JP5242140B2 - Solid raw material supply method and apparatus - Google Patents

Solid raw material supply method and apparatus Download PDF

Info

Publication number
JP5242140B2
JP5242140B2 JP2007305599A JP2007305599A JP5242140B2 JP 5242140 B2 JP5242140 B2 JP 5242140B2 JP 2007305599 A JP2007305599 A JP 2007305599A JP 2007305599 A JP2007305599 A JP 2007305599A JP 5242140 B2 JP5242140 B2 JP 5242140B2
Authority
JP
Japan
Prior art keywords
raw material
solid
container
gas
solid raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007305599A
Other languages
Japanese (ja)
Other versions
JP2009125703A (en
Inventor
秀俊 吉田
隆一郎 伊崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2007305599A priority Critical patent/JP5242140B2/en
Publication of JP2009125703A publication Critical patent/JP2009125703A/en
Application granted granted Critical
Publication of JP5242140B2 publication Critical patent/JP5242140B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、固体原料供給方法及び装置に関し、詳しくは、常温以上の温度で蒸気圧を有する固体粉末原料を常温でガス状の搬送ガスに同伴させて一定濃度で反応チャンバー等の供給先に供給する固体原料供給方法及び装置に関する。   The present invention relates to a solid raw material supply method and apparatus, and more specifically, supplies a solid powder raw material having a vapor pressure at a temperature of normal temperature or higher to a supply destination such as a reaction chamber at a constant concentration accompanied with a gaseous carrier gas at normal temperature. The present invention relates to a solid raw material supply method and apparatus.

半導体製造工場等において、固体原料を反応チャンバー等に定量的かつ定常的に供給することは、重要な要素技術の一つである。また、この要素技術は、微量有害物質分析のための標準ガス発生法にとっても、非常に重要な要素技術であり、これらの分野では、常温又は加熱することにより蒸気圧を有する固体状物質を一定濃度で供給するために様々な工夫がなされている。   In a semiconductor manufacturing factory or the like, supplying a solid raw material quantitatively and constantly to a reaction chamber or the like is one of important elemental technologies. This elemental technology is also an extremely important elemental technology for the standard gas generation method for the analysis of trace hazardous substances. In these fields, solid substances with vapor pressure can be fixed at room temperature or by heating. Various devices have been devised to supply at a concentration.

例えば、半導体製造装置、具体的には有機金属を原料とし、酸化物薄膜を製膜する装置等においても、固体である有機金属をCVDチャンバーへ安定して再現性良く供給するため、固体原料を多孔質の吸着剤粒体に吸着させ、原料吸着後の前記吸着剤粒体を高温雰囲気中に配し、前記粒体に対してキャリアガスを通過させる方法(例えば、特許文献1参照。)や、固体有機金属を担持する有機金属担持体の一方の端面から他方の端面へ貫通する多数の貫通穴の表面にそれぞれ担持させた固体有機金属を固体有機金属が昇華する温度の雰囲気中に担持し、各貫通穴にキャリアガスを通過させることにより、キャリアガスに固体有機金属が混入して得られる原料ガスを供給する方法(例えば、特許文献2参照。)等が提案されている。   For example, in a semiconductor manufacturing apparatus, specifically an apparatus that uses an organic metal as a raw material and forms an oxide thin film, a solid raw material is used to stably supply a solid organic metal to a CVD chamber with good reproducibility. A method of adsorbing to a porous adsorbent granule, placing the adsorbent granule after adsorbing the raw material in a high temperature atmosphere, and allowing a carrier gas to pass through the granule (see, for example, Patent Document 1). The solid organic metal supported on the surface of a large number of through holes penetrating from one end surface of the organic metal support supporting the solid organic metal to the other end surface is supported in an atmosphere at a temperature at which the solid organic metal sublimates. A method of supplying a raw material gas obtained by mixing a solid organic metal into a carrier gas by passing the carrier gas through each through hole (for example, see Patent Document 2) has been proposed.

一方、吸着剤や担持体を使用しないで、固体である有機金属をCVDチャンバーへ安定して再現性良く供給するため手段として、不活性充填物と混合した常温で固体の有機金属を容器内に充填し、該容器内にキャリヤーガスを通すことにより、有機金属を混合したキャリヤーガスを得る固体有機金属の供給方法において、容器の形状をカラム型の直管とし、該容器の上下いずれか一端にキャリヤーガス導入口を設け、他の一端に有機金属を混合したキャリヤーガス導出口を設ける固体有機金属供給装置も提案されている(例えば、特許文献3参照。)。   On the other hand, as a means for supplying a solid organic metal to the CVD chamber stably and with good reproducibility without using an adsorbent or a carrier, the solid organic metal mixed with an inert filler is placed in the container at room temperature. In a method of supplying a solid organic metal, which is filled and passed through a carrier gas into the container to obtain a carrier gas mixed with an organic metal, the shape of the container is a column-shaped straight pipe, and the container is formed at either the upper or lower end of the container. There has also been proposed a solid organic metal supply device in which a carrier gas introduction port is provided and a carrier gas outlet port in which an organic metal is mixed at the other end is provided (for example, see Patent Document 3).

また、微量有害物質分析用の標準ガス発生手段として、常温で固体の物質を一定濃度で発生させる方法として、毛細管を装着した小型容器内に標準物質を導入し、該小型容器を恒温槽内に配置し、該恒温槽内の熱交換回路を経て加熱された希釈用ガスを上記小型容器の周囲に導き、これによって小型容器内の試料物質を蒸発させるとともに所定の低濃度において含有するガスとする方法が提案されている(例えば、特許文献4参照。)。この方法においては、試料物質が常温において固体状物質の場合には、溶剤に溶解して前記小型容器に導入し、次いで加熱により溶剤を揮散除去するとともに試料物質の薄膜を小型容器の内壁に形成した後に、この薄膜状の試料物質を蒸発させるようにしている。
特開平9−40489号公報 特開2003−273093公報 特開平6−151311号公報 特開2002−273202号公報
As a standard gas generation means for analyzing trace hazardous substances, a standard substance is introduced into a small container equipped with capillaries as a method of generating a solid substance at a constant concentration at room temperature, and the small container is placed in a thermostatic chamber. The diluting gas that is disposed and heated through the heat exchange circuit in the thermostatic chamber is guided to the periphery of the small container, thereby evaporating the sample substance in the small container and containing it at a predetermined low concentration A method has been proposed (see, for example, Patent Document 4). In this method, when the sample substance is a solid substance at room temperature, it is dissolved in a solvent and introduced into the small container, and then the solvent is removed by heating and a thin film of the sample substance is formed on the inner wall of the small container. After this, the thin film sample material is evaporated.
JP-A-9-40489 JP 2003-273093 A Japanese Patent Application Laid-Open No. 6-151311 JP 2002-273202 A

前記特許文献1,2に記載された方法では、固体原料を多孔質の吸着剤粒体に吸着させたり、担持体に担持させたりするにあたり、いずれの方法も、固体原料を溶剤に溶解させた後、吸着剤粒体や担持体と混合し、溶媒のみを揮散除去する方法が採られている。しかし、これらの方法では、溶媒の揮散除去が不十分な場合、固体原料と同時に不要な溶媒まで反応チャンバーへ送り込むこととなり、製品品質の劣化を招くおそれがあり、特に、吸着剤粒体や担体が多孔質の場合は、微量の溶媒が残留する可能性が高いという問題がある。さらに、難溶性の固体には適用が困難であり、特許文献2の方法では、担持体を複雑な形状に成型する必要があり、加工が困難であるという問題もあった。   In the methods described in Patent Documents 1 and 2, when the solid raw material is adsorbed on the porous adsorbent granules or supported on the support, both methods dissolve the solid raw material in the solvent. Thereafter, a method of mixing with the adsorbent granules and the carrier to volatilize and remove only the solvent is employed. However, in these methods, when the volatilization and removal of the solvent is insufficient, it is possible to send the unnecessary solvent to the reaction chamber at the same time as the solid raw material, which may cause deterioration of the product quality. Is porous, there is a high possibility that a trace amount of solvent remains. Furthermore, it is difficult to apply to a hardly soluble solid, and the method of Patent Document 2 has a problem that it is necessary to mold the carrier into a complicated shape, which makes it difficult to process.

また、特許文献3に記載された方法では、単に粉末状の固体原料と充填物とを混合するだけであることから、混合物の均一性を高め、固体とキャリヤーガスとの接触面積等を高精度で一定とすることが困難であり、このため、高精度に固体原料の供給量を一定とすることができないという問題があった。   In addition, the method described in Patent Document 3 simply mixes the powdered solid raw material and the filler, so that the uniformity of the mixture is improved and the contact area between the solid and the carrier gas is highly accurate. Therefore, there is a problem that the supply amount of the solid raw material cannot be made constant with high accuracy.

さらに、特許文献4に記載された方法においても、固体原料を溶媒に溶解するため、溶媒残留の問題及び難溶性の固体への適用が難しく、また、固体原料を薄膜として使用するため、長時間、安定して供給することには不向きであることも問題点として挙げられる。   Further, in the method described in Patent Document 4, since the solid raw material is dissolved in a solvent, it is difficult to apply the solvent to the problem of residual solvent and a hardly soluble solid, and since the solid raw material is used as a thin film, Another problem is that it is not suitable for stable supply.

そこで本発明は、常温又は加熱することにより蒸気圧を有する固体状物質を極めて単純な構造の装置を用いて、高精度にかつ長時間、定量供給できる固体原料供給方法及び装置を提供することを目的としている。   Therefore, the present invention provides a solid raw material supply method and apparatus capable of supplying a solid substance having a vapor pressure by heating at room temperature or with high accuracy and for a long period of time using an apparatus having a very simple structure. It is aimed.

上記目的を達成するため、本発明の固体原料供給方法は、固体原料を加熱して蒸発させ、蒸発した原料ガスを搬送ガスに同伴させて供給する固体原料供給方法において、前記固体原料の粉末を、横断面が一定断面積で、上面が水平面となる形状で、粒子間に隙間が無く、均一緻密な構造に成形し、成形した固体原料を、該固体原料の外側面形状と同一の内側面形状を有し、上部が開口した蒸発容器内に充填するとともに前記固体原料を載置する受け皿を付勢手段により上方に付勢して前記固体原料の上面を蒸発容器の上部開口縁から一定の距離に保持し、該蒸発容器を、固体原料から蒸発した原料ガスを前記搬送ガスに混合させる混合容器内に封入し、該混合容器内の雰囲気温度をあらかじめ設定した温度に保った状態で、該混合容器内に圧力及び流量をあらかじめ設定した圧力及び流量に調整した搬送ガスを導入し、前記上面から蒸発した原料ガスを搬送ガスに混合して同伴させた同伴ガスを前記混合容器内から導出して供給先に供給することを特徴としている。 To achieve the above object, the solid raw material supply method of the present invention is a solid raw material supply method in which a solid raw material is heated to evaporate, and the evaporated raw material gas is supplied with a carrier gas. The inner surface is the same as the outer surface shape of the solid raw material, in which the cross-sectional area is a constant cross-sectional area, the upper surface is a horizontal plane, there is no gap between the particles, and the molded solid raw material is formed into a uniform and dense structure. The top of the solid material is fixed from the upper opening edge of the evaporation container by filling the inside of the evaporation container having an open shape and urging the tray on which the solid material is placed by the urging means. The evaporation container is sealed in a mixing container that mixes the raw material gas evaporated from the solid raw material with the carrier gas, and the atmospheric temperature in the mixing container is maintained at a preset temperature. Pressure in the mixing vessel And flow rate introduced preset carrier gas was adjusted to a pressure and flow rate, supplying a carrier gas to the evaporated raw material gas was entrained by mixing the carrier gas from the upper surface to the supply destination derived from the mixing vessel It is characterized by doing.

さらに、本発明の固体原料供給方法は、前記固体原料が二フッ化キセノン、四フッ化キセノン、六フッ化キセノンのいずれか一種であることを特徴としている。 Furthermore, the method of the solid material supply present invention, prior Symbol solid material is xenon difluoride, xenon tetrafluoride is characterized in that it is any one of xenon hexafluoride.

また、本発明の固体原料供給装置は、固体原料を加熱して蒸発させ、蒸発した原料ガスを搬送ガスに同伴させて供給する固体原料供給装置において、横断面が一定断面積で、上面が水平面となる形状で、粒子間に隙間が無く、均一緻密な構造に成形した固体原料が充填される蒸発容器と、該蒸発容器が封入される混合容器と、該混合容器内に前記搬送ガスを導入する搬送ガス導入経路と、該搬送ガス導入経路に設けられた圧力調整手段及び流量調整手段と、前記混合容器内の雰囲気温度を調整するための温度調整手段と、前記混合容器内で前記蒸発容器内の固体原料から蒸発した原料ガスと前記搬送ガスとが混合した同伴ガスを前記混合容器から導出して供給先に供給する同伴ガス導出経路とを備え、前記蒸発容器は、上部が開口するとともに、その内側面形状が前記成形した固体原料の外側面形状と同一に形成され、かつ、前記成形後の固体原料を載置する受け皿と、該受け皿を上方に付勢して固体原料の上面を蒸発容器の上部開口縁から一定の距離に保持する付勢手段とを備えていることを特徴としている。 Further, the solid raw material supply apparatus of the present invention is a solid raw material supply apparatus that heats and evaporates the solid raw material and supplies the evaporated raw material gas with the carrier gas. The evaporation container is filled with a solid material molded into a uniform and dense structure with no gaps between the particles, the mixing container in which the evaporation container is sealed, and the carrier gas is introduced into the mixing container Carrier gas introduction path, pressure adjusting means and flow rate adjusting means provided in the carrier gas introduction path, temperature adjusting means for adjusting the atmospheric temperature in the mixing container, and the evaporation container in the mixing container An entrained gas deriving path for deriving an entrained gas obtained by mixing the source gas evaporated from the solid source and the carrier gas from the mixing container and supplying the entrained gas to the supply destination. , The inner surface shape is formed the same as the outer surface shape of the molded solid material, and a pan for placing a solid material after the molding, the upper surface of the solid material to urge the pan upward And an urging means for holding the evaporation container at a certain distance from the upper opening edge of the evaporation container .

さらに、本発明の固体原料供給装置は、前記固体原料が二フッ化キセノン、四フッ化キセノン、六フッ化キセノンのいずれか一種であることを特徴としている。 Furthermore, the solid material supply device of the present invention, prior Symbol solid material is xenon difluoride, xenon tetrafluoride is characterized in that it is any one of xenon hexafluoride.

本発明によれば、固体原料は、横断面が一定断面積で、上面が水平面となる形状で、粒子間に隙間が無く、均一緻密な構造に成形されているので、温度を調整した雰囲気で上面から均一に蒸発し、圧力及び流量を調整した搬送ガスに同伴させることにより、安定した濃度で供給先に供給することができる。特に、固体原料の横断面を一定断面積としているので、蒸発に伴って量が減少しても上面からの蒸発量を一定に保つことができる。   According to the present invention, the solid raw material has a shape with a constant cross-sectional area and a top surface that is a horizontal plane, no gaps between particles, and is formed into a uniform and dense structure. By uniformly evaporating from the upper surface and entraining it with the carrier gas whose pressure and flow rate are adjusted, it can be supplied to the supply destination at a stable concentration. In particular, since the cross section of the solid raw material has a constant cross-sectional area, the amount of evaporation from the top surface can be kept constant even if the amount decreases with evaporation.

また、蒸発容器の上部開口縁から固体原料の上面までの距離を一定に保つことにより、固体原料の上面と混合容器内のガスとの接触状態を一定に保つことができ、固体原料の蒸発量をより確実に一定に保つことができる。さらに、溶媒を使用しないので同伴ガスが溶媒で汚染されることもなく、難溶性の固体原料にも対応することができる。   In addition, by keeping the distance from the upper opening edge of the evaporation container to the upper surface of the solid raw material constant, the contact state between the upper surface of the solid raw material and the gas in the mixing container can be kept constant, and the evaporation amount of the solid raw material Can be more reliably maintained constant. Furthermore, since no solvent is used, the entrained gas is not contaminated by the solvent, and it can be applied to a hardly soluble solid material.

図1は本発明の固体原料供給装置の一形態例を示す系統図、図2は蒸発容器の一形態例を示す斜視図である。この固体原料供給装置は、固体原料11を充填した蒸発容器12と、この蒸発容器12を収納する混合容器13と、この混合容器13内に搬送ガスを導入する搬送ガス導入経路14と、混合容器13内で搬送ガスと固体原料から蒸発した原料ガスとが混合した同伴ガスを混合容器13から導出する同伴ガス導出経路15とを備えている。   FIG. 1 is a system diagram showing an embodiment of the solid material supply apparatus of the present invention, and FIG. 2 is a perspective view showing an embodiment of the evaporation container. The solid raw material supply apparatus includes an evaporation container 12 filled with a solid raw material 11, a mixing container 13 that houses the evaporation container 12, a carrier gas introduction path 14 that introduces a carrier gas into the mixing container 13, and a mixing container. 13 is provided with an entrained gas deriving path 15 for deriving from the mixing container 13 an entrained gas in which the carrier gas and the source gas evaporated from the solid material are mixed.

固体原料11は、常温乃至加熱下で蒸気圧を有するものであって、例えば、二フッ化キセノン、四フッ化キセノン、六フッ化キセノンといったフッ化キセノン等の半導体製造用固体原料を対象とすることができる。この固体原料11は、均一で一定の蒸発量を得るため、成形機によって粉末を横断面が一定断面積で、上面が水平面となる形状で、粒子間に隙間が無く、均一緻密な構造に成形した成形物の状態で用いる。横断面形状は任意であるが、通常は円形又は正方形が好ましく、蒸発面となる上面を水平面とし、横断面を一定断面積とすることにより、蒸発によって体積(高さ)が減少した場合でも、均一で一定の蒸発量を得ることができる。成形物の高さは、蒸発量と供給時間とを考慮して適当に設定することができる。成形時に加える圧力は、固体原料11の性状によって異なるが、隙間無く、均一緻密な状態とするため、通常は10MPa以上に設定することが好ましい。   The solid material 11 has a vapor pressure at room temperature or under heating, and is intended for a solid material for semiconductor production such as xenon fluoride such as xenon difluoride, xenon tetrafluoride, xenon hexafluoride, for example. be able to. In order to obtain a uniform and constant evaporation amount, the solid raw material 11 is formed into a uniform and dense structure by using a molding machine so that the powder has a cross-sectional area with a constant cross-sectional area and a top surface with a horizontal plane, no gaps between particles. Used in the state of the molded product. The cross-sectional shape is arbitrary, but usually circular or square is preferable, and even when the volume (height) is reduced by evaporation by setting the upper surface to be the evaporation surface as a horizontal plane and the cross-section as a constant cross-sectional area, A uniform and constant evaporation amount can be obtained. The height of the molded product can be appropriately set in consideration of the evaporation amount and the supply time. Although the pressure applied at the time of molding varies depending on the properties of the solid raw material 11, it is usually preferably set to 10 MPa or more in order to obtain a uniform and dense state with no gaps.

蒸発容器12は、固体原料11の成形物における外側面の形状と同一の内側面形状を有し、上部が開口した筒体であって、例えば、成形物が円柱状ならば成形物の直径に対応した内径を有する円筒を用いる。蒸発容器の高さは固体原料11の成形物を充填したときに、成形物上面が上部開口縁から上方に突出しない高さに設定されるが、高くし過ぎても無駄であるから、成形物の高さに比べて数倍程度の高さに設定することが好ましい。なお、蒸発容器12の底部は開口していてもよく、底板で塞がれていてもよい。   The evaporation container 12 has an inner surface shape identical to the shape of the outer surface of the molded product of the solid raw material 11, and is an open top cylinder. For example, if the molded product is cylindrical, the evaporation container 12 has a diameter of the molded product. A cylinder with a corresponding inner diameter is used. The height of the evaporation container is set to a height at which the upper surface of the molded product does not protrude upward from the upper opening edge when the molded product of the solid raw material 11 is filled. It is preferable to set the height to be several times higher than the height. In addition, the bottom part of the evaporation container 12 may be opened and may be closed with a bottom plate.

また、本実施例に示す蒸発容器12の下部には、固体原料11の成形物を載置する受け皿16と、該受け皿16を上方に付勢するコイルスプリング等の付勢手段17とが設けられている。受け皿16は、固体原料11の成形物を載置可能で、蒸発容器12内を容器軸線方向に移動可能な形状を有する薄板状のものであって、付勢手段17は、長さが蒸発容器12の高さ未満で、固体原料11を受け皿16に載置したときに固体原料11及び受け皿16の荷重で弾性収縮し、固体原料11が蒸発して荷重が減少したときに弾性伸張することにより、固体原料11の上面蒸発面を蒸発容器12の上部開口縁から一定の距離に保持する弾発力を有するものが用いられている。   Also, at the lower part of the evaporation container 12 shown in the present embodiment, a tray 16 on which a molded product of the solid raw material 11 is placed, and a biasing means 17 such as a coil spring that biases the tray 16 upward are provided. ing. The tray 16 is a thin plate having a shape on which a molded product of the solid raw material 11 can be placed and can move in the evaporation container 12 in the container axial direction. The biasing means 17 has a length of the evaporation container. When the solid raw material 11 is placed on the receiving tray 16 with a height of less than 12, it elastically shrinks with the load of the solid raw material 11 and the receiving tray 16 and elastically stretches when the solid raw material 11 evaporates and the load decreases. A material having elasticity that holds the upper surface evaporation surface of the solid raw material 11 at a certain distance from the upper opening edge of the evaporation container 12 is used.

混合容器13は、前記蒸発容器12を収容可能な内部形状を有し、上部に開口を有する有底筒体からなる容器本体18と、前記開口を密閉する蓋体19とで形成されており、蓋体19を取り外すことにより蒸発容器12を出し入れするようにしている。混合容器13の形状は、特に限定されるものではないが、製作性を考慮すると円筒形、角筒形が好ましい。混合容器13の容積も、固体原料11の蒸発量や搬送ガスの流量等の条件に応じて任意に設定可能であるが、容積が小さすぎると混合容器13内のガス流に乱れが発生しやすくなり、大きすぎるとコストアップになるので、例えば、蒸発容器12及び混合容器13が共に円筒形状の場合は、蒸発容器12に対して混合容器13は、直径は2〜4倍程度、高さは3〜5倍程度が適当である。   The mixing container 13 has an internal shape capable of accommodating the evaporation container 12, and is formed of a container main body 18 formed of a bottomed cylindrical body having an opening at the top, and a lid body 19 that seals the opening, The evaporation container 12 is taken in and out by removing the lid 19. The shape of the mixing container 13 is not particularly limited, but a cylindrical shape and a rectangular tube shape are preferable in consideration of manufacturability. The volume of the mixing vessel 13 can be arbitrarily set according to conditions such as the evaporation amount of the solid raw material 11 and the flow rate of the carrier gas. However, if the volume is too small, the gas flow in the mixing vessel 13 is likely to be disturbed. If the evaporation container 12 and the mixing container 13 are both cylindrical, the diameter of the mixing container 13 is about 2 to 4 times the height of the evaporation container 12 and the height is high. About 3 to 5 times is appropriate.

また、容器本体18の側壁上部には、前記搬送ガス導入経路14と前記同伴ガス導出経路15とが接続している。この搬送ガス導入経路14と同伴ガス導出経路15とは、容器本体18内のガス流れをスムーズにするため、容器本体18の対向する位置に、両経路14,15の軸線が一直線となるように設けることが好ましく、搬送ガス導入経路14から導入される搬送ガスが蒸発容器12に直接当たらない位置に設けることが好ましい。   The carrier gas introduction path 14 and the accompanying gas lead-out path 15 are connected to the upper part of the side wall of the container body 18. The carrier gas introduction path 14 and the accompanying gas lead-out path 15 are arranged so that the axes of the paths 14 and 15 are aligned with each other at positions facing the container body 18 in order to make the gas flow in the container body 18 smooth. It is preferable to provide the carrier gas introduced from the carrier gas introduction path 14 at a position where the carrier gas does not directly hit the evaporation container 12.

さらに、混合容器13の容器本体18は、搬送ガス導入経路14及び同伴ガス導出経路15の接続部も含めてアルミブロック等で形成された伝熱手段20内に埋め込まれた状態になっている。この伝熱手段20は、容器本体18の全体を効率よく均一に加熱するためのもので、伝熱手段20内には、シーズヒーター等の加熱手段21と、熱電対等の温度計測手段22とが設けられている。前記伝熱手段20は、混合容器13を所定温度に加熱、保温できるものであればよく、湯浴やオイルバスを用いることも可能であり、伝熱手段20が金属等の固体で形成されている場合には、できるだけ混合容器13の外面と密着するように形成することが好ましい。   Further, the container body 18 of the mixing container 13 is embedded in the heat transfer means 20 formed of an aluminum block or the like including the connection part of the carrier gas introduction path 14 and the accompanying gas outlet path 15. The heat transfer means 20 is for efficiently and uniformly heating the entire container body 18. Inside the heat transfer means 20, there are a heating means 21 such as a sheathed heater and a temperature measurement means 22 such as a thermocouple. Is provided. The heat transfer means 20 only needs to be able to heat and keep the mixing container 13 at a predetermined temperature, and a hot water bath or an oil bath can be used. The heat transfer means 20 is formed of a solid such as metal. If it is, it is preferable to form it so as to be in close contact with the outer surface of the mixing container 13 as much as possible.

加熱手段21及び温度計測手段22は、伝熱手段20の外部に設けられた電子温度調節器等の温度調整手段23に接続されており、温度調節手段23は、温度計測手段22で計測した温度信号により、あらかじめ設定された設定温度と温度計測手段22にて計測した温度との差に応じて加熱手段21の制御を行い、例えば、リレー等を使用して、計測温度が設定温度より高い場合には加熱手段21の電源供給をOFFとし、計測温度が設定温度より低い場合には加熱手段21の電源供給をONとするといった制御を行うことにより、伝熱手段20を介して混合容器13内の雰囲気温度を室温から100℃程度の温度まで温度制御することが可能となっている。   The heating means 21 and the temperature measuring means 22 are connected to a temperature adjusting means 23 such as an electronic temperature controller provided outside the heat transfer means 20. The temperature adjusting means 23 is a temperature measured by the temperature measuring means 22. The heating means 21 is controlled according to the difference between the preset temperature set in advance and the temperature measured by the temperature measuring means 22 according to the signal. For example, when the measured temperature is higher than the set temperature using a relay or the like In the mixing container 13 via the heat transfer means 20, the power supply of the heating means 21 is turned off, and when the measured temperature is lower than the set temperature, the power supply of the heating means 21 is turned on. Can be controlled from room temperature to a temperature of about 100 ° C.

前記搬送ガス導入経路14は、ガス供給源24から窒素やアルゴンのような不活性ガスあるいは水素等を搬送ガスとして供給するもので、搬送ガスの圧力を調整するための圧力調整手段25と、流量を調整するための流量調整手段26と、導入弁27とを備えている。また、前記同伴ガス導出経路15は、導出弁28を介して図示しない供給先に接続されている。   The carrier gas introduction path 14 supplies an inert gas such as nitrogen or argon or hydrogen as a carrier gas from a gas supply source 24, and includes a pressure adjusting means 25 for adjusting the pressure of the carrier gas, and a flow rate. Is provided with a flow rate adjusting means 26 and an introduction valve 27. The accompanying gas lead-out path 15 is connected to a supply destination (not shown) via a lead-out valve 28.

前記ガス供給源24は、搬送ガス用のガスが充填されたボンベを使用してもよく、場内の設備で使用しているガスを引き込んで使用することもできる。圧力調整手段25には、一次側及び二次側の圧力に応じた一般的な圧力調整器を使用することができ、流量調整手段26には、圧力、流量調整範囲、流量調整精度に応じて一般に使用されているマスフローコントローラを使用することができる。また、導入弁27,28には、ボールバルブやダイヤフラムバルブなどを使用することができる。   As the gas supply source 24, a cylinder filled with a carrier gas may be used, or a gas used in the facility in the site may be drawn in and used. A general pressure regulator corresponding to the pressure on the primary side and the secondary side can be used for the pressure adjusting means 25, and the flow rate adjusting means 26 can be used according to the pressure, the flow rate adjustment range, and the flow rate adjustment accuracy. A commonly used mass flow controller can be used. For the introduction valves 27 and 28, ball valves, diaphragm valves, or the like can be used.

蒸発容器12や混合容器13をはじめとする各部材は、固体原料11や蒸発した原料ガス及び搬送ガスに対する反応性を有しない材料を、固体原料11の種類等に応じて選択すればよく、例えばステンレス鋼やアルミニウム合金等で形成することができる。   For each member including the evaporation container 12 and the mixing container 13, a material that does not have reactivity with the solid raw material 11, the evaporated raw material gas, and the carrier gas may be selected according to the type of the solid raw material 11. It can be formed of stainless steel or aluminum alloy.

このように形成した固体原料供給装置を使用して一定濃度の固体原料ガスを一定流量で使用設備に供給するには、まず、固体原料11を蒸発容器12に対応した形状に成形する。この成形は、所定形状の金型とプレス機とを用いて行うことができ、固体原料11の粉末を金型内に所定量投入した状態で、プレス機により所定圧力、好ましくは10MPa以上の圧力で圧縮成形することにより、所定形状の成形物を作成することができる。成形物の状態は、前述のように、横断面が一定断面積で、上面が水平面で、粒子間に隙間が無く、均一緻密な構造とする。成形物の外側面形状は、蒸発容器12の内側面形状と等しくし、成形物の高さは、蒸発容器12内に収まる範囲であればよく、前記付勢手段が設けられている場合は、成形物を受け皿16上に載置したときに、成形物の上面が蒸発容器12の開口縁を超えない高さとする。   In order to supply a solid raw material gas having a constant concentration to a use facility at a constant flow rate using the solid raw material supply apparatus thus formed, first, the solid raw material 11 is formed into a shape corresponding to the evaporation container 12. This molding can be performed using a mold having a predetermined shape and a press machine, and a predetermined pressure, preferably 10 MPa or more, is applied by the press machine in a state where a predetermined amount of the powder of the solid raw material 11 is put into the mold. A molded product having a predetermined shape can be produced by compression molding with the above. As described above, the molded product has a uniform and dense structure with a constant cross-sectional area, a horizontal surface at the top, no gaps between particles. The outer surface shape of the molded product is equal to the inner surface shape of the evaporation container 12, and the height of the molded product may be in a range that can be accommodated in the evaporation container 12, and when the urging means is provided, When the molded product is placed on the receiving pan 16, the upper surface of the molded product is set to a height that does not exceed the opening edge of the evaporation container 12.

成形後の固体原料11を蒸発容器12内に充填した後、蓋体19を取り外した混合容器13内の所定位置に蒸発容器12を設置し、蓋体19を取り付けて混合容器13を密閉することにより、固体原料11を充填した蒸発容器12を混合容器13内に封入した状態とする。次に、温度調整手段23に、固体原料11の蒸気圧や供給濃度等に応じた温度設定を行い、混合容器13内の雰囲気温度をあらかじめ設定された一定温度に調整する。   After filling the molded solid material 11 into the evaporation container 12, the evaporation container 12 is installed at a predetermined position in the mixing container 13 from which the lid 19 is removed, and the mixing container 13 is sealed by attaching the lid 19. Thus, the evaporation container 12 filled with the solid raw material 11 is sealed in the mixing container 13. Next, the temperature adjustment means 23 is set to a temperature corresponding to the vapor pressure, supply concentration, etc. of the solid raw material 11 to adjust the ambient temperature in the mixing container 13 to a predetermined constant temperature.

また、搬送ガス導入経路14の導入弁27と同伴ガス導出経路15の導出弁28とを開き、搬送ガス導入経路14から混合容器13内に搬送ガスを導入するとともに、混合容器13内で固体原料11から蒸発した原料ガスと搬送ガスとが混合した同伴ガスを同伴ガス導出経路15に導出し、図示しないパージ経路から排出する。そして、圧力調整手段25及び流量調整手段26にて搬送ガスの圧力及び流量をあらかじめ設定された圧力及び流量に調整し、同伴ガス導出経路15に導出される同伴ガスの原料濃度が安定した時点で同伴ガス導出経路15から供給先への同伴ガスの供給を開始する。   In addition, the introduction valve 27 of the carrier gas introduction path 14 and the outlet valve 28 of the accompanying gas lead-out path 15 are opened to introduce the carrier gas into the mixing container 13 from the carrier gas introduction path 14, and the solid raw material in the mixing container 13. The entrained gas in which the source gas evaporated from 11 and the carrier gas are mixed is led out to the accompanying gas deriving path 15 and discharged from a purge path (not shown). Then, the pressure adjusting unit 25 and the flow rate adjusting unit 26 adjust the pressure and flow rate of the carrier gas to preset pressures and flow rates, and when the source concentration of the accompanying gas led out to the accompanying gas lead-out path 15 becomes stable. Supply of the accompanying gas from the accompanying gas outlet path 15 to the supply destination is started.

時間の経過に伴って蒸発容器12内の固体原料11は次第に減少するが、蒸発面が成形物の上面だけであり、上面を凹凸のない水平面とし、横断面を一定断面積に成形した状態で蒸発容器12内に充填しているため、固体原料11は上面の蒸発面からのみ蒸発し、上面全体から均一に蒸発することになる。したがって、固体原料11の量が減少しても上面の蒸発面の面積が変化することはなく、粒子間に隙間が無く、均一緻密な構造に成形しているので、固体原料11の全体を均一に加熱することができ、一定の蒸発量を得ることができる。これにより、同伴ガス中の原料ガス濃度を、長時間にわたって一定濃度に維持することができる。   The solid raw material 11 in the evaporation vessel 12 gradually decreases with the passage of time, but the evaporation surface is only the upper surface of the molded product, the upper surface is a horizontal surface without unevenness, and the cross section is formed into a constant cross-sectional area. Since the evaporation container 12 is filled, the solid raw material 11 evaporates only from the evaporation surface on the upper surface and evaporates uniformly from the entire upper surface. Therefore, even if the amount of the solid raw material 11 is reduced, the area of the evaporation surface on the upper surface does not change and there is no gap between the particles, and the uniform solid structure is formed. It is possible to obtain a certain amount of evaporation. Thereby, the source gas concentration in the accompanying gas can be maintained at a constant concentration over a long period of time.

さらに、固体原料11の成形物を受け皿16を介して付勢手段17上に載置し、付勢手段17の付勢力によって蒸発容器12の上部開口縁から一定の距離に成形物の上面を保持するようにしたことにより、蒸発容器12内の固体原料11は、蒸発により量が減少して成形物の高さが低くなっても、重量の減少に伴って付勢手段17が成形物を上方に押し上げるので、常に一定の条件で混合容器13内の雰囲気ガスと接触することになり、固体原料11の蒸発量をより正確に一定に保つことができる。   Further, the molded product of the solid raw material 11 is placed on the biasing means 17 via the receiving pan 16, and the upper surface of the molded product is held at a certain distance from the upper opening edge of the evaporation container 12 by the biasing force of the biasing means 17. As a result, even if the amount of the solid raw material 11 in the evaporation container 12 decreases due to evaporation and the height of the molded product decreases, the urging means 17 moves the molded product upward as the weight decreases. Therefore, it always comes into contact with the atmospheric gas in the mixing container 13 under a certain condition, and the evaporation amount of the solid raw material 11 can be kept more accurately and constant.

また、固体原料11の成形物は、受け皿16、蒸発容器12、混合容器13、伝熱手段20を介して加熱手段21に密着した状態に形成することにより、温度調整手段23による温度制御を効率よく行うことができ、固体原料11を一定温度に保つことができるので、固体原料11の蒸発量を更に安定化させることができる。   Further, the molded product of the solid raw material 11 is formed in a state of being in close contact with the heating means 21 through the receiving tray 16, the evaporation container 12, the mixing container 13, and the heat transfer means 20, so that the temperature control by the temperature adjusting means 23 is efficient. Since the solid raw material 11 can be maintained at a constant temperature, the evaporation amount of the solid raw material 11 can be further stabilized.

なお、各部材の構造や形状は、固体原料の種類や供給量に応じて適宜設定することが可能であり、例えば、蒸発容器を混合容器の底部材と一体に形成することもでき、蒸発容器を成形型の一部とすることもできる。   The structure and shape of each member can be set as appropriate according to the type and supply amount of the solid raw material. For example, the evaporation container can be formed integrally with the bottom member of the mixing container. Can be part of the mold.

また、本形態例に示すように、本発明の固体原料供給装置は、搬送ガス導入経路14、同伴ガス導出経路15、温度調整手段23を備えた混合容器13と、所定の状態に成形した固体原料11を充填する蒸発容器12とで構成できるので、極めて単純な構造で小型に形成することができ、装置コストや保守コストの削減を図れる。また、固体原料の粉末を所定形状に成形する成形機は、簡単な形状の金型と一般的なプレス機とで構成できるので、特殊な機器を使用する必要がなく、成形コストも安価に収まる。   Further, as shown in the present embodiment, the solid raw material supply apparatus of the present invention includes a mixing container 13 provided with a carrier gas introduction path 14, an accompanying gas outlet path 15, and temperature adjusting means 23, and a solid molded into a predetermined state. Since it can be comprised with the evaporation container 12 with which the raw material 11 is filled, it can form in a small size with a very simple structure, and can aim at reduction of an apparatus cost and a maintenance cost. In addition, a molding machine for molding a solid raw material powder into a predetermined shape can be composed of a simple-shaped mold and a general press machine, so there is no need to use special equipment and the molding cost can be kept low. .

図1に示した固体原料供給装置を使用して半導体薄膜製造用の固体原料である二フッ化キセノン(XeF)を供給する実験を行った。蒸発容器は、内径20mm、高さ35mmの有底円筒体であり、その底部に蒸発容器の内径と等しい外径を有する受け皿と、受け皿を上方に付勢する付勢手段としてコイルスプリングとを配置した。二フッ化キセノンは、その粉末を断面が円形の金型に5gを投入し、プレス機を用いて10MPaの圧力で円柱状に成形した。成形物は、横断面が円形の一定断面積で、上面の蒸発面が水平面で、粒子間に隙間が無く、均一緻密な構造であり、その外径は蒸発容器の内径と同じ20mmであり、高さは15mmであった。また、前記コイルスプリングの弾性は、成形した二フッ化キセノンの重量に釣り合うように設定し、成形直後の成形物を載置したときから、蒸発によって二フッ化キセノンが減少したときでも、上面の蒸発面が蒸発容器の上部開口縁から約10mmの略一定の距離を保つようにした。 An experiment for supplying xenon difluoride (XeF 2 ), which is a solid material for manufacturing a semiconductor thin film, was performed using the solid material supply apparatus shown in FIG. The evaporation container is a bottomed cylindrical body having an inner diameter of 20 mm and a height of 35 mm, and a tray having an outer diameter equal to the inner diameter of the evaporation container and a coil spring as an urging means for urging the tray upward are disposed at the bottom. did. Xenon difluoride was formed into a cylindrical shape at a pressure of 10 MPa using a press machine by putting 5 g of the powder into a mold having a circular cross section. The molded product has a constant cross-sectional area with a circular cross section, a horizontal evaporation surface on the upper surface, no gap between particles, and a uniform and dense structure, and its outer diameter is 20 mm, the same as the inner diameter of the evaporation container, The height was 15 mm. In addition, the elasticity of the coil spring is set so as to balance the weight of the molded xenon difluoride, and even when the xenon difluoride is reduced by evaporation after the molded product immediately after molding is placed, The evaporation surface was kept at a substantially constant distance of about 10 mm from the upper opening edge of the evaporation container.

混合容器は、内径60mm、高さ140mmの蓋付き円筒体であり、上部には搬送ガス導入経路と同伴ガス導出経路とを対向させて一直線上に設けている。この混合容器の底板中央に、前記成形物を受け皿上に載置して充填した蒸発容器を設置し、蓋体によって混合容器を密閉した。混合容器内の雰囲気温度を60℃に設定するとともに、圧力を大気圧に調整し、流量を500ml/minに調整した窒素ガスを搬送ガス導入経路から混合容器内に導入し、同伴ガス導出経路から導出される同伴ガス中の二フッ化キセノン濃度をFTIRにて測定した。二フッ化キセノン濃度の経時変化を、供給開始1時間後を100とした相対濃度として図3に示す。図3から明らかなように、二フッ化キセノン濃度の変化はほとんどなく、長時間にわたって略一定の濃度で二フッ化キセノンを安定して再現性良く供給できることがわかる。   The mixing container is a cylindrical body with a lid having an inner diameter of 60 mm and a height of 140 mm, and the carrier gas introduction path and the accompanying gas lead-out path are arranged in a straight line on the upper part. At the center of the bottom plate of the mixing container, an evaporation container filled with the molded product placed on a tray was placed, and the mixing container was sealed with a lid. The atmosphere temperature in the mixing vessel is set to 60 ° C., the pressure is adjusted to atmospheric pressure, and nitrogen gas whose flow rate is adjusted to 500 ml / min is introduced into the mixing vessel from the carrier gas introduction route, and from the accompanying gas lead-out route. The concentration of xenon difluoride in the derived entrained gas was measured by FTIR. The change with time of the xenon difluoride concentration is shown in FIG. As can be seen from FIG. 3, there is almost no change in the xenon difluoride concentration, and it can be seen that xenon difluoride can be supplied stably and with good reproducibility at a substantially constant concentration over a long period of time.

前記蒸発容器内の受け皿及びコイルスプリングを省略した以外は実施例1と同様の操作を行い、同伴ガス導出経路から導出される同伴ガス中の二フッ化キセノン濃度をFTIRにて測定した。なお、蒸発容器の内部には受け台を挿入し、成形直後の成形物を蒸発容器内に充填したときの蒸発面が蒸発容器の上部開口縁から10mmの位置になるようにした。同伴ガス導出経路から導出される同伴ガス中の二フッ化キセノン濃度の経時変化を、実施例1と同じ相対濃度として図4に示す。図4から明らかなように、二フッ化キセノン濃度は、時間の経過に伴って僅かに低下するが、11時間経過後の低下率は約2%に留まっており、長時間にわたって略一定の濃度で二フッ化キセノンを供給できることがわかる。   The same operation as in Example 1 was performed except that the tray and the coil spring in the evaporation container were omitted, and the xenon difluoride concentration in the accompanying gas derived from the accompanying gas deriving path was measured by FTIR. A cradle was inserted into the evaporation container so that the evaporation surface when the molded product immediately after molding was filled in the evaporation container was positioned 10 mm from the upper opening edge of the evaporation container. FIG. 4 shows the change over time in the concentration of xenon difluoride in the accompanying gas derived from the accompanying gas deriving path as the same relative concentration as in Example 1. As is clear from FIG. 4, the xenon difluoride concentration slightly decreases with the passage of time, but the decrease rate after 11 hours remains at about 2%, which is a substantially constant concentration over a long period of time. It can be seen that xenon difluoride can be supplied.

(比較例1)
前記蒸発容器を使用せず、二フッ化キセノン粉末の成形も行わずに、混合容器内に粉末のままの二フッ化キセノンを投入した以外は実施例1と同様の操作を行い、同伴ガス導出経路から導出される同伴ガス中の二フッ化キセノン濃度をFTIRにて測定した。その結果を実施例1と同じ相対濃度として図5に示す。図5から明らかなように、二フッ化キセノン濃度は、時間の経過に伴って低下し、11時間経過後には約10%低下したことがわかる。
(Comparative Example 1)
The same operation as in Example 1 was performed except that the evaporation vessel was not used, the xenon difluoride powder was not molded, and the powdered xenon difluoride was charged into the mixing vessel, and the accompanying gas was derived. The xenon difluoride concentration in the entrained gas derived from the route was measured by FTIR. The result is shown in FIG. 5 as the same relative concentration as in Example 1. As can be seen from FIG. 5, the xenon difluoride concentration decreased with the passage of time and decreased by about 10% after the passage of 11 hours.

(比較例2)
両端にバルブの付いたステンレス製カラム型容器(内径30mm、長さ200mm)に二フッ化キセノン5g及びステンレス製充填物5gを詰め、60℃の恒温槽に入れるとともに、一方のバルブから窒素ガスを、大気圧で500ml/minの流量にて通気し、他方のバルブから導出されるガス中の二フッ化キセノン濃度をFTIRにて測定した。その結果を図6に示す。図6から明らかなように、二フッ化キセノン濃度は、時間の経過に伴って低下し、11時間経過後には約6%低下したことがわかる。
(Comparative Example 2)
A stainless steel column-type container (inner diameter: 30 mm, length: 200 mm) with a valve at both ends is filled with 5 g of xenon difluoride and 5 g of a stainless steel packing material, placed in a constant temperature bath at 60 ° C., and nitrogen gas is supplied from one valve. The gas was vented at a flow rate of 500 ml / min at atmospheric pressure, and the xenon difluoride concentration in the gas derived from the other valve was measured by FTIR. The result is shown in FIG. As can be seen from FIG. 6, the xenon difluoride concentration decreased with time and decreased by about 6% after 11 hours.

本発明の固体原料供給装置の一形態例を示す系統図である。It is a systematic diagram which shows one example of a solid raw material supply apparatus of this invention. 蒸発容器の斜視図である。It is a perspective view of an evaporation container. 実施例1における二フッ化キセノン濃度の経時変化を示す図である。It is a figure which shows the time-dependent change of the xenon difluoride density | concentration in Example 1. FIG. 実施例2における二フッ化キセノン濃度の経時変化を示す図である。It is a figure which shows the time-dependent change of the xenon difluoride density | concentration in Example 2. FIG. 比較例1における二フッ化キセノン濃度の経時変化を示す図である。It is a figure which shows the time-dependent change of the xenon difluoride density | concentration in the comparative example 1. 比較例2における二フッ化キセノン濃度の経時変化を示す図である。It is a figure which shows the time-dependent change of the xenon difluoride density | concentration in the comparative example 2.

符号の説明Explanation of symbols

11…固体原料、12…蒸発容器、13…混合容器、14…搬送ガス導入経路、15…同伴ガス導出経路、16…受け皿、17…付勢手段、18…容器本体、19…蓋体、20…伝熱手段、21…加熱手段、22…温度計測手段、23…温度調整手段、24…ガス供給源、25…圧力調整手段、26…流量調整手段、27…導入弁、28…導出弁   DESCRIPTION OF SYMBOLS 11 ... Solid raw material, 12 ... Evaporation container, 13 ... Mixing container, 14 ... Carrier gas introduction path | route, 15 ... Entrainment gas derivation | leading-out path | route, 16 ... Receptacle, 17 ... Energizing means, 18 ... Container main body, 19 ... Cover body, 20 ... Heat transfer means, 21 ... Heating means, 22 ... Temperature measuring means, 23 ... Temperature adjusting means, 24 ... Gas supply source, 25 ... Pressure adjusting means, 26 ... Flow rate adjusting means, 27 ... Inlet valve, 28 ... Derived valve

Claims (4)

固体原料を加熱して蒸発させ、蒸発した原料ガスを搬送ガスに同伴させて供給する固体原料供給方法において、
前記固体原料の粉末を、横断面が一定断面積で、上面が水平面となる形状で、粒子間に隙間が無く、均一緻密な構造に成形し、
成形した固体原料を、該固体原料の外側面形状と同一の内側面形状を有し、上部が開口した蒸発容器内に充填するとともに前記固体原料を載置する受け皿を付勢手段により上方に付勢して前記固体原料の上面を蒸発容器の上部開口縁から一定の距離に保持し、
該蒸発容器を、固体原料から蒸発した原料ガスを前記搬送ガスに混合させる混合容器内に封入し、
該混合容器内の雰囲気温度をあらかじめ設定した温度に保った状態で、該混合容器内に圧力及び流量をあらかじめ設定した圧力及び流量に調整した搬送ガスを導入し、
前記上面から蒸発した原料ガスを搬送ガスに混合して同伴させた同伴ガスを前記混合容器内から導出して供給先に供給する
ことを特徴とする固体原料供給方法。
In the solid raw material supply method for heating and evaporating the solid raw material and supplying the evaporated raw material gas with the carrier gas,
The solid raw material powder is shaped into a uniform and dense structure with a constant cross-sectional area and a horizontal top surface with no gaps between the particles,
The molded solid material is filled in an evaporation vessel having the same inner surface shape as the outer surface shape of the solid material, and the upper part is open, and a tray on which the solid material is placed is attached upward by a biasing means. Holding the upper surface of the solid raw material at a constant distance from the upper opening edge of the evaporation vessel,
The evaporation container is sealed in a mixing container that mixes the raw material gas evaporated from the solid raw material with the carrier gas,
In a state where the atmospheric temperature in the mixing container is maintained at a preset temperature, a carrier gas adjusted to a preset pressure and flow rate is introduced into the mixing container,
A solid raw material supply method, wherein the raw material gas evaporated from the upper surface is mixed with a carrier gas to be accompanied by the accompanying gas being led out from the mixing container and supplied to a supply destination.
前記固体原料が二フッ化キセノン、四フッ化キセノン、六フッ化キセノンのいずれか一種であることを特徴とする請求項1記載の固体原料供給方法。 The solid material supply method according to claim 1, wherein the solid material is any one of xenon difluoride, xenon tetrafluoride, and xenon hexafluoride. 固体原料を加熱して蒸発させ、蒸発した原料ガスを搬送ガスに同伴させて供給する固体原料供給装置において、
横断面が一定断面積で、上面が水平面となる形状で、粒子間に隙間が無く、均一緻密な構造に成形した固体原料が充填される蒸発容器と、
該蒸発容器が封入される混合容器と、
該混合容器内に前記搬送ガスを導入する搬送ガス導入経路と、
該搬送ガス導入経路に設けられた圧力調整手段及び流量調整手段と、
前記混合容器内の雰囲気温度を調整するための温度調整手段と、
前記混合容器内で前記蒸発容器内の固体原料から蒸発した原料ガスと前記搬送ガスとが混合した同伴ガスを前記混合容器から導出して供給先に供給する同伴ガス導出経路とを備え、
前記蒸発容器は、上部が開口するとともに、その内側面形状が前記成形した固体原料の外側面形状と同一に形成され、かつ、前記成形後の固体原料を載置する受け皿と、該受け皿を上方に付勢して固体原料の上面を蒸発容器の上部開口縁から一定の距離に保持する付勢手段とを備えている
ことを特徴とする固体原料供給装置。
In the solid raw material supply apparatus that heats and evaporates the solid raw material and supplies the evaporated raw material gas with the carrier gas,
An evaporation container filled with a solid raw material formed into a uniform and dense structure with a constant cross-sectional area and a shape in which the upper surface is a horizontal plane, no gap between particles,
A mixing container in which the evaporation container is enclosed;
A carrier gas introduction path for introducing the carrier gas into the mixing container;
Pressure adjusting means and flow rate adjusting means provided in the carrier gas introduction path;
Temperature adjusting means for adjusting the atmospheric temperature in the mixing container;
An entrained gas deriving path for deriving an entrained gas in which the source gas evaporated from the solid material in the evaporating container and the carrier gas are mixed in the mixing container and supplying the mixed gas to a supply destination;
The evaporating container has an opening at the top, an inner side surface shape that is the same as the outer side surface shape of the molded solid raw material, and a tray on which the solid raw material after molding is placed, and the upper side of the tray And a biasing means for biasing the upper surface of the solid material at a fixed distance from the upper opening edge of the evaporation container .
前記固体原料が二フッ化キセノン、四フッ化キセノン、六フッ化キセノンのいずれか一種であることを特徴とする請求項3記載の固体原料供給装置。 4. The solid raw material supply apparatus according to claim 3, wherein the solid raw material is any one of xenon difluoride, xenon tetrafluoride, and xenon hexafluoride.
JP2007305599A 2007-11-27 2007-11-27 Solid raw material supply method and apparatus Active JP5242140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007305599A JP5242140B2 (en) 2007-11-27 2007-11-27 Solid raw material supply method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007305599A JP5242140B2 (en) 2007-11-27 2007-11-27 Solid raw material supply method and apparatus

Publications (2)

Publication Number Publication Date
JP2009125703A JP2009125703A (en) 2009-06-11
JP5242140B2 true JP5242140B2 (en) 2013-07-24

Family

ID=40817160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007305599A Active JP5242140B2 (en) 2007-11-27 2007-11-27 Solid raw material supply method and apparatus

Country Status (1)

Country Link
JP (1) JP5242140B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6477075B2 (en) * 2015-03-17 2019-03-06 東京エレクトロン株式会社 Raw material gas supply apparatus and film forming apparatus
JP6955260B2 (en) * 2017-12-28 2021-10-27 株式会社エー・シー・イー Gas supply device
CN114402092A (en) * 2019-09-24 2022-04-26 东京毅力科创株式会社 Raw material supply device and raw material supply method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02169023A (en) * 1988-12-22 1990-06-29 Mitsubishi Metal Corp Generator of raw gas
JPH0726364Y2 (en) * 1989-06-23 1995-06-14 日本酸素株式会社 Solid material feeder for vapor phase growth equipment
FR2727322B1 (en) * 1994-11-30 1996-12-27 Kodak Pathe METHOD FOR SUBLIMATING A SOLID MATERIAL AND DEVICE FOR CARRYING OUT THE METHOD
JP3457855B2 (en) * 1997-09-03 2003-10-20 日本電子株式会社 FIB assist gas introduction device
JP3967455B2 (en) * 1998-03-30 2007-08-29 Dowaホールディングス株式会社 Potassium-containing thin film and method for producing the same
JP4585288B2 (en) * 2004-11-17 2010-11-24 ルネサスエレクトロニクス株式会社 Solid raw material vaporizer and solid raw material vaporization method
JP2006144083A (en) * 2004-11-22 2006-06-08 Fujitsu Ltd Raw material feeding device and method for producing semiconductor device
JP2006272100A (en) * 2005-03-28 2006-10-12 Ishikawajima Harima Heavy Ind Co Ltd System for volatilizing/supplying volatile substance

Also Published As

Publication number Publication date
JP2009125703A (en) 2009-06-11

Similar Documents

Publication Publication Date Title
AU2013240292B2 (en) Method of delivering a process gas from a multi-component solution
TWI303461B (en) Vaporizer delivery ampoule
EP0587724B1 (en) Integrated delivery module for chemical vapor from non-gaseous sources for semiconductor processing
US6981426B2 (en) Method and apparatus to measure gas amounts adsorbed on a powder sample
KR101367575B1 (en) System for producing primary standard gas mixtures
US4936877A (en) Dopant delivery system for semiconductor manufacture
JP6951321B2 (en) Methods and systems for producing process gases
JP5242140B2 (en) Solid raw material supply method and apparatus
US6722182B1 (en) Solid state vapor generator
US20050123020A1 (en) Thermal analyzer with gas mixing chamber
JP2014002038A (en) Vapor permeability measuring apparatus and vapor permeability measuring method
JP2012189425A (en) Measuring apparatus for element adsorption/desorption amount
US20120087834A1 (en) Apparatus for synthesis and assaying of materials with temperature control enclosure assembly
US20200316490A1 (en) Method, system, and apparatus for inhibiting decomposition of hydrogen peroxide in gas delivery systems
CA2387673A1 (en) Apparatus and method for generating moisture standards in gases
JP7353936B2 (en) Analyzer and method
JP2008111730A (en) Measuring instrument of volatile organic compound
WO1992021956A1 (en) Method and device for evaluating quantities of adsorbed impurities
CN111013415A (en) Standard gas generation system based on temperature control
CN211636047U (en) Device for producing low-concentration standard gas mixture
Chilev et al. A comparison between the different methods for the measurement of an excess adsorption of pure gases on porous adsorbents at high pressure
JP2009058372A (en) Method and device for measuring fluorine gas
US10179318B1 (en) Method for generating formaldehyde monomer vapor
US8673224B2 (en) Apparatus for synthesis and assaying of materials
JP2003035635A (en) Pipe and apparatus for preparing gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5242140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250