate S may be an inorganic compound or an organic compound, and is not particularly limited. In addition, the target substance may be a thin film or a bulk material (Bulk), which is not particularly limited. Furthermore, the type of raw material gas Gn is not particularly limited. Furthermore, the by-product exhaust unit 15 may also discharge liquid or solid by-products.

此外,亦可不設置副產物偵測部13及副產物排氣部15。亦可不自蝕刻導入口EP將蝕刻氣體EG導入腔室3。亦可不自載體導入口CP將載體氣體CG導入腔室3。亦可不設置壁部8及冷卻部17。原料導入口GPn、載體導入口CP、蝕刻導入口EP、殘留物排出口ZP及副產物排氣口FP的位置並無特別限定。保持部5的位置並無特別限定。再者,作為溫度控制部的一示例雖列舉了恆溫槽63、第1恆溫槽63A及第2恆溫槽63Bn,但溫度控制部不受限與此,例如亦可為加熱器。 In addition, the by-product detection unit 13 and the by-product exhaust unit 15 may not be provided. The etching gas EG may not be introduced into the chamber 3 from the etching introduction port EP. The carrier gas CG may not be introduced into the chamber 3 from the carrier introduction port CP. The wall portion 8 and the cooling portion 17 may not be provided. The positions of the raw material introduction port GPn, the carrier introduction port CP, the etching introduction port EP, the residue discharge port ZP, and the by-product exhaust port FP are not particularly limited. The position of the holding portion 5 is not particularly limited. In addition, although the thermostat 63, the first thermostat 63A, and the second thermostat 63Bn are cited as an example of the temperature control unit, the temperature control unit is not limited thereto, and may be a heater, for example.

(3)在參考圖1至圖11所說明的氣相成長裝置中1,複數個稀釋容器Xn的容量可為相同或不同。再者,複數個原料容器Zn的容量可為相同或不同。再者,在參考圖6所說明的氣相成長裝置1中,複數個稀釋容器Xmn的容量可為相同或不同。再者,收容於複數個稀釋容器Xmn的原料氣體Gn的濃度可為相同或不同。因此,閥部Yn為使收容於複數個稀釋容器Xmn的原料氣體Gn的濃度變得相同,亦可將原料氣體Gn及載體氣體CG導入至各個稀釋容器Xmn。再者,閥部Yn為使收容於複數個稀釋容器Xmn的原料氣體Gn的濃度變得不同,亦可將原料氣體Gn及載體氣體CG導入至各個稀釋容器Xmn。此外,導入至稀釋容器Xn、稀釋容器Xmn或是稀釋容器X1的載體氣體CG,亦可與自載體導入口CP導入至腔室3的載體氣體CG不同。 (3) In the gas-phase growth device described with reference to FIGS. 1 to 11, the capacities of the plurality of dilution containers Xn may be the same or different. Furthermore, the capacity of the plurality of raw material containers Zn may be the same or different. Furthermore, in the vapor-phase growth device 1 described with reference to FIG. 6, the capacities of the plurality of dilution containers Xmn may be the same or different. Furthermore, the concentration of the raw material gas Gn contained in the plurality of dilution containers Xmn may be the same or different. Therefore, in the valve portion Yn, the concentration of the raw material gas Gn contained in the plurality of dilution containers Xmn may be the same, and the raw material gas Gn and the carrier gas CG may be introduced into each dilution container Xmn. In addition, in the valve portion Yn, the concentration of the raw material gas Gn contained in the plurality of dilution containers Xmn may be different, and the raw material gas Gn and the carrier gas CG may be introduced into each dilution container Xmn. In addition, the carrier gas CG introduced into the dilution container Xn, the dilution container Xmn, or the dilution container X1 may be different from the carrier gas CG introduced into the chamber 3 from the carrier introduction port CP.

(4)參考圖2、圖3、圖5、圖6、圖8、圖9及圖11所說明的透過氣體供給裝置60及氣體供給裝置60A之氣體被供給處不限於氣相成長裝置1,而氣體供給裝置60及氣體供給裝置60A亦可向任意的氣體被供給處(例如裝置或物質)供給作為供給對象的氣體。再者,原料氣體Gn的種類亦無特別限制,可取代原料氣體Gn而供給各種氣體。此外,亦可將第1流量控制部Qn、第2流量控制部72及第3流量控制部73視為是氣相成長裝置1所具有的結構。 (4) Where the gas supplied through the gas supply device 60 and the gas supply device 60A described with reference to FIGS. 2, 3, 5, 6, 8, 9 and 11 is not limited to the gas-phase growth device 1, On the other hand, the gas supply device 60 and the gas supply device 60A may supply the gas to be supplied to an arbitrary gas supply point (for example, device or substance). In addition, the type of the raw material gas Gn is not particularly limited, and various gases can be supplied instead of the raw material gas Gn. In addition, the first flow rate control unit Qn, the second flow rate control unit 72, and the third flow rate control unit 73 may be regarded as the structure of the vapor phase growth device 1.

例如,氣體供給裝置60及氣體供給裝置60A可將氣體供給至各種分析儀器(如微量分析儀器)。例如,氣體供給裝置60及氣體供給裝置60A係可利用於化學生物學(Chemical Biology)領域或是醫療領域。例如,氣體供給裝置60及氣體供給裝置60A可將氣體供給至生物反應器(Bioreactor),或是將氣體 供給至細胞培養裝置,亦或是將氣體供給至微型反應器(Microreactor)。 For example, the gas supply device 60 and the gas supply device 60A can supply gas to various analysis instruments (such as a trace analysis instrument). For example, the gas supply device 60 and the gas supply device 60A can be used in the field of chemical biology or the medical field. For example, the gas supply device 60 and the gas supply device 60A may supply gas to a bioreactor (Bioreactor), or may supply gas to a cell culture device, or may supply gas to a microreactor.

再者,在參考圖2、圖3、圖5及圖6所說明的氣體供給裝置60中,可設置單數個壓力調整單元64n,亦可設置單數個壓力調整單元64nA,亦可設置單數個壓力調整單元64nB,亦可設置單數個第1流量控制部Qn。在參考圖8、圖9及圖11所說明的氣體供給裝置60A中,可設置單數個原料容器Zn,亦可設置單數個第2恆溫槽63Bn。 Furthermore, in the gas supply device 60 described with reference to FIGS. 2, 3, 5 and 6, singular pressure adjustment units 64 n, singular pressure adjustment units 64 nA, and singular pressures may be provided. The adjustment unit 64nB may be provided with an singular first flow control unit Qn. In the gas supply device 60A described with reference to FIGS. 8, 9 and 11, a single number of raw material containers Zn may be provided, and a single second number of constant temperature baths 63Bn may be provided.

【產業上的可利用性】[Industry availability]

本發明係有關於一種氣體供給裝置,其具有在產業上的可利用性。 The present invention relates to a gas supply device that has industrial applicability.

60‧‧‧氣體供給裝置 60‧‧‧Gas supply device

61‧‧‧真空幫浦 61‧‧‧Vacuum pump

62‧‧‧控制部 62‧‧‧Control Department

63‧‧‧恆溫槽 63‧‧‧Constant temperature bath

64n‧‧‧壓力調整單元 64n‧‧‧Pressure adjustment unit

72‧‧‧第2流量控制部 72‧‧‧ 2nd Flow Control Department

73‧‧‧第3流量控制部 73‧‧‧ Third Flow Control Department

CG‧‧‧載體氣體 CG‧‧‧Carrier gas

EG‧‧‧蝕刻氣體 EG‧‧‧Etching gas

Dn‧‧‧稀釋原料氣體 Dn‧‧‧Dilution raw material gas

Gn‧‧‧原料氣體 Gn‧‧‧ raw gas

Qn‧‧‧第1流量控制部 Qn‧‧‧First Flow Control Department

Xn‧‧‧稀釋容器 Xn‧‧‧Dilution container

Yn‧‧‧閥部(導入部) Yn‧‧‧Valve (introduction)

Zn‧‧‧原料容器 Zn‧‧‧Raw material container

Claims (11)

一種氣體供給裝置,係具備:氣體容器,係收容氣體;稀釋容器,係混合自該氣體容器所導入之該氣體及稀釋該氣體之載體氣體,並作為稀釋氣體而收容;導入部,係將該氣體及該載體氣體以不同的時間點導入該稀釋容器;以及壓力計,係量測該稀釋容器的內部之壓力;其中,該導入部係基於該壓力計的量測結果而將該稀釋容器的內部之該稀釋氣體的總壓設定成預定總壓值,並藉由在該稀釋容器的內部之該稀釋氣體的總壓,以確保移動該氣體的力量;在該氣體及該載體氣體被混合,且將該稀釋氣體的總壓設定為該預定總壓值之後,將該稀釋氣體自該稀釋容器排出。 A gas supply device is provided with: a gas container, which contains a gas; a dilution container, which mixes the gas introduced from the gas container and a carrier gas that dilutes the gas, and stores it as a dilution gas; The gas and the carrier gas are introduced into the dilution container at different time points; and a pressure gauge is used to measure the pressure inside the dilution container; wherein, the introduction part is based on the measurement result of the pressure gauge to The total pressure of the dilution gas inside is set to a predetermined total pressure value, and the total pressure of the dilution gas inside the dilution container is used to ensure the power to move the gas; where the gas and the carrier gas are mixed, And after setting the total pressure of the dilution gas to the predetermined total pressure value, the dilution gas is discharged from the dilution container. 如請求項1所記載之氣體供給裝置,其中該氣體容器係收容作為該氣體之原料氣體,且該原料氣體係藉由化學反應而產生物質之氣體。 The gas supply device according to claim 1, wherein the gas container contains a raw material gas as the gas, and the raw gas system generates a substance gas by chemical reaction. 如請求項1或2所記載之氣體供給裝置,係具備:複數個該氣體容器;複數個該稀釋容器,係分別對應於該複數個氣體容器;以及複數個該導入部,係分別對應於該複數個稀釋容器;其中,該複數個氣體容器係分別收容彼此不同的複數個該氣體;其中,各個該稀釋容器係混合自該對應的氣體容器所導入之該氣體及該載體氣體,並作為該稀釋氣體而收容; 其中,各個該導入部係將該氣體及該載體氣體以不同的時間點導入該對應的稀釋容器;其中,在該氣體及該載體氣體被混合之後,將該稀釋氣體自該對應的稀釋容器排出。 The gas supply device as described in claim 1 or 2 includes: a plurality of the gas containers; a plurality of the dilution containers corresponding to the plurality of gas containers; and a plurality of the introduction parts corresponding to the respective A plurality of dilution containers; wherein the plurality of gas containers respectively contain a plurality of the gases different from each other; wherein each of the dilution containers mixes the gas and the carrier gas introduced from the corresponding gas container and serves as the Diluted gas and contain; Each of the introduction parts introduces the gas and the carrier gas into the corresponding dilution container at different time points; wherein, after the gas and the carrier gas are mixed, the dilution gas is discharged from the corresponding dilution container . 如請求項1或2所記載之氣體供給裝置,係具備:對應於該氣體容器的複數個該稀釋容器;其中,各個該稀釋容器係混合自該氣體容器所導入之該氣體及該載體氣體,並作為該稀釋氣體而收容;其中,該導入部係在該複數個稀釋容器被各自分配的不同之複數個時段中,針對每一個該稀釋容器,將該氣體及該載體氣體以不同時間點導入該稀釋容器;其中,針對每一個該稀釋容器,在該氣體及該載體氣體被混合之後,將該稀釋氣體自該稀釋容器排出。 The gas supply device described in claim 1 or 2 includes: a plurality of the dilution containers corresponding to the gas container; wherein each of the dilution containers mixes the gas and the carrier gas introduced from the gas container, And contained as the dilution gas; wherein, the introduction part introduces the gas and the carrier gas at different time points for each of the dilution containers in different time periods in which the plurality of dilution containers are allocated respectively The dilution container; wherein, for each of the dilution containers, after the gas and the carrier gas are mixed, the dilution gas is discharged from the dilution container. 如請求項1或2所記載之氣體供給裝置,係具備:複數個該氣體容器;其中,該複數個氣體容器係分別收容彼此不同之複數個該氣體;其中,該稀釋容器係混合自該複數個氣體容器所導入之該複數個氣體及該載體氣體,並作為該稀釋氣體而收容;其中,該導入部係將該複數個氣體以不同時間點導入該稀釋容器;其中,在該複數個氣體及該載體氣體被混合之後,將該稀釋氣體自該稀釋容器排出。 The gas supply device described in claim 1 or 2 includes: a plurality of the gas containers; wherein the plurality of gas containers respectively contain a plurality of the gases different from each other; wherein the dilution container is mixed from the plurality The plurality of gases and the carrier gas introduced into the gas container, and accommodated as the dilution gas; wherein, the introduction part introduces the plurality of gases into the dilution container at different time points; wherein, in the plurality of gases After the carrier gas is mixed, the dilution gas is discharged from the dilution container. 如請求項1或2所記載之氣體供給裝置,係進一步具備: 容積變更部,係變更該稀釋容器之氣體收容空間的容積;其中,該氣體收容空間係可收容氣體之空間;其中,該容積變更部係配置於該稀釋容器的內部,並透過變更該容積變更部的大小而變更該氣體收容空間的容積。 The gas supply device described in claim 1 or 2 further includes: The volume changing unit changes the volume of the gas storage space of the dilution container; wherein the gas storage space is a space that can contain gas; wherein the volume changing unit is arranged inside the dilution container and changes by changing the volume The size of the part changes the volume of the gas storage space. 如請求項1或2所記載之氣體供給裝置,係進一步具備:第1溫度控制部,係控制該稀釋容器的溫度;以及第2溫度控制部,係控制該氣體容器的溫度。 The gas supply device according to claim 1 or 2 further includes: a first temperature control unit that controls the temperature of the dilution container; and a second temperature control unit that controls the temperature of the gas container. 如請求項1或2所記載之氣體供給裝置,係進一步具備流量控制部,其用以控制該導入部所排出的該稀釋氣體的流量。 The gas supply device described in claim 1 or 2 further includes a flow rate control unit for controlling the flow rate of the dilution gas discharged from the introduction unit. 如請求項1或2所記載之氣體供給裝置,係進一步具備:溫度計,係量測該稀釋容器的內部之溫度。 The gas supply device according to claim 1 or 2 further includes: a thermometer for measuring the temperature inside the dilution container. 如請求項1或2所記載之氣體供給裝置,其中:該導入部係包括使該載體氣體、該氣體以及該稀釋氣體在不同時間點通過的管;其中,該管係與真空幫浦連接;其中,該導入部:係在該真空幫浦的排氣後,自該氣體容器經由該管而將該氣體導入至該稀釋容器;係在該真空幫浦的排氣後,經由該管而將該載體氣體導入至該稀釋容器;以及係在該真空幫浦的排氣後,自該稀釋容器經由該管而放出該稀釋氣體。 The gas supply device according to claim 1 or 2, wherein: the introduction part includes a tube for passing the carrier gas, the gas, and the dilution gas at different points in time; wherein, the tube is connected to the vacuum pump; Wherein, the introduction part: after the exhaust of the vacuum pump, introduces the gas from the gas container through the tube to the dilution container; after the exhaust of the vacuum pump, passes the tube The carrier gas is introduced into the dilution container; and after the exhaust of the vacuum pump, the dilution gas is released from the dilution container through the tube. 如請求項1或2所記載之氣體供給裝置,其中:該導入部係自該稀釋容器向氣相成長裝置的腔室供給該稀釋氣體;當該氣相成長裝置在基板上形成物質的一部分或是全部之期間,阻斷該氣體自該腔室的內部向外部的流出。 The gas supply device according to claim 1 or 2, wherein: the introduction part supplies the dilution gas from the dilution container to the chamber of the vapor growth device; when the vapor growth device forms a part of the substance on the substrate or During all the time, the outflow of the gas from the inside of the chamber to the outside is blocked.
TW107146937A 2017-12-28 2018-12-25 Gas supply apparatus TWI682060B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-253464 2017-12-28
JP2017253464A JP6955260B2 (en) 2017-12-28 2017-12-28 Gas supply device

Publications (2)

Publication Number Publication Date
TW201930643A TW201930643A (en) 2019-08-01
TWI682060B true TWI682060B (en) 2020-01-11

Family

ID=67067369

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107146937A TWI682060B (en) 2017-12-28 2018-12-25 Gas supply apparatus

Country Status (3)

Country Link
JP (1) JP6955260B2 (en)
TW (1) TWI682060B (en)
WO (1) WO2019131615A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7317113B2 (en) 2019-06-27 2023-07-28 富士フイルム株式会社 Decorative films for molding, moldings, and displays

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043282A (en) * 2000-07-03 2002-02-08 Applied Materials Inc Device and method for feeding gas
TW201405663A (en) * 2012-06-02 2014-02-01 Tokyo Electron Ltd Film forming method and apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5614247A (en) * 1994-09-30 1997-03-25 International Business Machines Corporation Apparatus for chemical vapor deposition of aluminum oxide
JP2002252219A (en) * 2001-02-26 2002-09-06 Tokyo Electron Ltd Film forming apparatus and film forming method
JP2004323894A (en) * 2003-04-23 2004-11-18 Sekisui Chem Co Ltd Gas supply stabilizer, and apparatus and method for vapor phase growth
JP4651955B2 (en) * 2004-03-03 2011-03-16 東京エレクトロン株式会社 Deposition method
JP4374278B2 (en) * 2004-05-17 2009-12-02 株式会社アルバック Catalytic CVD equipment
JP4502189B2 (en) * 2004-06-02 2010-07-14 ルネサスエレクトロニクス株式会社 Thin film forming method and semiconductor device manufacturing method
JP3945519B2 (en) * 2004-06-21 2007-07-18 東京エレクトロン株式会社 Heat treatment apparatus, heat treatment method and storage medium for object to be processed
JP5242140B2 (en) * 2007-11-27 2013-07-24 大陽日酸株式会社 Solid raw material supply method and apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043282A (en) * 2000-07-03 2002-02-08 Applied Materials Inc Device and method for feeding gas
TW201405663A (en) * 2012-06-02 2014-02-01 Tokyo Electron Ltd Film forming method and apparatus

Also Published As

Publication number Publication date
WO2019131615A1 (en) 2019-07-04
TW201930643A (en) 2019-08-01
JP2019119897A (en) 2019-07-22
JP6955260B2 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
US20210159083A1 (en) Substrate processing device, manufacturing method for semiconductor device, and reaction tube
EP2084304B1 (en) Method and apparatus for the epitaxial deposition of monocrystalline group iii-v semiconductor material using gallium trichloride
EP2038456B1 (en) System and process for high volume deposition of gallium nitride
EP2066496B1 (en) Equipment for high volume manufacture of group iii-v semiconductor materials
EP2094406B1 (en) Method, apparatus and gate valve assembly for forming monocrystalline group iii-v semiconductor material
US9038565B2 (en) Abatement of reaction gases from gallium nitride deposition
CN102543689B (en) The manufacture method of lining processor, substrate and the manufacture method of semiconductor device
US8382898B2 (en) Methods for high volume manufacture of group III-V semiconductor materials
US20110155049A1 (en) Modern hydride vapor-phase epitaxy system & methods
US20090223441A1 (en) High volume delivery system for gallium trichloride
TWI682060B (en) Gas supply apparatus
TWI683023B (en) Vapor phase growth apparatus and vapor phase growth system
US20130104802A1 (en) Gallium trichloride injection scheme
JPH0963965A (en) Organic metal feeding device and organic metal vapor growth device
JP2006089811A (en) Vapor phase crystal creation apparatus
JPH0989732A (en) Method and device for generating gas and vapor-phase growing device using device thereof
JPH04261020A (en) Chemical vapor growing device
JP2018135235A (en) Vapor phase growth device and vapor phase growth method
WO2008064085A2 (en) Abatement system for gallium nitride reactor exhaust gases
JPH09181004A (en) Substrate processing apparatus and substrate processing method