TWI681632B - 時脈調整電路及時脈調整方法 - Google Patents

時脈調整電路及時脈調整方法 Download PDF

Info

Publication number
TWI681632B
TWI681632B TW108109717A TW108109717A TWI681632B TW I681632 B TWI681632 B TW I681632B TW 108109717 A TW108109717 A TW 108109717A TW 108109717 A TW108109717 A TW 108109717A TW I681632 B TWI681632 B TW I681632B
Authority
TW
Taiwan
Prior art keywords
clock
frequency
reference clock
drain
coupled
Prior art date
Application number
TW108109717A
Other languages
English (en)
Other versions
TW202002514A (zh
Inventor
陳建文
Original Assignee
瑞昱半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞昱半導體股份有限公司 filed Critical 瑞昱半導體股份有限公司
Priority to TW108109717A priority Critical patent/TWI681632B/zh
Application granted granted Critical
Publication of TWI681632B publication Critical patent/TWI681632B/zh
Publication of TW202002514A publication Critical patent/TW202002514A/zh

Links

Images

Abstract

本案揭露了時脈調整電路及時脈調整方法。時脈調整電路用來調整一輸入時脈以產生一輸出時脈,且包含一低通濾波器、一直流控制電路、一直流偏移放大器、一放大器以及一積分器。低通濾波器濾波該輸入時脈以產生一濾波後訊號。直流控制電路根據一控制訊號調整一直流電壓。直流偏移放大器根據該濾波後訊號及該直流電壓產生一中間時脈。放大器根據該中間時脈產生該輸出時脈。積分器根據該輸出時脈產生該控制訊號。該控制訊號係隨著該輸出時脈之一占空比之平均成分來變化。

Description

時脈調整電路及時脈調整方法
本案是關於電路的時脈,尤其是關於占空比校正(duty cycle correction, DCC)及/或倍頻器(frequency multiplier)。
圖1係習知占空比校正電路的示意圖。占空比校正電路100包含除頻器110、倍頻電路120、濾波器130、濾波器140以及積分器150。占空比校正電路100的功能在於校正輸入時脈CLKIN的占空比,使校正後的時脈(即輸出時脈CLKOUT)的占空比接近或等於50%。除頻器110對輸入時脈CLKIN除頻後產生訊號VA,訊號VA的頻率為輸入時脈CLKIN的一半,訊號VA的占空比為50%。訊號VA經倍頻電路120(包含延遲電路122及互斥或閘(Exclusive OR Gate)124)倍頻後得到輸出時脈CLKOUT(亦即輸出時脈CLKOUT的頻率與輸入時脈CLKIN的頻率實質上相同)。濾波器130(包含電阻R1及電容C1)及濾波器140(包含電阻R2及電容C2)分別對輸出時脈CLKOUT及訊號VA濾波,以取出低頻成分(占空比之平均成分)。積分器150包含比較器155及電容C3。比較器155根據訊號VA的直流準位以及輸出時脈CLKOUT的直流準位來決定對電容C3充電或放電。控制訊號Vctrl(即電容C3的端電壓)的準位與輸出時脈CLKOUT的占空比有關──輸出時脈CLKOUT的占空比改變(不是50%),控制訊號Vctrl的準位跟著改變,使得輸出時脈CLKOUT的占空比為50%。利用控制訊號Vctrl調整延遲電路122的延遲時間可使輸出時脈CLKOUT的占空比趨近50%。
圖2為習知倍頻電路的示意圖。倍頻電路200包含相位偵測電路210、電荷泵220、迴路濾波器(loop filter)230(包含電容C)、延遲電路240以及邊緣組合電路250。相位偵測電路210、電荷泵220、迴路濾波器230及延遲電路240(包含複數個延遲單元Td)構成一個延遲鎖定迴路(delay lock loop, DLL);也就是說,時脈CLKFB與輸入時脈CLKIN具有實質上相同的頻率與相位。該些延遲單元Td的延遲時間受到控制訊號Vctrl(即電容C的端電壓)控制。邊緣組合電路250根據延遲時脈CLKIND的時脈邊緣與輸入時脈CLKIN的時脈邊緣產生輸出時脈CLKOUT。當延遲時脈CLKIND的相位與輸入時脈CLKIN的相位相差180度時,輸出時脈CLKOUT的頻率為輸入時脈CLKIN的兩倍,且具有50%的占空比。
圖1及圖2的電路複雜且易產生雜訊,所以有必要提出更為簡潔的電路。
鑑於先前技術之不足,本案之一目的在於提供一種時脈調整電路及時脈調整方法,以簡化占空比校正電路及/或倍頻器。
本案揭露一種時脈調整電路,用來調整一輸入時脈以產生一輸出時脈,包含一低通濾波器、一直流控制電路、一直流偏移放大器、一放大器以及一積分器。低通濾波器濾波該輸入時脈以產生一濾波後訊號。直流控制電路根據一控制訊號調整一直流電壓。直流偏移放大器根據該濾波後訊號及該直流電壓產生一中間時脈。放大器根據該中間時脈產生該輸出時脈。積分器根據該輸出時脈產生該控制訊號。該控制訊號係隨著該輸出時脈之占空比之平均成分來變化。
本案另揭露一種時脈調整方法,用來調整一輸入時脈以產生一輸出時脈,包含:濾波該輸入時脈以產生一濾波後訊號;根據該濾波後訊號及一直流電壓產生一中間時脈;根據該中間時脈產生該輸出時脈;根據該輸出時脈產生一控制訊號,其中該控制訊號係隨著該輸出時脈之占空比之平均成分來變化;以及根據該控制訊號調整該直流電壓。
本案另揭露一種時脈調整電路,用來產生一輸出時脈,包含一相位內插器、一邏輯電路以及一積分器。相位內插器根據一第一參考時脈、一第二參考時脈及一控制訊號內插產生一中間時脈。該第一參考時脈的頻率、該第二參考時脈的頻率及該中間時脈的頻率實質上相同。邏輯電路根據該第一參考時脈及該第二參考時脈的其中之一及該中間時脈產生該輸出時脈。積分器根據該輸出時脈產生該控制訊號。該控制訊號係隨著該輸出時脈之占空比之平均成分來變化。
本案另揭露一種時脈調整方法,用來產生一輸出時脈,包含:根據一第一參考時脈、一第二參考時脈及一控制訊號內插產生一中間時脈,其中該第一參考時脈的頻率、該第二參考時脈的頻率及該中間時脈的頻率實質上相同;根據該第一參考時脈及該第二參考時脈的其中之一及該中間時脈產生該輸出時脈;以及根據該輸出時脈產生該控制訊號,其中該控制訊號係隨著該輸出時脈之占空比之平均成分來變化。
本案另揭露一種時脈調整電路,用來產生一輸出時脈,包含一相位內插器、一放大器、一邏輯電路以及一積分器。相位內插器根據一第一參考時脈、一第二參考時脈及一控制訊號內插產生一中間時脈。該第一參考時脈的頻率、該第二參考時脈的頻率及該中間時脈的頻率實質上相同。放大器放大該中間時脈以產生一放大後的中間時脈。邏輯電路根據該第一參考時脈及該第二參考時脈的其中之一及該放大後的中間時脈產生該輸出時脈。積分器根據該輸出時脈產生該控制訊號。該控制訊號係隨著該輸出時脈之占空比之平均成分來變化。
本案另揭露一種時脈調整方法,用來產生一輸出時脈,包含:根據一第一參考時脈、一第二參考時脈及一控制訊號內插產生一中間時脈,其中該第一參考時脈的頻率、該第二參考時脈的頻率及該中間時脈的頻率實質上相同;放大該中間時脈以產生一放大後的中間時脈;根據該第一參考時脈及該第二參考時脈的其中之一及該放大後的中間時脈產生該輸出時脈;以及根據該輸出時脈產生該控制訊號,其中該控制訊號係隨著該輸出時脈之占空比之平均成分來變化。
相較於習知電路,本案之時脈調整電路及時脈調整方法更為簡單、更容易實作且雜訊更低。
有關本案的特徵、實作與功效,茲配合圖式作實施例詳細說明如下。
以下說明內容之技術用語係參照本技術領域之習慣用語,如本說明書對部分用語有加以說明或定義,該部分用語之解釋係以本說明書之說明或定義為準。
本案之揭露內容包含時脈調整電路及時脈調整方法。由於本案之時脈調整電路所包含之部分元件單獨而言可能為已知元件,因此在不影響該裝置實施例之充分揭露及可實施性的前提下,以下說明對於已知元件的細節將予以節略。此外,本案之時脈調整方法可藉由本案之時脈調整電路或其等效裝置來執行,在不影響該方法實施例之充分揭露及可實施性的前提下,以下方法實施例之說明將著重於步驟內容而非硬體。
圖3為本案時脈調整電路之一實施例的功能方塊圖。時脈調整電路300包含低通濾波器310、直流偏移放大器320、直流控制電路330、積分器340及放大器350。圖4為本案時脈調整方法之一實施例的流程圖(對應圖3之裝置)。圖5為圖3之各訊號的波形圖。低通濾波器310濾波輸入時脈CLKIN並產生濾波後訊號VL(步驟S410)。濾波後訊號VL可以是一個類似弦波的訊號。接著直流偏移放大器320根據濾波後訊號VL及直流電壓VE來得到中間時脈VAn及/或中間時脈VAp(步驟S420)。更明確地說,中間時脈VAn(或中間時脈VAp)的波形與濾波後訊號VL相似,但振幅大於等於濾波後訊號VL的振幅。除了放大訊號之外,直流偏移放大器320亦根據直流電壓VE調整中間時脈VAn(或中間時脈VAp)的直流準位。接下來放大器350根據中間時脈VAn及/或中間時脈VAp產生輸出時脈CLKOUT(步驟S430)。在一些實施例中,當中間時脈VAn大於中間時脈VAp時,放大器350的輸出(亦即輸出時脈CLKOUT)為高電壓準位;當中間時脈VAn小於中間時脈VAp時,放大器350的輸出為低電壓準位。在一些實施例中,放大器350將中間時脈VAn或中間時脈VAp與直流電壓做比較來產生輸出時脈CLKOUT。放大器350所產生的輸出時脈CLKOUT即為輸入時脈CLKIN經調整過的訊號或時脈。放大器350可以由擺幅放大器(swing amplifier)實作,擺幅放大器為習知元件,故不再贅述。
積分器340根據輸出時脈CLKOUT產生控制訊號VD,控制訊號VD隨著輸出時脈CLKOUT的占空比之平均成分來變化,而輸出時脈CLKOUT的占空比之平均成分與輸出時脈CLKOUT的占空比呈正相關(步驟S440)。舉例來說, 積分器340可以(1)當輸出時脈CLKOUT的占空比大於(或小於)一目標值(例如50%)時, 降低(或提高)控制訊號VD的電壓準位;或(2) 當輸出時脈CLKOUT的占空比大於(或小於)該目標值時, 提高(或降低)控制訊號VD的電壓準位。圖5的範例波形對應上述的方法(1)。輸出時脈CLKOUT的占空比在時間T1之前小於50%,並且在時間T1到達50%後維持不變。控制訊號VD的變化反應輸出時脈CLKOUT的占空比的變化──在時間T1前持續增加,時間T1後維持不變。
直流控制電路330根據控制訊號VD調整直流電壓VE(步驟S450)。在一些實施例中,直流電壓VE為直流訊號,而且直流控制電路330根據上述的積分器340的兩種機制對應調整直流電壓VE;亦即:(1)隨著控制訊號VD上升(或下降)而降低(或提高)直流電壓VE;或(2) 隨著控制訊號VD上升(或下降)而提高(或降低)直流電壓VE。圖5的範例波形對應上述的方法(1),因此在時間T1之前,直流控制電路330根據持續上升的控制訊號VD而持續降低直流電壓VE。在一些實施例中,直流電壓VE決定中間時脈VAp的直流準位(如圖5的波形所示)。時脈調整電路300自動重複執行步驟S410~S450。隨著控制訊號VD及直流電壓VE的變化,訊號輸出時脈CLKOUT的占空比逐漸趨近目標值,達到調整時脈的目的。
圖6顯示低通濾波器310、直流偏移放大器320及直流控制電路330的其中一種實施方式的細部電路圖。低通濾波及直流偏移放大電路610整合低通濾波器310及直流偏移放大器320的功能,包含濾波電路612、電晶體614、電晶體616及電流源618。電晶體614的閘極接收輸入時脈CLKIN,中間時脈VAn透過電晶體614的汲極輸出,並且電晶體614的源極透過電流源618耦接第一參考電壓(例如接地)。電晶體616的閘極接收輸入時脈CLKIN的反相訊號#CLKIN(由反相器620產生),中間時脈VAp透過電晶體616的汲極輸出,並且電晶體616的源極透過電流源618耦接第一參考電壓。濾波電路612包含並聯的電容C1與電阻R1以及並聯的電容C2與電阻R2。電容C1的一端耦接電晶體614的汲極,另一端耦接第二參考電壓(例如電壓源VDD)。電阻R1的一端耦接電晶體614的汲極,另一端耦接該第二參考電壓。電容C2的一端耦接電晶體616的汲極,另一端耦接第二參考電壓。電阻R2的一端耦接電晶體616汲極,另一端耦接第二參考電壓。
直流控制電路330包含電晶體332、電晶體334及電流源336。電晶體332的閘極接收參考訊號Vref(例如定電壓),電晶體332的汲極耦接電晶體614的汲極,並且電晶體332的源極透過電流源336耦接第一參考電壓。電晶體334的閘極接收控制訊號VD,電晶體334的汲極耦接電晶體616的汲極,並且電晶體334的源極透過電流源336耦接第一參考電壓。
低通濾波及直流偏移放大電路610同時具有濾波及放大的功能。輸入時脈CLKIN及其反相訊號#CLKIN分別被電晶體614及電晶體616放大,且放大後的輸入時脈CLKIN及放大後的訊號#CLKIN被濾波電路612濾波。濾波及放大後的訊號(亦即中間時脈VAn及中間時脈VAp)由電晶體614的汲極及電晶體616的汲極輸出。電晶體614的汲極的直流準位及電晶體616的汲極的直流準位由直流控制電路330控制。藉由調整參考訊號Vref及控制訊號VD可分別調整中間時脈VAn及中間時脈VAp的直流準位。
圖7為本案時脈調整電路之另一實施例的電路圖。相較於圖6,圖7的時脈調整電路更包含倍頻電路710及除頻器720。經倍頻電路710(包含互斥或閘712及延遲電路714)調整後,輸出時脈CLKOUT的頻率為輸入時脈CLKIN的兩倍,但占空比同樣維持在目標值。除頻器720將輸出時脈CLKOUT除頻使訊號VF的頻率與輸入時脈CLKIN的頻率相同。圖7的時脈調整電路可以作為倍頻電路。
圖8為本案時脈調整電路之另一實施例的電路圖。電晶體810的閘極接收輸入時脈CLKIN,中間時脈VAn或中間時脈VAp透過電晶體810的汲極輸出,並且電晶體810的源極透過電流源815耦接第一參考電壓(例如接地)。電容C的一端耦接電晶體810的汲極,另一端耦接第二參考電壓(例如電壓源VDD)。電阻R的一端耦接電晶體810的汲極,另一端耦接第二參考電壓。電晶體820的閘極接收控制訊號VD,電晶體820的汲極耦接電晶體810的汲極,並且電晶體820的源極透過電流源825耦接第一參考電壓。圖6的電路係基於差動訊號,圖8的電路係圖6的電路改由單端訊號實作,圖8的電路的操作細節為本技術領域具有通常知識者所熟知,故不再贅述。
圖9為本案時脈調整電路之另一實施例的電路圖。時脈調整電路900包含低通濾波器310、放大器910、直流控制電路330、積分器340及放大器350。低通濾波器310由電阻R及電容C實作。放大器910以非反相輸入端(正端)接收濾波後訊號VL,以反相輸入端(負端)接收直流電壓VE,並且輸出中間時脈VAn或中間時脈VAp。
圖10為本案時脈調整電路之另一實施例的電路圖。時脈調整電路1000包含相位內插器1010、邏輯電路1020以及積分器1030。圖11為本案時脈調整方法之一實施例的流程圖(對應圖10之裝置),圖12為圖10之各訊號的波形圖。
相位內插器1010根據參考時脈VA1、參考時脈VA2及控制訊號VD內插產生中間時脈VB(步驟S1110)。參考時脈VA1、參考時脈VA2及中間時脈VB的頻率實質上相同。圖12僅繪示參考時脈VA1,而參考時脈VA1與參考時脈VA2的相位差與輸出時脈CLKOUT的占空比有關。在一些實施例中,參考時脈VA2與參考時脈VA1的相位差決定占空比的調整範圍有多大。相位內插器1010根據控制訊號VD調整中間時脈VB的相位(亦即使中間時脈VB的相位相較於參考時脈VA1的相位及參考時脈VA2的相位產生變化),中間時脈VB的相位介於參考時脈VA1與參考時脈VA2之間。
在一些實施例中,參考時脈VA1與參考時脈VA2的相位差可介於
Figure 02_image001
Figure 02_image003
之間。
在一些實施例中,參考時脈VA1與參考時脈VA2的占空比實質上為50%。邏輯電路1020根據參考時脈VA1及參考時脈VA2的其中之一及中間時脈VB產生輸出時脈CLKOUT(步驟S1120)。如圖12所示,輸出時脈CLKOUT為參考時脈VA1及中間時脈VB的互斥或(Exclusive OR)運算的結果,因此邏輯電路1020可以使用互斥或閘1022或互斥或閘1022的等效電路實作。
積分器1030根據輸出時脈CLKOUT產生控制訊號VD(步驟S1130)。控制訊號VD隨著輸出時脈CLKOUT的占空比之平均成分來變化。積分器1030的功能與積分器340的功能實質上相同,故不再贅述。如圖12所示,當輸出時脈CLKOUT的占空比小於目標值(例如50%)時(亦即時間T1之前),控制訊號VD的電壓準位上升。在控制訊號VD的電壓準位到達穩定之前(亦即時間T1之前),相位內插器1010根據控制訊號VD持續調整中間時脈VB的相位。時脈調整電路1000自動重複執行步驟S1110~S1130。隨著中間時脈VB的相位改變,訊號輸出時脈CLKOUT的占空比逐漸趨近目標值,達到調整時脈占空比的目的。
在圖10的實施例中,時脈調整電路1000的輸入時脈(亦即參考時脈VA1及參考時脈VA2)的頻率為輸出時脈CLKOUT的頻率的二分之一。
圖13為本案時脈調整電路之另一實施例的電路圖。時脈調整電路1300包含除頻器1310、相位內插器1010、邏輯電路1020及積分器1030。在此實施例中,參考時脈VA1係除頻器1310對輸入時脈CLKIN除頻後所得到的時脈(例如除2,使參考時脈VA1的頻率為輸入時脈CLKIN的頻率的二分之一),而參考時脈VA2為參考時脈VA1的反相訊號(由反相器1320產生)。也就是說,在此實施例中,參考時脈VA1與參考時脈VA2的相位差實質上為
Figure 02_image005
,參考時脈VA1與參考時脈VA2的占空比為50%,而輸入時脈CLKIN的頻率與輸出時脈CLKOUT的頻率相同。
圖14為本案時脈調整電路之另一實施例的電路圖。時脈調整電路1400包含相位內插器1010、邏輯電路1020、積分器1030以及放大器1410。放大器1410放大中間時脈VB以輸出放大後的中間時脈VB’。邏輯電路1020根據參考時脈VA1及參考時脈VA2的其中之一及放大後的中間時脈VB’產生輸出時脈CLKOUT。放大後的中間時脈VB’相較於中間時脈VB有更大的振幅且可能更接近方波。也就是說,放大器1410在此處有調整振幅及/或整型波形的功能。
圖15為本案時脈調整電路之另一實施例的電路圖。時脈調整電路1500包含相位內插器1010、邏輯電路1020、積分器1030、除頻器1310、反相器1320以及放大器1410。圖16為本案時脈調整方法之一實施例的流程圖(對應圖15之裝置)。除頻器1310及反相器1320的操作對應步驟S1605;相位內插器1010的操作對應步驟S1610;放大器1410的操作對應步驟S1615;邏輯電路1020的操作對應步驟S1620;以及積分器1030的操作對應步驟S1630。該些步驟的細節已於圖10、13-14的實施例作過說明,故不再贅述。
圖17顯示相位內插器1010的細部電路的一實施例。相位內插器1010包含電阻R、電容C、電晶體1012~1018以及電流源1019。在圖17所示的實施例中電晶體1012~1018以N型金氧半場場效電晶體實作(N-type Metal-Oxide-Semiconductor Field-Effect Transistor, NMOSFET)。電晶體1012透過閘極接收參考時脈VA1,並透過汲極輸出中間時脈VB。電晶體1014透過閘極接收參考時脈VA2,且其汲極電連接電晶體1012的汲極。電晶體1016透過閘極接收參考訊號Vref(例如定電壓),其汲極電連接電晶體1012的源極,並且其源極透過電流源1019耦接第一參考電壓(例如接地)。電晶體1018透過閘極接收控制訊號VD,其汲極電連接電晶體1014的源極,並且其源極透過電流源1019耦接第一參考電壓。電阻R的一端耦接電晶體1012的汲極,另一端耦接第二參考電壓(例如電壓源)。電容C與電阻R並聯。
圖17的相位內插器1010混合參考時脈VA1和參考時脈VA2並使用濾波器的方式(以電阻R及電容C作為濾波電路)來製造相位內差,以產生中間時脈VB。
由於本技術領域具有通常知識者可藉由本案之裝置實施例的揭露內容來瞭解本案之方法實施例的實施細節與變化,因此,為避免贅文,在不影響該方法實施例之揭露要求及可實施性的前提下,重複之說明在此予以節略。請注意,前揭圖示中,元件之形狀、尺寸、比例以及步驟之順序等僅為示意,係供本技術領域具有通常知識者瞭解本案之用,非用以限制本案。
雖然本案之實施例如上所述,然而該些實施例並非用來限定本案,本技術領域具有通常知識者可依據本案之明示或隱含之內容對本案之技術特徵施以變化,凡此種種變化均可能屬於本案所尋求之專利保護範疇,換言之,本案之專利保護範圍須視本說明書之申請專利範圍所界定者為準。
100   占空比校正電路 110、720、1310   除頻器 120、200、710   倍頻電路 122、240、714   延遲電路 124、712、1022   互斥或閘 130、140   濾波器 150、340、1030   積分器 155   比較器 210   相位偵測電路 220   電荷泵 230   迴路濾波器 250   邊緣組合電路 TD   延遲單元 300、900、1000、1300、1400、1500   時脈調整電路 310   低通濾波器 320   直流偏移放大器 330   直流控制電路 350、910、1410   放大器 610   低通濾波及直流偏移放大電路 612   濾波電路 614、616、332、334、810、820、1012、1014、1016、1018   電晶體 618、336、815、825、1019   電流源 620、1320   反相器 1010   相位內插器 1020   邏輯電路 S410~S450、S1110~S1130、S1605~S1630   步驟
[圖1]為習知占空比校正電路的示意圖; [圖2]為習知倍頻電路的示意圖; [圖3]為本案時脈調整電路之一實施例的功能方塊圖; [圖4]為本案時脈調整方法之一實施例的流程圖; [圖5]為圖3之各訊號的波形圖; [圖6]顯示低通濾波器310、直流偏移放大器320及直流控制電路330的其中一種實施方式的細部電路圖; [圖7]為本案時脈調整電路之另一實施例的電路圖; [圖8]為本案時脈調整電路之另一實施例的電路圖; [圖9]為本案時脈調整電路之另一實施例的電路圖; [圖10]為本案時脈調整電路之另一實施例的電路圖; [圖11]為本案時脈調整方法之一實施例的流程圖; [圖12]為圖10之各訊號的波形圖; [圖13]為本案時脈調整電路之另一實施例的電路圖; [圖14]為本案時脈調整電路之另一實施例的電路圖; [圖15]為本案時脈調整電路之另一實施例的電路圖; [圖16]為本案時脈調整方法之一實施例的流程圖;以及 [圖17]顯示相位內插器1010的細部電路的一實施例。
300   時脈調整電路 310   低通濾波器 320   直流偏移放大器 330   直流控制電路 340   積分器 350   放大器

Claims (10)

  1. 一種時脈調整電路,用來產生一輸出時脈,包含: 一相位內插器,用來根據一第一參考時脈、一第二參考時脈及一控制訊號內插產生一中間時脈,其中該第一參考時脈的頻率、該第二參考時脈的頻率及該中間時脈的頻率實質上相同; 一邏輯電路,耦接該相位內插器,用來根據該第一參考時脈及該第二參考時脈的其中之一及該中間時脈產生該輸出時脈;以及 一積分器,耦接該相位內插器及該邏輯電路,用來根據該輸出時脈產生該控制訊號,其中該控制訊號係隨著該輸出時脈之一占空比之平均成分變化。
  2. 如申請專利範圍第1項所述之時脈調整電路,更包含: 一除頻器,耦接該相位內插器,用來除頻一輸入時脈以產生該第一參考時脈;以及 一反相器,耦接該除頻器及該相位內插器,用來反相該第一參考時脈以得到該第二參考時脈; 其中該第一參考時脈的頻率及該第二參考時脈的頻率實質上係該輸入時脈的頻率的一半。
  3. 如申請專利範圍第1項所述之時脈調整電路,其中該相位內插器包含: 一第一電晶體,具有一第一閘極、一第一汲極以及一第一源極,其中該第一閘極接收該第一參考時脈,該中間時脈透過該第一汲極輸出; 一第二電晶體,具有一第二閘極、一第二汲極以及一第二源極,其中該第二閘極接收該第二參考時脈,該第二汲極電連接該第一汲極; 一第三電晶體,具有一第三閘極、一第三汲極以及一第三源極,其中該第三閘極接收一參考訊號,該第三汲極電連接該第一源極,並且該第三源極耦接一第一參考電壓; 一第四電晶體,具有一第四閘極、一第四汲極以及一第四源極,其中該第四閘極接收該控制訊號,該第四汲極電連接該第二源極,並且該第四源極耦接該第一參考電壓; 一電容,其一端耦接該第一汲極,另一端耦接一第二參考電壓;以及 一電阻,其一端耦接該第一汲極,另一端耦接該第二參考電壓。
  4. 一種時脈調整方法,用來產生一輸出時脈,包含: 根據一第一參考時脈、一第二參考時脈及一控制訊號內插產生一中間時脈,其中該第一參考時脈的頻率、該第二參考時脈的頻率及該中間時脈的頻率實質上相同; 根據該第一參考時脈及該第二參考時脈的其中之一及該中間時脈產生該輸出時脈;以及 根據該輸出時脈產生該控制訊號,其中該控制訊號係隨著該輸出時脈之一占空比之平均成分變化。
  5. 如申請專利範圍第4項所述之時脈調整方法,更包含: 除頻一輸入時脈以產生該第一參考時脈;以及 反相該第一參考時脈以得到該第二參考時脈; 其中該第一參考時脈的頻率及該第二參考時脈的頻率實質上係該輸入時脈的頻率的一半。
  6. 一種時脈調整電路,用來產生一輸出時脈,包含: 一相位內插器,用來根據一第一參考時脈、一第二參考時脈及一控制訊號內插產生一中間時脈,其中該第一參考時脈的頻率、該第二參考時脈的頻率及該中間時脈的頻率實質上相同; 一放大器,耦接該相位內插器,用來放大該中間時脈以產生一放大後的中間時脈; 一邏輯電路,耦接該放大器,用來根據該第一參考時脈及該第二參考時脈的其中之一及該放大後的中間時脈產生該輸出時脈;以及 一積分器,耦接該相位內插器及該邏輯電路,用來根據該輸出時脈產生該控制訊號,其中該控制訊號係隨著該輸出時脈之一占空比之平均成分變化。
  7. 如申請專利範圍第6項所述之時脈調整電路,更包含: 一除頻器,耦接該相位內插器,用來除頻一輸入時脈以產生該第一參考時脈;以及 一反相器,耦接該除頻器及該相位內插器,用來反相該第一參考時脈以得到該第二參考時脈; 其中該第一參考時脈的頻率及該第二參考時脈的頻率實質上係該輸入時脈的頻率的一半。
  8. 如申請專利範圍第6項所述之時脈調整電路,其中該相位內插器包含: 一第一電晶體,具有一第一閘極、一第一汲極以及一第一源極,其中該第一閘極接收該第一參考時脈,該中間時脈透過該第一汲極輸出; 一第二電晶體,具有一第二閘極、一第二汲極以及一第二源極,其中該第二閘極接收該第二參考時脈,該第二汲極電連接該第一汲極; 一第三電晶體,具有一第三閘極、一第三汲極以及一第三源極,其中該第三閘極接收一參考訊號,該第三汲極電連接該第一源極,並且該第三源極耦接一第一參考電壓; 一第四電晶體,具有一第四閘極、一第四汲極以及一第四源極,其中該第四閘極接收該控制訊號,該第四汲極電連接該第二源極,並且該第四源極耦接該第一參考電壓; 一電容,其一端耦接該第一汲極,另一端耦接一第二參考電壓;以及 一電阻,其一端耦接該第一汲極,另一端耦接該第二參考電壓。
  9. 一種時脈調整方法,用來產生一輸出時脈,包含: 根據一第一參考時脈、一第二參考時脈及一控制訊號內插產生一中間時脈,其中該第一參考時脈的頻率、該第二參考時脈的頻率及該中間時脈的頻率實質上相同; 放大該中間時脈以產生一放大後的中間時脈; 根據該第一參考時脈及該第二參考時脈的其中之一及該放大後的中間時脈產生該輸出時脈;以及 根據該輸出時脈產生該控制訊號,其中該控制訊號係隨著該輸出時脈之一占空比之平均成分變化。
  10. 如申請專利範圍第9項所述之時脈調整方法,更包含: 除頻一輸入時脈以產生該第一參考時脈;以及 反相該第一參考時脈以得到該第二參考時脈; 其中該第一參考時脈的頻率及該第二參考時脈的頻率實質上係該輸入時脈的頻率的一半。
TW108109717A 2018-06-19 2018-06-19 時脈調整電路及時脈調整方法 TWI681632B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108109717A TWI681632B (zh) 2018-06-19 2018-06-19 時脈調整電路及時脈調整方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108109717A TWI681632B (zh) 2018-06-19 2018-06-19 時脈調整電路及時脈調整方法

Publications (2)

Publication Number Publication Date
TWI681632B true TWI681632B (zh) 2020-01-01
TW202002514A TW202002514A (zh) 2020-01-01

Family

ID=69942285

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108109717A TWI681632B (zh) 2018-06-19 2018-06-19 時脈調整電路及時脈調整方法

Country Status (1)

Country Link
TW (1) TWI681632B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6900681B2 (en) * 2003-03-26 2005-05-31 Kabushiki Kaisha Toshiba Phase interpolator and receiver for adjusting clock phases into data phases
US7990195B2 (en) * 2008-10-22 2011-08-02 Samsung Electronics Co., Ltd. Duty cycle correction circuits having short locking times that are relatively insensitive to temperature changes
US20160072620A1 (en) * 2014-09-04 2016-03-10 Inphi Corporation Phase interpolator
US9698808B1 (en) * 2016-10-27 2017-07-04 Cavium, Inc. Phase measurement and correction circuitry
US20180006636A1 (en) * 2013-07-08 2018-01-04 Micron Technology, Inc. Apparatuses and methods for phase interpolating clock signals and for providing duty cycle corrected clock signals

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6900681B2 (en) * 2003-03-26 2005-05-31 Kabushiki Kaisha Toshiba Phase interpolator and receiver for adjusting clock phases into data phases
US7990195B2 (en) * 2008-10-22 2011-08-02 Samsung Electronics Co., Ltd. Duty cycle correction circuits having short locking times that are relatively insensitive to temperature changes
US20180006636A1 (en) * 2013-07-08 2018-01-04 Micron Technology, Inc. Apparatuses and methods for phase interpolating clock signals and for providing duty cycle corrected clock signals
US20160072620A1 (en) * 2014-09-04 2016-03-10 Inphi Corporation Phase interpolator
US9698808B1 (en) * 2016-10-27 2017-07-04 Cavium, Inc. Phase measurement and correction circuitry

Also Published As

Publication number Publication date
TW202002514A (zh) 2020-01-01

Similar Documents

Publication Publication Date Title
TWI660586B (zh) 時脈調整電路及時脈調整方法
US6466071B2 (en) Methods and circuits for correcting a duty-cycle of a signal
US6320438B1 (en) Duty-cycle correction driver with dual-filter feedback loop
US7545223B2 (en) PLL circuit
US20030117194A1 (en) Delay locked loop circuit with duty cycle correction function
US6643790B1 (en) Duty cycle correction circuit with frequency-dependent bias generator
WO2015149653A1 (zh) 一种时钟占空比调整电路及多相位时钟产生器
US7705640B2 (en) Common-mode feedback method using a current starved replica biasing
US8106697B2 (en) Circuit and method for providing a corrected duty cycle
US9413236B2 (en) Voltage converter
US8773186B1 (en) Duty cycle correction circuit
US20070170987A1 (en) Differential-to-single-ended converter and phase-locked loop circuit having the same
US9276565B2 (en) Duty ratio correction circuit and phase synchronization circuit
TW200427224A (en) Clock multiplier
TW202105915A (zh) 鎖相迴路電路
JP5900171B2 (ja) デューティ比補正回路、ダブルエッジ装置及びデューティ比補正方法
US20100188126A1 (en) Voltage Controlled Duty Cycle and Non-Overlapping Clock Generation Implementation
US20040080349A1 (en) Clock signal generation circuit
TW202245422A (zh) 工作週期校正器電路
TWI681632B (zh) 時脈調整電路及時脈調整方法
CN110635789B (zh) 时钟调整电路及时钟调整方法
WO2021166176A1 (ja) 位相同期回路、送受信回路及び半導体集積回路
US7432749B1 (en) Circuit and method for improving frequency range in a phase locked loop
US9806722B2 (en) High frequency delay lock loop systems
TWI565244B (zh) 電源產生電路、頻率產生電路與頻率控制系統