JP4374278B2 - Catalytic CVD equipment - Google Patents
Catalytic CVD equipment Download PDFInfo
- Publication number
- JP4374278B2 JP4374278B2 JP2004146648A JP2004146648A JP4374278B2 JP 4374278 B2 JP4374278 B2 JP 4374278B2 JP 2004146648 A JP2004146648 A JP 2004146648A JP 2004146648 A JP2004146648 A JP 2004146648A JP 4374278 B2 JP4374278 B2 JP 4374278B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- substrate
- reaction
- catalyst body
- substrate holder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004050 hot filament vapor deposition Methods 0.000 title claims description 42
- 239000000758 substrate Substances 0.000 claims description 172
- 239000007789 gas Substances 0.000 claims description 132
- 239000003054 catalyst Substances 0.000 claims description 95
- 239000012495 reaction gas Substances 0.000 claims description 78
- 238000006243 chemical reaction Methods 0.000 claims description 38
- 238000000151 deposition Methods 0.000 claims description 26
- 230000008021 deposition Effects 0.000 claims description 22
- 230000003213 activating effect Effects 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 239000010408 film Substances 0.000 description 30
- 238000000354 decomposition reaction Methods 0.000 description 13
- 230000004913 activation Effects 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 238000009826 distribution Methods 0.000 description 11
- 239000010409 thin film Substances 0.000 description 8
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 8
- 238000003860 storage Methods 0.000 description 6
- 229910052721 tungsten Inorganic materials 0.000 description 6
- 239000010937 tungsten Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910000077 silane Inorganic materials 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
Description
本発明は、触媒CVD法によって成膜を行なう触媒CVD装置に関する。 The present invention relates to a catalytic CVD apparatus for forming a film by a catalytic CVD method.
各種半導体デバイスやLCD(液晶ディスプレイ)等を製造する際において、基板上に所定の堆積膜を形成させる方法として例えばCVD法(化学気相成長法)が従来より用いられている。CVD法によって基板上に堆積膜を形成させる場合、一般に、成膜対象である基板に対する反応ガスの供給状況が、基板面内の膜厚分布に大きく影響する。そのため、従来のCVD法によって成膜を行なうプラズマCVD装置等のCVD装置では、基板を水平状態に配置して、基板に反応ガスを供給するガス導入ヘッドを基板の表面(成膜面)と対向するように設置している。 In manufacturing various semiconductor devices, LCDs (liquid crystal displays) and the like, for example, a CVD method (chemical vapor deposition method) has been conventionally used as a method for forming a predetermined deposited film on a substrate. In the case where a deposited film is formed on a substrate by a CVD method, in general, the supply state of a reactive gas with respect to the substrate that is a film formation target greatly affects the film thickness distribution in the substrate surface. Therefore, in a CVD apparatus such as a plasma CVD apparatus that forms a film by a conventional CVD method, the substrate is placed in a horizontal state, and a gas introduction head that supplies a reactive gas to the substrate is opposed to the surface (film formation surface) of the substrate. It is installed to do.
ところで、近年、加熱したタングステン等の素線(以下、触媒線という)を触媒として、反応室内に供給される反応ガスを活性化あるいは分解することによって基板に堆積膜を形成させる触媒CVD法(Cat-CVD法又はホットワイヤCVD法とも呼ばれている)が実用化されている。触媒CVD法は、熱CVD法に比べて低温で成膜を行うことができ、また、プラズマCVD法のようにプラズマの発生によって基板にダメージが生じる等の問題もないので、次世代の半導体デバイスや表示デバイス(LCDなど)等の成膜方法として注目されている。 By the way, in recent years, a catalytic CVD method (Cat) that forms a deposited film on a substrate by activating or decomposing a reaction gas supplied into a reaction chamber using a heated element wire such as tungsten (hereinafter referred to as a catalyst line) as a catalyst. -It is also called a CVD method or a hot wire CVD method). The catalytic CVD method can form a film at a lower temperature than the thermal CVD method, and there is no problem that the substrate is damaged by the generation of plasma unlike the plasma CVD method. And film forming methods for display devices (LCD, etc.).
上記触媒CVD法により成膜を行う触媒CVD装置は、その特徴として主反応場である触媒線(例えばタングステン細線)を中心にして、その周囲360度にわたって放射状に活性化あるいは分解によって生成された堆積種(生成物)が飛来する。よって、この堆積種を効率よく基板へ堆積させるために、垂直に保持した触媒線の両側に垂直に保持した基板を対向配置し、触媒線近傍に設置したガス導入ヘッドの複数のガス噴出し孔から前方(基板側)に向けて反応ガスを供給するようにした触媒CVD装置が提案されている(例えば、特許文献1参照。)。 The catalytic CVD apparatus for forming a film by the catalytic CVD method is characterized by deposition generated by activation or decomposition in a radial manner over 360 degrees around the catalyst line (for example, tungsten thin wire) which is a main reaction field. Seeds (product) fly. Therefore, in order to efficiently deposit this deposition species on the substrate, a plurality of gas ejection holes of the gas introduction head installed in the vicinity of the catalyst line are arranged so as to face each other on the both sides of the vertically held catalyst line. A catalytic CVD apparatus is proposed in which a reactive gas is supplied from the front to the front (substrate side) (see, for example, Patent Document 1).
上記特許文献1のような従来の触媒CVD装置では、垂直に保持された複数の細線状の触媒線近傍にガス導入ヘッドをそれぞれ垂直に設置し、各ガス導入ヘッドの複数のガス噴出し孔から反応ガスを前方(基板側)に噴出して、加熱された触媒線により反応ガスを活性化あるいは分解して生成された堆積種を基板に堆積させる。
ところで、上記特許文献1のような従来の触媒CVD装置では、垂直に保持される基板に対して、その前方に垂直に設置されたガス導入ヘッドのガス噴出し孔から反応ガスを前方(基板側)に噴出させることにより、基板を水平に配置する場合に比べて活性化あるいは分解によって生成された堆積種を基板面内に均一に堆積させることが難しかった。 By the way, in the conventional catalytic CVD apparatus like the above-mentioned patent document 1, with respect to the substrate held vertically, the reaction gas is forward (from the substrate side) from the gas ejection hole of the gas introduction head vertically installed in front of the substrate. It is difficult to deposit deposition species generated by activation or decomposition uniformly on the substrate surface as compared with the case where the substrate is horizontally arranged.
また、基板を水平に配置し、その上方に触媒線とガス導入ヘッドを水平に設置する一般的な触媒CVD装置においても、基板サイズが大きくなるにつれて、活性化あるいは分解によって生成された堆積種を基板面内に均一に堆積させることが難しくなってきた。 Further, even in a general catalytic CVD apparatus in which a substrate is horizontally disposed and a catalyst wire and a gas introduction head are horizontally disposed above the substrate, the deposition species generated by activation or decomposition are increased as the substrate size increases. It has become difficult to deposit uniformly on the substrate surface.
そこで本発明は、基板を垂直に保持する構成においても活性化あるいは分解によって生成された堆積種を基板面内に均一に堆積させることができる触媒CVD装置を提供することを目的とする。また、本発明は、大型サイズの基板を水平に配置する構成においても活性化あるいは分解によって生成された堆積種を基板面内に均一に堆積させるこことができる触媒CVD装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a catalytic CVD apparatus capable of uniformly depositing deposition species generated by activation or decomposition even in a configuration in which a substrate is held vertically. Another object of the present invention is to provide a catalytic CVD apparatus capable of uniformly depositing deposition species generated by activation or decomposition even in a configuration in which a large-sized substrate is horizontally arranged. And
上記目的を達成するために本発明は、排気系の稼動により圧力調整可能な反応容器と、前記反応容器内で基板を保持する基板ホルダーと、前記反応容器内に反応ガスを導入するガス導入系と、前記基板ホルダーの基板保持面側と対向するようにして設けた触媒体とを備え、前記ガス導入系から前記反応容器内に導入される反応ガスを通電により高温に加熱された前記触媒体により活性化あるいは分解して生成された堆積種を、前記基板ホルダーに保持された基板に堆積して成膜を行なう触媒CVD装置において、前記基板ホルダーの基板保持面側と逆側の背面に反応ガス溜め込み容器を設けて、前記基板ホルダーの背面と基板保持面との間を貫通するようにして複数のガス噴出し孔を形成し、前記触媒体を前記反応容器の水平な底面に対して垂直に設置し、前記触媒体を間にしてその外側に前記基板保持面側がそれぞれ対向するようにして2つの前記基板ホルダーを前記反応容器の水平な底面に対して略垂直に設置し、前記基板ホルダーの対向する基板保持面の間で前記触媒体の外周面に、前記ガス噴出し孔を通して前記基板ホルダーの基板保持面側に噴出した反応ガスの流れを制御するガス流れ制御板を設置し、前記ガス導入系からそれぞれの前記反応ガス溜め込み容器内に反応ガスを導入して、前記反応ガス溜め込み容器内に溜め込んだ反応ガスを前記ガス噴出し孔から前記触媒体に向かって噴出して堆積種とし、前記触媒体を挟む前記基板ホルダーに保持された前記基板に堆積させることを特徴としている。 To achieve the above object, the present invention provides a reaction vessel whose pressure can be adjusted by operating an exhaust system, a substrate holder for holding a substrate in the reaction vessel, and a gas introduction system for introducing a reaction gas into the reaction vessel. And a catalyst body provided so as to face the substrate holding surface side of the substrate holder, and the catalyst body heated to a high temperature by energization of the reaction gas introduced into the reaction vessel from the gas introduction system In the catalytic CVD apparatus that deposits the deposited species generated by activation or decomposition by the deposition on the substrate held by the substrate holder to form a film, it reacts with the back surface of the substrate holder opposite to the substrate holding surface side. gas entrapment provided container, so as to penetrate between the rear and the substrate holding surface of the substrate holder to form a plurality of gas injection holes, the catalyst relative to the horizontal bottom surface of the reaction vessel The two substrate holders are installed substantially perpendicularly to the horizontal bottom surface of the reaction vessel so that the substrate holding surface is opposed to the outside with the catalyst body in between, and the substrate A gas flow control plate for controlling the flow of the reaction gas ejected to the substrate holding surface side of the substrate holder through the gas ejection hole is installed on the outer peripheral surface of the catalyst body between the substrate holding surfaces facing the holder, A reaction gas is introduced into each of the reaction gas reservoirs from the gas introduction system, and the reaction gas accumulated in the reaction gas reservoir is ejected from the gas ejection hole toward the catalyst body to form a deposition species. and then, it is characterized by depositing on the substrate held by the substrate holder sandwiching the catalyst.
また、前記触媒体の周囲から反応ガスを噴出する複数のガス噴出し孔を有する反応ガス導入管を前記ガス流れ制御板近傍に設置したことを特徴としている。 In addition, a reaction gas introduction pipe having a plurality of gas ejection holes for ejecting a reaction gas from the periphery of the catalyst body is provided in the vicinity of the gas flow control plate.
また、前記基板ホルダーの基板保持面側の前方に位置する前記触媒体の左右側及び上下側の各周囲を囲むようにして平板部材をそれぞれ設置して、前記各平板部材に複数のガス噴出し孔を貫通するようにして形成すると共に、上下の前記平板部材に前記触媒体の触媒線の両端側を通すための開口部を形成し、更に、前記各平板部材の前記触媒体と反対側の背面に前記ガス導入系を取付け、前記ガス導入系に導入された反応ガスを前記ガス噴出し孔を通して前記触媒体の周囲から噴出させることを特徴としている。 Further, a flat plate member is respectively installed so as to surround each of the left and right sides and the upper and lower sides of the catalyst body located in front of the substrate holding surface side of the substrate holder, and a plurality of gas ejection holes are provided in each flat plate member. In addition, the upper and lower flat plate members are formed with openings for passing both end sides of the catalyst wires of the catalyst body, and further, on the back surface of each flat plate member on the opposite side to the catalyst body. The gas introduction system is attached, and the reaction gas introduced into the gas introduction system is ejected from the periphery of the catalyst body through the gas ejection holes.
本発明によれば、反応ガス溜め込み容器に溜め込まれた反応ガスを基板ホルダーに設けた複数のガス噴出孔を通して基板ホルダーの基板保持面側に噴出させることにより、活性化あるいは分解によって生成された堆積種が基板表面の全体に均一に堆積し、基板面内の膜厚分布が良好な薄膜を得ることができる。 According to the present invention, the reaction gas stored in the reaction gas storage container is ejected to the substrate holding surface side of the substrate holder through the plurality of gas ejection holes provided in the substrate holder, thereby being deposited by activation or decomposition. The seed is uniformly deposited on the entire surface of the substrate, and a thin film having a good film thickness distribution in the substrate surface can be obtained.
以下、本発明を図示の実施形態に基づいて説明する。
〈実施形態1〉
図1は、本発明の実施形態1に係る触媒CVD装置を示す概略断面図である。この触媒CVD装置1の反応容器2内の中央部には、反応容器2の底面に対して垂直方向に触媒体3が設けられている。触媒体3は、複数のタングステン細線などの触媒線が触媒フレームに張架されて構成されており、図の手前から奥方向に沿って所定間隔で垂直方向に設置されている。各触媒体3の周囲には、各触媒体3を囲むようにして耐熱金属部材(例えばSUS材)からなる薄板状のガス流れ制御板4が設置されている。このガス流れ制御板4は、後述する成膜時に生成される堆積種が反応容器2の内壁面などに付着するのを防止するための防着板としての機能も有している。触媒体3の触媒線には電源(不図示)が接続されている。
Hereinafter, the present invention will be described based on the illustrated embodiments.
<Embodiment 1>
FIG. 1 is a schematic sectional view showing a catalytic CVD apparatus according to Embodiment 1 of the present invention. A catalyst body 3 is provided at a central portion in the reaction vessel 2 of the catalytic CVD apparatus 1 in a direction perpendicular to the bottom surface of the reaction vessel 2. The catalyst body 3 is configured by a plurality of catalyst wires such as tungsten wires being stretched around a catalyst frame, and is installed in a vertical direction at a predetermined interval from the front of the figure along the back direction. A thin plate-like gas flow control plate 4 made of a heat-resistant metal member (for example, SUS material) is installed around each catalyst body 3 so as to surround each catalyst body 3. The gas flow control plate 4 also has a function as an adhesion preventing plate for preventing deposition species generated during film formation, which will be described later, from adhering to the inner wall surface of the reaction vessel 2 and the like. A power source (not shown) is connected to the catalyst wire of the catalyst body 3.
触媒体3を中心にしてその両側には、耐熱部材からなる2つの基板ホルダー5a、5bが反応容器2の底面に対して略垂直方向にそれぞれ対向するように設置されており、各基板ホルダー5a、5bの触媒体3側の表面(基板保持面)には複数の基板6が所定間隔で着脱自在に保持されている。各基板ホルダー5a、5bは、図の手前から奥方向に沿って横長に形成されており、下面で一体的に連結され、反応容器2内の底面に設置されている。このように本実施形態では、垂直方向に対向配置された各基板ホルダー5a、5bの表面(図の内側の面)に複数の基板6を垂直方向に保持し、各基板6の前面側に所定の空間(隙間)を設けてガス流れ制御板4を設置している。 Two substrate holders 5a and 5b made of a heat-resistant member are installed on both sides of the catalyst body 3 as a center so as to face the bottom surface of the reaction vessel 2 in a substantially vertical direction, and each substrate holder 5a. A plurality of substrates 6 are detachably held at predetermined intervals on the surface (substrate holding surface) of the catalyst body 3 side of 5b. Each of the substrate holders 5a and 5b is formed in a horizontally long shape from the front of the figure along the depth direction, and is integrally connected on the lower surface and installed on the bottom surface in the reaction vessel 2. As described above, in the present embodiment, a plurality of substrates 6 are held in the vertical direction on the surfaces (inner surfaces in the figure) of the substrate holders 5a and 5b arranged to face each other in the vertical direction, and a predetermined amount is provided on the front side of each substrate 6. The gas flow control plate 4 is installed with a space (gap).
各基板ホルダー5a、5bには、その表面側(基板6を保持した側)と背面側(基板6が保持されていない側)を貫通するようにして複数のガス噴出孔7が形成されている。ガス噴出孔7の直径は数mm(1〜5mm程度)である。ガス噴出孔7は、基板ホルダー5a、5bの基板6が保持されていない部分に所定の間隔で複数設けられている。また、基板ホルダー5a、5b内には、基板ホルダー5a、5b上に載置される各基板6を所定温度に加熱するためのヒータ(不図示)が設けられている。このヒータには電源(不図示)が接続されている。 Each of the substrate holders 5a and 5b is formed with a plurality of gas ejection holes 7 so as to penetrate the front surface side (side on which the substrate 6 is held) and the back surface side (side on which the substrate 6 is not held). . The diameter of the gas ejection hole 7 is several mm (about 1 to 5 mm). A plurality of gas ejection holes 7 are provided at predetermined intervals in portions of the substrate holders 5a and 5b where the substrate 6 is not held. In addition, heaters (not shown) for heating each substrate 6 placed on the substrate holders 5a and 5b to a predetermined temperature are provided in the substrate holders 5a and 5b. A power source (not shown) is connected to the heater.
各基板ホルダー5a、5bの背面側(基板6が保持されていない側)には、ガス供給源(不図示)から導入される反応ガスを一旦溜め込むための反応ガス溜め込み容器8a、8bがそれぞれ設置されている。各反応ガス溜め込み容器8a、8bは、図の手前から奥方向に沿って横長に形成されており、各基板ホルダー5a、5bの背面に密着されている。各反応ガス溜め込み容器8a、8bの上部には、反応容器2の外に設けたガス供給源(不図示)から反応容器2内の各反応ガス溜め込み容器8a、8bに反応ガスを導入するための導入管9a、9bがそれぞれ接続されている。また、反応容器2の側面には、排気系(不図示)が接続されている排気管10が接続されている。 Reactive gas reservoirs 8a and 8b for temporarily accumulating a reactive gas introduced from a gas supply source (not shown) are installed on the back side of each substrate holder 5a and 5b (the side where the substrate 6 is not held). Has been. Each of the reaction gas reservoirs 8a and 8b is formed in a horizontally long shape from the front of the figure along the depth direction, and is in close contact with the back surface of each of the substrate holders 5a and 5b. In the upper part of each reaction gas reservoir 8a, 8b, a reaction gas is introduced into each reaction gas reservoir 8a, 8b in the reaction container 2 from a gas supply source (not shown) provided outside the reaction container 2. The introduction pipes 9a and 9b are connected to each other. An exhaust pipe 10 to which an exhaust system (not shown) is connected is connected to the side surface of the reaction vessel 2.
次に、上記した触媒CVD装置1による成膜方法について説明する。 Next, a film forming method using the above-described catalytic CVD apparatus 1 will be described.
先ず、各基板ホルダー5a、5bの表面に複数の基板6を保持する。そして、各基板ホルダー5a、5b内のヒータ(不図示)に通電して抵抗加熱し、各基板ホルダー5a、5b上の基板6を所定温度(例えば200℃〜600℃程度)に加熱すると共に、触媒体3の触媒線(タングステン細線)に通電して抵抗加熱し、触媒体3の触媒線を所定温度(例えば1600℃〜1800℃程度)に加熱する。この際、排気系(不図示)の駆動により排気管10を通して反応容器2内を排気して所定の圧力に調整する。 First, a plurality of substrates 6 are held on the surface of each substrate holder 5a, 5b. Then, a heater (not shown) in each of the substrate holders 5a and 5b is energized and resistance-heated, and the substrate 6 on each of the substrate holders 5a and 5b is heated to a predetermined temperature (for example, about 200 ° C. to 600 ° C.), The catalyst wire (tungsten fine wire) of the catalyst body 3 is energized and resistance-heated, and the catalyst wire of the catalyst body 3 is heated to a predetermined temperature (for example, about 1600 ° C. to 1800 ° C.). At this time, the inside of the reaction vessel 2 is exhausted through the exhaust pipe 10 by driving an exhaust system (not shown) and adjusted to a predetermined pressure.
そして、各導入管9a、9bを通してガス供給源(不図示)から各反応ガス溜め込み容器8a、8b内に反応ガス(例えば、シランガスとアンモニアガスの混合ガスなど)を連続的に所定流量で導入し、各反応ガス溜め込み容器8a、8b内に反応ガスを溜め込んでいく。各反応ガス溜め込み容器8a、8b内に一定量以上の反応ガスが溜め込まれると、各基板ホルダー5a、5bに設けた複数のガス噴出孔7を通して各反応ガス溜め込み容器8a、8b内の反応ガスが、各基板ホルダー5a、5bの表面(基板6が保持されている面)から噴出する。 Then, a reaction gas (for example, a mixed gas of silane gas and ammonia gas, etc.) is continuously introduced at a predetermined flow rate from a gas supply source (not shown) into each reaction gas reservoir 8a, 8b through each introduction pipe 9a, 9b. Then, the reaction gas is stored in the reaction gas storage containers 8a and 8b. When a certain amount or more of the reaction gas is stored in each of the reaction gas reservoirs 8a and 8b, the reaction gas in each of the reaction gas reservoirs 8a and 8b passes through a plurality of gas ejection holes 7 provided in each of the substrate holders 5a and 5b. , And ejected from the surface of each of the substrate holders 5a and 5b (the surface on which the substrate 6 is held).
なお、各反応ガス溜め込み容器8a、8bには、その容積を可変できるように可動部分(不図示)が設けられており、可動機構(不図示)の駆動でこの可動部分の容積を変位させることによって、各基板ホルダー5a、5bの表面側への反応ガスの噴出量を調整することができる。 Each reactive gas reservoir 8a, 8b is provided with a movable part (not shown) so that its volume can be varied, and the volume of the movable part is displaced by driving a movable mechanism (not shown). Thus, it is possible to adjust the ejection amount of the reaction gas to the surface side of each of the substrate holders 5a and 5b.
各基板ホルダー5a、5bの表面側に噴出した反応ガスは、ガス流れ制御板4によって通電により加熱されている触媒体3の触媒線に均一に接触して活性化あるいは分解され堆積種が生成される。この際、反応容器2内を一定圧力に調整するために排気系(不図示)を稼動している。よって、ガス流れ制御板4の表面と各基板ホルダー5a、5bの表面との間の空間にある堆積種は、ガス流れ制御板4によって各基板ホルダー5a、5bの表面に沿って周囲に向けて流れるような排気経路(ガスの流れ)Aが形成されることにより、堆積種は各基板6表面全体に均一に堆積し、薄膜が形成される。 The reaction gas ejected to the surface side of each substrate holder 5a, 5b is uniformly contacted with the catalyst wire of the catalyst body 3 heated by energization by the gas flow control plate 4 to be activated or decomposed to generate deposition species. The At this time, an exhaust system (not shown) is operated to adjust the inside of the reaction vessel 2 to a constant pressure. Therefore, the deposition species in the space between the surface of the gas flow control plate 4 and the surfaces of the substrate holders 5a and 5b are directed toward the periphery along the surfaces of the substrate holders 5a and 5b by the gas flow control plate 4. By forming an exhaust path (gas flow) A that flows, deposition species are uniformly deposited on the entire surface of each substrate 6 to form a thin film.
図2は、上記した成膜時における排気経路(ガスの流れ)Aを示したものであり、均等化された状態となっている。 FIG. 2 shows an exhaust path (gas flow) A during the film formation described above, which is in an equalized state.
このように、本実施形態では、略垂直に配置された一対の各基板ホルダー5a、5bの背面に反応ガス溜め込み容器8a、8bをそれぞれ設け、反応ガス溜め込み容器8a、8bに溜め込まれた反応ガスを各基板ホルダー5a、5bに設けた複数のガス噴出孔7を通して各基板ホルダー5a、5bの表面(基板6が保持されている面)から噴出させることにより、触媒体3の触媒線によって活性化あるいは分解されて生成された堆積種が各基板6表面の全体に均一に堆積し、基板面内の膜厚分布が良好な薄膜を得ることができる。 As described above, in the present embodiment, the reaction gas reservoirs 8a and 8b are respectively provided on the rear surfaces of the pair of substrate holders 5a and 5b arranged substantially vertically, and the reaction gas stored in the reaction gas reservoirs 8a and 8b is provided. Is activated by the catalyst wire of the catalyst body 3 by ejecting from the surface (surface on which the substrate 6 is held) of each substrate holder 5a, 5b through a plurality of gas ejection holes 7 provided in each substrate holder 5a, 5b. Alternatively, the deposited species generated by decomposition are uniformly deposited on the entire surface of each substrate 6, and a thin film having a good film thickness distribution in the substrate surface can be obtained.
上記した本発明の実施形態1に係る触媒CVD装置1で成膜したSi膜の基板面内分布を測定したところ、図3に示すような測定結果が得られた。これに対し、比較用の従来の触媒CVD装置で成膜したSi膜の基板面内分布を測定したところ、図4に示すような結果が得られた。 When the in-plane distribution of the Si film formed by the catalytic CVD apparatus 1 according to Embodiment 1 of the present invention was measured, the measurement results as shown in FIG. 3 were obtained. On the other hand, when the in-plane distribution of the Si film formed by the conventional catalytic CVD apparatus for comparison was measured, the result shown in FIG. 4 was obtained.
なお、この比較用の従来の触媒CVD装置は、図1に示した触媒CVD装置1において、ガス流れ制御板4と反応ガス溜め込み容器8a、8bを備えておらず、更に基板ホルダー5a、5bにガス噴出孔7を有しておらず、触媒体3近傍に垂直方向に設けたガス導入ヘッドから前方(基板側)に向けて反応ガスを供給するように構成されている。 The conventional catalytic CVD apparatus for comparison does not include the gas flow control plate 4 and the reaction gas reservoirs 8a and 8b in the catalytic CVD apparatus 1 shown in FIG. The gas ejection hole 7 is not provided, and the reaction gas is supplied forward (substrate side) from a gas introduction head provided in the vertical direction in the vicinity of the catalyst body 3.
両者の測定結果から明らかなように、本発明の実施形態1に係る触媒CVD装置1を用いることにより、基板面内の膜厚分布が大幅に改善されたことを確認した。
〈実施形態2〉
本実施形態に係る触媒CVD装置1aは、図5に示すように、触媒体3の周囲に設けたガス流れ制御板4の周囲に沿って、触媒体3の触媒線に向けて反応ガスを噴出する複数のガス噴出し孔(不図示)を有する反応ガス導入管11a、11bを設置した。他の構成は、図1に示した実施形態1に係る触媒CVD装置と同様の構成であり、重複する説明は省略する。
As is apparent from both measurement results, it was confirmed that the film thickness distribution in the substrate surface was greatly improved by using the catalytic CVD apparatus 1 according to Embodiment 1 of the present invention.
<Embodiment 2>
As shown in FIG. 5, the catalytic CVD apparatus 1 a according to the present embodiment ejects a reactive gas toward the catalyst line of the catalyst body 3 along the periphery of the gas flow control plate 4 provided around the catalyst body 3. Reaction gas introduction pipes 11a and 11b having a plurality of gas ejection holes (not shown) are installed. The other configuration is the same as that of the catalytic CVD apparatus according to the first embodiment shown in FIG.
本実施形態では、反応ガス溜め込み容器8a、8bに溜め込まれた反応ガスを各基板ホルダー5a、5bに設けた複数のガス噴出孔7を通して各基板ホルダー5a、5bの表面(基板6が保持されている面)から噴出させると共に、反応ガス導入管11a、11bに設けた複数のガス噴出し孔(不図示)からも同時に触媒体3の触媒線に向けて反応ガスを噴出させることにより、触媒体3の触媒線によって活性化あるいは分解されて生成された堆積種を各基板6表面の周辺領域も含めて均一に堆積させることができ、基板面内の膜厚分布がより良好な薄膜を得ることができる。 In the present embodiment, the reaction gas stored in the reaction gas reservoirs 8a and 8b passes through the plurality of gas ejection holes 7 provided in the substrate holders 5a and 5b, and the surfaces of the substrate holders 5a and 5b (the substrate 6 is held). The catalyst body is ejected from a plurality of gas ejection holes (not shown) provided in the reaction gas introduction pipes 11a and 11b at the same time toward the catalyst line of the catalyst body 3. The deposition species generated by activation or decomposition by the catalytic line 3 can be uniformly deposited including the peripheral region of the surface of each substrate 6, and a thin film with a better film thickness distribution in the substrate surface can be obtained. Can do.
また、本実施形態に係る触媒CVD装置の要部は、図6に示すように、反応容器(不図示)の中央部に垂直方向に所定間隔で複数設置されたタングステン細線などの触媒線12を中心にしてその両側(図では、紙面に対して手前側(この手前側は不図示)と奥側)には、耐熱部材からなる基板ホルダー5aが垂直方向に設置されており、基板ホルダー5aの触媒線12側の表面(基板保持面)には複数の基板6が着脱自在に保持されている(図の紙面に対して手前側にも同様に、基板を保持した基板ホルダーが垂直方向に設置されている)。なお、各触媒線12の両端側は触媒体フレーム(不図示)によって保持されており、触媒線12と触媒体フレーム(不図示)とで触媒体が構成されている。 Further, as shown in FIG. 6, the main part of the catalytic CVD apparatus according to the present embodiment is provided with a plurality of catalyst wires 12 such as tungsten fine wires installed at predetermined intervals in the vertical direction at the center of a reaction vessel (not shown). A substrate holder 5a made of a heat-resistant member is vertically installed on both sides (in the drawing, on the front side (the front side is not shown) and the back side in the drawing) of the substrate holder 5a. A plurality of substrates 6 are detachably held on the surface (substrate holding surface) on the catalyst wire 12 side (a substrate holder holding the substrate is also installed in the vertical direction in the same manner on the front side with respect to the paper surface of the figure). Have been). Note that both ends of each catalyst wire 12 are held by a catalyst frame (not shown), and the catalyst wire 12 and the catalyst frame (not shown) constitute a catalyst body.
そして、基板ホルダー5aの各基板6を保持した表面側の前方に位置する各触媒線12の左右側及び上下側の各周囲を囲むようにして、耐熱金属部材(例えばSUS材)からなる平板部材としてのガス流れ制御板4a、4b、4c、4dをそれぞれ設置している。 As a flat plate member made of a heat-resistant metal member (for example, SUS material) so as to surround each of the left and right sides and the upper and lower sides of each catalyst wire 12 positioned in front of the surface side holding each substrate 6 of the substrate holder 5a. Gas flow control plates 4a, 4b, 4c and 4d are respectively installed.
各触媒線12の上下方向に位置する各ガス流れ制御板4c、4dには、各触媒線12を通すための開口部がそれぞれ形成されており、各触媒線12の先端側は、各ガス流れ制御板4c、4dの外側に設けた触媒体フレーム(不図示)で保持されている。このガス流れ制御板4a、4b、4c、4dは、成膜時に生成される堆積種が反応容器(不図示)の内壁面に付着するのを防止するための防着板としての機能も有している。 Each gas flow control plate 4c, 4d positioned in the up-down direction of each catalyst line 12 is formed with an opening for passing each catalyst line 12, and the front end side of each catalyst line 12 has each gas flow. It is held by a catalyst body frame (not shown) provided outside the control plates 4c and 4d. The gas flow control plates 4a, 4b, 4c, and 4d also have a function as an adhesion preventing plate for preventing deposition species generated during film formation from adhering to the inner wall surface of a reaction vessel (not shown). ing.
各ガス流れ制御板4a、4b、4c、4dの背面側(各触媒線12が設置されている側と反対側)には、外部のガス供給源(不図示)から反応ガスを導入するガス導入配管11a1、11a2、11a3、11a4がそれぞれ密着するようにして設置されている。ガス流れ制御板4a、4b、4c、4dとガス導入配管11a1、11a2、11a3、11a4のそれぞれの密着面には、複数のガス噴出孔17が両者を貫通するようにして形成されている。各ガス噴出孔17は、基板ホルダー5aの各基板6を保持した面に対して略平行方向にガスを噴出するように形成されている。 Gas introduction for introducing reaction gas from an external gas supply source (not shown) to the back side of each gas flow control plate 4a, 4b, 4c, 4d (the side opposite to the side where each catalyst wire 12 is installed) The pipes 11a 1 , 11a 2 , 11a 3 , 11a 4 are installed in close contact with each other. The gas flow control plates 4a, 4b, 4c, and 4d and the gas introduction pipes 11a 1 , 11a 2 , 11a 3 , and 11a 4 are each formed with a plurality of gas ejection holes 17 penetrating them. ing. Each gas ejection hole 17 is formed so as to eject gas in a direction substantially parallel to the surface of the substrate holder 5a that holds each substrate 6.
次に、上記した本実施形態に係る触媒CVD装置による成膜方法について説明する。 Next, a film forming method using the catalytic CVD apparatus according to the above-described embodiment will be described.
基板ホルダー5a、5b内のヒータ(不図示)に通電して抵抗加熱し、基板ホルダー5a、5b上の基板6を所定温度(例えば200℃〜600℃程度)に加熱すると共に、触媒体3の各触媒線(本実施形態ではタングステン細線)12に通電して抵抗加熱し、触媒線12を所定温度(例えば1600℃〜1800℃程度)に加熱する。この際、排気系(不図示)の駆動により反応容器(不図示)内を排気して所定の圧力に調整する。 The heaters (not shown) in the substrate holders 5a and 5b are energized and heated by resistance to heat the substrate 6 on the substrate holders 5a and 5b to a predetermined temperature (for example, about 200 ° C. to 600 ° C.). Each catalyst wire (tungsten fine wire in this embodiment) 12 is energized and resistance-heated, and the catalyst wire 12 is heated to a predetermined temperature (for example, about 1600 ° C. to 1800 ° C.). At this time, the inside of the reaction vessel (not shown) is exhausted and adjusted to a predetermined pressure by driving an exhaust system (not shown).
そして、外部のガス供給源(不図示)から各ガス導入配管9a、9bを通して各反応ガス溜め込み容器8a、8b内に反応ガス(例えば、シランガスとアンモニアガスの混合ガスなど)を連続的に所定流量で導入し、各反応ガス溜め込み容器8a、8b内に反応ガスを溜め込んでいく。各反応ガス溜め込み容器8a、8b内に一定量以上の反応ガスが溜め込まれると、各基板ホルダー5a、5bに設けた複数のガス噴出孔7を通して各反応ガス溜め込み容器8a、8b内の反応ガスが、各基板ホルダー5a、5bの表面(基板6が保持されている面)から触媒線12に向けて噴出される。 Then, a reaction gas (for example, a mixed gas of silane gas and ammonia gas) is continuously supplied at a predetermined flow rate from an external gas supply source (not shown) into the reaction gas reservoirs 8a and 8b through the gas introduction pipes 9a and 9b. Then, the reaction gas is stored in each of the reaction gas storage containers 8a and 8b. When a certain amount or more of the reaction gas is stored in each of the reaction gas reservoirs 8a and 8b, the reaction gas in each of the reaction gas reservoirs 8a and 8b passes through a plurality of gas ejection holes 7 provided in each of the substrate holders 5a and 5b. The substrate holders 5a and 5b are ejected from the surface (surface on which the substrate 6 is held) toward the catalyst wire 12.
更に、外部のガス供給源(不図示)から各ガス導入配管11a1、11a2、11a3、11a4に反応ガスを連続的に所定流量で導入する。各ガス導入配管11a1、11a2、11a3、11a4に導入された反応ガスは、複数のガス噴出孔17を通して各ガス流れ制御板4a、4b、4c、4dの内側にある触媒線12に向けて噴出される。 Further, the reaction gas is continuously introduced at a predetermined flow rate into the gas introduction pipes 11a 1 , 11a 2 , 11a 3 and 11a 4 from an external gas supply source (not shown). The reaction gas introduced into each gas introduction pipe 11a 1 , 11a 2 , 11a 3 , 11a 4 passes through a plurality of gas ejection holes 17 to the catalyst wire 12 inside each gas flow control plate 4a, 4b, 4c, 4d. It spouts towards.
このように触媒線12に向けて噴出された反応ガスは、通電により加熱されている触媒線12により活性化あるいは分解され、各ガス流れ制御板4a、4b、4c、4dの内側で各基板6の前面側の空間に堆積種が生成される。この際、反応容器2内を一定圧力に調整するために排気系(不図示)を稼動しているため、生成された堆積種は各基板ホルダー5a、5bの表面に沿って周囲に向けて流れるような排気経路が形成され、堆積種は各基板6の表面全体に均一に堆積し、薄膜が形成される。 The reaction gas ejected toward the catalyst wire 12 in this way is activated or decomposed by the catalyst wire 12 heated by energization, and each substrate 6 inside each gas flow control plate 4a, 4b, 4c, 4d. Sedimentation species are generated in the space on the front side. At this time, since the exhaust system (not shown) is operated to adjust the inside of the reaction vessel 2 to a constant pressure, the generated deposition species flow toward the periphery along the surfaces of the substrate holders 5a and 5b. Such an exhaust path is formed, and the deposition species are uniformly deposited on the entire surface of each substrate 6 to form a thin film.
このように本実施形態においても、触媒線12による活性化あるいは分解によって生成された堆積種を各基板6の表面全体に均一に堆積させることができ、また、大サイズの基板においても同様に基板面内の膜厚分布が良好な薄膜を得ることができる。
〈参考形態3〉
図7は、本発明の実施形態3係る触媒CVD装置を示す概略断面図である。この触媒CVD装置20の反応容器21内の上部には、導入管22に接続されているガス導入ヘッド23が水平に設けられており、反応容器21の下部には、ガス導入ヘッド23と対向するようにして複数の基板24を載置する基板ホルダー25が水平に設けられている。導入管22にはガス供給源(不図示)が接続されている。ガス導入ヘッド23の底面には、複数のガス噴出し口(不図示)が形成されている。
As described above, also in this embodiment, the deposition species generated by activation or decomposition by the catalyst wire 12 can be uniformly deposited on the entire surface of each substrate 6. A thin film having a good in-plane film thickness distribution can be obtained.
< Reference form 3 >
FIG. 7 is a schematic cross-sectional view showing a catalytic CVD apparatus according to Embodiment 3 of the present invention. A gas introduction head 23 connected to the introduction pipe 22 is horizontally provided at an upper portion in the reaction vessel 21 of the catalytic CVD apparatus 20, and the gas introduction head 23 is opposed to the lower portion of the reaction vessel 21. Thus, the substrate holder 25 for placing the plurality of substrates 24 is provided horizontally. A gas supply source (not shown) is connected to the introduction pipe 22. A plurality of gas ejection ports (not shown) are formed on the bottom surface of the gas introduction head 23.
基板ホルダー25には、その表面側(基板24を保持した側)と背面側(基板24が保持されていない側)を貫通するようにして複数のガス噴出孔26が形成されている。ガス噴出孔26の直径は数mm(1〜5mm程度)である。ガス噴出孔26は、基板ホルダー25の基板24が保持されていない部分に所定の間隔で設けられている。また、基板ホルダー25内には、基板ホルダー25上に載置される各基板24を所定温度に加熱するためのヒータ(不図示)が設けられている。このヒータには電源(不図示)が接続されている。 A plurality of gas ejection holes 26 are formed in the substrate holder 25 so as to penetrate the front surface side (side on which the substrate 24 is held) and the back surface side (side on which the substrate 24 is not held). The diameter of the gas ejection hole 26 is several mm (about 1 to 5 mm). The gas ejection holes 26 are provided at predetermined intervals in a portion of the substrate holder 25 where the substrate 24 is not held. The substrate holder 25 is provided with a heater (not shown) for heating each substrate 24 placed on the substrate holder 25 to a predetermined temperature. A power source (not shown) is connected to the heater.
基板ホルダー25の背面側(基板24が保持されていない側)には、導入される反応ガスを一旦溜め込むための反応ガス溜め込み容器27が密着するようにして設置されている。反応ガス溜め込み容器27の側面には、反応容器21の外に設けたガス供給源(不図示)から反応容器21内の反応ガス溜め込み容器27に反応ガスを導入するための導入管28が接続されている。 On the back side of the substrate holder 25 (the side on which the substrate 24 is not held), a reaction gas storage container 27 for temporarily storing the introduced reaction gas is installed in close contact. Connected to the side surface of the reaction gas reservoir 27 is an introduction pipe 28 for introducing a reaction gas from a gas supply source (not shown) provided outside the reaction vessel 21 to the reaction gas reservoir 27 in the reaction vessel 21. ing.
反応容器21内のガス導入ヘッド23と基板ホルダー25との間のガス導入ヘッド23近くには、ガス導入ヘッド23の複数のガス噴出し穴(不図示)から噴出される反応ガスを加熱して活性化あるいは分解するための触媒作用を有する複数の触媒線29が水平に設けられている。各触媒線29は、図の手前から奥方向に所定間隔で設置されている。触媒線29としては、例えばタングステン細線などの高融点金属細線を用いることができる。触媒線29には電源(不図示)が接続されている。なお、各触媒線29の両端側は触媒体フレーム(不図示)によって保持されており、本参考形態においても触媒線29と触媒体フレーム(不図示)とで触媒体が構成されている。 In the vicinity of the gas introduction head 23 between the gas introduction head 23 and the substrate holder 25 in the reaction vessel 21, reaction gas ejected from a plurality of gas ejection holes (not shown) of the gas introduction head 23 is heated. A plurality of catalyst wires 29 having a catalytic action for activation or decomposition are provided horizontally. The catalyst wires 29 are installed at predetermined intervals from the front of the figure to the back. As the catalyst wire 29, for example, a refractory metal wire such as a tungsten wire can be used. A power source (not shown) is connected to the catalyst wire 29. Note that both ends of each catalyst wire 29 are held by a catalyst body frame (not shown), and also in this reference embodiment , the catalyst wire 29 and the catalyst body frame (not shown) constitute a catalyst body.
また、反応容器21の触媒線29と基板ホルダー25との間に位置する一方の側面(導入管28と反対側の側面)には、排気系(不図示)が接続されている排気管30が接続されている。 In addition, an exhaust pipe 30 connected to an exhaust system (not shown) is connected to one side surface (side surface opposite to the introduction pipe 28) located between the catalyst wire 29 of the reaction vessel 21 and the substrate holder 25. It is connected.
次に、上記した触媒CVD装置20による成膜方法について説明する。 Next, a film forming method using the above-described catalytic CVD apparatus 20 will be described.
先ず、基板ホルダー25の表面に複数の基板24を保持する。そして、基板ホルダー25内のヒータ(不図示)に通電して抵抗加熱し、基板ホルダー25上の基板24を所定温度(例えば200℃〜600℃程度)に加熱すると共に、触媒線(本実施形態ではタングステン細線)29に通電して抵抗加熱し、触媒線29を所定温度(例えば1600℃〜1800℃程度)に加熱する。この際、排気系(不図示)の駆動により排気管30を通して反応容器21内を排気して所定の圧力に調整する。 First, a plurality of substrates 24 are held on the surface of the substrate holder 25. Then, a heater (not shown) in the substrate holder 25 is energized and resistance-heated, the substrate 24 on the substrate holder 25 is heated to a predetermined temperature (for example, about 200 ° C. to 600 ° C.) and a catalyst wire (this embodiment). In this case, the tungsten wire 29 is energized and resistance-heated, and the catalyst wire 29 is heated to a predetermined temperature (for example, about 1600 ° C. to 1800 ° C.). At this time, the inside of the reaction vessel 21 is exhausted through the exhaust pipe 30 by driving an exhaust system (not shown) and adjusted to a predetermined pressure.
そして、導入管28を通してガス供給源(不図示)から各反応ガス溜め込み容器27内に反応ガス(例えば、シランガスとアンモニアガスの混合ガスなど)を連続的に所定流量で供給し、反応ガス溜め込み容器27内に反応ガスを溜め込んでいく。反応ガス溜め込み容器27内に一定量以上の反応ガスが溜め込まれると、基板ホルダー25に設けた複数のガス噴出孔26を通して各反応ガス溜め込み容器27内の反応ガスが、基板ホルダー25の表面(基板24が保持されている面)側に噴出する。 Then, a reaction gas (for example, a mixed gas of silane gas and ammonia gas) is continuously supplied at a predetermined flow rate from a gas supply source (not shown) into each reaction gas storage container 27 through the introduction pipe 28, and the reaction gas storage container is supplied. The reaction gas is accumulated in 27. When a certain amount or more of the reactive gas is stored in the reactive gas reservoir 27, the reactive gas in each reactive gas reservoir 27 passes through the plurality of gas ejection holes 26 provided in the substrate holder 25, and the surface of the substrate holder 25 (substrate It is ejected to the surface side where 24 is held.
なお、反応ガス溜め込み容器27には、その容積を可変できるように可動部分(不図示)が設けられており、可動機構(不図示)の駆動でこの可動部分の容積を変位させることによって、基板ホルダー25の表面側への反応ガスの噴出量を調整することができる。 The reactive gas reservoir 27 is provided with a movable part (not shown) so that the volume thereof can be varied, and the volume of the movable part is displaced by driving a movable mechanism (not shown) to thereby change the substrate. The amount of reaction gas ejected to the surface side of the holder 25 can be adjusted.
基板ホルダー25の表面側に噴出した反応ガスは、通電により加熱されている触媒線29により活性化あるいは分解され、堆積種が生成される。この際、同時に導入管22を通してガス供給源(不図示)からガス導入ヘッド23内に反応ガス(例えば、シランガスとアンモニアガスの混合ガスなど)を連続的に所定流量で供給し、下面に形成した複数のガス噴出し口(不図示)から反応ガスを触媒線29に向けて噴出する。噴出した反応ガスは、通電により加熱されている触媒線29により活性化あるいは分解され、堆積種が生成される。 The reaction gas ejected to the surface side of the substrate holder 25 is activated or decomposed by the catalyst wire 29 that is heated by energization, and a deposition species is generated. At this time, a reaction gas (for example, a mixed gas of silane gas and ammonia gas) is continuously supplied at a predetermined flow rate from a gas supply source (not shown) into the gas introduction head 23 through the introduction pipe 22 and formed on the lower surface. A reactive gas is ejected toward the catalyst wire 29 from a plurality of gas ejection ports (not shown). The ejected reaction gas is activated or decomposed by the catalyst wire 29 that is heated by energization, and a deposited species is generated.
このように本参考形態では、上部のガス導入ヘッド23から反応ガスを噴出すと共に、基板ホルダー25の背面側からガス噴出孔26を通して基板ホルダー25の表面(基板24が保持されている面)側に反応ガスを噴出することにより、従来のように上部のガス導入ヘッド23からのみ反応ガスを噴出す場合に比べて、触媒線29による活性化あるいは分解によって生成された堆積種を各基板24の表面全体により均一に堆積させることができ、大サイズの基板においても基板面内の膜厚分布が良好な薄膜を得ることができる。 As described above, in the present embodiment , the reaction gas is ejected from the upper gas introduction head 23 and the surface of the substrate holder 25 (surface on which the substrate 24 is held) side through the gas ejection hole 26 from the back side of the substrate holder 25. As compared with the conventional case where the reaction gas is ejected only from the upper gas introduction head 23, the deposition species generated by the activation or decomposition by the catalyst wire 29 are caused to be generated on each substrate 24. The thin film can be deposited uniformly over the entire surface, and a thin film having a good film thickness distribution within the substrate surface can be obtained even for a large-sized substrate.
また、本参考形態において、反応容器21内の上部にガス導入ヘッド23を備えていなくて、基板ホルダー25の背面側からガス噴出孔26を通して基板ホルダー25の表面(基板24が保持されている面)側に反応ガスを噴出するだけの構成でも、触媒線29による活性化あるいは分解によって生成された堆積種を各基板24の表面全体に均一に堆積させることができる。 Further, in this reference embodiment , the gas introduction head 23 is not provided in the upper part of the reaction vessel 21, and the surface of the substrate holder 25 (the surface on which the substrate 24 is held) passes through the gas ejection holes 26 from the back side of the substrate holder 25. Even with a configuration in which the reaction gas is simply ejected to the) side, the deposition species generated by activation or decomposition by the catalyst wire 29 can be uniformly deposited on the entire surface of each substrate 24.
1、1a、20 触媒CVD装置
2、21 反応容器
3 触媒体
4、4a、4b、4c、4d ガス流れ制御板
5a、5b、25 基板ホルダー
6、24 基板
7、17、26 ガス噴出孔
8a、8b、27 反応ガス溜め込み容器
10、30 排気管
11a、11b、11a1、11a2、11a3、11a4 反応ガス導入管
12、29 触媒線
23 ガス導入ヘッド
1, 1a, 20 Catalytic CVD apparatus 2, 21 Reaction vessel 3 Catalyst body 4, 4a, 4b, 4c, 4d Gas flow control plate 5a, 5b, 25 Substrate holder 6, 24 Substrate 7, 17, 26 Gas ejection hole 8a, 8b, 27 a reaction gas entrapment vessels 10, 30 exhaust pipe 11a, 11b, 11a 1, 11a 2, 11a 3, 11a 4 reaction gas inlet tube 12,29 catalytic wire 23 gas inlet head
Claims (3)
前記基板ホルダーの基板保持面側と逆側の背面に反応ガス溜め込み容器を設けて、前記基板ホルダーの背面と基板保持面との間を貫通するようにして複数のガス噴出し孔を形成し、
前記触媒体を前記反応容器の水平な底面に対して垂直に設置し、前記触媒体を間にしてその外側に前記基板保持面側がそれぞれ対向するようにして2つの前記基板ホルダーを前記反応容器の水平な底面に対して略垂直に設置し、
前記基板ホルダーの対向する基板保持面の間で前記触媒体の外周面に、前記ガス噴出し孔を通して前記基板ホルダーの基板保持面側に噴出した反応ガスの流れを制御するガス流れ制御板を設置し、
前記ガス導入系からそれぞれの前記反応ガス溜め込み容器内に反応ガスを導入して、前記反応ガス溜め込み容器内に溜め込んだ反応ガスを前記ガス噴出し孔から前記触媒体に向かって噴出して堆積種とし、前記触媒体を挟む前記基板ホルダーに保持された前記基板に堆積させる、
ことを特徴とする触媒CVD装置。 A reaction vessel whose pressure can be adjusted by operating an exhaust system, a substrate holder for holding a substrate in the reaction vessel, a gas introduction system for introducing a reaction gas into the reaction vessel, and a substrate holding surface side of the substrate holder; A deposit formed by activating or decomposing the reaction gas introduced into the reaction vessel from the gas introduction system into the reaction vessel and heated to high temperature by energization. In a catalytic CVD apparatus that deposits seeds on a substrate held by the substrate holder to form a film,
A reactive gas reservoir is provided on the back surface of the substrate holder opposite to the substrate holding surface side, and a plurality of gas ejection holes are formed so as to penetrate between the back surface of the substrate holder and the substrate holding surface,
The catalyst body is installed vertically with respect to the horizontal bottom surface of the reaction vessel, and the two substrate holders are attached to the reaction vessel so that the substrate holding surface side faces the outside with the catalyst body in between. Install it almost perpendicular to the horizontal bottom,
A gas flow control plate for controlling the flow of the reaction gas ejected to the substrate holding surface side of the substrate holder through the gas ejection hole is installed on the outer peripheral surface of the catalyst body between the substrate holding surfaces facing the substrate holder. And
A reaction gas is introduced into each of the reaction gas reservoirs from the gas introduction system, and the reaction gas accumulated in the reaction gas reservoir is ejected from the gas ejection hole toward the catalyst body to form a deposition species. And depositing on the substrate held by the substrate holder sandwiching the catalyst body,
The catalytic CVD apparatus characterized by the above-mentioned.
ことを特徴とする請求項1に記載の触媒CVD装置。 A reaction gas introduction pipe having a plurality of gas ejection holes for ejecting a reaction gas from the periphery of the catalyst body was installed in the vicinity of the gas flow control plate,
The catalytic CVD apparatus according to claim 1 .
ことを特徴とする請求項2に記載の触媒CVD装置。 A flat plate member is installed so as to surround each of the left and right sides and the upper and lower sides of the catalyst body located in front of the substrate holding surface side of the substrate holder, and a plurality of gas ejection holes are penetrated through the flat plate members. In addition, the upper and lower flat plate members are formed with openings for passing both ends of the catalyst wire of the catalyst body, and the gas is formed on the back surface of each flat plate member opposite to the catalyst body. An introduction system is attached, and the reaction gas introduced into the gas introduction system is ejected from the periphery of the catalyst body through the gas ejection holes.
The catalytic CVD apparatus according to claim 2 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004146648A JP4374278B2 (en) | 2004-05-17 | 2004-05-17 | Catalytic CVD equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004146648A JP4374278B2 (en) | 2004-05-17 | 2004-05-17 | Catalytic CVD equipment |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009163687A Division JP5114457B2 (en) | 2009-07-10 | 2009-07-10 | Catalytic CVD equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005327995A JP2005327995A (en) | 2005-11-24 |
JP4374278B2 true JP4374278B2 (en) | 2009-12-02 |
Family
ID=35474074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004146648A Expired - Lifetime JP4374278B2 (en) | 2004-05-17 | 2004-05-17 | Catalytic CVD equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4374278B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5089906B2 (en) * | 2006-04-05 | 2012-12-05 | 株式会社アルバック | Vertical chemical vapor deposition system |
JP4948021B2 (en) * | 2006-04-13 | 2012-06-06 | 株式会社アルバック | Catalytic chemical vapor deposition system |
JP5114457B2 (en) * | 2009-07-10 | 2013-01-09 | 株式会社アルバック | Catalytic CVD equipment |
JP5586199B2 (en) | 2009-10-02 | 2014-09-10 | 三洋電機株式会社 | Catalytic CVD apparatus, film forming method, and solar cell manufacturing method |
JP5357689B2 (en) | 2009-10-02 | 2013-12-04 | 三洋電機株式会社 | Catalytic CVD apparatus, film forming method, solar cell manufacturing method, and substrate holder |
KR101971613B1 (en) * | 2011-09-27 | 2019-04-24 | 엘지이노텍 주식회사 | Deposition apparatus |
JP6955260B2 (en) * | 2017-12-28 | 2021-10-27 | 株式会社エー・シー・イー | Gas supply device |
-
2004
- 2004-05-17 JP JP2004146648A patent/JP4374278B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2005327995A (en) | 2005-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5779174B2 (en) | Semiconductor process reactor and components thereof | |
KR200224419Y1 (en) | Apparatus for growing thin films | |
JP5619164B2 (en) | CVD method and CVD reactor | |
EP1687460B1 (en) | Method and apparatus for fabricating a conformal thin film on a substrate | |
EP0254654A1 (en) | Method of chemical vapor deposition | |
KR20100077442A (en) | Showerhead and atomic layer deposition apparatus having the same | |
JP2002060947A (en) | Cvd of atomic layer | |
JP4374278B2 (en) | Catalytic CVD equipment | |
WO2006130298B1 (en) | Deposition methods, and deposition apparatuses | |
WO1999025909A1 (en) | Epitaxial growth furnace | |
KR100767296B1 (en) | Source-Powder Compensating Apparatus for Chemical Vapour Deposition System | |
JP5114457B2 (en) | Catalytic CVD equipment | |
US12065730B2 (en) | Coating of fluid-permeable materials | |
US20170107613A1 (en) | Device for depositing nanotubes | |
KR100795487B1 (en) | Laminar flow control device and chemical vapor deposition reactor having the same | |
WO2004097913A1 (en) | Vacuum film-forming apparatus, vacuum film-forming method and solar battery material | |
JP2009228090A (en) | Vapor deposition apparatus and vapor deposition source | |
JP3224238B2 (en) | Thin film forming equipment | |
JPWO2021049146A1 (en) | Deposition source and vacuum processing equipment | |
JP3009371B2 (en) | Diamond-like carbon film deposition equipment | |
JP3824301B2 (en) | Vapor growth apparatus and vapor growth method | |
KR102531696B1 (en) | Precursor container | |
KR20210017147A (en) | Apparatus for supplying gas and apparatus for processing substrate using the same | |
JP3407400B2 (en) | Thin film vapor deposition equipment | |
US20030127050A1 (en) | Chemical vapor deposition apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070222 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070518 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070518 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090512 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090710 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090811 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090907 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120911 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4374278 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120911 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130911 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |