TWI681387B - 聲學處理網路及用於即時聲學處理之方法 - Google Patents

聲學處理網路及用於即時聲學處理之方法 Download PDF

Info

Publication number
TWI681387B
TWI681387B TW107108072A TW107108072A TWI681387B TW I681387 B TWI681387 B TW I681387B TW 107108072 A TW107108072 A TW 107108072A TW 107108072 A TW107108072 A TW 107108072A TW I681387 B TWI681387 B TW I681387B
Authority
TW
Taiwan
Prior art keywords
signal
noise
noise signal
processor
rap
Prior art date
Application number
TW107108072A
Other languages
English (en)
Other versions
TW201837900A (zh
Inventor
阿米特 庫馬爾
Original Assignee
美商艾孚諾亞公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商艾孚諾亞公司 filed Critical 美商艾孚諾亞公司
Publication of TW201837900A publication Critical patent/TW201837900A/zh
Application granted granted Critical
Publication of TWI681387B publication Critical patent/TWI681387B/zh

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17823Reference signals, e.g. ambient acoustic environment
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17827Desired external signals, e.g. pass-through audio such as music or speech
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1783Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase handling or detecting of non-standard events or conditions, e.g. changing operating modes under specific operating conditions
    • G10K11/17837Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase handling or detecting of non-standard events or conditions, e.g. changing operating modes under specific operating conditions by retaining part of the ambient acoustic environment, e.g. speech or alarm signals that the user needs to hear
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • G10K11/17854Methods, e.g. algorithms; Devices of the filter the filter being an adaptive filter
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17855Methods, e.g. algorithms; Devices for improving speed or power requirements
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17875General system configurations using an error signal without a reference signal, e.g. pure feedback
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/108Communication systems, e.g. where useful sound is kept and noise is cancelled
    • G10K2210/1081Earphones, e.g. for telephones, ear protectors or headsets
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/12Rooms, e.g. ANC inside a room, office, concert hall or automobile cabin
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/128Vehicles
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3011Single acoustic input
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3017Copy, i.e. whereby an estimated transfer function in one functional block is copied to another block
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3026Feedback
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3028Filtering, e.g. Kalman filters or special analogue or digital filters
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3031Hardware, e.g. architecture
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3039Nonlinear, e.g. clipping, numerical truncation, thresholding or variable input and output gain
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3055Transfer function of the acoustic system

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Measuring Volume Flow (AREA)

Abstract

本揭露內容包括包含以第一頻率操作的數位信號處理器(DSP)及以比第一頻率高的第二頻率操作的即時聲學處理器(RAP)的聲學處理網路。DSP接收來自至少一個麥克風的雜訊信號。DSP然後基於雜訊信號產生雜訊濾波器。RAP接收來自麥克風的雜訊信號和來自DSP的雜訊濾波器。RAP然後基於雜訊信號和雜訊濾波器產生用於主動雜訊消除(ANC)的抗雜訊信號。

Description

聲學處理網路及用於即時聲學處理之方法 相關申請的交叉引用
本申請案請求受惠於美國臨時專利申請案序號No.62/469,461之優先權,其於2017年3月9日申請且名稱為“Real-Time Acoustic Processor”,其全部內容透過引用併入本文。
本發明是關於一種即時聲學處理器。
主動雜訊消除(ANC)可使用以減少佩戴耳機時使用者聽到的環境雜訊量。在ANC中,測量雜訊信號並產生相應的抗雜訊信號。抗雜訊信號是對雜訊信號的反相信號的近似值。雜訊信號和抗雜訊信號破壞性地干擾,這可能導致一些或全部的環境雜訊從使用者的耳朵中移除。為高品質ANC產生準確的抗雜訊信號需要相應的系統對環境雜訊的變化作出迅速反應。延遲對ANC是不利的,因為 不迅速反應可能會導致雜訊未被正確消除。此外,校正電路不能迅速反應可能導致錯誤的雜訊放大,而不會消除雜訊信號的抗雜訊突發等。將音樂導入耳機時,ANC可能會更加複雜。在某些情況下,ANC也可能無法區分低頻音樂的雜訊。這可能導致音樂信號與雜訊信號一起被錯誤地移除。
100‧‧‧聲學處理網路
110‧‧‧DSP
120‧‧‧RAP
143‧‧‧音訊信號
136‧‧‧揚聲器
137‧‧‧麥克風
144‧‧‧雜訊信號
141‧‧‧控制和配置參數
145‧‧‧輸出信號
142‧‧‧RAP狀態
135‧‧‧內插器
134‧‧‧抽取器
131‧‧‧數位至類比轉換器(DAC)
133‧‧‧類比至數位轉換器(ADC)
132‧‧‧調變器
130‧‧‧放大器控制器
200‧‧‧RAP I/O
241‧‧‧處理器週邊匯流排
243‧‧‧音訊信號
244‧‧‧雜訊信號
245‧‧‧輸出信號
246‧‧‧抗雜訊信號
242‧‧‧中間信號
300‧‧‧聲學處理網路
310‧‧‧DSP
320‧‧‧RAP
326‧‧‧可調節放大器
342‧‧‧抗雜訊信號
325‧‧‧RAP壓縮器電路
323‧‧‧壓縮狀態暫存器
311‧‧‧DSP壓縮器
400‧‧‧聲學處理網路
410‧‧‧DSP
420‧‧‧RAP
448‧‧‧音訊輸入
443‧‧‧音訊信號
412‧‧‧第一等化器
413‧‧‧第二等化器
449‧‧‧期望輸出信號
500‧‧‧RAP架構
524‧‧‧雙二階引擎
525‧‧‧乘法累加器
522‧‧‧資料暫存器
521‧‧‧雙二階記憶體/雙二階狀態記憶體
527‧‧‧雙二階係數
526‧‧‧增益係數
523‧‧‧羽化/壓縮增益係數/羽化/壓縮增益
543‧‧‧音訊信號
544‧‧‧雜訊信號
541‧‧‧控制和配置參數
600‧‧‧RAP架構
625‧‧‧乘法累加器
622‧‧‧累加器暫存器
624‧‧‧雙二階引擎
628‧‧‧雙二階輸出暫存器
621‧‧‧雙二階記憶體/雙二階狀態記憶體
661、662、663‧‧‧多工器(MUX)
623‧‧‧羽化係數
626‧‧‧乘法係數
627‧‧‧雙二階係數
644‧‧‧雜訊信號
647‧‧‧循環指標
700‧‧‧拓撲結構
743‧‧‧第一音訊信號
753‧‧‧第二音訊信號
744‧‧‧FB麥克風信號
754‧‧‧FF麥克風信號
729‧‧‧放大器
726‧‧‧羽化放大器
725‧‧‧混合器
724‧‧‧雙二階濾波器
745‧‧‧輸出
800‧‧‧拓撲結構
824‧‧‧雙二階濾波器
829‧‧‧放大器
825‧‧‧混合器
826‧‧‧羽化放大器
843‧‧‧第一音訊信號
853‧‧‧第二音訊信號
844‧‧‧FB麥克風信號
854‧‧‧FF麥克風信號
845‧‧‧輸出
848‧‧‧第一語音麥克風信號
858‧‧‧第二語音麥克風信號
900‧‧‧雙二階濾波器
973‧‧‧增益係數b0/增益係數
975‧‧‧增益係數-c1
976‧‧‧增益係數-c2
974‧‧‧增益係數d1
978‧‧‧增益係數d2
971‧‧‧先前狀態塊
972‧‧‧先前狀態塊
982、983、984‧‧‧混合器
977‧‧‧開關
1000‧‧‧示例方法
1001、1003、1005、1007、1009、1011、1013、1015‧‧‧方塊
根據以下參考附加圖式對實施例的描述,本揭露內容的實施例的各態樣、特徵和優點將變得顯而易見,其中:圖1是示例聲學處理網路的示意圖。
圖2是示例即時聲學處理器(RAP)輸入/輸出(I/O)的示意圖。
圖3是用於壓縮器狀態共享的示例聲學處理網路的示意圖。
圖4是用於音訊輸入等化的示例聲學處理網路的示意圖。
圖5是示例RAP架構的示意圖。
圖6是另一個示例RAP架構的示意圖。
圖7是RAP中的示例可程式化拓撲結構的示意圖。
圖8是RAP中的另一個示例可程式化拓撲結構的示意圖。
圖9是雙二階濾波器結構的示意圖。
圖10是操作聲學處理網路的示例方法的流程圖。
【發明內容】及【實施方式】
在此揭示了一種示例聲學處理網路。該網路包括以第一頻率工作的數位信號處理器(DSP)和以更高的第二頻率工作的RAP。DSP能夠產生強健的雜訊濾波器,以支援產生準確的抗雜訊信號。DSP將此類雜訊濾波器轉發給RAP以供實施。RAP的操作速度比DSP迅速,因此可以對聽覺變化作出迅速反應。這減少了延遲並維持了準確的抗雜訊信號。DSP提供的濾波器可能取決於使用者輸入及/或環境變化。例如,當使用者從安靜環境移動到高音量環境時,DSP可能會改變雜訊濾波器。作為另一個示例,RAP可以使用控制一對耳機中的可調節放大器的壓縮器電路。壓縮器電路可以基於壓縮器狀態來調節放大器,這可以限制抗雜訊信號中音量改變的速度。未能限制突然的音量變化可能會導致信號裁切,這可能會被使用者彈出或點擊聲音。DSP可以基於環境聲音變化來調節RAP處的壓縮器狀態以響應這種音量變化。此外,DSP和RAP可以在接收到來自使用者的輸入時支援環境知覺。環境知覺可以與預定頻帶相關聯,例如與人類語音相關聯的頻帶。DSP可以產生增加雜訊信號中預定頻帶的增益的雜訊濾波器。因此,RAP在產生抗雜訊信號時放大相關頻帶。這可 能導致消除環境雜訊,同時強調在相應頻段內發生的聲音(例如語音)。而且,DSP可以提供音訊信號以及基於聲學處理網路的期望頻率響應而調節的音訊信號。然後,當執行ANC時,調節後的音訊信號可以被RAP用作參考點。這允許RAP將整體輸出驅動到預期的音訊輸出,而不是將輸出驅動到零並取消某些音訊信號(例如取消低頻音樂)。此外,RAP被設計為將抗雜訊信號轉發到一或多個G類控制器,其控制耳機數位至類比轉換器(DAC)中的G類放大器。這支援抗雜訊信號的增益控制,並進一步減少信號失真。另外,RAP可以透過使用雙二階濾波器來實現來自DSP的各種雜訊濾波器。當儲存這樣的取樣時,雙二階濾波器可能自然量化信號取樣,這可能導致信號保真度的一些損失。在一個示例中,RAP採用實現之雙二階濾波器來實現放大取樣,然後量化取樣,然後衰減取樣。透過此順序操作,量化誤差被衰減並因此最小化。這導致更準確的抗雜訊信號。
圖1是示例聲學處理網路100的示意圖,其可用於ANC。聲學處理網路100包括以第一頻率操作的DSP 110及以比第一頻率高的第二頻率操作的RAP 120,其中第二頻率高於第一頻率。例如,DSP 110可以在九十六千赫(kHz)或更低的頻率下操作。在大多數情況下,DSP 110可以在約四十八千赫(例如第一頻率)下操作。RAP 120可以在高達約6.144兆赫(MHz)的頻率下操作。作為具體示例,RAP 120可以在0.768MHz、1.5MHz、3MHz及/或6.144 MHz(例如第二頻率)下操作。DSP 110可以是高度可程式化的並且可以含有顯著的處理能力。然而,由於以更高的頻率操作,RAP 120可以比DSP 110顯著更快地操作。因此,RAP 120以比DSP 110低得多的延遲來反應。相應地,聲學處理網路100使用DSP 110來產生音訊濾波器並控制網路100。同時,當執行ANC和類似功能時,RAP 120使用由DSP 110提供的音訊濾波器來迅速反應環境變化。
DSP 110是根據處理數位信號而優化的任何專用處理電路。DSP 110支援許多不同的功能。例如,聲學處理網路100可以在一組耳機中操作。當播放音樂或其它音訊給使用者,該DSP 110可以從記憶體及/或通用處理單元以數位格式接收音訊輸入。該DSP 110可以產生對應於音訊輸入的音訊信號143。音訊信號143是包括要透過揚聲器136播放給使用者的音訊的數位資料的任何串流。例如,DSP 110可以產生用於應用到使用者的左耳之左音訊信號143及用於應用到使用者的左耳的右音訊信號143。在一些示例中,如下面所討論的,DSP 110可以為每隻耳朵產生一對音訊信號143等。DSP 110亦產生各種雜訊濾波器以應用於音訊信號143,例如以補償由聲學處理網路100的操作引起的雜訊。
當提供ANC時,DSP 110亦可以產生雜訊濾波器以使用於產生抗雜訊信號。在這種情況下,DSP 110接收來自一或多個麥克風137的一或多個雜訊信號144。麥克風137可以包括位於使用者耳道外部的前饋(FF)麥克 風。FF麥克風定位於在使用者感受到這種雜訊之前記錄環境雜訊之處。因此,DSP 110可以使用來自FF麥克風137的雜訊信號144來確定在不久的將來使用者將要經歷的預期雜訊。DSP 110然後可以基於雜訊信號144產生雜訊濾波器。然後可以使用雜訊濾波器(例如透過RAP 120)來產生抗雜訊信號以消除雜訊信號144。麥克風137亦可以包括反饋(FB)麥克風。FB麥克風位於使用者的耳道內。因此,FB麥克風137定位於記錄在應用抗雜訊信號之後使用者實際經歷的雜訊之處。因此,可以使用來自FB麥克風137的雜訊信號144來迭代地調節針對抗雜訊信號的雜訊濾波器以校正信號誤差。應該注意的是,透過對每隻耳朵使用至少一個FF和FB麥克風137(例如四個或更多個麥克風137)可以實現最佳性能。然而,僅有FF或僅有FB麥克風137才能實現ANC。
DSP 110可以透過提供控制和配置參數141來與RAP 110進行通訊。參數141可以包括用於產生抗雜訊信號的雜訊濾波器,用於調節音訊信號143的雜訊濾波器以及用於實現各種功能的命令。RAP 110可以經由控制和配置參數141從DSP 110接收雜訊濾波器,然後執行各種音訊處理任務。RAP 110可以是針對低延遲數位濾波而優化的任何數位處理器。當執行ANC時,RAP 120亦可以從麥克風137接收雜訊信號144。RAP 120可以基於雜訊信號144和來自DSP 110的雜訊濾波器來產生抗雜訊信號。抗雜訊信號然後可以被轉發到揚聲器136以用於ANC。RAP 120亦可 以使用來自DSP 110的雜訊濾波器來修改音訊信號143以輸出到揚聲器136。因此,RAP 120可以將抗雜訊信號和修改的音訊信號143混合成輸出信號145。輸出信號145然後可以被轉發到揚聲器136以供使用者播放。揚聲器136可以是任何耳機揚聲器。在一些情況下,麥克風137可以物理地安裝到一對揚聲器136(例如左耳機揚聲器和右耳機揚聲器)。
如上所述,RAP 120可以以比DSP 110更高的頻率操作,並且因此可以在比DSP 110更低的延遲下操作。例如,DSP 110可以基於使用者周圍的環境中的一般雜訊位準變化來產生雜訊濾波器。例如,當使用者從高音量的房間移動到安靜的房間時,DSP 110可以產生不同的雜訊濾波器。這種變化發生得相對較慢,因此DSP 110的等待時間對於這種變化已經足夠了。同時,RAP 120應用雜訊濾波器來快速調節以適應特定的雜訊變化。例如,RAP 120可以將雜訊濾波器用於高音量的房間,並使用這種濾波器來產生抗雜訊信號以減少來自墜落的板、哭鬧小孩、摔門等的特定感知雜訊。作為具體示例,從麥克風137接收雜訊信號144取樣並將相應的抗雜訊信號取樣發送到揚聲器136之間的等待時間可以小於大約一百微秒(例如大約五微秒)。
為了處理目的,DSP 110亦可以被配置為從RAP 120獲得各種RAP狀態142。RAP狀態142可以包括由RAP 120有限狀態機使用的各種狀態以及其他中間信號。 當確定控制和配置參數141時,DSP 110可以使用RAP狀態142。如此,RAP狀態142將來自RAP 120的反饋提供給DSP 110,其允許DSP 110對RAP 120進行動態控制。例如,RAP 120可以採用音訊壓縮,如下所述,並且RAP狀態142可以包括壓縮狀態。這全部允許DSP 110動態地改變在RAP 120處發生的壓縮。還應該注意的是,RAP 120可以利用中斷來向DSP 110指示重大事件,諸如信號削波、羽化完成、左通道中檢測到的不穩定性、右通道中檢測到的不穩定性等。透過利用可程式化暫存器,可以單獨啟用/禁用這些中斷。
如圖1所示,DSP 110和RAP 120在數位域中以不同的頻率工作,而揚聲器136和麥克風137在類比域中工作。聲學處理網路100利用各種組件以支援域和頻率的速度之間的轉換。內插器135可用於將音訊信號143的頻率從由DSP 110使用的第一頻率增加到由RAP 120使用的第二頻率。內插器135是使用內插來增加有效取樣率並因此增加信號的頻率的任何信號處理組件。音訊信號143可以以對人耳聽覺的速率被取樣。內插器135可以增加音訊信號143的這種取樣率以輸入到RAP 120中(例如從48kHz到384kHz)。如此,內插音訊信號143可被認為是過取樣的以用於音訊播放。換言之,聽覺信號的相關帶寬約為20kHz。根據奈奎斯特條件(Nyquist criterion),40kHz的取樣足以完全捕獲20kHz的信號。如此,RAP 120處的音訊信號143可被認為是高度過取樣的。
RAP 120和DSP 110之間(以及沿著雜訊信號路徑)之間的通訊可以經由抽取器134進行。抽取器134是任何使用抽取來降低有效取樣率從而降低信號的頻率的信號處理組件。因此,抽取器134被用來將信號(例如RAP狀態142信號和雜訊信號)的頻率從RAP 120所使用的第二頻率降低到由DSP 120所使用的第一頻率。換言之,當抽取器134對信號進行降頻/降取樣時,內插器135升頻/升取樣信號。
網路100還使用一或多個數位至類比轉換器(DAC)131和一或多個類比至數位轉換器(ADC)133來在類比域和數位域之間進行轉換。DAC 131是將數位信號轉換為類比信號的任何信號處理組件。ADC 133是將類比信號轉換為數位信號的任何信號處理組件。具體而言,ADC 133從麥克風137接收類比雜訊信號144並將這些信號轉換至數位域以供RAP 120和DSP 110使用。此外,DAC 131以數位格式接收來自RAP 120(包含抗雜訊信號及/或音訊信號143)的輸出信號145,並將輸出信號145轉換成可由揚聲器136輸出的類比格式。在一些示例中,調變器132(例如△-Σ調變器)也可以使用於支援DAC 131。調變器132是在透過DAC 131的數位到類比轉換之前作為預處理步驟減少位元計數並且增加數位信號的頻率的信號分量。調變器132可以支援DAC 131,因此在一些示例中可以不使用。應該注意的是,調變器132和DAC 131可以具有固定的轉移函數。如此,RAP 120可以是音訊處理鏈中的最後區塊,具 有顯著的可配置性。
DAC 131可以使用諸如G類放大器的放大器來將輸出信號143的音量增加到用於由揚聲器136播放的適當位準。網路100可以使用放大器控制器130(例如G類放大器控制器)來控制DAC 131放大器。例如,低音量輸出信號145可能需要很少的放大(例如用於安靜環境的抗雜訊信號及/或音訊信號143中的靜音)。相反地,高音量輸出信號145可能需要顯著的放大(例如由於音訊信號143中的巨大的雜訊及/或高音量的音樂而導致的顯著的抗雜訊信號)。由於DAC 131可能輸出潛在高度可變的抗雜訊信號,因此可能會出現音量的突然變化。這種突然的變化可能會導致音訊失真。例如,當輸出信號145突然增加超過DAC 131中放大器的能力時,從靜音突然改變為高音量的抗雜訊信號(例如安靜房間中的突然鼓掌)可能導致DAC 131放大器的信號削波。在彈出或點擊時使用者感受到如此的削波。為了避免這樣的偽影,RAP 120可將抗雜訊信號的副本轉發給放大器控制器130的數位信號以支援基於抗雜訊信號位準來調節DAC 131放大器(例如透過修改所應用的電壓)。放大器控制器130可動態地查看抗雜訊信號中的變化以投影輸出信號145中的潛在變化。放大器控制器130然後可以修改DAC 131放大器設定以降低放大率並節省功率或增加放大以防止基於抗雜訊信號(及/或音訊信號143中的改變)的改變的削波。以下將更詳細地討論關於圖1一般討論的上述功能。應該注意的是,這些功能中的每一個都可 以基於使用者輸入單獨或組合激活(例如ANC可以在沒有音訊輸入的情況下激活)。
還應該注意的是,進入使用者耳朵的雜訊取決於很多因素,包括頭部和耳朵的形狀,以及耳機的密合度和貼合度。耳機產生的聲音信號也可能取決於使用者的耳朵和耳機之間的密合度。換言之,耳機的轉移函數可能取決於密合度。由於這些可變性,用於產生抗雜訊信號的單個ANC濾波器設計對於所有使用者可能不是最佳的。自適應ANC導引為當前使用者優化的ANC濾波器設計。由於DSP 110已訪問FF和FB麥克風137的雜訊信號144,所以自適應ANC成為可能。DSP 110可以在校準階段期間估計針對特定使用者的FF和FB雜訊信號144之間的轉移函數。例如,DSP 110可以確定給定FF麥克風137處的雜訊時耳朵內應該是什麼雜訊。校準過程的第二部分可以透過將特別設計的信號播放到耳機中並記錄FB麥克風137信號來估計耳機的轉移函數。一旦DSP 110已經計算出優化的FF ANC濾波器,DSP 110就可以對RAP 120中的係數進行程式化。
圖2是示例RAP I/O 200的示意圖,其可用於RAP(例如RAP 120)。RAP I/O 200包括處理器週邊匯流排241,其可以是用於從DSP接收控制和配置參數的通訊鏈路(例如控制和配置參數141),如使用者輸入、命令、計算雜訊濾波器、壓縮濾波器、環境知覺濾波器及/或在此討論的任何其他濾波器。RAP I/O 200還包括用於來自DSP(例如音樂)的音訊信號243的輸入,其可實質上類似於 音訊信號143。RAP I/O 200還包括用於雜訊信號244的輸入,其可實質上類似於雜訊信號144。雜訊信號244被描繪為四個輸入以描繪分別在左耳機和右耳機上採用FF和FB麥克風的示例,從而導致四個雜訊信號244。然而,可以採用任何數量的雜訊信號244。RAP I/O 200包括用於輸出信號245、抗雜訊信號246和中間信號242的輸出。可基於經由處理器週邊匯流排241接收的雜訊濾波器以及從對應麥克風接收的雜訊信號244來產生抗雜訊信號246。抗雜訊信號246可以被轉發到放大器控制器以支援DAC放大器的控制以減輕削波和相關雜訊偽影。可實質上類似於輸出信號145的輸出信號245可包含基於音訊信號243與等化音訊混合的抗雜訊信號246。輸出信號245可以被轉發到左側和右側揚聲器以供使用者播放。中間信號242可以包括部分等化的音訊信號、抗雜訊信號246、部分產生的抗雜訊信號、RAP狀態、壓縮狀態、使用中的當前濾波器及/或指示由RAP執行的音訊處理的任何其他RAP資訊。中間信號242可以作為反饋被轉發給DSP以允許DSP在改變RAP功能時考慮當前的RAP操作參數。因此,中間信號242可以允許DSP動態地修改RAP配置以提高性能和複雜的控制。一些中間信號242可以透過用於重新取樣的抽取濾波器,以便將中間信號242與DSP採用的處理頻率相匹配。其他中間信號242(例如諸如信號位準和處理器增益之緩慢改變的信號)可用於DSP以透過暫存器介面進行週期性取樣。應該注意的是,RAP I/O 200可以包含其他輸入及/或輸出。RAP I/O 200描述了主要的功能I/O,但並非意在窮盡。
圖3是用於壓縮器狀態共享的示例聲學處理網路300的示意圖。網路300包括DSP 310和RAP 320,其可分別實質上類似於DSP 110和RAP 120。為了清楚起見,省略其他組件。在RAP 320包括一個可調節放大器326,其可為能夠改變信號的增益至由RAP 320設定的目標值的任何電路。如上所述,RAP 320基於來自DSP 310的濾波器和來自麥克風的雜訊信號來產生抗雜訊信號342。可調節放大器326將抗雜訊信號342放大到足夠的值以消除雜訊(例如在由DAC和相關聯的放大器進行轉換之後)。RAP 320還包括RAP壓縮器電路325,其可為被配置為控制可調節放大器326的任何電路。具體而言,RAP壓縮器電路325控制可調節放大器326以減輕由於削波等引起的抗雜訊信號342中的偽影。RAP 320還包括壓縮狀態暫存器323,其可為任何讀/寫記憶體組件。壓縮狀態暫存器323儲存壓縮狀態,並且RAP壓縮器電路325基於壓縮狀態來控制可調節放大器326。
可以採用RAP壓縮器電路325和可調節放大器326來減輕抗雜訊信號342值中的突然劇烈變化。例如,RAP壓縮器電路325和可調節放大器326可以減輕由於汽車車門猛擊引起的抗雜訊信號342之值(和相關聯的信號偽影)的突然上升,但是可以允許抗雜訊信號342上升以用於由於從安靜的房間移動到高音量的房間時,聲音持續增加。為了確定如何調節可調節放大器326,RAP壓縮器電 路325考慮儲存在壓縮狀態暫存器323中的壓縮狀態。壓縮狀態可以包括針對抗雜訊信號342的峰值信號估計、瞬間增益、目標增益、攻擊參數、釋放參數、峰值衰減參數、維持參數及/或均方根(RMS)。峰值信號估計包括抗雜訊信號342的最大期望值的估計。可以採用峰值信號估計來確定適當的放大量以防止抗雜訊信號342的任何部分被放大超過DAC放大器的範圍(例如導致削波)。瞬間增益指示由可調節放大器326在指定時刻提供的電流增益,並且目標增益指示可調節放大器326應該移動到的調節增益,以便針對信號變化進行調節。攻擊參數指示增加增益調節而不引起信號偽影的速度。釋放參數指示降低增益調節而不引起信號偽影的速度。維持參數指示例如在抗雜訊信號342已經返回到正常值之後應該提供增加增益多長時間,以便提供另一個高音量雜訊將發生的可能性。峰值衰減參數指示在為了維持參數的目的可以認為抗雜訊信號342已經返回到正常值之前,抗雜訊信號342必須從峰值開始變化的量。另外或可選地,可以基於抗雜訊信號342的RMS來調節可調節放大器326以減輕削波。
RAP 320的操作速度比DSP 310快得多,但可能會受限於複雜度不高的壓縮演算法。因此,DSP 310包括DSP壓縮器311。DSP壓縮器311是可程式化電路,其能夠考慮RAP 320的壓縮狀態並將複雜的壓縮演算法應用於壓縮狀態以在較慢的時間尺度上確定更準確的可調節放大器326設定。如此,DSP 310被配置為如儲存在壓縮狀態 暫存器323中的那樣而從RAP 320接收當前壓縮狀態。這樣的資料可以經由中間信號輸出(例如中間信號242)及/或RAP狀態信號路徑(例如RAP狀態142)傳送。DSP壓縮器311可以基於雜訊信號和當前壓縮狀態來確定新壓縮狀態。DSP壓縮器311然後可以將新壓縮狀態轉發到RAP以支援控制可調節放大器326。例如,DSP壓縮器311可以將新壓縮狀態轉發到壓縮狀態暫存器323,並且因此直接程式化RAP 320以進行壓縮。
圖4是用於音訊輸入等化的示例聲學處理網路400的示意圖。聲學處理網路400包括DSP 410和RAP 420,其可分別實質上類似於DSP 110和310以及RAP 120和320。如上所述,DSP 410可以基於音訊輸入448來產生供RAP 420使用的音訊信號443。DSP 410可以使用第一等化器412來產生音訊信號443。等化器是為了實際或美學原因而調節網路的頻率響應的任何電路。例如,第一等化器412可以調節音訊低音、高音等以客制化音訊信號443以用於網路400的頻率響應。
在應用抗雜訊信號以消除將播放給使用者的相同音訊的雜訊時出現困難。具體地,使用者耳道中的FB麥克風可以將全部或部分音訊信號443記錄為雜訊。在這種情況下,RAP 420可以產生消除音訊信號443的一部分的抗雜訊信號。例如,抗雜訊信號可以從音訊信號443中消除一些較低頻率的音訊,這可能導致耳機的錯誤表現。為了解決這個問題,DSP 410包括第二等化器413。第二等化 器413實質上類似於第一等化器412,但是是用於不同的目的。DSP 410及/或第二等化器413將網路400的頻率響應模型化。第二等化器413然後採用模型來基於音訊輸入448和聲學處理網路400的頻率響應來產生期望輸出信號449。期望輸出信號449實際上是由網路400中的電路的預期效果修改的音訊信號443的副本。當沒有提供音訊時,ANC程序可能會嘗試將雜訊驅動為零。透過將期望輸出信號449轉發給RAP 420,ANC程序可以將期望輸出信號449設定為參考點。如此,ANC程序可以將來自RAP 420的輸出信號驅動到期望輸出信號449而不是零。該方法可以減少/消除對音訊信號443的任何ANC影響。
相應地,RAP 420從DSP 410接收音訊信號443。然後RAP 420將音訊信號443與抗雜訊信號混合。當產生抗雜訊信號以減輕抗雜訊信號對音訊信號的消除時,RAP 420還將期望輸出信號449設定為參考點。
圖5是示例RAP架構500的示意圖。例如,可以在RAP 120、320及/或420中採用RAP架構500。RAP架構500採用雙二階引擎524、乘法累加器525、資料暫存器522以及雙二階記憶體521。這些組件採用雙二階係數527、增益係數526以及羽化/壓縮增益係數523來過濾輸入以產生輸出信號(例如輸出信號145)。
雙二階引擎524是產生具有兩個極點和兩個零點的數位濾波器的電路。極點是系統轉移函數多項式分母的根,零點是轉移函數多項式的分子。換言之,極點將 被濾波的信號推向無窮大,而零點將被濾波的信號推向零。應該注意的是,當極點非零時,這樣的濾波器具有無限脈衝響應(IIR)。這樣的濾波器可以被表示為雙二次(biquadratic)或雙二階(biquads),其是指濾波器的轉移函數是兩個二次函數的比率的概念。雙二階引擎524以比由雙二階引擎524處理的信號更高的頻率操作。如此,雙二階引擎524可以多次應用於信號的單個取樣及/或以不同方式應用於信號的不同部分。在雙二階引擎524是可程式化的,因此可用於處理創建如下面所討論的各種拓撲結構。
乘法累加器525是對值進行相加及/或相乘的電路。例如,乘法累加器525可以被採用以縮放信號及/或信號部分。乘法累加器525亦可以被用來計算多個信號及/或信號部分的加權總和。乘法累加器525可接受來自雙二階引擎524的輸出,反之亦然。資料暫存器522可以是用於儲存資料的任何記憶體組件。具體而言,資料暫存器522可以儲存信號,例如雙二階引擎524及/或乘法累加器525的輸出。如此,雙二階引擎524、乘法累加器525和資料暫存器522可一起操作以對音訊信號543及/或雜訊信號544的取樣迭代地應用數學及/或其它專用數位信號更改程序。音訊信號543和雜訊信號544可分別實質上類似於音訊信號143和雜訊信號144。
雙二階狀態記憶體521是用於儲存當前雙二階狀態的記憶體模組(例如暫存器)。雙二階引擎524可程式化而作為有限狀態機來操作。雙二階狀態記憶體521儲 存指示雙二階引擎524的可用狀態及/或當前狀態的資料。雙二階引擎524可以從雙二階狀態記憶體521讀取資料並將其儲存到雙二階狀態記憶體521。
總之,雙二階引擎524和乘法累加器525可以被程式化為透過採用來自雙二階狀態記憶體521的狀態資料來實現各種拓撲結構。此外,中間信號資料可以儲存在資料暫存器522中。RAP架構500接收控制和配置參數541,其可以實質上類似於控制和配置參數141。控制和配置參數141包括按照雙二階係數527和增益係數526編碼的雜訊濾波器。雙二階引擎524基於雙二階係數527改變正在操作的信號(例如音訊信號及/或雜訊信號543/544)的形狀,其可以在從DSP接收時儲存在本地記憶體中。此外,乘法累加器525基於增益係數526增加/改變正在操作的信號(例如音訊信號及/或雜訊信號543/544)的增益,增益係數526可以在從DSP接收時儲存在本地記憶體中。
在某些情況下,增益係數可能會羽化。羽化表示從第一個值到第二個值的逐漸變化。乘法累加器525可透過注入從羽化/壓縮增益523輸入接收到的羽化係數作為一個羽化單元起作用。例如,乘法累加器525可以實現用於左聲道的三個羽化單元和用於右聲道的三個羽化單元。在另一個示例中,乘法累加器525可以為每個通道實現六個羽化單元。
乘法累加器525亦可以從羽化/壓縮增益523輸入接收壓縮狀態。壓縮狀態可以與壓縮狀態323基本相 似,可以儲存在本地記憶體中,並且可以從DSP接收。乘法累加器525可充當壓縮器(例如非線性處理器),如果信號變得過強,可以改變應用在一個信號的增益。這可以用來動態地減小信號流中的增益以避免削波。例如,當抗雜訊對於DAC而言變得太強時,應用於抗雜訊信號的壓縮器可以暫時降低增益。這暫時降低ANC強度,但可防止信號削波引起的令人不快的偽影。乘法累加器525可以實現三個壓縮器單元用於左通道和三個壓縮器單元用於右通道。在另一個示例中,乘法累加器525可以為每個通道實現六個壓縮器單元。
透過在有限狀態機中跨越多個狀態採用各種係數,RAP架構500可以實現一或多個可程式化雙二階濾波器。這些雙二階濾波器又可以實現來自DSP的雜訊濾波器並產生抗雜訊信號。RAP架構500也可以與音訊信號543混合抗雜訊/雜訊信號544。此外,RAP架構500可以根據需要將濾波器應用到音訊信號543。
圖6是另一個示例RAP架構600的示意圖。RAP架構600是RAP架構500的實現特定版本。為了清楚起見,RAP架構600被描繪為操作以產生ANC,其省略了音訊信號處理。RAP架構600包括一個乘法累加器625,其是用於乘法及/或加法之信號資料的電路。RAP架構600還包括一個累加器暫存器622,其是用於儲存乘法累加器625的輸出的記憶體電路。乘法累加器625和累加器暫存器622一起可以實現乘法累加器525。RAP架構600還包括雙二階引 擎624和雙二階輸出暫存器628,它們一起可以實現雙二階引擎524。雙二階引擎624是用於實現濾波器的電路,並且雙二階輸出暫存器628是用於儲存雙二階引擎624的計算結果的記憶體。RAP架構600還包括雙二階記憶體621,其可用於儲存來自雙二階引擎624的部分結果的記憶體單元。雙二階記憶體621亦可以實現雙二階狀態記憶體521。
如圖所示,組件透過多工器(MUX)661、MUX 662和MUX 663耦合在一起並且耦合到外部本地記憶體及/或遠端信號(例如來自DSP)。這些組件可以接收如圖所示的羽化係數623、乘法係數626和雙二階係數627,其可分別實質上類似於羽化/壓縮增益523、增益係數526和雙二階係數527。這些組件可以從ANC的麥克風/揚聲器接收雜訊信號644。雜訊信號644可實質上類似於雜訊信號144。組件亦可以接收循環指標(cycle index)647。循環指標647是指示RAP工作循環中的當前位置的資料。如圖所示,各種信號、指標和係數經由MUX 661~663被路由到它們各自的組件。
在操作中,採用循環指標647來選擇對應狀態的雙二階係數627。雙二階係數627及/或循環指標647被轉發到雙二階引擎624以應用到雜訊信號644。狀態資訊可以從雙二階記憶體621獲得。而且,部分結果可以被儲存在雙二階記憶體621中及/或被反饋到雙二階係數627中以用於下一狀態。完成的結果可以儲存在雙二階輸出暫存器662中以輸出到乘法累加器625。另外,來自雙二階輸出暫 存器662的輸出可以被反饋到雙二階引擎624中。而且,來自累加器暫存器622的輸出可以被轉發回雙二階引擎624。此外,雜訊信號644可以繞過雙二階引擎624並且直接移動到乘法累加器625。
循環指標647也用於選擇相應狀態的乘法係數626。乘法係數626、羽化係數623、及/或循環指標626也被轉發到乘法累加器625以應用到各種輸入。乘法累加器625可以接收雙二階輸出暫存器662的輸出、雜訊信號644及/或乘法累加器625的輸出作為輸入。換言之,乘法累加器625的輸出可以被反饋到乘法累加器的輸入中。一旦基於相應狀態將係數應用到輸入,則乘法累加器625的輸出被儲存在累加器暫存器622中以輸出到其他組件。累加器暫存器622的輸出及/或雙二階輸出暫存器628的輸出也可以作為RAP架構600的輸出被轉發給揚聲器。RAP架構600的互連性允許組件被程式化以實現各種拓撲結構以應用各種音訊處理方案,如下所述。
圖7是示例可程式化拓撲結構700的示意圖,其在根據RAP架構500及/或600的RAP(例如RAP 120、320及/或420)中實現拓撲結構700。拓撲結構700被配置為在輸出音訊信號的同時提供ANC。拓撲結構700接收第一音訊信號(音訊1)743和第二音訊信號(音訊2)753。音訊信號743和753可實質上類似於音訊信號143,並且可分別包括用於左耳和右耳的單獨的音訊。在一些示例中,音訊信號743和753可分別是期望輸出信號449和音訊信號443。拓撲 結構700還接收FB麥克風信號744和FF麥克風信號754,其可實質上類似於雜訊信號144。採用音訊信號743和753以及包括FB麥克風信號744和FF麥克風信號754的雜訊信號來產生具有ANC的音訊信號作為輸出754。
拓撲結構採用放大器729來放大第一音訊信號743、第二音訊信號753和FB麥克風信號744。這種放大器可以透過使用增益係數在前三個狀態期間由乘法累加器(例如乘法累加器525)來實現。然後,第二音訊信號753和FB麥克風信號744由混合器725混合。混合器725可以在第四狀態下由乘法累加器植入。混合器的輸出然後透過雙二階濾波器724的串聯被轉發,在本示例中是八個連續雙二階濾波器724的串聯。雙二階濾波器724可以透過使用對應的一組雙二階係數527(例如在八個狀態的過程中)透過乘法累加器和雙二階引擎524來實現。同時,FF麥克風信號754也透過一系列的雙二階濾波器724發送,在本示例中為八個雙二階濾波器724。FF麥克風信號754和組合的第二音訊信號753和FB麥克風信號744每個都被放大器729放大並且由混合器725(例如每個都在乘法累加器的相應狀態下實現)組合。然後,組合的FF麥克風信號754、第二音訊信號753和FB麥克風信號744經由羽化放大器726轉發用於羽化。這可以由採用羽化係數的乘法累加器實現,例如根據羽化/壓縮增益523。然後透過混合器725(例如其可以透過乘法累加器來實現)來混合結果,從而得到輸出745。
從上面的討論可以看出,雙二階引擎和乘法 累加器的組件可以將各種計算應用於來自處於各種狀態的每個信號的取樣。雙二階引擎和乘法累加器遍歷各種狀態以實現拓撲結構700並因此對取樣執行相應的計算,其結果輸出745。一旦針對一組取樣產生了輸出745,則透過各種狀態取得另一組取樣並改變其結果以產生另一輸出745。此外,拓撲結構700可以透過重新程式化雙二階引擎並將累加器狀態乘以相關係數來改變。
圖8是另一個示例可程式化拓撲結構800的示意圖,其在根據RAP架構500及/或600的RAP(例如RAP 120、320及/或420)中實現拓撲結構800。例如,可以透過重新程式化拓撲結構700來創建拓撲結構800。拓撲結構800被配置為提供自適應ANC、環境知覺和側音強調。如此,拓撲結構700可以在接收到來自使用者的輸入以包括環境知覺和側音時被重新配置以獲得拓撲結構800。環境知覺操作而強調特定的預定頻段。例如,可以強調與人類語音相關聯的頻帶,使得ANC消除雜訊,同時強調作為對話的一部分的語音。側音是指使用者的語音。因此,可以採用拓撲結構800來提供側音強調,這允許使用者清楚地聽到使用者自己的語音。如此,拓撲結構800可以減少環境雜訊,同時允許使用者清楚地聽到另一個人的語音以及使用者自己的語音。因此,可以採用拓撲結構800將一副耳機轉換成聽力增強裝置。
拓撲結構800採用雙二階濾波器824,其可用類似於拓撲結構700的方式由雙二階引擎(例如雙二階引擎 524)來實現。拓撲結構800還採用放大器829、混合器825和羽化放大器826,其可用以類似於拓撲結構700的方式透過乘法累加器(例如乘法累加器525)來實現。拓撲結構800接收第一音訊信號(音訊1)843、第二音訊信號(音訊2)853、FB麥克風信號844和FF麥克風信號854,其分別實質上類似於第一音訊信號743、第二音訊信號753、FB麥克風信號744和FF麥克風信號754。
FF麥克風信號854被用於環境知覺。例如,FF麥克風信號854路徑中的雙二階濾波器824用作環境知覺濾波器。因此,當拓撲結構800產生抗雜訊信號時,FF麥克風信號854路徑可應用環境知覺濾波器以增強雜訊信號中的預定頻帶。這可能導致增強的預定頻帶,例如語音訊帶。FF麥克風信號854路徑可以將具有增強的預定頻帶的抗雜訊信號經由輸出845轉發給揚聲器以輸出給使用者。
此外,拓撲結構800使用第一語音麥克風信號(語音麥克風1)848和第二語音麥克風信號(語音麥克風2)858。這些信號可以由定位成記錄使用者語音的麥克風(例如麥克風137)記錄。例如,這樣的麥克風可以被包括在附接到耳機並且定位在使用者的胸部上的翻領夾上。因此,第一語音麥克風信號848和第二語音麥克風信號858可以包括側音(例如使用者的語音)的取樣。
功能上,FB麥克風信號844和第一語音麥克風848分別透過雙二階濾波器824和放大器829被轉發。此外,第二語音麥克風信號858和第二音訊信號853透過放大 器829被轉發。如圖所示,這些線路然後透過混合器825組合。結果透過一組雙二階濾波器824(在這種情況下為五個連續的濾波器)和另一個放大器829被轉發。這種信號包括側音、ANC的FB部分、音訊信號的第二部分。
同時,包括ANC的FF部分以及環境感知部分的FF麥克風信號854經由羽化放大器826被轉發。羽化放大器826可以用於輕微地改變環境知覺和ANC模式。FF麥克風信號854然後經由雙二階濾波器824並聯發送,在這種情況下是三個連續的濾波器和五個連續的濾波器。然後透過放大器829放大結果並透過混合器825混合。混合結果的一部分透過雙二階濾波器824、放大器829和第二羽化放大器826被轉發。混合結果的另一部分圍繞這些組件並聯轉發。然後透過混合器825將路徑混合在一起。第二羽化放大器826使用壓縮器來實現不用信號限幅之強FF ANC。
FF麥克風信號854路徑的結果然後在被混合到包含側音、ANC的FB部分、音訊信號的第二部分的信號路徑之前,被放大器829放大。如圖所示,FF麥克風信號854路徑經由混合器825混合在五個雙二階濾波器824之前和之後。這些信號的結果通過另一個羽化放大器826,其被用來軟開啟和關閉ANC。這樣的羽化放大器826亦可以應用數位壓縮器來進一步減輕削波。此外,第一音訊信號經由放大器829被放大並且經由混合器825與其餘的信號混合。這可結果導致包含音訊信號、FF抗雜訊信號、FB抗雜訊信號、側音和環境感知強調的輸出845全部混合在一 起以透過揚聲器向使用者播放。
圖9是雙二階濾波器900結構的示意圖,其可由諸如雙二階引擎524及/或624的雙二階引擎應用於雜訊信號、抗雜訊信號、音訊信號及/或任何這裡揭露的其他信號。通常根據下面的等式1在數學上描述雙二階濾波器:y[n]=b 0 x[n]+b 1 x[n-1]+b 2 x[n-2]-a 1 y[n-1]-a 2 y[n-2] 等式1 y[n]=b 0 x[n]+b 1 x[n-1]+b 2 x[n-2]-a 1 y[n-1]-a 2 y[n-2]
其中x[n]是到雙二階濾波器的輸入,y[n]是來自雙二階濾波器的輸出,並且b0、b1、b2、a1和a2是雙二階係數,例如雙二階係數527及/或627。因此可以透過修改係數來修改雙二階濾波器900的功能。
雙二階濾波器900代替採用不同的係數。具體而言,如圖所示,雙二階濾波器900採用增益係數b0 973、-c1 975、-c2 976、d1 974和d2 978。這樣的增益係數973可以透過可調節放大器來實現。此外,這些係數透過下面的等式2~5參考等式1在數學上進行定義:
Figure 107108072-A0305-02-0028-1
雙二階濾波器900還採用混合器,其可以透 過乘法累加器來實現。在操作中,在雙二階濾波器900處接收輸入。輸入經由混合器982和增益係數b0 973被轉發到輸出。該輸入也被轉發到先前狀態塊971,以透過另一個混合器981儲存在記憶體中。在下一個循環/狀態中,先前狀態塊971的輸出經由增益係數d1 974被轉發到混合器983,經由增益係數-c1 975被轉發到混合器984,並且經由向前轉發到另一先前狀態塊972混合器985。在另一狀態中,先前狀態972的輸出經由增益係數d2 978轉發到混合器983。混合器983混合先前狀態972的輸出和增益係數d2 978以及先前狀態971的輸出和增益係數d1 974。然後將結果轉發以在混合器982處與輸入混合。此外,先前狀態972的輸出經由增益係數-c2 976被轉發到混合器984。因此,先前狀態972的輸出和增益係數-c2 976與先前狀態971的輸出和增益係數-c1 975混合。結果然後被轉發到混合器981,混合器981將來自混合器984的結果與用於反饋的輸入混合以用於反饋到先前狀態971。另外,雙二階濾波器900採用應用增益0或增益1的開關977。當設定成增益1時,開關977允許先前狀態972的輸出經由混合器985反饋到先前狀態972。開關977可以被設定為0,並且所有係數根據等式1改變,以便將雙二階濾波器900轉換成所謂的直接形式的雙二階濾波器。
可以看出,第一狀態的修改輸入與第二狀態的修改輸入混合,然後第二狀態的修改輸入與第三狀態的輸入混合。相應地,輸入信號取樣不斷地修改稍後接收到 的進一步的輸入取樣。
應該注意的是,雙二階濾波器中的誤差來源是量化。當信號取樣被儲存時發生量化,例如在先前狀態971及/或972。具體而言,量化是在儲存取樣的記憶體不夠大而不能以完美分辨率儲存取樣時四捨五入誤差的結果。如上所述,雙二階採用極點和零點。直接形式的雙二階濾波器可以透過應用零點來衰減信號,儲存信號引起量化,然後透過應用極點來放大信號。這種方法導致放大與量化相關的錯誤。為了達到合理的信噪比(SNR),這樣的直接形式雙二階比雙二階濾波器900需要更多的位元。相反,雙二階濾波器900放大信號、儲存和量化信號、然後衰減信號。這種方法導致量化誤差被衰減而不是被放大。結果,雙二階濾波器900可以比在先前的狀態記憶體中採用相似數量的位元的直接形式雙二階實現60分貝(dB)的低SNR。作為替代地,對於相似的SNR,雙二階濾波器900可以在記憶體中以大約十個以下的位元操作,這可以節省大量的空間。
可以看到雙二階濾波器900的操作順序為係數的回顧。具體而言,b0 973、d1 974和d2 978零點以及-c1 975、-c2 976應用極點。如圖9所示,信號總是透過放大器應用極點(-c1 975,-c2 976),然後透過先前狀態971和972進行量化。然後將這些狀態的輸出反饋到系統以用於稍後的狀態或透過應用零點的放大器(例如b0 973、d1 974和d2 978零點)輸出。
換言之,雙二階濾波器900採用極點來放大雜訊/抗雜訊信號的取樣的部分。雙二階濾波器900還採用零點來衰減雜訊/抗雜訊信號的部分取樣。此外,雙二階濾波器900採用濾波器暫存器來儲存雜訊/抗雜訊信號的取樣的量化。另外,雙二階濾波器900被配置為在量化取樣之前放大取樣,然後衰減取樣。
雙二階設計的目標可以為透過減小儲存器尺寸和電流來最小化要求,同時在給定輸入信號類型和目標濾波器的情況下實現期望的性能。如上所述,這裡使用的雙二階濾波器的感興趣的頻率通常在音訊帶(例如小於20kHz)中,其明顯小於取樣率(例如小於1MHz)。在這種情況下(例如當中心頻率遠小於取樣率時),雙二階濾波器900可能明顯優於雙二階設計。作為一個示例,當在大約6.144MHz下工作以實現具有品質因數(Q)為1的250赫茲(Hz)下40dB增益的峰值濾波器時,雙二階濾波器900可以產生比直接形式的二個雙二階低約60dB的雜訊具有相同的位元數。這可能會節省大約十位元。
另一個特徵是雙二階濾波器900可能不直接要求輸入信號上的乘法器。這致使可以容易地流水線化的設計。此外,b0 973乘法是位於最輸出端。如此,雙二階濾波器900充當濾波器,隨後是最終增益級。當串聯使用多個雙二階時,這變得很方便。在這種情況下,可以將b0 973乘法組合至信號乘法步驟。因此,對於N個雙二階的級聯,直接形式雙二階可能需要5N次乘法。相反地, 雙二階濾波器900僅採用4N+1次乘法。在串聯級聯的輸出處具有乘法器可能在RAP硬件架構中特別有用。
圖10是操作聲學處理網路(例如網路100、300及/或400)的示例方法1000的流程圖,該網路100、300及/或400具有帶有I/O的RAP(例如RAP I/O 200)以及諸如RAP架構500及/或600的架構,其採用具有諸如雙二階濾波器900的拓撲結構(例如拓撲結構700及/或800)。換言之,方法1000可以透過採用各個圖中示出的組件的各種組合來實現,如本文以上所討論的。
在方塊1001處,基於音訊輸入在DSP處產生音訊信號。此外,基於音訊輸入和聲學處理網路的頻率響應,還在DSP處產生期望輸出信號。然後,音訊信號和期望輸出信號從DSP傳送到RAP,如網路400所示。
在方塊1003處,還在DSP處接收雜訊信號。雜訊信號是從至少一個麥克風接收。DSP基於雜訊信號產生雜訊濾波器。如網路100中所示,DSP還將來自DSP的雜訊濾波器傳送到RAP。如上所述,DSP以第一頻率工作,而RAP以比第一頻率高的第二頻率工作。
在方塊1005處,RAP在RAP處採用當前壓縮狀態來控制可調節放大器,以調節抗雜訊信號。如網路300所示,RAP使用的當前壓縮狀態從RAP傳送到DSP。DSP然後基於雜訊信號和當前壓縮狀態確定新壓縮狀態。DSP將新壓縮狀態傳送到RAP,以支援控制可調節放大器。這樣的壓縮狀態可以包括抗雜訊信號的峰值信號估 計、瞬間增益、目標增益、攻擊參數、釋放參數、峰值衰減參數、維持參數、RMS或其組合。
在方塊1007處,RAP從DSP接收音訊信號、期望輸出信號、雜訊濾波器及/或新壓縮狀態以及來自麥克風的雜訊信號(例如FF及/或FB)。
在方塊1009處,RAP基於雜訊信號和雜訊濾波器產生用於ANC的抗雜訊信號。此外,當產生抗雜訊信號以減輕抗雜訊信號對音訊信號的消除時,RAP將期望輸出信號設定為參考點。透過配置可程式化雙二階濾波器來實現來自DSP的雜訊濾波器,可以在RAP處產生抗雜訊信號。例如,雙二階濾波器可以放大抗雜訊信號的取樣,然後量化抗雜訊信號的取樣,且然後衰減抗雜訊濾波器的取樣,如雙二階900所示。
在方塊1011處,在RAP處應用環境知覺濾波器以在產生如關於拓撲結構800所討論的抗雜訊信號時增強雜訊信號中的預定頻帶。這可能導致增強的預定頻帶(例如與語音相關的頻帶)。在一些示例中,亦可以應用附加濾波器來添加側音。
在方塊1013處,RAP將音訊信號與抗雜訊信號混合。RAP還將產生的信號轉發給揚聲器以輸出給使用者。取決於該示例,所得到的信號可以包括音訊、抗雜訊、側音、具有增強的預定頻帶的環境知覺信號、及/或本文描述的任何其他特徵。
在方塊1015處,RAP還將抗雜訊信號轉發給 DAC放大器控制器,以支援基於抗雜訊信號位準來調節DAC放大器,以便減輕削波和其他偽影。應該注意的是,上面討論的方法1000試圖描述本文公開的所有特徵的同時動作。因此,方法1000包含許多可選步驟,因為並非所有的特徵在任何時候都必須是可用的。此外,方法1000可以恆定地操作,並且因此可能不會總是以所描繪的順序操作。
本揭露內容的示例可以在特別建立的硬體上、在韌體上、數位信號處理器上、或在包括根據程式指令操作的處理器的專門程式化通用計算機上操作。這裡使用的術語「控制器」或「處理器」旨在包括微處理器、微算機、特定應用積體電路(ASIC)和專用硬體控制器。本揭露內容的一或多個態樣可以嵌入於電腦可用資料和電腦可執行指令(例如電腦程式產品)中,諸如在一或多個程式模組中,由一或多個處理器(包括監控模組)或者其他裝置執行。通常,程式模組包括在由電腦或其他裝置中的處理器執行時執行特定任務或實現特定抽象資料類型的例程、程式、物件、組件、資料結構等。電腦可執行指令可以儲存在諸如隨機存取記憶體(RAM)、唯讀記憶體(ROM)、快取、電可擦除可程式化唯讀記憶體(EEPROM)、快閃記憶體或其他記憶體技術的非暫態電腦可讀媒體上,光碟唯讀記憶體(CD-ROM)、數位視訊光碟(DVD)或其它光碟記憶體、盒式磁帶、磁帶、磁碟儲存器或其他磁性儲存,以及任何其他以任何技術實施的揮發性或非揮發性、可移動或 非移動性媒體。電腦可讀媒體排除每個信號本身以及信號傳輸的暫態形式。此外,功能性可以全部或部分地以韌體或硬體等價物(諸如積體電路、現場可程式化閘陣列(FPGA)等)來實現。可以使用特定的資料結構來更有效地實現本揭露內容的一或多個態樣,並且這樣的資料結構被設想在這裡描述的電腦可執行指令和電腦可用資料的範圍內。
本揭露內容的各態樣以各種修改和替換形式進行操作。已經透過示例在圖式中示出了具體的態樣,並且在下面詳細描述。然而,應該注意的是,這裡揭露的示例是為了清楚的討論而呈現的,並不意圖將公開的一般概念的範圍限制到在此描述的具體示例,除非明確地受到限制。因此,根據圖式和申請專利範圍,本揭露內容旨在覆蓋所描述態樣的所有修改、等價物和替代方案。
說明書中對實施例、態樣、示例等的參照所描述的項目可以包括特定特徵、結構或特性。然而,每個揭露的態樣可能包括或可能不必定包括那個特定的特徵、結構或特性。此外,除非特別指定,否則這樣的短語不一定指相同的態樣。此外,當結合特定態樣描述特定特徵、結構或特性時,可結合所揭露的另一態樣來採用這種特徵、結構或特性,不管這樣的特徵是否結合這樣的其他揭露態樣。
示例
以下提供了本文揭露的技術的說明性示例。這些技術的實施例可以包括下面描述的示例中的任何一或多個以及其任何組合。
示例1包括一種聲學處理網路,包括:以第一頻率操作的數位信號處理器(DSP),該DSP用以:接收來自至少一個麥克風的雜訊信號,且基於該雜訊信號產生雜訊濾波器;及以比該第一頻率高的第二頻率操作的即時聲學處理器(RAP),該RAP用以:接收來自該麥克風的該雜訊信號,接收來自該DSP的該雜訊濾波器,且基於該雜訊信號及該雜訊濾波器產生抗雜訊信號以用於主動雜訊消除(ANC)。
示例2包括示例1的聲學處理網路,其中該RAP包括:可調節放大器,用於放大該抗雜訊信號,及壓縮器電路,用於控制該可調節放大器以減輕該抗雜訊信號中的偽影。
示例3包括示例2的聲學處理網路,其中該RAP進一步包括壓縮狀態暫存器以儲存壓縮狀態,該壓縮器電路進一步基於該壓縮狀態來控制該可調節放大器。
示例4包括示例3的聲學處理網路,其中該壓縮狀態包括峰值信號估計、瞬間增益、目標增益、攻擊參數、釋放參數、衰減參數、維持參數或其組合。
示例5包括示例3的聲學處理網路,其中該壓縮狀態包括該抗雜訊信號的均方根(RMS)。
示例6包括示例1~4的聲學處理網路,其中該 DSP進一步用以:從該RAP接收當前壓縮狀態,基於該雜訊信號和該當前壓縮狀態確定新壓縮狀態,以及將該新壓縮狀態轉發給該RAP以支援控制該可調節放大器。
示例7包括示例1~6的聲學處理網路,其中該RAP包括一或多個可程式化雙二階濾波器以實現來自該DSP的該雜訊濾波器且產生該抗雜訊信號。
示例8包括示例7的聲學處理網路,其中該雙二階濾波器使用一或多個極點來放大該抗雜訊信號的取樣的部分,一或多個零點來衰減該抗雜訊信號的該取樣的部分,及濾波器暫存器來儲存該抗雜訊信號的該取樣的量化,雙二階濾波器在量化該取樣之前放大該取樣,然後衰減該取樣。
示例9包括示例1~8的聲學處理網路,其中該麥克風是前饋麥克風,且該RAP進一步用以:當產生該抗雜訊信號時,應用環境知覺濾波器來增強該雜訊信號中的預定頻帶,導致增強的預定頻帶,以及將具有該增強的預定頻帶的該抗雜訊信號轉發給揚聲器以輸出給使用者。
示例10包括示例1~9的聲學處理網路,其中從該麥克風接收雜訊信號取樣並將相應的抗雜訊信號取樣轉發給該揚聲器之間的延遲小於一百微秒。
示例11包括示例1~10的聲學處理網路,其中該DSP進一步用以:基於音訊輸入產生音訊信號,以及基於該音訊輸入及該聲學處理網路的頻率響應產生期望輸出信號,且其中該RAP進一步用以:接收來自該DSP的該音 訊信號,混合該音訊信號與該抗雜訊信號,且當產生該抗雜訊信號時,將該期望輸出信號設定為參考點,以減輕該抗雜訊信號對該音訊信號的消除。
示例12包括示例1~11的聲學處理網路,其中該RAP進一步經配置以將該抗雜訊信號轉發給數位至類比轉換器(DAC)放大器控制器以支援基於抗雜訊信號位準以調節DAC放大器。
示例13包括一種方法,包含:在以第一頻率操作的數位信號處理器(DSP)處接收雜訊信號,該雜訊信號從至少一個麥克風接收;基於該雜訊信號在該DSP處產生雜訊濾波器;將來自該DSP的該雜訊濾波器傳送到以高於該第一頻率的第二頻率操作的即時聲學處理器(RAP);在該RAP處接收來自該麥克風的該雜訊信號;基於該雜訊信號及該雜訊濾波器在該RAP處產生抗雜訊信號以用於主動雜訊消除(ANC)。
示例14包括示例13的方法,進一步包含:使用在該RAP處的當前壓縮狀態來控制可調節放大器以調節該抗雜訊信號;將該當前壓縮狀態從該RAP傳送到該DSP;基於該雜訊信號和該當前壓縮狀態來確定該DSP處的新壓縮狀態,及將該新壓縮狀態從該DSP傳送到該RAP以支援控制該可調節放大器。
示例15包括示例14的方法,其中該壓縮狀態包括該抗雜訊信號的峰值信號估計、瞬間增益、目標增益、均方根(RMS)或其組合。
示例16包括示例13~15的方法,其中透過配置一或多個可程式化雙二階濾波器來實現來自DSP的雜訊濾波器,在RAP處產生抗雜訊信號。
示例17包括示例16的方法,其中該雙二階濾波器放大該抗雜訊信號的取樣,然後量化該抗雜訊信號的該取樣,然後衰減該抗雜訊濾波器的該取樣。
示例18包括示例13~17的方法,進一步包含:在該RAP處應用環境知覺濾波器以在產生該抗雜訊信號時增強該雜訊信號中的預定頻帶,從而導致增強的預定頻帶,以及將具有該增強的預定頻帶的該抗雜訊信號轉發給揚聲器以輸出給使用者。
示例19包括示例13~18的方法,進一步包含:基於音訊輸入在該DSP處產生音訊信號;基於該音訊輸入及聲學處理網路的頻率響應在該DSP處產生期望輸出信號;將該音訊信號從該DSP傳送到該RAP;在該RAP處混合該音訊信號與該抗雜訊信號;及當產生該抗雜訊信號時,將該期望輸出信號設定為參考點,以減輕該抗雜訊信號對該音訊信號的消除。
示例20包括示例13~19的方法,進一步包含將該抗雜訊信號轉發給數位至類比轉換器(DAC)放大器控制器以支援基於抗雜訊信號位準來調節DAC放大器。
所揭露的標的之先前描述的示例具有許多對於通常技術人員而言已經記載或將是顯而易見的優點。即便如此,在所揭露的裝置、系統或方法的所有變化例中並 不要求所有這些優點或特徵。
此外,本書面記載參考了特定的特徵。應能理解,本說明書中的揭露內容包括那些特定特徵的所有可能的組合。在特定態樣或示例的文義中揭露了特定特徵的情況下,該特徵在可能的範圍內也可以在其他態樣和示例的情況下使用。
並且,當在本申請案中提到具有二或多個界定的步驟或操作的方法時,所界定的步驟或操作可以以任何順序或同時執行,除非文義中排除這些可能性。
儘管為了說明的目的已經說明和描述了本揭露內容的具體示例,但是將理解,可以在不脫離本揭露內容的精神和範圍的情況下進行各種修改。因此,除了所附申請專利範圍之外,本揭露內容不應受到限制。
100‧‧‧聲學處理網路
110‧‧‧DSP
120‧‧‧RAP
130‧‧‧放大器控制器
131‧‧‧數位至類比轉換器(DAC)
132‧‧‧調變器
133‧‧‧類比至數位轉換器(ADC)
134‧‧‧抽取器
135‧‧‧內插器
136‧‧‧揚聲器
137‧‧‧麥克風
141‧‧‧控制和配置參數
142‧‧‧RAP狀態
143‧‧‧音訊信號
144‧‧‧雜訊信號
145‧‧‧輸出信號

Claims (18)

  1. 一種聲學處理網路,包含:以第一頻率操作的數位信號處理器,該數位信號處理器用以:接收來自一或多個麥克風的雜訊信號,至少一個麥克風為前饋麥克風,且基於該雜訊信號產生雜訊濾波器;及以比該第一頻率高的第二頻率操作的即時聲學處理器,該即時聲學處理器經配置以接收來自該一或多個麥克風的該雜訊信號,接收來自該數位信號處理器的該雜訊濾波器,基於該雜訊信號及該雜訊濾波器產生抗雜訊信號以用於主動雜訊消除,當產生該抗雜訊信號時,應用環境知覺濾波器來增強該雜訊信號中的預定頻帶,導致增強的預定頻帶,且將具有該增強的預定頻帶的該抗雜訊信號轉發給揚聲器以輸出給使用者。
  2. 根據請求項1所述的聲學處理網路,其中該即時聲學處理器包括:可調節放大器,用於放大該抗雜訊信號,及壓縮器電路,用於控制該可調節放大器以減輕該抗雜訊信號中的偽影。
  3. 根據請求項2所述的聲學處理網路,其中該即時聲學 處理器進一步包括壓縮狀態暫存器以儲存壓縮狀態,該壓縮器電路進一步基於該壓縮狀態來控制該可調節放大器。
  4. 根據請求項3所述的聲學處理網路,其中該壓縮狀態包括峰值信號估計、瞬間增益、目標增益、攻擊參數、釋放參數、衰減參數、維持參數或其組合。
  5. 根據請求項3所述的聲學處理網路,其中該壓縮狀態包括該抗雜訊信號的均方根。
  6. 根據請求項2所述的聲學處理網路,其中該數位信號處理器進一步經配置以:從該即時聲學處理器接收當前壓縮狀態,基於該雜訊信號和該等當前壓縮狀態確定新壓縮狀態,以及將該新壓縮狀態轉發給該即時聲學處理器以支援控制該可調節放大器。
  7. 根據請求項1所述的聲學處理網路,其中該即時聲學處理器包括一或多個可程式化雙二階濾波器以實現來自該數位信號處理器的該雜訊濾波器且產生該抗雜訊信號。
  8. 根據請求項1所述的聲學處理網路,其中該雙二階濾波器使用一或多個極點來放大該抗雜訊信號的取樣的部 分,一或多個零點來衰減該抗雜訊信號的該取樣的部分,及濾波器暫存器來儲存該抗雜訊信號的該取樣的量化,該雙二階濾波器經配置以在量化該取樣之前放大該取樣,然後衰減該取樣。
  9. 根據請求項1所述的聲學處理網路,其中從該一或多個麥克風接收雜訊信號取樣並將相應的抗雜訊信號取樣轉發給該揚聲器之間的延遲小於一百微秒。
  10. 根據請求項1所述的聲學處理網路,其中該數位信號處理器進一步經配置以:基於音訊輸入產生音訊信號,以及基於該音訊輸入及該聲學處理網路的頻率響應產生期望輸出信號,且其中該即時聲學處理器進一步經配置以:接收來自該數位信號處理器的該音訊信號,混合該音訊信號與該抗雜訊信號,且當產生該抗雜訊信號時,將該期望輸出信號設定為參考點,以減輕該抗雜訊信號對該音訊信號的消除。
  11. 根據請求項1所述的聲學處理網路,其中該即時聲學處理器進一步經配置以將該抗雜訊信號轉發給數位至類比轉換器放大器控制器以支援基於抗雜訊信號位準以調節該數位至類比轉換器放大器。
  12. 一種用於即時聲學處理的方法,包含:在以第一頻率操作的數位信號處理器處接收雜訊信號,該雜訊信號從至少一個麥克風接收;基於該雜訊信號在該數位信號處理器處產生雜訊濾波器;將來自該數位信號處理器的該雜訊濾波器傳送到以高於該第一頻率的第二頻率操作的即時聲學處理器;在該即時聲學處理器處接收來自該麥克風的該雜訊信號;基於該雜訊信號及該雜訊濾波器在該即時聲學處理器處產生抗雜訊信號以用於主動雜訊消除;在該即時聲學處理器處應用環境知覺濾波器以在產生該抗雜訊信號時增強該雜訊信號中的預定頻帶,從而導致增強的預定頻帶;以及將具有該增強的預定頻帶的該抗雜訊信號轉發給揚聲器以輸出給使用者。
  13. 根據請求項12所述的方法,進一步包含:使用在該即時聲學處理器處的當前壓縮狀態來控制可調節放大器以調節該抗雜訊信號;將該等當前壓縮狀態從該即時聲學處理器傳送到該數位信號處理器;基於該雜訊信號和該等當前壓縮狀態來確定該數位信號處理器處的新壓縮狀態,及 將該等新壓縮狀態從該數位信號處理器傳送到該即時聲學處理器以支援控制該可調節放大器。
  14. 根據請求項13所述的方法,其中該等當前壓縮狀態及該等新壓縮狀態包括該抗雜訊信號的峰值信號估計、瞬間增益、目標增益、均方根或其組合。
  15. 根據請求項12所述的方法,其中透過配置一或多個可程式化雙二階濾波器來實現來自該數位信號處理器的該雜訊濾波器,以在該即時聲學處理器處產生該抗雜訊信號。
  16. 根據請求項15所述的方法,其中該雙二階濾波器進一步經配置以放大該抗雜訊信號的取樣,量化該抗雜訊信號的該取樣,且衰減該抗雜訊信號的該取樣。
  17. 根據請求項12所述的方法,進一步包含:基於音訊輸入在該數位信號處理器處產生音訊信號;基於該音訊輸入及聲學處理網路的頻率響應在該數位信號處理器處產生期望輸出信號;將該音訊信號從該數位信號處理器傳送到該即時聲學處理器;在該即時聲學處理器處混合該音訊信號與該抗雜訊信號;及當產生該抗雜訊信號時,將該期望輸出信號設定為參 考點,以減輕該抗雜訊信號對該音訊信號的消除。
  18. 根據請求項12所述的方法,進一步包含將該抗雜訊信號轉發給數位至類比轉換器放大器控制器以支援基於抗雜訊信號位準來調節該數位至類比轉換器放大器。
TW107108072A 2017-03-09 2018-03-09 聲學處理網路及用於即時聲學處理之方法 TWI681387B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762469461P 2017-03-09 2017-03-09
US62/469,461 2017-03-09

Publications (2)

Publication Number Publication Date
TW201837900A TW201837900A (zh) 2018-10-16
TWI681387B true TWI681387B (zh) 2020-01-01

Family

ID=61837827

Family Applications (2)

Application Number Title Priority Date Filing Date
TW107108072A TWI681387B (zh) 2017-03-09 2018-03-09 聲學處理網路及用於即時聲學處理之方法
TW108142598A TWI759652B (zh) 2017-03-09 2018-03-09 用於處理聲學信號的電子網路、用於即時聲學處理的方法及主動雜訊消除音訊裝置

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW108142598A TWI759652B (zh) 2017-03-09 2018-03-09 用於處理聲學信號的電子網路、用於即時聲學處理的方法及主動雜訊消除音訊裝置

Country Status (9)

Country Link
US (2) US10283103B2 (zh)
EP (1) EP3593345A1 (zh)
JP (1) JP7163300B2 (zh)
KR (1) KR20190128669A (zh)
CN (1) CN110603582A (zh)
CA (1) CA3055910A1 (zh)
SG (1) SG11201908276SA (zh)
TW (2) TWI681387B (zh)
WO (1) WO2018165550A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9554207B2 (en) 2015-04-30 2017-01-24 Shure Acquisition Holdings, Inc. Offset cartridge microphones
US9565493B2 (en) 2015-04-30 2017-02-07 Shure Acquisition Holdings, Inc. Array microphone system and method of assembling the same
US10367948B2 (en) 2017-01-13 2019-07-30 Shure Acquisition Holdings, Inc. Post-mixing acoustic echo cancellation systems and methods
US11523212B2 (en) 2018-06-01 2022-12-06 Shure Acquisition Holdings, Inc. Pattern-forming microphone array
US11297423B2 (en) 2018-06-15 2022-04-05 Shure Acquisition Holdings, Inc. Endfire linear array microphone
EP3854108A1 (en) 2018-09-20 2021-07-28 Shure Acquisition Holdings, Inc. Adjustable lobe shape for array microphones
CN113841419A (zh) 2019-03-21 2021-12-24 舒尔获得控股公司 天花板阵列麦克风的外壳及相关联设计特征
US11558693B2 (en) 2019-03-21 2023-01-17 Shure Acquisition Holdings, Inc. Auto focus, auto focus within regions, and auto placement of beamformed microphone lobes with inhibition and voice activity detection functionality
EP3942845A1 (en) 2019-03-21 2022-01-26 Shure Acquisition Holdings, Inc. Auto focus, auto focus within regions, and auto placement of beamformed microphone lobes with inhibition functionality
US10749543B1 (en) * 2019-05-16 2020-08-18 Morse Micro Pty Ltd Programmable polar and cartesian radio frequency digital to analog converter
US11445294B2 (en) 2019-05-23 2022-09-13 Shure Acquisition Holdings, Inc. Steerable speaker array, system, and method for the same
JP2022535229A (ja) 2019-05-31 2022-08-05 シュアー アクイジッション ホールディングス インコーポレイテッド 音声およびノイズアクティビティ検出と統合された低レイテンシオートミキサー
CN110503937B (zh) * 2019-07-31 2023-03-31 江苏大学 一种声品质优化系统及其方法
CN114467312A (zh) 2019-08-23 2022-05-10 舒尔获得控股公司 具有改进方向性的二维麦克风阵列
CN113225277B (zh) * 2020-01-21 2023-12-19 瑞昱半导体股份有限公司 信号处理装置与信号处理方法
US11552611B2 (en) 2020-02-07 2023-01-10 Shure Acquisition Holdings, Inc. System and method for automatic adjustment of reference gain
US11386882B2 (en) 2020-02-12 2022-07-12 Bose Corporation Computational architecture for active noise reduction device
TWI743786B (zh) * 2020-05-18 2021-10-21 瑞昱半導體股份有限公司 音訊處理裝置與相關的音訊處理方法
CN113727244B (zh) * 2020-05-21 2024-04-12 瑞昱半导体股份有限公司 音频处理装置与相关的音频处理方法
WO2021243368A2 (en) 2020-05-29 2021-12-02 Shure Acquisition Holdings, Inc. Transducer steering and configuration systems and methods using a local positioning system
US10950213B1 (en) * 2020-05-31 2021-03-16 Shenzhen GOODIX Technology Co., Ltd. Hybrid active noise cancellation filter adaptation
US11317203B2 (en) * 2020-08-04 2022-04-26 Nuvoton Technology Corporation System for preventing distortion of original input signal
CN116918351A (zh) 2021-01-28 2023-10-20 舒尔获得控股公司 混合音频波束成形系统
TWI777729B (zh) * 2021-08-17 2022-09-11 達發科技股份有限公司 適應性主動雜訊消除裝置以及使用其之聲音播放系統
CN115914910A (zh) 2021-08-17 2023-04-04 达发科技股份有限公司 适应性主动噪声消除装置以及使用其的声音播放系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011006148A1 (en) * 2009-07-10 2011-01-13 Qualcomm Incorporated Systems, methods, apparatus, and computer-readable media for adaptive active noise cancellation
US20150163592A1 (en) * 2013-12-10 2015-06-11 Cirrus Logic, Inc. Systems and methods for bandlimiting anti-noise in personal audio devices having adaptive noise cancellation

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444786A (en) * 1993-02-09 1995-08-22 Snap Laboratories L.L.C. Snoring suppression system
GB2436657B (en) 2006-04-01 2011-10-26 Sonaptic Ltd Ambient noise-reduction control system
WO2008078517A1 (ja) * 2006-12-22 2008-07-03 Nec Corporation 並列ソート装置、方法、およびプログラム
GB0725111D0 (en) * 2007-12-21 2008-01-30 Wolfson Microelectronics Plc Lower rate emulation
GB0725117D0 (en) * 2007-12-21 2008-01-30 Wolfson Microelectronics Plc Frequency control based on device properties
GB0725108D0 (en) 2007-12-21 2008-01-30 Wolfson Microelectronics Plc Slow rate adaption
JP5421124B2 (ja) * 2007-12-27 2014-02-19 パナソニック株式会社 騒音制御装置
US8144890B2 (en) 2009-04-28 2012-03-27 Bose Corporation ANR settings boot loading
US8090114B2 (en) 2009-04-28 2012-01-03 Bose Corporation Convertible filter
US8532310B2 (en) * 2010-03-30 2013-09-10 Bose Corporation Frequency-dependent ANR reference sound compression
JP5497891B2 (ja) * 2009-04-28 2014-05-21 ボーズ・コーポレーション 音依存のanr信号処理調整
US7928886B2 (en) 2009-07-01 2011-04-19 Infineon Technologies Ag Emulation of analog-to-digital converter characteristics
US8016117B2 (en) * 2009-07-31 2011-09-13 Mac Process Inc. System and method for eliminating emissions from an air classification device
US8848935B1 (en) 2009-12-14 2014-09-30 Audience, Inc. Low latency active noise cancellation system
WO2012132863A1 (ja) * 2011-03-29 2012-10-04 凸版印刷株式会社 インク組成物とそれを用いた有機el素子及びその製造方法
US9318094B2 (en) 2011-06-03 2016-04-19 Cirrus Logic, Inc. Adaptive noise canceling architecture for a personal audio device
TWI538000B (zh) * 2012-05-10 2016-06-11 杜比實驗室特許公司 多階段過濾器,音頻編碼器,音頻解碼器,施行多階段過濾的方法,用以編碼音頻資料的方法,用以將編碼音頻資料解碼的方法,及用以處理編碼位元流的方法和裝置
US9330652B2 (en) * 2012-09-24 2016-05-03 Apple Inc. Active noise cancellation using multiple reference microphone signals
US9082392B2 (en) 2012-10-18 2015-07-14 Texas Instruments Incorporated Method and apparatus for a configurable active noise canceller
US9106989B2 (en) 2013-03-13 2015-08-11 Cirrus Logic, Inc. Adaptive-noise canceling (ANC) effectiveness estimation and correction in a personal audio device
US9741333B2 (en) * 2014-01-06 2017-08-22 Avnera Corporation Noise cancellation system
TWI734176B (zh) * 2014-09-30 2021-07-21 美商艾孚諾亞公司 具有低潛時的聲波處理器
US9894438B2 (en) 2014-09-30 2018-02-13 Avnera Corporation Acoustic processor having low latency
EP3285497B1 (en) * 2015-04-17 2021-10-27 Sony Group Corporation Signal processing device and signal processing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011006148A1 (en) * 2009-07-10 2011-01-13 Qualcomm Incorporated Systems, methods, apparatus, and computer-readable media for adaptive active noise cancellation
US20150163592A1 (en) * 2013-12-10 2015-06-11 Cirrus Logic, Inc. Systems and methods for bandlimiting anti-noise in personal audio devices having adaptive noise cancellation

Also Published As

Publication number Publication date
US20180261199A1 (en) 2018-09-13
KR20190128669A (ko) 2019-11-18
WO2018165550A1 (en) 2018-09-13
EP3593345A1 (en) 2020-01-15
US10283103B2 (en) 2019-05-07
SG11201908276SA (en) 2019-10-30
JP2020510240A (ja) 2020-04-02
US10650797B2 (en) 2020-05-12
JP7163300B2 (ja) 2022-10-31
TWI759652B (zh) 2022-04-01
US20190259369A1 (en) 2019-08-22
TW202006705A (zh) 2020-02-01
CA3055910A1 (en) 2018-09-13
CN110603582A (zh) 2019-12-20
TW201837900A (zh) 2018-10-16
WO2018165550A8 (en) 2020-06-11

Similar Documents

Publication Publication Date Title
TWI681387B (zh) 聲學處理網路及用於即時聲學處理之方法
US10431198B2 (en) Noise cancellation system with lower rate emulation
US9807503B1 (en) Systems and methods for use of adaptive secondary path estimate to control equalization in an audio device
US10950213B1 (en) Hybrid active noise cancellation filter adaptation
US8611551B1 (en) Low latency active noise cancellation system
KR101357935B1 (ko) 노이즈 캔슬링 시스템 및 노이즈 캔슬 방법
JP5420766B2 (ja) 適応アクティブ雑音消去のためのシステム、方法、装置、およびコンピュータ可読媒体
JP2020510240A5 (zh)
US8848935B1 (en) Low latency active noise cancellation system
EP2695394B1 (en) Integrated psychoacoustic bass enhancement (pbe) for improved audio
US11189261B1 (en) Hybrid active noise control system
KR101393756B1 (ko) 디지털 필터 회로, 디지털 필터 프로그램 및 노이즈 캔슬링시스템
GB2539280A (en) Hybrid finite impulse response filter
US9369798B1 (en) Internal dynamic range control in an adaptive noise cancellation (ANC) system
GB2541976A (en) Hybrid finite impulse response filter
TWI760833B (zh) 用於進行音訊透通的音訊處理方法與相關裝置
JP2007189530A (ja) ノイズキャンセルヘッドホンおよびヘッドホンにおけるノイズキャンセル方法