TWI681032B - Surface-protective film for transparent conductive film, and transparent conductive film using the same - Google Patents

Surface-protective film for transparent conductive film, and transparent conductive film using the same Download PDF

Info

Publication number
TWI681032B
TWI681032B TW104121273A TW104121273A TWI681032B TW I681032 B TWI681032 B TW I681032B TW 104121273 A TW104121273 A TW 104121273A TW 104121273 A TW104121273 A TW 104121273A TW I681032 B TWI681032 B TW I681032B
Authority
TW
Taiwan
Prior art keywords
film
transparent conductive
conductive film
adhesive layer
adhesive
Prior art date
Application number
TW104121273A
Other languages
Chinese (zh)
Other versions
TW201610080A (en
Inventor
客野真人
鈴木千恵
岡本理恵
林益史
Original Assignee
日商藤森工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商藤森工業股份有限公司 filed Critical 日商藤森工業股份有限公司
Publication of TW201610080A publication Critical patent/TW201610080A/en
Application granted granted Critical
Publication of TWI681032B publication Critical patent/TWI681032B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • C09J7/381Pressure-sensitive adhesives [PSA] based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/385Acrylic polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

The present invention provides a surface-protective film for a transparent conductive film in which an adhesive layer maintains smoothness of the surface, which has excellent handling properties even when attached on the transparent conductive film, which improves defects in appearance arising from the surface-protective film in the production and manufacturing and processing steps of the transparent conductive film, and which has good productivity in transparent electrode manufacturing steps for a touch panel and a transparent conductive film using the same. The present invention is a surface-protective film 5 for a transparent conductive film used by attached on the other surface of a transparent conductive film in which a transparent conductive film is formed on a surface of a resin film, wherein an adhesive layer 2 is laminated on one surface of a base film 1 by using an adhesive including an acrylic resin composition, a crosslinking agent, and a crosslinking catalyst, a storage modulus a of the adhesive layer at 30℃ is 4.0×105 Pa or more and the adhesive powers a and b with respect to a PET film of the adhesive layer after aging for 5 days at 40℃ satisfy the relationship of 0.9
Figure 104121273-A0202-11-0002-5
a/b

Description

透明導電性膜用表面保護膜以及使用該保護膜之透明導電性 膜 Surface protective film for transparent conductive film and transparent conductivity using the protective film membrane

本發明涉及貼合到在一個面上形成有透明導電膜的樹脂膜的另一個面上來使用的透明導電性膜用表面保護膜及使用此表面保護膜的透明導電性膜。更詳細地說,本發明提供一種透明導電性膜用表面保護膜及使用表面保護膜的透明導電性膜,透明導電性膜用表面保護膜中,所形成的黏合劑層維持表面的平滑性,即使貼合到透明導電性膜上也具有優異的處理性,在透明導電性膜的製造、加工製程中,起因於表面保護膜的外觀缺陷不良得到改善,且在觸控面板用透明電極製造製程中的生產性良好。 The present invention relates to a surface protective film for a transparent conductive film used for bonding to the other surface of a resin film having a transparent conductive film formed on one surface, and a transparent conductive film using the surface protective film. More specifically, the present invention provides a surface protective film for a transparent conductive film and a transparent conductive film using the surface protective film. In the surface protective film for a transparent conductive film, the formed adhesive layer maintains the smoothness of the surface, Even if it is attached to the transparent conductive film, it has excellent handling properties. In the manufacturing and processing processes of the transparent conductive film, the appearance defects caused by the surface protective film are improved, and the transparent electrode manufacturing process for the touch panel The productivity in the is good.

一直以來,在觸控面板、電子紙、電磁波遮蔽材料、各種感測器、液晶面板、有機EL、太陽能電池等技術領域中,透明導電性膜(以下,有時也僅稱為“導電性膜”)被廣泛用於透明電極等形成用途。此透明導電性薄膜在基材的一個面上形成有例如由ITO(銦錫氧化物化合物)、AZO或GZO(在ZnO(氧化鋅)中添加有鋁或鎵的化合物)等構成的透明導電膜。 Conventionally, in the technical fields of touch panels, electronic paper, electromagnetic wave shielding materials, various sensors, liquid crystal panels, organic ELs, solar cells, etc., transparent conductive films (hereinafter, sometimes referred to as "conductive films" ") is widely used for forming transparent electrodes. This transparent conductive film is formed with a transparent conductive film composed of, for example, ITO (indium tin oxide compound), AZO, or GZO (a compound in which aluminum or gallium is added to ZnO (zinc oxide)) on one surface of the substrate .

另外,在觸控面板用透明電極的製程中,要經過多種加熱製程和試劑處理的製程,例如,對形成有由ITO、AZO或GZO等構成的透明導電膜的透明導電性膜進行退火處理的金屬氧化膜的結晶化製程、抗蝕劑的印刷製程、蝕刻處理製程、利用銀膠形成電路配線的製程、絕緣層的印刷製程、沖裁製程等。 在這樣的透明電極的製程中,為了防止在透明導電性膜的形成有透明導電膜的面的相反側的面上產生汙損、損傷,貼合透明導電性膜用表面保護膜來使用。 In addition, in the process of the transparent electrode for the touch panel, a variety of heating processes and reagent treatment processes are required. For example, the transparent conductive film formed with a transparent conductive film made of ITO, AZO, or GZO is annealed Crystallization process of metal oxide film, printing process of resist, etching process, process of forming circuit wiring using silver paste, printing process of insulating layer, punching process, etc. In the manufacturing process of such a transparent electrode, in order to prevent fouling and damage on the surface of the transparent conductive film opposite to the surface on which the transparent conductive film is formed, a surface protective film for a transparent conductive film is bonded and used.

在透明電極的製程中,退火處理、利用銀膠的電路配線的形成等在約150℃左右的溫度下進行加熱處理,因此要求透明導電性膜用保護膜具有耐熱性。 In the manufacturing process of the transparent electrode, annealing treatment, formation of circuit wiring using silver paste, and the like are subjected to heat treatment at a temperature of about 150° C. Therefore, the protective film for a transparent conductive film is required to have heat resistance.

關於在觸控面板用等、透明電極的製程中使用的透明導電性膜用保護膜,提出了各種方案。例如,專利文獻1中提出了一種透明導電性膜用表面保護膜,其在由熔點為200℃以上的熱塑性樹脂膜構成的基材的單面上設置有黏合劑層。有人認為其與使用聚乙烯、聚丙烯等聚烯烴樹脂作為基材的透明導電性膜用表面保護膜相比,耐熱性良好。 Various proposals have been made regarding protective films for transparent conductive films used in the production of transparent electrodes for touch panels and the like. For example, Patent Document 1 proposes a surface protective film for a transparent conductive film, which is provided with an adhesive layer on a single surface of a substrate made of a thermoplastic resin film having a melting point of 200° C. or higher. Some people think that it has better heat resistance than a surface protective film for a transparent conductive film using a polyolefin resin such as polyethylene or polypropylene as a base material.

另外,專利文獻2中提出了一種透明導電性膜用表面保護膜的製造方法,其中,在含有聚對苯二甲酸乙二醇樹脂和/或聚萘二甲酸乙二酯樹脂的基材膜的單面上塗佈黏合劑後,以規定的溫度.停留時間.拉伸張力進行乾燥。通過該製造方法得到的透明導電性膜用表面保護膜在貼合到透明導電性膜上之後,即使經過加熱製程,也不會產生大的捲曲(curl)。 In addition, Patent Document 2 proposes a method for manufacturing a surface protective film for a transparent conductive film, in which a base film containing polyethylene terephthalate resin and/or polyethylene naphthalate resin is After coating the adhesive on one side, at the specified temperature. Residence time. Dry with tensile tension. After the surface protective film for a transparent conductive film obtained by this manufacturing method is bonded to the transparent conductive film, even if it undergoes a heating process, it does not cause a large curl.

專利文獻3中提出了一種帶有透明導電膜和保護 膜的樹脂膜,其中,在樹脂膜的單面上設置透明導電膜,在設置有該透明導電膜的面相反的樹脂膜面上設置保護膜,上述保護膜由第一膜和第二膜構成且從上述樹脂膜上依次設置上述第一膜和第二膜,第一膜在150℃下加熱30分鐘後的熱收縮率在MD和TD方向上均為0.5%以下,第二膜具有與上述帶有透明導電膜和保護膜的樹脂膜的線膨脹係數之差為40ppm/℃以下的線膨脹係數。若應用該發明,則能夠得到沒有因觸控面板化等加工製程中的熱處理所致的尺寸變化和捲曲的透明導電膜。 Patent Document 3 proposes a transparent conductive film and protection A resin film of a film, wherein a transparent conductive film is provided on one surface of the resin film, and a protective film is provided on the surface of the resin film opposite to the surface on which the transparent conductive film is provided, the protective film being composed of a first film and a second film And the first film and the second film are sequentially arranged on the resin film. The heat shrinkage rate of the first film after heating at 150°C for 30 minutes is 0.5% or less in both MD and TD directions. The second film has the same The difference in linear expansion coefficient of the resin film with the transparent conductive film and the protective film is a linear expansion coefficient of 40 ppm/°C or less. If this invention is applied, a transparent conductive film free of dimensional changes and curling caused by heat treatment in processing processes such as touch panelization can be obtained.

另外,專利文獻4中提出了一種透明導電性膜用表 面保護膜,其通過使用規定的厚度和抗彎曲性的剝離膜,使得表面保護膜的黏合劑層表面平滑,外觀缺陷不良得到了改善。 In addition, Patent Document 4 proposes a table for a transparent conductive film The surface protection film uses a predetermined thickness and a bending-resistant peeling film to smooth the surface of the adhesive layer of the surface protection film and improve the appearance defects.

【現有技術文獻】 【Prior Art Literature】 【專利文獻】 【Patent Literature】

專利文獻1:日本特開2003-170535號公報 Patent Document 1: Japanese Patent Laid-Open No. 2003-170535

專利文獻2:日本專利第4342775號公報 Patent Document 2: Japanese Patent No. 4342775

專利文獻3:日本特開平11-268168號公報 Patent Document 3: Japanese Patent Laid-Open No. 11-268168

專利文獻4:日本特開2013-226676號公報 Patent Document 4: Japanese Patent Laid-Open No. 2013-226676

本發明提供與專利文獻4同樣地表面保護膜的黏合劑層維持表面的平滑性、外觀缺陷不良得到改善的透明導電性膜用表面保護膜。專利文獻4的表面保護膜的特徵在於使用了40℃時抗彎曲性為0.30mN~40mN的剝離膜,但具有該抗彎 曲性的膜存在厚度變厚、成本增高的問題。另外,在表面保護膜的製造時或者使用者使用表面保護膜時,根據所使用的加工機械的規格,表面保護膜的纏繞直徑有時受到限制。這種情況下,對於使用了基材厚度厚的剝離膜的表面保護膜而言,與使用了基材厚度薄的剝離膜的表面保護膜相比,存在如下問題:以規定卷起直徑卷起時的卷起長度變短,在觸控面板用透明電極製程中的生產性下降。 The present invention provides a surface protective film for a transparent conductive film in which the adhesive layer of the surface protective film maintains the smoothness of the surface and the appearance defects are improved as in Patent Document 4. The surface protection film of Patent Document 4 is characterized by using a peeling film having a bending resistance of 0.30 mN to 40 mN at 40°C, but it has the bending resistance The flexible film has a problem that the thickness becomes thicker and the cost increases. In addition, when manufacturing the surface protection film or when the user uses the surface protection film, the winding diameter of the surface protection film may be limited depending on the specifications of the processing machine used. In this case, the surface protection film using the release film with a thick base material has the following problem compared to the surface protection film using the release film with a thin base material: rolling up with a predetermined winding diameter The winding length at the time becomes shorter, and the productivity in the transparent electrode manufacturing process for touch panels decreases.

本發明是鑒於上述情況而完成的,其課題在於提 供一種透明導電性膜用表面保護膜及使用該表面保護膜的透明導電性膜,透明導電性膜用表面保護膜在從滾筒反繞的狀態下,透明導電性膜用表面保護膜的黏合劑層維持表面的平滑性,即使貼合到透明導電性膜上也具有優異的處理性,在透明導電性膜的製造、加工製程中,起因於透明導電性膜用表面保護膜的外觀缺陷不良得到改善,且在觸控面板用透明電極製程中的生產性良好。 The present invention has been completed in view of the above circumstances, and its object is to provide Provided is a surface protective film for a transparent conductive film and a transparent conductive film using the same. The surface protective film for a transparent conductive film is in a state of being rewound from a drum, and the adhesive for the surface protective film for a transparent conductive film The layer maintains the smoothness of the surface and has excellent handleability even when it is bonded to the transparent conductive film. In the manufacturing and processing processes of the transparent conductive film, the appearance defects due to the surface protection film for the transparent conductive film are obtained Improvement, and good productivity in the transparent electrode manufacturing process for touch panels.

透明導電性膜用表面保護膜通過如下方法來製造:在基材膜或剝離膜上塗佈黏合劑,在乾燥製程中使黏合劑中的溶劑蒸發後,貼合剝離膜或基材膜,並捲成捲筒形狀。本發明人進行了深入研究,結果發現,乾燥開始15分鐘後的黏合劑層的固化狀態與黏合劑層的表面的凹凸狀變形相關。進而發現,通過使用黏合劑層在乾燥開始後15分鐘以內發生固化的黏合劑,即使在將基材厚度較薄的剝離膜用於透明導電性膜用表面保護膜的黏合劑層的貼合用途的情況下,也能夠抑制在上述黏合劑層的待貼合到被黏附物上的表面產生凹凸的變形,從而完成了本發明。 The surface protective film for a transparent conductive film is manufactured by applying an adhesive on a base film or a release film, and after evaporating the solvent in the adhesive during the drying process, bonding the release film or the base film, and Roll into a roll shape. The inventors conducted intensive studies and found that the cured state of the adhesive layer 15 minutes after the start of drying is related to the uneven deformation of the surface of the adhesive layer. Furthermore, it was found that by using an adhesive layer that cures within 15 minutes after the start of drying, even when a release film with a thin substrate thickness is used for the adhesive application of the adhesive layer of the surface protective film for a transparent conductive film In the case of the present invention, it is also possible to suppress the deformation of the surface of the adhesive layer to be adhered to the adherend, resulting in uneven deformation, thereby completing the present invention.

在表面保護膜的製程中,通常在基材膜上塗佈黏合劑並使其乾燥而形成黏合劑層後,在捲筒狀態下進行熟化,但在此熟化期間中,會由於捲筒的捲緊等的影響而產生剝離膜的變形。因此,在剝離膜變形後黏合劑層固化的情況下,剝離膜的表面形狀轉印到黏合劑層的表面,經過透明導電性膜的製造、加工製程時,這會成為透明導電性膜的外觀顯著變差的原因。 In the process of surface protection film, the adhesive is usually applied on the base film and dried to form an adhesive layer, and then cured in the state of the roll, but during this curing period, due to the roll of the roll The peeling film is deformed due to tight influence. Therefore, when the adhesive layer is cured after the peeling film is deformed, the surface shape of the peeling film is transferred to the surface of the adhesive layer, which will become the appearance of the transparent conductive film after the transparent conductive film is manufactured and processed. The reason for the deterioration.

本發明技術構思如下:在將透明導電性膜用表面保護膜以捲筒狀進行熟化的期間,在剝離膜發生變形之前進行黏合劑層的固化,由此,即使剝離膜發生變形,也可抑制黏合劑層的表面的變形,從而維持平滑性。 The technical idea of the present invention is as follows: while the surface protective film for a transparent conductive film is cured in a roll shape, the adhesive layer is cured before the peeling film is deformed, thereby suppressing the peeling film from being deformed Deformation of the surface of the adhesive layer to maintain smoothness.

即,在將本發明所涉及的透明導電性膜用表面保護膜以捲筒狀進行熟化的期間,在貼合有剝離膜的黏合劑層受到剝離膜的變形的牽拉而變形之前,進行黏合劑層的固化,防止在貼合到被黏物上的黏合劑層的表面產生凹凸,從而維持平滑性。 That is, while the surface protective film for a transparent conductive film according to the present invention is cured in a roll shape, the adhesive layer to which the release film is bonded is pulled before being deformed by the deformation of the release film, and then bonded The curing of the adhesive layer prevents unevenness on the surface of the adhesive layer attached to the adherend, thereby maintaining smoothness.

本發明人發現,通過對黏合劑層的乾燥開始15分鐘後和老化(熟化)完成後的黏合劑層的力進行比較,能夠掌握黏合劑層的固化的進行狀態。更具體地說,如果黏合劑層的乾燥開始15分鐘後和老化(熟化)完成後的黏合劑層對PET膜的黏合力的比例(用老化完成後的黏合力除以乾燥開始15分鐘後的黏合力而得到的數值)在預定的範圍內,則即使在將基材厚度薄的剝離膜用於透明導電性膜用表面保護膜的黏合劑層的貼合用途的 情況下,也能夠抑制在上述黏合劑層的待貼合到被黏物上的表面產生凹凸的變形。 The inventors found that the state of curing of the adhesive layer can be grasped by comparing the force of the adhesive layer 15 minutes after the start of drying of the adhesive layer and the completion of the aging (aging). More specifically, if 15 minutes after the drying of the adhesive layer starts and the ratio of the adhesive force of the adhesive layer to the PET film after the aging (curing) is completed (the adhesive force after the aging is completed divided by 15 minutes after the start of drying) The value obtained by the adhesive force) is within a predetermined range, even if the peeling film with a thin base material is used for the bonding application of the adhesive layer of the surface protective film for the transparent conductive film In this case, it is possible to suppress deformation of the surface of the adhesive layer to be bonded to the adherend.

為了解決上述課題,本發明提供如下的透明導電性膜用表面保護膜。 In order to solve the above problems, the present invention provides the following surface protective film for a transparent conductive film.

一種透明導電性膜用表面保護膜,其貼合到在一個面上形成有透明導電膜的樹脂膜的另一個面上來使用,其特徵在於,該透明導電性膜用表面保護膜在基材膜的單面上疊層黏合劑層,黏合劑層使用含有丙烯酸類樹脂組合物、交聯劑和交聯觸媒的丙烯酸類黏合劑,所述黏合劑層在30℃時的儲存模數為4.0×105Pa以上,且所述黏合劑層的乾燥開始15分鐘後的所述黏合劑層對PET膜的黏合力與在40℃下老化5天後的所述黏合劑層對PET膜的黏合力滿足下式(1)的關係。 A surface protective film for a transparent conductive film, which is applied to the other surface of a resin film having a transparent conductive film formed on one surface, and is characterized in that the surface protective film for a transparent conductive film is on a base film An adhesive layer is laminated on one side of the adhesive layer. An acrylic adhesive containing an acrylic resin composition, a crosslinking agent and a crosslinking catalyst is used for the adhesive layer. The storage modulus of the adhesive layer at 30°C is 4.0 ×10 5 Pa or more, and the adhesive force of the adhesive layer to the PET film 15 minutes after the drying of the adhesive layer starts and the adhesion of the adhesive layer to the PET film after aging at 40°C for 5 days The force satisfies the relationship of the following formula (1).

0.9

Figure 104121273-A0305-02-0009-1
a/b
Figure 104121273-A0305-02-0009-2
2.0 式(1) 0.9
Figure 104121273-A0305-02-0009-1
a/b
Figure 104121273-A0305-02-0009-2
2.0 Formula (1)

(此處,a為所述黏合劑層的乾燥開始15分鐘後的所述黏合劑層對PET膜的黏合力,b為在40℃下老化5天後的所述黏合劑層對PET膜的黏合力) (Here, a is the adhesive force of the adhesive layer to the PET film 15 minutes after the drying of the adhesive layer starts, and b is the adhesive force of the adhesive layer to the PET film after aging at 40°C for 5 days. Adhesion)

另外,本發明提供一種透明導電性膜,其為將上述的透明導電性膜用表面保護膜貼合到在一個面上形成有透明導電膜的樹脂膜的另一個面上得到的透明導電性膜。 In addition, the present invention provides a transparent conductive film obtained by laminating the above-mentioned surface protective film for a transparent conductive film to the other surface of a resin film having a transparent conductive film formed on one surface .

本發明提供一種透明導電性膜用表面保護膜及使用表面保護膜的透明導電性膜,本發明的透明導電性膜用表面保護膜在從滾筒反繞的狀態下,所形成的黏合劑層維持表面的平滑性,即使貼合到透明導電性膜上也具有優異的處理性,在 透明導電性膜的製造、加工製程中,起因於表面保護膜的外觀缺陷不良得到改善,且在觸控面板用透明電極製程中的生產性良好。 The present invention provides a surface protective film for a transparent conductive film and a transparent conductive film using the surface protective film. The surface protective film for a transparent conductive film of the present invention maintains the formed adhesive layer in a state of being rewound from the drum The smoothness of the surface, even when attached to a transparent conductive film, also has excellent handling properties, in In the manufacturing process of the transparent conductive film, defects in appearance defects caused by the surface protective film are improved, and the productivity in the transparent electrode process for touch panels is good.

另外,近年來,隨著智慧手機等高功能便攜終端的殼體的薄型化,所使用的透明導電性膜的薄型化不斷進展。本發明的透明導電性膜用表面保護膜在觸控面板用透明電極的製程中,即使在貼合到薄型化的透明導電性膜上的狀態下經過加熱製程後,產生的捲曲也非常小。由此,能夠大幅改善觸控面板用透明電極的製程的作業性、生產效率。 In addition, in recent years, with the thinning of the casing of high-function portable terminals such as smartphones, the thinning of the transparent conductive films used has continued to progress. The surface protective film for a transparent conductive film of the present invention has a very small curl even after a heating process in the state of being attached to a thinned transparent conductive film in the process of a transparent electrode for a touch panel. Thereby, the workability and production efficiency of the manufacturing process of the transparent electrode for touch panels can be greatly improved.

1‧‧‧基材膜 1‧‧‧ Base film

2‧‧‧黏合劑層 2‧‧‧adhesive layer

3‧‧‧剝離膜 3‧‧‧ peeling film

4‧‧‧黏合膜 4‧‧‧ Adhesive film

5‧‧‧透明導電性膜用表面保護膜 5‧‧‧ Surface protective film for transparent conductive film

6‧‧‧樹脂膜 6‧‧‧Resin film

6a‧‧‧樹脂膜的一個面 6a‧‧‧One side of resin film

6b‧‧‧樹脂膜的另一個面 6b‧‧‧The other side of the resin film

7‧‧‧透明導電膜 7‧‧‧Transparent conductive film

10‧‧‧透明導電性膜 10‧‧‧Transparent conductive film

11‧‧‧疊層膜 11‧‧‧Laminated film

21‧‧‧剝離膜的滾筒 21‧‧‧Drum for peeling film

22‧‧‧基材膜的滾筒 22‧‧‧Roller for substrate film

23‧‧‧黏合劑塗佈裝置 23‧‧‧Binder coating device

24‧‧‧乾燥爐 24‧‧‧ drying oven

25、26‧‧‧壓力滾輪 25, 26‧‧‧ pressure roller

27‧‧‧透明導電性膜用表面保護膜的滾筒 27‧‧‧Roller for surface protective film for transparent conductive film

【第1圖】為表示本發明的透明導電性膜用表面保護膜的一例的剖面圖。 Fig. 1 is a cross-sectional view showing an example of the surface protective film for a transparent conductive film of the present invention.

【第2圖】為表示將本發明的透明導電性膜用表面保護膜貼合到透明導電性膜上的例子的剖面圖。 [FIG. 2] A cross-sectional view showing an example of bonding the surface protective film for a transparent conductive film of the present invention to a transparent conductive film.

【第3圖】為表示本發明的透明導電性膜用表面保護膜的製造方法的一例的示意圖。 [FIG. 3] A schematic diagram showing an example of a method for manufacturing a surface protective film for a transparent conductive film of the present invention.

以下,基於實施方式對本發明進行詳細說明。 Hereinafter, the present invention will be described in detail based on the embodiments.

第1圖為表示本發明的透明導電性膜用表面保護膜的一例的剖面圖。此透明導電性膜用表面保護膜5在透明的具有可撓性的基材膜1的單面上疊層有黏合劑層2。黏合劑層2之待貼合至被黏附物的表面上,藉由已剝離處理的面,疊層著用以保護黏合劑層的表面之已剝離處理的剝離膜3。 FIG. 1 is a cross-sectional view showing an example of the surface protective film for a transparent conductive film of the present invention. The surface protective film 5 for a transparent conductive film is laminated with an adhesive layer 2 on one side of a transparent flexible base film 1. The surface of the adhesive layer 2 to be bonded to the adherend is laminated with a peeling film 3 that has been peeled off to protect the surface of the adhesive layer through the peeled surface.

作為基材膜1,使用透明的具有可撓性的塑膠膜。 由此,能夠在將本發明的透明導電性膜用表面保護膜貼合黏合到在基材的一個面上形成有透明導電膜的透明導電性膜的另一個面上的狀態下直接進行導電性膜的外觀檢查。作為用作基材膜1的塑膠膜,可以舉出較佳的有聚對苯二甲酸乙二酯、聚萘二甲酸乙二酯、聚間苯二甲酸乙二酯、聚對苯二甲酸丁二酯等聚酯膜。另外,除了聚酯膜以外,只要是具有所需的強度且具有光學適性的塑膠膜,則也可以使用其他樹脂種類的塑膠膜。基材膜1為未拉伸膜、單向或雙軸延伸膜等,沒有特別限制,但以基材膜的加熱收縮率低的較佳。 As the base film 1, a transparent plastic film having flexibility is used. Thus, it is possible to directly conduct conductivity in a state where the surface protective film for a transparent conductive film of the present invention is bonded and bonded to the other surface of the transparent conductive film on which the transparent conductive film is formed on one surface of the substrate Visual inspection of the membrane. Examples of the plastic film used as the base film 1 include polyethylene terephthalate, polyethylene naphthalate, polyethylene isophthalate, and polybutylene terephthalate. Diester and other polyester films. In addition to the polyester film, as long as it is a plastic film having the required strength and having optical compatibility, other types of plastic films can also be used. The base film 1 is an unstretched film, a unidirectional or biaxially stretched film, etc., and is not particularly limited, but the base film preferably has a low heat shrinkage rate.

另外,本發明所涉及的透明導電性膜用表面保護 膜的基材膜1的厚度沒有特別限制,根據所使用的透明導電性膜選擇即可。在使用的透明導電性膜厚至100μm以上的情況下,透明導電性膜本身的處理性不會太差,因此,表面保護膜主要著眼於對透明導電性膜的表面進行保護即可。因此,可以使用表面保護膜的基材膜1的厚度為25~75μm左右的表面保護膜。 Moreover, the surface protection for transparent conductive films concerning this invention The thickness of the base film 1 of the film is not particularly limited, and may be selected according to the transparent conductive film used. In the case where the thickness of the transparent conductive film used is 100 μm or more, the handleability of the transparent conductive film itself is not too bad. Therefore, the surface protective film mainly focuses on protecting the surface of the transparent conductive film. Therefore, a surface protective film having a thickness of about 25 to 75 μm can be used for the base film 1 of the surface protective film.

另一方面,在所使用的透明導電性膜薄至50μm以 下的情況下,透明導電性膜本身的處理性差,因此,也要考慮表面保護膜的處理性,使用基材膜的厚度厚的透明導電性膜較佳。作為具體的基材膜的厚度,以100~188μm左右較佳。 On the other hand, the transparent conductive film used is as thin as 50 μm In the case below, the handleability of the transparent conductive film itself is poor. Therefore, the handleability of the surface protective film is also considered, and it is preferable to use a thick transparent conductive film of the base film. The specific thickness of the base film is preferably about 100 to 188 μm.

另外,可以根據需要在基材膜1的疊層有黏合劑層 2的面之相反面上疊層以防止表面污垢為目的的防汙層、抗靜電層、寡聚物防止層、防止損傷的硬塗層或者進行電暈放電處理、錨固塗佈處理等易黏合性的處理。 In addition, an adhesive layer may be laminated on the base film 1 as needed The anti-fouling layer, antistatic layer, oligomer prevention layer, hard coating to prevent damage, corona discharge treatment, anchor coating treatment, etc. are easy to bond Sexual treatment.

本發明所涉及的透明導電性膜用表面保護膜的黏合劑層2為丙烯酸類黏合劑較佳。特別為將丙烯酸類黏合劑和交聯劑在即將使用之前進行配製(配合)的二液型黏合劑較佳。 The adhesive layer 2 of the surface protective film for a transparent conductive film according to the present invention is preferably an acrylic adhesive. In particular, a two-component adhesive in which an acrylic adhesive and a cross-linking agent are prepared (mixed) immediately before use is preferred.

作為丙烯酸類黏合劑,在(甲基)丙烯酸類聚合物(丙烯酸類樹脂組合物)中添加有交聯劑且根據需要添加有賦黏劑的黏合劑較佳。(甲基)丙烯酸類聚合物通常為丙烯酸正丁酯、丙烯酸-2-乙基己酯、丙烯酸異辛酯、丙烯酸異壬酯等主要單體與丙烯腈、醋酸乙烯酯、甲基丙烯酸甲酯、丙烯酸乙酯等共聚單體、丙烯酸、甲基丙烯酸、丙烯酸羥乙酯、丙烯酸羥丁酯、縮水甘油甲基丙烯酸酯、N-羥甲基甲基丙烯醯胺等官能性單體共聚合而成的聚合物。構成(甲基)丙烯酸類聚合物的單體組成其較佳的為(甲基)丙烯酸類單體為50%以上,(甲基)丙烯酸類單體也可以為100%。 As the acrylic adhesive, a (meth)acrylic polymer (acrylic resin composition) to which a crosslinking agent is added and, if necessary, a tackifier is preferably added. (Meth)acrylic polymers are usually n-butyl acrylate, 2-ethylhexyl acrylate, isooctyl acrylate, isononyl acrylate and other main monomers and acrylonitrile, vinyl acetate, methyl methacrylate , Ethyl acrylate and other comonomers, acrylic acid, methacrylic acid, hydroxyethyl acrylate, hydroxybutyl acrylate, glycidyl methacrylate, N-methylol methacrylamide and other functional monomers are copolymerized and The polymer. The monomer composition constituting the (meth)acrylic polymer is preferably 50% or more of the (meth)acrylic monomer, and the (meth)acrylic monomer may be 100%.

作為交聯劑,可以舉出異氰酸酯化合物、環氧化合物、三聚氰胺化合物、金屬螯合化合物等,其中較佳的為異氰酸酯化合物。進一步在一分子中具有至少2個或3個以上的異氰酸酯(NCO)基的多異氰酸酯化合物較佳。 Examples of the crosslinking agent include isocyanate compounds, epoxy compounds, melamine compounds, and metal chelate compounds. Among them, isocyanate compounds are preferred. Further, a polyisocyanate compound having at least 2 or more than 3 isocyanate (NCO) groups in one molecule is preferable.

多異氰酸酯化合物雖然分為脂肪族類異氰酸酯、芳香族類異氰酸酯、非環類異氰酸酯、脂肪環類異氰酸酯等,可以為任意一種。作為二官能的異氰酸酯化合物的具體例,可以舉出六亞甲基二異氰酸酯(HDI)、異佛爾酮二異氰酸酯(IPDI)、三甲基六亞甲基二異氰酸酯(TMDI)等脂肪族類異氰酸酯化合物;二苯甲烷二異氰酸酯(methylene diphenyl diisocyanate,MDI)、二亞 甲苯二異氰酸酯(xylylene diisocyanate,XDI)、氫化苯二甲基苯二異氰酸酯(H6XDI)、聯鄰甲苯二異氰酸酯(o-tolidine Diisocyanate,TOID)、甲苯二異氰酸酯(TDI)等芳香族類異氰酸酯化合物。 Although the polyisocyanate compound is classified into aliphatic isocyanate, aromatic isocyanate, acyclic isocyanate, and alicyclic isocyanate, it may be any one. Specific examples of the difunctional isocyanate compound include aliphatic isocyanates such as hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), and trimethylhexamethylene diisocyanate (TMDI). Compounds; methylene diphenyl diisocyanate (MDI), xylylene diisocyanate (XDI), hydrogenated xylylene diisocyanate (H6XDI), o- tolidine diisocyanate ( o- tolidine diisocyanate, TOID), toluene diisocyanate (TDI) and other aromatic isocyanate compounds.

作為三官能以上的異氰酸酯化合物,可以舉出二異氰酸酯類(在一分子中具有2個NCO基的化合物)的縮二脲型改質物、三聚異氰酸酯型改質物;與三羥甲基丙烷(TMP)、甘油等三價以上的多元醇(在一分子中具有至少3個以上OH基的化合物)的加成物(多元醇改質物)等。 Examples of trifunctional or higher isocyanate compounds include biuret-type modified products of diisocyanates (compounds having two NCO groups in one molecule), trimeric isocyanate-based modified products; and trimethylolpropane (TMP ), adducts (polyol-modified products) of trivalent or higher polyhydric alcohols (compounds having at least 3 or more OH groups in one molecule), etc.

交聯劑的添加量雖然考慮(甲基)丙烯酸類聚合物 的種類、聚合度、官能團量等來確定即可,沒有特別限定,但通常相對於(甲基)丙烯酸類聚合物100重量份,交聯劑為0.5~10重量份左右。 Although the amount of crosslinking agent added considers (meth)acrylic polymers The kind, degree of polymerization, amount of functional groups, etc. may be determined, and are not particularly limited, but usually the crosslinking agent is about 0.5 to 10 parts by weight with respect to 100 parts by weight of the (meth)acrylic polymer.

另外,本發明所涉及的透明導電性膜用表面保護 膜在以捲筒狀進行熟化的期間,需要在剝離膜變形之前使黏合劑層進行固化,因此,為了促進(甲基)丙烯酸類聚合物與交聯劑的交聯反應,添加交聯觸媒較佳。交聯觸媒只要是對(甲基)丙烯酸類聚合物與交聯劑的反應(交聯反應)起觸媒作用的物質即可,在以多異氰酸酯化合物作為交聯劑的情況下,可以舉出三級胺等胺類化合物、有機錫化合物、有機鉛化合物、有機鋅化合物、有機鐵化合物等有機金屬化合物。 Moreover, the surface protection for transparent conductive films concerning this invention When the film is cured in a roll shape, the adhesive layer needs to be cured before the peeling film is deformed. Therefore, in order to promote the crosslinking reaction between the (meth)acrylic polymer and the crosslinking agent, a crosslinking catalyst is added Better. The cross-linking catalyst may be any substance that acts as a catalyst for the reaction (cross-linking reaction) between the (meth)acrylic polymer and the cross-linking agent. When a polyisocyanate compound is used as the cross-linking agent, Organic compounds such as amine compounds such as tertiary amines, organic tin compounds, organic lead compounds, organic zinc compounds, organic iron compounds, etc.

作為三級胺,可以舉出三烷基胺、N,N,N’,N’-四烷基二胺、N,N-二烷基氨基醇、三伸乙二胺、嗎福啉衍生物、哌嗪衍生物等。 Examples of the tertiary amine include trialkylamine, N,N,N',N'-tetraalkyldiamine, N,N-dialkylamino alcohol, triethylenediamine, and morpholine derivatives , Piperazine derivatives, etc.

作為有機錫化合物,可以舉例如二烷基氧化錫、二烷基錫的脂肪酸鹽、亞錫的脂肪酸鹽等。 Examples of the organotin compound include dialkyltin oxide, fatty acid salts of dialkyltin, and fatty acid salts of stannous.

交聯觸媒的添加量考慮(甲基)丙烯酸類聚合物的種類、聚合度、官能團量、交聯觸媒的種類、添加量等來確定即可,雖然沒有特別限定,相對於丙烯酸類聚合物100重量份,通常為0.01~0.5重量份左右。 The amount of crosslinking catalyst added may be determined in consideration of the type, degree of polymerization, amount of functional groups, type of crosslinking catalyst, amount of addition, etc. of the (meth)acrylic polymer, although it is not particularly limited. 100 parts by weight, usually about 0.01 to 0.5 parts by weight.

另外,為了抑制交聯劑配製後的黏合劑組合物的 過度的黏度上升、凝膠化、延長黏合劑組合物的適用期,可以根據需要含有交聯延遲劑。 In addition, in order to suppress the adhesive composition after the preparation of the crosslinking agent Excessive viscosity increase, gelation, and extended pot life of the adhesive composition may contain a cross-linking retarder as needed.

作為交聯延遲劑,可以舉出乙醯乙酸甲酯、乙醯乙酸乙酯、乙醯乙酸辛酯、乙醯乙酸油酯、乙醯乙酸月桂酯、乙醯乙酸硬脂酯等β-酮酸酯、乙醯丙酮、2,4-己二酮、苯甲醯丙酮等β-二酮。特別為選自由乙醯丙酮、乙醯乙酸乙酯組成的化合物組中的至少一種以上較佳。這些交聯延遲劑為酮-烯醇互變異構化合物,在以多異氰酸酯化合物作為交聯劑的黏合劑組合物中,透過封閉交聯劑所具有的異氰酸酯基,能夠抑制交聯劑配製後的黏合劑組合物的過度的黏度上升、凝膠化,能夠延長黏合劑組合物的適用期。 Examples of the crosslinking retarder include β-ketoacid such as methyl acetoacetate, ethyl acetate, octyl acetate, oleyl acetate, lauryl acetate, and stearyl acetoacetate. Β-diketones such as esters, acetone, 2,4-hexanedione, acetophenone, etc. In particular, it is preferably at least one or more selected from the group consisting of acetone acetone and ethyl acetate. These crosslinking retarders are keto-enol tautomeric compounds. In the adhesive composition using the polyisocyanate compound as the crosslinking agent, by isolating the isocyanate group of the crosslinking agent, the crosslinking agent can be suppressed Excessive viscosity increase and gelation of the adhesive composition can extend the pot life of the adhesive composition.

交聯延遲劑的添加量雖然沒有特別限定,相對於(甲基)丙烯酸類聚合物100重量份,通常添加1.0~5.0重量份左右。 Although the addition amount of the cross-linking retarder is not particularly limited, it is usually about 1.0 to 5.0 parts by weight relative to 100 parts by weight of the (meth)acrylic polymer.

另外,可以根據需要在黏合劑中添加賦黏劑。作 為賦黏劑,可以舉出松香類、苯井呋喃-茚系、萜烯類、石油類、酚類等。 In addition, a tackifier can be added to the adhesive as needed. Make Examples of the viscosity-imparting agent include rosin, benzofuran-indene, terpenes, petroleum, and phenols.

另外,在本發明所涉及的透明導電性膜用表面保 護膜的黏合劑層2中,可以根據需要混合抗靜電劑。作為抗靜電劑,較佳的為在(甲基)丙烯酸類聚合物中的分散性或與(甲基)丙烯酸類聚合物相容性良好的抗靜電劑。作為可使用的抗靜電劑,可以舉例如表面活性劑類、離子液體、鹼金屬鹽、金屬氧化物、金屬微粒、導電性聚合物、碳、奈米碳管等。從透明性、與(甲基)丙烯酸類聚合物的親和性等角度出發,表面活性劑類、離子液體、鹼金屬鹽等較佳。抗靜電劑相對於黏合劑的添加量可以考慮抗靜電劑的種類、與基礎聚合物的相容性來適當確定。另外,考慮將本發明所涉及的透明導電性膜用表面保護膜從透明導電性膜剝離時所需要的剝離電壓、被黏物的污染性、黏合力等來具體設定抗靜電劑的種類、添加量。 In addition, the surface protection for the transparent conductive film according to the present invention In the adhesive layer 2 of the protective film, an antistatic agent may be mixed as needed. As the antistatic agent, an antistatic agent having good dispersibility in the (meth)acrylic polymer or good compatibility with the (meth)acrylic polymer is preferred. Examples of usable antistatic agents include surfactants, ionic liquids, alkali metal salts, metal oxides, metal fine particles, conductive polymers, carbon, and carbon nanotubes. From the viewpoints of transparency and affinity with (meth)acrylic polymers, surfactants, ionic liquids, alkali metal salts, and the like are preferred. The amount of antistatic agent added to the binder can be appropriately determined in consideration of the type of antistatic agent and the compatibility with the base polymer. In addition, the type and addition of the antistatic agent are specifically considered in consideration of the peeling voltage required when peeling the surface protective film for a transparent conductive film from the transparent conductive film, the contamination of the adherend, the adhesive strength, etc. the amount.

另外,本發明所涉及的透明導電性膜用表面保護 膜的黏合劑層2的厚度雖然沒有特別限定,較佳的例如為5~50μm左右的厚度,進一步以5~30μm左右的厚度較佳。黏合劑層2的厚度超過50μm時,製造透明導電性膜用表面保護膜的成本增大,因此損害競爭力。黏合劑層2的厚度小於5μm時,存在如下問題:對透明導電性膜的密合性降低,或者,在將表面保護膜貼合到透明導電性膜上時混入有異物的情況下,透明導電性膜大幅變形。 Moreover, the surface protection for transparent conductive films concerning this invention Although the thickness of the adhesive layer 2 of the film is not particularly limited, it is preferably about 5 to 50 μm, and more preferably about 5 to 30 μm. When the thickness of the adhesive layer 2 exceeds 50 μm, the cost of manufacturing the surface protective film for a transparent conductive film increases, which impairs competitiveness. When the thickness of the adhesive layer 2 is less than 5 μm, there is a problem that the adhesion to the transparent conductive film is reduced, or when foreign substances are mixed when the surface protective film is attached to the transparent conductive film, the transparent conductive The sex membrane is greatly deformed.

另外,本發明所涉及的透明導電性膜用表面保護膜的黏合劑層2為對被黏附物表面的剝離強度為0.05~0.5N/25mm左右的,具有輕度黏合性的微黏合劑層較佳。透過製成具有這樣的微黏合劑層的透明導電性膜用表面保護膜,能夠得到容易從被黏附物剝離的優異的操作性。 In addition, the adhesive layer 2 of the surface protective film for a transparent conductive film according to the present invention has a peeling strength to the surface of the adherend of about 0.05 to 0.5 N/25 mm, and a light adhesive micro-adhesive layer good. By forming a surface protective film for a transparent conductive film having such a micro-adhesive layer, excellent handleability that can be easily peeled off from the adherend can be obtained.

另外,本發明所涉及的透明導電性膜用表面保護 膜的剝離膜3的材質沒有特別限定。作為可使用的剝離膜的材質,可以舉例如聚乙烯膜、聚丙烯膜、聚甲基戊烯膜等聚烯烴膜、在聚酯膜等膜的表面上使用聚矽氧烷系剝離劑等剝離劑實施了剝離處理的剝離膜、氟樹脂膜、聚醯亞胺膜等。另外,也可以為將複數膜使用接合劑疊層而成的膜、在膜上熔融擠出樹脂並疊層而成的疊層膜。在這些單層膜或疊層膜上使用聚矽氧烷系剝離劑等剝離劑實施剝離處理,得到剝離膜。 Moreover, the surface protection for transparent conductive films concerning this invention The material of the film release film 3 is not particularly limited. Examples of materials that can be used for the release film include polyolefin films such as polyethylene films, polypropylene films, and polymethylpentene films, and the use of polysiloxane-based release agents on the surfaces of films such as polyester films. A release film, a fluororesin film, a polyimide film, etc. which have undergone a peeling treatment. In addition, it may be a film in which a plurality of films are laminated using an adhesive, or a laminated film in which a resin is melt-extruded on a film and laminated. These single-layer films or laminated films are subjected to a peeling treatment using a peeling agent such as a polysiloxane-based peeling agent to obtain a peeling film.

另外,本發明所涉及的透明導電性膜用表面保護 膜的剝離膜3的厚度沒有特別限制,選擇易於使用的厚度的剝離膜即可。通常多為19μm~75μm左右的剝離膜。 Moreover, the surface protection for transparent conductive films concerning this invention The thickness of the peeling film 3 of the film is not particularly limited, and a peeling film of a thickness that is easy to use may be selected. Usually it is about 19μm~75μm release film.

剝離膜3較厚時,在捲成滾筒狀的相同纏繞直徑的滾筒中,透明導電性膜用表面保護膜的全長縮短、製造成本增加,因此,需引導剝離膜3至適當的厚度。另外,剝離膜3較佳的為對單層聚酯膜進行剝離處理而得到的剝離膜、對使用接合劑將聚酯膜多層疊層成的膜實施剝離處理而得到的剝離膜。 When the peeling film 3 is thick, the total length of the surface protective film for a transparent conductive film is shortened and the manufacturing cost increases in a drum of the same winding diameter rolled into a drum shape. Therefore, it is necessary to guide the peeling film 3 to an appropriate thickness. In addition, the peeling film 3 is preferably a peeling film obtained by peeling a single-layer polyester film, and a peeling film obtained by subjecting a film formed by multi-layering a polyester film using an adhesive to a peeling process.

另外,在基材膜1上依次疊層黏合劑層2和剝離膜3 的方法通過公知的方法進行即可,沒有特別限定。具體地說,可以為在基材膜1上塗佈黏合劑層2並乾燥後貼合剝離膜3的方法、在剝離膜3上塗佈黏合劑層2並乾燥後貼合基材膜1的方法等中的任意一種方法。 In addition, an adhesive layer 2 and a release film 3 are sequentially laminated on the base film 1 The method may be performed by a well-known method and is not particularly limited. Specifically, it may be a method in which the adhesive layer 2 is coated on the base film 1 and dried, and then the release film 3 is bonded, and the adhesive layer 2 is coated on the release film 3 and dried, and then the base film 1 is bonded. Any of the methods.

另外,在基材膜1上形成黏合劑層可以通過公知的方法進行。具體地說,可以採用逆向塗佈法、刮刀塗佈法(comma coat)、凹版印刷法、縫模塗佈法、梅爾棒塗佈(Mayer bar coat) 法、氣刀塗佈(anchor coat)法等公知的塗佈方法。 In addition, the formation of the adhesive layer on the base film 1 can be performed by a known method. Specifically, a reverse coating method, a comma coat method, a gravure printing method, a slit die coating method, and a Mayer bar coat can be used A well-known coating method such as a method, an anchor coat method, and the like.

另外,對剝離膜3實施剝離處理的方法通過公知的 方法進行即可。具體地說,通過凹版印刷法、梅爾棒塗佈(Mayer bar coat)法、氣刀塗佈(anchor coat)法等塗佈方法在剝離膜3的單面上塗佈剝離劑並通過加熱或紫外線照射等對剝離劑進行乾燥、固化即可。也可以根據需要對要進行剝離處理的膜預先進行電暈處理、電漿處理、錨固塗佈等使剝離劑對膜的密合性提高的預處理。 In addition, a method of performing a peeling treatment on the peeling film 3 is known through Method can be carried out. Specifically, a peeling agent is applied on one side of the peeling film 3 by a coating method such as a gravure printing method, a Mayer bar coat method, an anchor coat method, and the like by heating or The release agent may be dried and cured by ultraviolet irradiation or the like. If necessary, the film to be subjected to the peeling treatment may be subjected to pretreatments such as corona treatment, plasma treatment, anchor coating and the like to improve the adhesion of the peeling agent to the film.

另外,圖2為表示將本發明的透明導電性膜用表面 保護膜貼合到透明導電性膜上而成的疊層膜11的一例的示意性構成圖。 In addition, FIG. 2 shows the surface of the transparent conductive film of the present invention. A schematic configuration diagram of an example of the laminated film 11 in which the protective film is bonded to the transparent conductive film.

此疊層膜11為將黏合膜4利用其黏合劑層2貼合到透明導電性膜10的表面而成的疊層膜,黏合膜4是從本發明的透明導電性膜用表面保護膜5上剝下剝離膜3而得到的。透明導電性膜10在樹脂膜6的一個面6a上形成有透明導電膜7。黏合膜4貼合在樹脂膜6的另一個面6b上。 The laminated film 11 is a laminated film formed by bonding the adhesive film 4 to the surface of the transparent conductive film 10 with the adhesive layer 2 thereof. The adhesive film 4 is a surface protective film 5 for the transparent conductive film of the present invention. The peeling film 3 is peeled off. In the transparent conductive film 10, a transparent conductive film 7 is formed on one surface 6a of the resin film 6. The adhesive film 4 is bonded to the other surface 6b of the resin film 6.

作為透明導電性膜10,可以舉出形成有ITO、AZO或GZO等的透明導電膜的聚對苯二甲酸乙二酯(PET)膜、形成有ITO、AZO或GZO等的透明導電膜的環狀聚烯烴膜等。這樣的透明導電性膜在觸控面板、電子紙、電磁波遮蔽材料、各種感測器、液晶面板、有機EL、太陽能電池等技術領域中廣泛用於透明電極等的形成用途。 Examples of the transparent conductive film 10 include a polyethylene terephthalate (PET) film formed with a transparent conductive film such as ITO, AZO, or GZO, and a ring formed with a transparent conductive film such as ITO, AZO, or GZO. Polyolefin film, etc. Such transparent conductive films are widely used in the formation of transparent electrodes in the technical fields such as touch panels, electronic paper, electromagnetic wave shielding materials, various sensors, liquid crystal panels, organic ELs, and solar cells.

本發明的透明導電性膜用表面保護膜發揮如下的優異效果:在觸控面板等的透明電極的製程中,能夠大幅改善作業 性、生產效率,即使是薄型化的透明導電性膜,也不會使作業性、處理性降低。 The surface protective film for a transparent conductive film of the present invention exerts the following excellent effects: In the process of manufacturing a transparent electrode such as a touch panel, it is possible to greatly improve the operation Performance and production efficiency, even if it is a thin transparent conductive film, it will not reduce workability and handling.

另外,圖3為表示本發明的透明導電性膜用表面保護膜的製造方法的一例的示意圖。 In addition, FIG. 3 is a schematic diagram showing an example of a method for manufacturing a surface protective film for a transparent conductive film of the present invention.

從進行了剝離處理的剝離膜3捲成的滾筒21和基材膜1捲成的滾筒22上分別反覆放出剝離膜3和基材膜1。在基材膜1的一個面上,利用黏合劑塗佈裝置23塗佈黏合劑。將塗佈有黏合劑的基材膜1在乾燥爐24中乾燥,形成黏合膜4。使黏合膜4的形成有黏合劑層的面與剝離膜3的進行了剝離處理的面相對,使用壓力滾輪25、26進行壓接,得到透明導電性膜用表面保護膜5。將透明導電性膜用表面保護膜5以滾筒27卷起。通常,透明導電性膜用表面保護膜5的保存、運輸以滾筒27的狀態進行。在貼合到透明導電性膜10上時,透明導電性膜用表面保護膜5從滾筒27上反繞。 The peeling film 3 and the base film 1 are repeatedly released from the drum 21 wound with the peeling film 3 and the drum 22 wound with the base film 1. On one surface of the base film 1, an adhesive is applied by an adhesive application device 23. The base film 1 coated with the adhesive is dried in the drying furnace 24 to form the adhesive film 4. The surface of the adhesive film 4 on which the adhesive layer was formed was opposed to the surface of the release film 3 subjected to the peeling treatment, and was pressure-bonded using pressure rollers 25 and 26 to obtain a surface protective film 5 for a transparent conductive film. The transparent conductive film surface protective film 5 is rolled up by the roller 27. Normally, the storage and transportation of the surface protective film 5 for a transparent conductive film are performed in the state of the drum 27. When bonding to the transparent conductive film 10, the surface protective film 5 for transparent conductive film is rewound from the drum 27.

【實施例】 【Example】

以下,基於實施例進一步對本發明進行說明。 Hereinafter, the present invention will be further described based on examples.

(實施例1的透明導電性膜用表面保護膜的製作) (Production of surface protective film for transparent conductive film of Example 1)

在厚度為25μm的雙軸延伸後的聚酯膜的單面上,通過梅爾棒法塗佈塗料,使乾燥後的聚矽氧烷膜的厚度為0.1μm,該塗料為將加成反應型聚矽氧烷(Toray Dow Corning製造,品名:SRX-211 100重量份中添加有鉑觸媒SRX-212 1重量份)用甲苯/乙酸乙酯1:1混合溶劑稀釋而得到的塗料。進而,在溫度120℃的熱風循環式烘箱中進行1分鐘的乾燥、固化,得到實施例1的剝離膜。 On one side of the biaxially stretched polyester film with a thickness of 25 μm, a coating is applied by the Mel-Bar method to make the thickness of the dried polysiloxane film 0.1 μm. The coating is an addition reaction type Polysiloxane (manufactured by Toray Dow Corning, product name: SRX-211 with 100 parts by weight of platinum catalyst SRX-212 added with 1 part by weight) is a paint diluted with toluene/ethyl acetate 1:1 mixed solvent. Furthermore, drying and curing were carried out in a hot-air circulation type oven at a temperature of 120° C. for 1 minute to obtain the release film of Example 1.

另外,黏合劑層使用黏合劑組合物來形成,該黏 合劑組合物為在丙烯酸-2-乙基己酯與丙烯酸-2-羥乙酯共聚而成的固體含量為40%的丙烯酸類聚合物100重量份中添加HDI系交聯劑(日本聚氨酯工業公司製造,品名:CORONATEHX)4重量份、作為交聯觸媒的二月桂酸二丁基錫0.03重量份並混合而得到的黏合劑組合物。在厚度為125μm的聚對苯二甲酸乙二醇酯膜上塗佈上述黏合劑組合物,使乾燥後的黏合劑層的厚度為20μm,在溫度為130℃的熱風循環式烘箱中使黏合劑乾燥1分鐘。然後,將上述製作的實施例1的剝離膜的聚矽氧烷(silicone)處理面貼合疊層到黏合劑層的表面上,得到實施例1的透明導電性膜用表面保護膜。 In addition, the adhesive layer is formed using an adhesive composition, the adhesive The mixture composition is an HDI-based crosslinking agent (Japan Polyurethane Industry Co., Ltd.) added to 100 parts by weight of an acrylic polymer obtained by copolymerizing 2-ethylhexyl acrylate and 2-hydroxyethyl acrylate with a solid content of 40%. Manufactured, product name: CORONATEHX) 4 parts by weight, a crosslinking catalyst of 0.03 parts by weight of dibutyltin dilaurate and mixed to obtain a binder composition. The above-mentioned adhesive composition was coated on a polyethylene terephthalate film with a thickness of 125 μm, so that the thickness of the adhesive layer after drying was 20 μm, and the adhesive was applied in a hot air circulation oven at a temperature of 130°C. Dry for 1 minute. Then, the silicone-treated surface of the release film of Example 1 prepared above was laminated and laminated on the surface of the adhesive layer to obtain a surface protective film for a transparent conductive film of Example 1.

(實施例2的透明導電性膜用表面保護膜的製作) (Production of surface protective film for transparent conductive film of Example 2)

除了使交聯劑的添加量相對於丙烯酸類聚合物100重量份為6重量份以外,以與實施例1同樣的方式,得到實施例2的透明導電性膜用表面保護膜。 A surface protective film for a transparent conductive film of Example 2 was obtained in the same manner as in Example 1, except that the amount of the crosslinking agent added was 6 parts by weight relative to 100 parts by weight of the acrylic polymer.

(實施例3的透明導電性膜用表面保護膜的製作) (Production of surface protective film for transparent conductive film of Example 3)

除了使交聯劑的添加量相對於丙烯酸類聚合物100重量份為8重量份以外,以與實施例1同樣的方式,得到實施例3的透明導電性膜用表面保護膜。 A surface protective film for a transparent conductive film of Example 3 was obtained in the same manner as in Example 1, except that the amount of the crosslinking agent added was 8 parts by weight relative to 100 parts by weight of the acrylic polymer.

(比較例1的透明導電性膜用表面保護膜的製作) (Production of surface protective film for transparent conductive film of Comparative Example 1)

除了使黏合劑層的乾燥溫度為100℃以外,以與實施例1同樣的方式,得到比較例1的透明導電性膜用表面保護膜。 A surface protective film for a transparent conductive film of Comparative Example 1 was obtained in the same manner as in Example 1, except that the drying temperature of the adhesive layer was 100°C.

(比較例2的透明導電性膜用表面保護膜的製作) (Production of surface protective film for transparent conductive film of Comparative Example 2)

除了使用在丙烯酸丁酯、丙烯酸-2-乙基己酯與丙烯酸共聚而成的固體含量為40%的丙烯酸類聚合物100重量份中添加環氧系交聯劑(三菱瓦斯化學公司製造,品名:TETRAD-C)4重量份並混合而得到的黏合劑組合物作為黏合劑組合物以外,以與實施例1同樣的方式,得到比較例2的透明導電性膜用表面保護膜。 In addition to the use of 100 parts by weight of acrylic polymer copolymerized with butyl acrylate, 2-ethylhexyl acrylate and acrylic acid with a solid content of 40%, an epoxy crosslinking agent (manufactured by Mitsubishi Gas Chemical Co., Ltd., product name) is added : TETRAD-C) A binder composition obtained by mixing 4 parts by weight as a binder composition, in the same manner as in Example 1, a surface protective film for a transparent conductive film of Comparative Example 2 was obtained.

(比較例3的透明導電性膜用表面保護膜的製作) (Production of a surface protective film for a transparent conductive film of Comparative Example 3)

除了使用在丙烯酸-2-乙基己酯、丙烯酸丁酯與丙烯酸-2-羥乙酯共聚而成的固體含量為40%的丙烯酸類聚合物100重量份中添加HDI系交聯劑(日本聚氨酯工業公司製造,品名:CORONATE HX)1重量份、作為交聯觸媒的二月桂酸二丁基錫0.03重量份並混合而得到的黏合劑組合物作為黏合劑組合物以外,以與實施例1同樣的方式,得到比較例3的透明導電性膜用表面保護膜。 In addition to the use of 100 parts by weight of acrylic polymer copolymerized with 2-ethylhexyl acrylate, butyl acrylate and 2-hydroxyethyl acrylate and having a solid content of 40%, an HDI-based crosslinking agent (Japanese polyurethane) is added Manufactured by an industrial company, product name: CORONATE HX) 1 part by weight, 0.03 parts by weight of dibutyltin dilaurate as a crosslinking catalyst and mixed to obtain a binder composition as the binder composition, the same as Example 1 Method, a surface protective film for a transparent conductive film of Comparative Example 3 was obtained.

(比較例4的透明導電性膜用表面保護膜的製作) (Production of a surface protective film for a transparent conductive film of Comparative Example 4)

除了不添加作為交聯觸媒的二月桂酸二丁基錫以外,以與實施例1同樣的方式,得到比較例4的透明導電性膜用表面保護膜。 A surface protective film for a transparent conductive film of Comparative Example 4 was obtained in the same manner as in Example 1, except that dibutyltin dilaurate as a crosslinking catalyst was not added.

以下,示出評價試驗的方法和試驗結果。此處,使用「硬塗佈處理PET膜」作為透明導電性薄膜用基材(膜)的一例。 The method and test results of the evaluation test are shown below. Here, "hard coating PET film" is used as an example of the base material (film) for transparent conductive films.

(儲存模數的測定) (Determination of storage modulus)

對於實施例、比較例中得到的樣品,使用黏彈性測定裝置(ABM公司製造,動態黏彈性測定裝置Reogel-E4000)測定在40℃環境下熟化5天後的黏合劑層在30℃下的儲存模數。 For the samples obtained in Examples and Comparative Examples, the storage of the adhesive layer at 30°C after aging for 5 days in a 40°C environment was measured using a viscoelasticity measuring device (manufactured by ABM, dynamic viscoelasticity measuring device Reogel-E4000) Modulus.

(對PET膜的黏合力的測定) (Determination of PET film adhesion)

對於實施例、比較例中得到的樣品,測定黏合劑層的乾燥開始15分鐘後和在40℃的環境下熟化5天後的黏合劑層對PET膜的黏合力。 For the samples obtained in the examples and comparative examples, the adhesion of the adhesive layer to the PET film was measured 15 minutes after the drying of the adhesive layer started and after aging for 5 days in an environment of 40°C.

通過使2kg的橡膠滾筒往返一次將樣品貼合到厚度為38μm的雙軸延伸聚對苯二甲酸乙二酯膜(三菱樹脂株式會社製造,DIA FOIL T100)上。在23℃、50%RH的環境下放置1小時後,使用小型桌上型試驗裝置(島津製作所公司製造,EZ-L),測定以300mm/分鐘的剝離速度沿180°的方向剝離PET膜時的黏合力。 The sample was attached to a biaxially stretched polyethylene terephthalate film (made by Mitsubishi Resin Co., Ltd., DIA FOIL T100) with a thickness of 38 μm by reciprocating a 2 kg rubber roller once. After leaving it in an environment of 23°C and 50% RH for 1 hour, using a small desktop tester (Shimadzu Corporation, EZ-L), the peeling of the PET film in the direction of 180° at a peeling speed of 300 mm/min was measured. Adhesion.

(透明導電性膜用表面保護膜的初始黏合力的測 定) (Measurement of initial adhesion of surface protective film for transparent conductive film set)

使用在厚度為50μm的雙軸延伸後的聚酯膜的單面上實施了硬塗佈處理的、也用於ITO膜的硬塗佈處理後的PET膜(KIMOTO公司製造,品名:KB膜#50G01)。將裁切為25mm寬的透明導電性膜用表面保護膜貼合到PET膜的實施了硬塗佈處理的表面上後,在23℃、50%RH的環境下保存1小時,製成初始黏合力的測定樣品。然後,使用拉伸試驗機,測定以300mm/分鐘的剝離速度沿180°的方向剝離透明導電性膜用表面保護膜時的強度,將其作為初始黏合力(N/25mm)。 A PET film (manufactured by KIMOTO, product name: KB film #) which has been subjected to hard coating treatment on one side of a biaxially stretched polyester film having a thickness of 50 μm and which has also been used for hard coating treatment of an ITO film is used. 50G01). The transparent conductive film cut to a width of 25 mm was bonded to the surface of the PET film subjected to the hard coating process with a surface protective film, and then stored in an environment of 23° C. and 50% RH for 1 hour to prepare an initial bond. Determination of force samples. Then, using a tensile tester, the strength when peeling the surface protective film for a transparent conductive film at a peeling speed of 300 mm/min in the direction of 180° was measured and used as the initial adhesion force (N/25 mm).

測定裝置使用島津製作所公司製造的型號為EZ-L的小型桌上型試驗裝置。 As the measuring device, a small desktop test device model EZ-L manufactured by Shimadzu Corporation was used.

<透明導電性膜用表面保護膜的加熱後黏合力的測定> <Measurement of adhesion after heating of surface protective film for transparent conductive film>

將裁切為25mm寬的透明導電性膜用表面保護膜貼合到PET膜的實施了硬塗佈處理的表面上後,在150℃環境下保存1小時,作為加熱後黏合力的測定樣品,除此以外,與初始黏合力的測定同樣地測定,將其作為加熱後黏合力(N/25mm)。 The transparent conductive film cut to a width of 25 mm was bonded to the surface of the PET film subjected to the hard coating treatment, and then stored at 150°C for 1 hour as a sample for measuring the adhesion after heating. Except for this, it was measured in the same manner as the measurement of the initial adhesive force, and this was regarded as the adhesive force after heating (N/25 mm).

測定裝置使用島津製作所公司製造的型號為EZ-L的小型桌上型試驗裝置。 As the measuring device, a small desktop test device model EZ-L manufactured by Shimadzu Corporation was used.

(在硬塗佈處理PET膜上貼合透明導電性膜用表面保護膜時的處理性的確認方法) (Method for confirming handleability when bonding surface protective film for transparent conductive film on hard coating PET film)

使用對透明導電性膜用表面保護膜進行了外觀檢查的樣品作為下述的透明導電性膜用表面保護膜。在硬塗佈處理後的PET膜(KIMOTO公司製造,品名:KB膜#50G01)的硬塗佈處理面上貼合透明導電性膜用表面保護膜,然後將疊層品切割為A4尺寸。拿住切割得到的樣品的4個角中的1個角,以膜面在空中扇動的方式前後往返振動20次。然後,通過目視確認硬塗佈處理PET膜有無彎折、變形。將硬塗佈處理PET膜上沒有彎折、變形的樣品評價為(○),將存在彎折或變形的樣品評價為(×)。 As the surface protective film for a transparent conductive film described below, a sample subjected to an appearance inspection of the surface protective film for a transparent conductive film was used. A surface protective film for a transparent conductive film was stuck on the hard coating surface of the PET film (product name: KB film #50G01 manufactured by Kimoto Co., Ltd.) after hard coating treatment, and then the laminate was cut into A4 size. Hold one of the four corners of the cut sample and vibrate 20 times back and forth with the film surface fanning in the air. Then, visually confirm whether the hard-coated PET film is bent or deformed. The samples with no bending or deformation on the hard coating-treated PET film were evaluated as (○), and the samples with bending or deformation were evaluated as (×).

(透明導電性膜用表面保護膜的外觀檢查的方法) (Method of visual inspection of surface protective film for transparent conductive film)

使用測試塗佈機製作透明導電性膜用表面保護膜的捲筒品(400mm寬×100m/卷),在40℃的烘箱中保溫5天,進行黏合劑的熟化。然後,通過目測對從捲筒品反繞後的透明導電性膜用表面保護膜的距邊緣50m的部位(距兩端大致等距離的位置)的樣品的外觀進行觀察。將黏合劑層的表面平滑的樣品評價為(○),將在黏合劑層的表面產生了弱凹凸的樣品評價為(△),將在黏合劑層的表面產生了強凹凸的樣品評價為(×)。 Using a test coater, a roll product (400 mm width×100 m/roll) of a surface protective film for a transparent conductive film was produced, and the plate was kept in an oven at 40° C. for 5 days to cure the adhesive. Then, the appearance of the sample at a position 50 m away from the edge (position substantially equidistant from both ends) of the surface protective film for a transparent conductive film after rewinding from the roll product was visually observed. The sample with a smooth surface of the adhesive layer was evaluated as (○), the sample with weak irregularities on the surface of the adhesive layer was evaluated as (△), and the sample with strong irregularities on the surface of the adhesive layer was evaluated as ( ×).

(硬塗佈處理膜的外觀檢查的方法) (Method of visual inspection of hard coating treatment film)

使用對透明導電性膜用表面保護膜進行了外觀檢查的樣品作為下述的透明導電性膜用表面保護膜。在硬塗佈處理PET膜(KIMOTO公司製造,品名:KB膜#50G01)的硬塗佈處理面上貼合透明導電性膜用表面保護膜,然後,在150℃下進行1小時的加熱處理。將透明導電性膜用表面保護膜剝離後,通過目測觀察硬塗佈處理PET膜的表面狀態。將硬塗佈處理PET膜的外觀平滑的樣品評價為(○),將產生了凹凸狀弱變形的樣品評價為(△),將產生了凹凸狀強變形的樣品評價為(×)。 As the surface protective film for a transparent conductive film described below, a sample subjected to an appearance inspection of the surface protective film for a transparent conductive film was used. A surface protective film for a transparent conductive film was laminated on the hard coating surface of the hard coating PET film (manufactured by KIMOTO, product name: KB film #50G01), and then subjected to heat treatment at 150°C for 1 hour. After peeling off the surface protective film for the transparent conductive film, the surface state of the hard coating-treated PET film was visually observed. A sample with a hard coating-treated PET film having a smooth appearance was evaluated as (◯), a sample with weak deformation of unevenness was evaluated as (△), and a sample with strong deformation of unevenness was evaluated as (×).

將針對各個樣品的測定結果示於表1。表1中,「聚 合物A」為實施例1中記載的丙烯酸類聚合物,「聚合物B」為比較例2中記載的丙烯酸類聚合物,「聚合物C」為比較例3中記載的丙烯酸類聚合物,「交聯劑1」為實施例1和比較例3中記載的HDI系交聯劑,「交聯劑2」為比較例2中記載的環氧類交聯劑。另外,關於表1中的儲存模數的值,通過在E的前後記載尾數和指數的形式來表示,例如將4.0×105記為4.0E+05。 Table 1 shows the measurement results for each sample. In Table 1, "Polymer A" is an acrylic polymer described in Example 1, "Polymer B" is an acrylic polymer described in Comparative Example 2, and "Polymer C" is described in Comparative Example 3. The acrylic polymer, "crosslinking agent 1" is the HDI-based crosslinking agent described in Example 1 and Comparative Example 3, and "crosslinking agent 2" is the epoxy-based crosslinking agent described in Comparative Example 2. In addition, the value of the storage modulus in Table 1 is expressed by a form in which the mantissa and the exponent are described before and after E, and 4.0×10 5 is, for example, 4.0E+05.

Figure 104121273-A0202-12-0020-1
Figure 104121273-A0202-12-0020-1
Figure 104121273-A0202-12-0021-2
Figure 104121273-A0202-12-0021-2

由表1所示的測定結果作出如下判斷。 The following judgment is made from the measurement results shown in Table 1.

實施例1~2中,透明導電性膜用表面保護膜中使用的黏合劑層的、“黏合劑層的乾燥開始15分鐘後與在40℃下老化5天後對PET膜的黏合力的比例”(a/b)為1.4~1.6,乾燥開始15分鐘後與老化(熟化)完成後的黏合力的變化小,且黏合劑層表面的凹凸非常小。使用了該表面保護膜的硬塗佈處理PET膜的外觀良好。另外,將實施例1~2的透明導電性膜用表面保護膜貼合到硬塗佈處理PET膜上時的處理性也非常良好。 In Examples 1 to 2, the ratio of the adhesive force to the PET film of the adhesive layer used for the surface protective film for a transparent conductive film after 15 minutes from the start of drying of the adhesive layer and after aging at 40°C for 5 days "(A/b) is 1.4~1.6, the change of the adhesive force 15 minutes after the start of drying and the completion of aging (aging) is small, and the unevenness of the surface of the adhesive layer is very small. The hard-coated PET film using this surface protection film has a good appearance. In addition, the handleability when the surface protective films for transparent conductive films of Examples 1 to 2 were bonded to hard-coated PET films was also very good.

關於實施例3,“黏合劑層的乾燥開始15分鐘後與在40℃下老化5天後對PET膜的黏合力的比例”(a/b)為2.0,與實施例1~2相比,黏合劑層表面的凹凸稍稍增大,但黏合劑層表面的凹凸形狀不會轉印到硬塗佈處理PET膜上,得到了外觀良好的硬塗佈處理PET膜。 Regarding Example 3, "the ratio of the adhesive force to the PET film 15 minutes after the drying of the adhesive layer started and after aging at 40°C for 5 days" (a/b) was 2.0, compared with Examples 1 to 2, The irregularities on the surface of the adhesive layer slightly increased, but the irregularities on the surface of the adhesive layer were not transferred to the hard-coated PET film, and a hard-coated PET film with good appearance was obtained.

另一方面,對於比較例1~2,「黏合劑層的乾燥開 始15分鐘後與在40℃下老化5天後對PET膜的黏合力的比例」(a/b)為2.3~8.5,透明導電性膜用表面保護膜在黏合劑層的表面產生了凹凸。因此,在對與硬塗佈處理PET膜貼合而成的疊層品進行加熱處理時,黏合劑層的表面的凹凸形狀轉印到硬塗 佈處理PET膜上,硬塗佈處理PET膜的外觀下降。 On the other hand, for Comparative Examples 1-2, "the drying of The ratio of the adhesive force to the PET film after 15 minutes at the beginning and after aging at 40°C for 5 days" (a/b) was 2.3 to 8.5, and the surface protective film for the transparent conductive film had irregularities on the surface of the adhesive layer. Therefore, when the laminated product bonded to the hard coating PET film is heat-treated, the uneven shape of the surface of the adhesive layer is transferred to the hard coating On the cloth-treated PET film, the appearance of the hard-coated PET film is reduced.

另外,比較例3中,黏合劑層的儲存模數低至小於4.0×105Pa,「黏合劑層的乾燥開始15分鐘後與在40℃下老化5天後對PET膜的黏合力的比例」(a/b)為1.5。但是,比較例3的透明導電性膜用表面保護膜在黏合劑層的表面產生了凹凸。因此,在對與硬塗佈處理PET膜貼合而成的疊層品進行加熱處理時,黏合劑層的表面的凹凸形狀轉印到硬塗佈處理PET膜上,硬塗佈處理PET膜的外觀下降。 In addition, in Comparative Example 3, the storage modulus of the adhesive layer was as low as less than 4.0×10 5 Pa, “the ratio of the adhesion of the adhesive layer to the PET film 15 minutes after the drying of the adhesive layer started and after aging at 40°C for 5 days. "(A/b) is 1.5. However, the surface protective film for a transparent conductive film of Comparative Example 3 had irregularities on the surface of the adhesive layer. Therefore, when the laminated product bonded to the hard-coated PET film is subjected to heat treatment, the uneven shape of the surface of the adhesive layer is transferred to the hard-coated PET film, and the hard-coated PET film Appearance drops.

對於未添加交聯觸媒的比較例4,在黏合劑層的乾燥開始15分鐘後對PET膜的黏合力評價中,黏合劑層發生凝聚破壞,透明導電性膜用表面保護膜在黏合劑層的表面產生了凹凸。因此,在對硬塗佈處理PET膜貼合而成的疊層品進行加熱處理時,黏合劑層的表面的凹凸形狀轉印到硬塗佈處理PET膜上,硬塗佈處理PET膜的外觀下降。 For Comparative Example 4 where no crosslinking catalyst was added, in the evaluation of the adhesion of the PET film 15 minutes after the drying of the adhesive layer started, the adhesive layer was agglomerated and destroyed, and the surface protective film for the transparent conductive film was in the adhesive layer The surface has irregularities. Therefore, when the laminated product obtained by bonding the hard-coated PET film is heated, the uneven shape of the surface of the adhesive layer is transferred to the hard-coated PET film, and the appearance of the hard-coated PET film decline.

【產業實用性】 【Industrial Applicability】

本發明的透明導電性膜用表面保護膜在觸控面板用的透明電極的製程中,即使在貼合到薄型化的透明導電性膜上的狀態下經過加熱製程後,產生的捲曲也非常小。由此,能夠大幅改善觸控面板用透明電極的製程的作業性、生產效率。另外,本發明的透明導電性膜用表面保護膜能夠作為在觸控面板、電子紙、電磁波遮蔽材料、各種感測器、液晶面板、有機EL、太陽能電池等技術領域中使用的、透明導電性膜的製造、加工用表面保護膜廣泛使用。 The surface protective film for a transparent conductive film of the present invention has a very small curl even after a heating process in the state of being attached to a thinned transparent conductive film in the process of a transparent electrode for a touch panel . Thereby, the workability and production efficiency of the manufacturing process of the transparent electrode for touch panels can be greatly improved. In addition, the surface protective film for a transparent conductive film of the present invention can be used as a transparent conductive material in the technical fields such as touch panels, electronic paper, electromagnetic wave shielding materials, various sensors, liquid crystal panels, organic EL, solar cells, etc. Surface protective films for film manufacturing and processing are widely used.

1‧‧‧基材膜 1‧‧‧ Base film

2‧‧‧黏合劑層 2‧‧‧adhesive layer

3‧‧‧剝離膜 3‧‧‧ peeling film

4‧‧‧黏合膜 4‧‧‧ Adhesive film

5‧‧‧用於透明導電性薄膜的表面保護膜 5‧‧‧Surface protective film for transparent conductive film

Claims (2)

一種透明導電性膜用表面保護膜,其使用於貼合到在一個面上形成有透明導電膜的樹脂膜之透明導電性膜的另一個面上,其特徵在於:該透明導電性膜用表面保護膜在基材膜的單面上疊層黏合劑層,該黏合劑層為塗佈含有(甲基)丙烯酸類聚合物、作為交聯劑之多異氰酸酯化合物和做為交聯觸媒之有機金屬化合物的丙烯酸類黏合劑之後,以溫度130℃乾燥1分鐘而形成,相對於該(甲基)丙烯酸類聚合物100重量份,該丙烯酸類黏合劑含有該交聯劑4~10重量份、該交聯觸媒0.01~0.5重量份,該黏合劑層在30℃下的儲存模數為4.0×105Pa以上,且該黏合劑層的乾燥開始15分鐘後的該黏合劑層對PET膜的黏合力與在40℃下老化5天後的該黏合劑層對PET膜的黏合力滿足下式(1)的關係:0.9
Figure 104121273-A0305-02-0027-3
a/b
Figure 104121273-A0305-02-0027-4
2.0 式(1)其中,a為該黏合劑層的乾燥開始15分鐘後的該黏合劑層對PET膜的黏合力,b為在40℃老化5天後的該黏合劑層對PET膜的黏合力。
A surface protective film for a transparent conductive film used on the other surface of a transparent conductive film laminated to a resin film having a transparent conductive film formed on one surface, characterized in that the surface for the transparent conductive film The protective film is laminated with an adhesive layer on one side of the base film. The adhesive layer is coated with a polyisocyanate compound containing (meth)acrylic polymer, as a crosslinking agent, and an organic compound as a crosslinking catalyst. After the acrylic adhesive of the metal compound, it is formed by drying at a temperature of 130° C. for 1 minute. The acrylic adhesive contains 4 to 10 parts by weight of the crosslinking agent relative to 100 parts by weight of the (meth)acrylic polymer. 0.01 to 0.5 parts by weight of the cross-linking catalyst, the storage modulus of the adhesive layer at 30° C. is 4.0×10 5 Pa or more, and 15 minutes after the drying of the adhesive layer starts, the adhesive layer is applied to the PET film The adhesive force of the adhesive layer and the adhesive force of the adhesive layer to the PET film after aging for 5 days at 40 ℃ satisfy the relationship of the following formula (1): 0.9
Figure 104121273-A0305-02-0027-3
a/b
Figure 104121273-A0305-02-0027-4
2.0 Formula (1) where a is the adhesion of the adhesive layer to the PET film 15 minutes after the drying of the adhesive layer starts, and b is the adhesion of the adhesive layer to the PET film after aging at 40°C for 5 days force.
一種透明導電性膜,其為將如申請專利範圍第1項所述之透明導電性膜用表面保護膜貼合到在一個面上形成有透明導電膜的樹脂膜的另一個面上得到的透明導電性膜。 A transparent conductive film, which is a transparent transparent film obtained by bonding the surface protective film for a transparent conductive film as described in item 1 of the patent application range to the other surface of a resin film having a transparent conductive film formed on one surface Conductive film.
TW104121273A 2014-08-07 2015-07-01 Surface-protective film for transparent conductive film, and transparent conductive film using the same TWI681032B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-161803 2014-08-07
JP2014161803A JP6218332B2 (en) 2014-08-07 2014-08-07 Method for producing roll body of surface protective film for transparent conductive film

Publications (2)

Publication Number Publication Date
TW201610080A TW201610080A (en) 2016-03-16
TWI681032B true TWI681032B (en) 2020-01-01

Family

ID=55370987

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104121273A TWI681032B (en) 2014-08-07 2015-07-01 Surface-protective film for transparent conductive film, and transparent conductive film using the same

Country Status (4)

Country Link
JP (1) JP6218332B2 (en)
KR (2) KR101756737B1 (en)
CN (1) CN105368335B (en)
TW (1) TWI681032B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101766117B1 (en) 2016-02-17 2017-08-07 현대자동차주식회사 One Body Hot-Stamping Body Frame Structure
JP6715390B2 (en) * 2017-03-29 2020-07-01 三井化学東セロ株式会社 Adhesive laminated film and structure
JP2020111622A (en) * 2017-03-29 2020-07-27 三井化学東セロ株式会社 Adhesive laminated film and structure
JP2019185164A (en) 2018-04-03 2019-10-24 富士通コンポーネント株式会社 Tactile presentation device
JP7039674B2 (en) * 2020-11-05 2022-03-22 リンテック株式会社 Laminates and protective films

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2970782B2 (en) 1991-05-21 1999-11-02 三菱鉛筆株式会社 Ink composition for ethanolic metallic color
JPH05331431A (en) * 1992-05-28 1993-12-14 Achilles Corp Electrically conductive, transparent film for protection purposes
JPH11268168A (en) 1998-03-24 1999-10-05 Kanegafuchi Chem Ind Co Ltd Plastic film with transparent conducting film and protective film
JP2003170535A (en) 2001-12-05 2003-06-17 Nitto Denko Corp Surface protecting film for transparent conducting film
JP4342775B2 (en) 2002-07-31 2009-10-14 日東電工株式会社 Surface protective film for transparent conductive film, method for producing the same, and transparent conductive film with surface protective film
JP5968587B2 (en) * 2010-10-21 2016-08-10 日東電工株式会社 Optical adhesive sheet, optical film and display device
JP5883236B2 (en) * 2011-06-10 2016-03-09 日東電工株式会社 Carrier material for thin layer substrate
JP2013079360A (en) * 2011-09-20 2013-05-02 Nitto Denko Corp Peelable pressure-sensitive adhesive composition, peelable pressure-sensitive adhesive layer, and peelable pressure-sensitive adhesive sheet
JP5770607B2 (en) * 2011-11-21 2015-08-26 藤森工業株式会社 Adhesive composition and surface protective film
JP5820762B2 (en) * 2012-04-24 2015-11-24 藤森工業株式会社 Surface protective film for transparent conductive film and transparent conductive film using the same
JP6258681B2 (en) * 2013-07-30 2018-01-10 日東電工株式会社 Surface protective film and optical member
JP6126500B2 (en) * 2013-08-30 2017-05-10 日東電工株式会社 Carrier film and laminate for transparent conductive film
JP6138002B2 (en) * 2013-09-09 2017-05-31 日東電工株式会社 Polarizing film with adhesive layer for transparent conductive film, laminate, and image display device
EP3070135B1 (en) * 2013-11-15 2020-01-01 LG Chem, Ltd. Adhesive composition
JP6049904B2 (en) * 2013-11-15 2016-12-21 エルジー・ケム・リミテッド Adhesive composition
JP6327704B2 (en) * 2014-05-20 2018-05-23 日東電工株式会社 Method for producing surface protective film

Also Published As

Publication number Publication date
KR20160018348A (en) 2016-02-17
KR101756737B1 (en) 2017-07-12
CN105368335B (en) 2021-03-26
JP2016037557A (en) 2016-03-22
CN105368335A (en) 2016-03-02
JP6218332B2 (en) 2017-10-25
KR101837940B1 (en) 2018-03-13
KR20170081633A (en) 2017-07-12
TW201610080A (en) 2016-03-16

Similar Documents

Publication Publication Date Title
KR101549475B1 (en) Surface-protective adhesive film for transparent conductive film, and transparent conductive film using the same
KR101837940B1 (en) Method for producing roll-body of surface-protective film for transparent conductive film
JP5986242B2 (en) Substrate-free adhesive transfer tape for transfer printing and method for producing the same
JP6319919B2 (en) Method for producing surface protective film for transparent conductive film
KR101841967B1 (en) Surface-protective film for transparent conductive film, and transparent conductive film using the same
JP2014196442A (en) Adhesive composition and adhesive sheet using the same
JP2014198411A (en) Adhesive sheet
KR101897475B1 (en) Surface-protective film for transparent conductive film, and transparent conductive film using the same
JP6403353B2 (en) Method for producing surface protective film for transparent conductive film
TW201938740A (en) Adhesive sheet winding body capable of winding up an adhesive sheet having an excellent appearance
JP6188380B2 (en) Adhesive sheet
JP2009091476A (en) Protective film with no separator