TWI680652B - 多頻帶毫米波網路探索 - Google Patents

多頻帶毫米波網路探索 Download PDF

Info

Publication number
TWI680652B
TWI680652B TW107130827A TW107130827A TWI680652B TW I680652 B TWI680652 B TW I680652B TW 107130827 A TW107130827 A TW 107130827A TW 107130827 A TW107130827 A TW 107130827A TW I680652 B TWI680652 B TW I680652B
Authority
TW
Taiwan
Prior art keywords
station
new
mesh network
peer
network
Prior art date
Application number
TW107130827A
Other languages
English (en)
Other versions
TW201921852A (zh
Inventor
摩哈德 阿布索德
Mohamed Abouelseoud
瑞米 阿達拉
Ramy Medhat ABDALLAH
迫田和之
Kazuyuki Sakoda
Original Assignee
日商索尼股份有限公司
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商索尼股份有限公司, Sony Corporation filed Critical 日商索尼股份有限公司
Publication of TW201921852A publication Critical patent/TW201921852A/zh
Application granted granted Critical
Publication of TWI680652B publication Critical patent/TWI680652B/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/244Connectivity information management, e.g. connectivity discovery or connectivity update using a network of reference devices, e.g. beaconing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/246Connectivity information discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/30Special cell shapes, e.g. doughnuts or ring cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

敘述了用於減小網狀網路內的通訊設備與方法中的傳訊負擔的多頻帶傳訊。通訊涉及在兩個不同通訊通道上使用兩個不同信標信號。對等信標係使用定向性毫米波(mmW)通訊發送,以提供時間同步與資源管理資訊而維持一或多個相鄰對等站之間的現有鏈路。一分開的網路探索信標在低於6GHz通訊通道上發送,以提供識別網狀網路的網狀網路設定檔資訊而幫助想要加入網狀網路的無線通訊站的網路探索。

Description

多頻帶毫米波網路探索
本揭露的技術一般而言涉及站之間的定向無線通訊,並且更具體地為利用多頻帶來通訊網路宣告和維護對等通訊。
包括網狀網路與網狀和非網狀網路的混合的毫米波長(mm波或mmW)無線網路變得日益重要。由於需要更高的容量,網路運營商已經開始接受概念以實現緻密化。使用當前的低於6GHz無線技術不足以應對高資料需求。一種替代方案是利用30-300GHz頻帶中的額外的頻譜,毫米波帶(mmW)。
通常,使mmW無線系統能夠正確地處理高頻帶的通道減損和傳播特性。高自由空間路徑損耗、高穿透、反射和繞射損耗降低了可用的分集並限制了非直視性(non-line-of-sight;NLOS)通訊。mmW的小波長使得能夠使用具有實際尺寸的高增益電子可控定向天線。這可以提供足夠的陣列增益來克服路徑損耗並確保接收器處的高信號雜訊比(SNR)。使用mmW頻帶的密集部署環境中的定向網狀網路是實現節點之間的可靠通訊並克服直視性通道限制的有效方式。
啟用一新站節點將尋找要探索的相鄰節點與要加入的網路。節點初始存取網路的處理包含掃描相鄰節點並探索在本地附近的所有活動節點。這可以透過新節點搜尋要加入的特定網路/網路列表來執行,或者藉由新節點發送廣播請求來加入任何已經建立之將接受新節點的網路來執行。
連接至一網狀網路的一節點需要探索相鄰節點以決定到達一閘道/入口網狀節點的最佳方式以及這些相鄰節點每一者的能力。新節點在一特定時間週期內檢查每個通道的可能相鄰節點。如果在特定時間之後未檢測到活動節點,則新節點將移動以測試下一個通道。當檢測到一節點時,新節點收集足夠的資訊以組態其PHY層以在監管網域(IEEE、FCC、ETSI、MKK等)中操作。由於定向傳輸,這個任務在毫米波通訊中更具挑戰性。這一處理中的挑戰可歸納為:(a)周圍節點ID的了解;(b)對於波束成形的最佳傳輸場型的了解;(c)由於碰撞和探聽不佳引起的通道存取問題;(d)由於堵塞和反射引起的通道損傷。設計一種相鄰者探索方法以克服上述一些或全部內容對於實現毫米波D2D與網狀技術的普及至關重要。
用於網狀網路的大多數現有技術針對在廣播模式下操作的網路提出網狀探索解決方案,並且不針對具有定向無線通訊的網路。此外,利用定向無線網路通訊的那些技術在信標信號的產生方面通常具有非常高的負擔要求。
因此,需要增強一毫米波網路之內的宣告和信標機制。本揭露滿足了該需要並提供了優於先前技術的額外益處。
一種用於在網狀拓撲網路中建立並維持毫米波通訊而不會引起顯著的傳訊負擔或網路探索延遲的系統、裝置和/或方法。在揭示的技術中,多頻帶通訊有效減小網狀網路中的傳訊負擔。
在網狀網路中的每個節點包含組態以利用具有複數個天線場型扇區的定向性毫米波(mmW)通訊和低於6GHz無線通訊兩者與其它無線通訊站無線地通訊的一無線通訊電路,該等天線場型扇區各具有不同傳輸方向。站編碼可以實現許多角色,包括一網狀網路內的一對等站,或者尋求加入網狀網路的一新站。該站係組態以使用具有天線場型扇區的定向mmW來傳輸一對等信標。該對等信標包括時間同步與資源管理資訊,其與在網狀網路內的一或多個相鄰對等站通訊。對等站也使用低於6GHz無線通訊傳輸一網路探索信標。該網路探索信標含有識別網狀網路的網狀網路設定檔資訊,以幫助一新站加入網狀網路的網路探索。對等站經由低於6GHz無線通訊接收加入請求訊框,其中加入請求將新站連同新站的能力與來自新站的一請求發布給網狀網路的任何接收站,該等接收站請求協助尋找相鄰者並加入該網狀網路兩者。
在本揭露中使用的用語,它們的意義大致上敘述於下文。
A-BFT:關聯波束成形訓練週期;在信標中宣告的一週期,亦即用於加入網路的新站(STAs)關聯和BF訓練。
AP:存取點;含有一個站(STA)並提供透過用於相關聯的STA的無線媒體(WM)對分配服務存取的一實體。
波束成形(BF):一定向傳輸,其不使用一全向天線場型或準全向天線場型。波束成形係使用於傳輸器處,以改善預期接收器處的接收的信號功率或信號雜訊比(SNR)。
BSS:基本服務集合;為已成功與網路中的一AP同步的站(STA)的集合。
BI:信標間隔是循環超級訊框週期,其表示信標傳輸時間之間的時間。
BRP:BF精煉協定;BF協定,其啟用接收器訓練並迭代訓練傳輸器和接收器側,以實現最佳的可能的定向通訊。
BTI:信標傳輸間隔,其為在連續信標傳輸之間的間隔。
CBAP:基於競爭的存取週期;在其中使用基於競爭增強分配的通道存取(EDCA)的一定向多十億位元(DMG)BSS的資料轉移間隔(DTI)之內的時間週期。
DTI:資料轉移間隔;允許完整的BF訓練然後進行實際資料轉移的週期。它可以包括一或多個服務週期(SP)與基於競爭的存取周期(CBAP)。
MAC位址:一媒體存取控制(MAC)位址。
MBSS:網狀基本服務集,形成網狀站(MSTA)之一自包含網路的一基本服務集(BSS),並且其可用作一分配系統(DS)。
MCS:調變和編碼方案;定義可以轉換為PHY層資料速率的一索引。
MSTA:網狀站(MSTA):實施網狀設施的一站(STA)。操作於網狀BSS的一MSTA可以為其他MSTA提供分配服務。
全向:一非定向天線傳輸模式。
準全向:具有可獲得最寬波束寬度的一定向多十億位元(DMG)天線操作模式。
接收扇區拂掠(RXSS):經由不同扇區的扇區拂掠(SSW)訊框的接收,其中一拂掠係在連續接收之間執行。
RSSI:接收信號強度指示器(以dBm為單位)。
SLS:扇區層級拂掠階段:可包括多達四個組件的一BF訓練階段:用於訓練啟動器的一啟動器扇區拂掠(ISS)、用於訓練回應器鏈路的一回應器扇區拂掠(RSS),諸如使用SSW反饋與一SSW ACK。
SNR:接收的信號雜訊比(以dB單位)。
SP:服務週期;由存取點(AP)排程的SP。排程的SP以固定的時間間隔開始。
頻譜效率:在特定通訊系統中可以在一給定帶寬上傳輸的資訊速率,通常以每秒位元數或以赫茲為單位來表示。
SSID:服務集識別符;分配給WLAN網路的名稱。
STA:站;一邏輯實體,其是介接到無線媒體(WM)的一媒體存取控制(MAC)與實體層(PHY)介面的一單個可定址實例。
拂掠:由一短波束成形訊框間空間(SBIFS)間隔分開的一系列傳輸,其中在傳輸器或接收器處的天線配置在傳輸之間改變。
SSW:扇區拂掠唯一操作,其中傳輸係執行在不同扇區(方向)與在接收的信號、強度等等上收集的資訊。
傳輸扇區拂掠(TXSS):經由扇區的扇區拂掠(SSW)或定向多十億位元(DMG)信標訊框的傳輸,其中一拂掠係在連續傳輸之間執行。
文中所述的技術之進一步態樣將在說明書的以下部分中提出,其中詳細敘述是為了充分揭露該技術的較佳的實施例而不對其進行限制。
1. 現有的定向無線網路技術
1.1. WLAN系統
在WLAN系統中,802.11定義兩個掃描模式;被動與主動掃描。下述為被動掃描的特徵。(A) 嘗試加入一網路的一新站(STA)檢查每個通道並且等待最多MaxChannelTime的信標訊框。(b)如果沒有接收到信標,則新STA移動到另一個通道,從而節省電池電量,因為新STA在掃描模式下不傳輸任何信號。STA應該在每個通道上等待足夠的時間,以便它不會錯過信標。如果一信標丟失,則STA應等待另一個信標傳輸間隔(BTI)。
下述為主動掃描的特徵。(a) 根據以下內容,想加入一本地網路的一新STA在每個通道上發送探測請求訊框。(a)(1)STA移動到一通道,等待進入訊框或一探測延遲計時器截止。(a)(2)如果在定時器截止後沒有檢測到訊框,則認為該通道未被使用。(a)(3)如果一通道未被使用,則STA移動到一新通道。(a)(4)如果使用通道,則STA使用一般DCF獲得對於媒體的存取,並發送一探測請求訊框。(a)(5)如果通道從不忙,則STA等待一期望的時間週期(例如,最小通道時間)以接收對探測請求的一回應。如果通道忙碌且接收到一探測回應,則STA等待更多時間(例如,最大通道時間)。
(b) 一探測請求可使用一唯一服務設定識別符(SSID)、SSID的列表或一廣播SSID。(c) 在一些頻率頻帶中禁止主動掃描。(d)主動掃描可能是干擾和碰撞的一來源,特別是如果許多新的STA同時到達並試圖存取網路。(e)與使用被動掃描相比,主動掃描是STA獲得對網路的存取的一快速方式(更快速地),因為STA不需要等待信標。(f)在基礎架構基本服務集(BSS)和IBSS中,至少有一STA被喚醒以接收和回應探測。(g)在網狀基本服務集(MBSS)中的STA可能不會在任何時間點被喚醒以回應。(h)當無線電測量活動為主動時,節點可能無法回答探測請求。(i)可能出現探測回應的碰撞。STA可以藉由允許傳輸最後信標的STA傳輸第一探測回應來協調探測回應的傳輸。其他節點可跟隨並使用後移時間與一般分佈式協調功能(DCF)通道存取以避免碰撞。
圖1描繪在一IEEE 802.11 WLAN中主動掃描的使用,其描繪發送一探測的一掃描站與接收並回應探測的兩回應站。該圖式也顯示最小與最大探測回應時序。值G1被顯示為設定為SIFS,SIFS是一確認之傳輸前的訊框間間距,而G3是DIFS,DIFS是DCF訊框間間距,其表示發送器在發送一RTS封裝之前完成一退避週期之後等待的時間延遲。
1.2. IEEE 802.11s網狀WLAN
IEEE 802.11s(於下文中為802.11s)是將無線網狀網路能力添加至802.11標準的一標準。在802.11s中定義了新類型的無線電站以及用於啟用網狀網路探索、建立對等連接以及透過網狀網路路由資料的新傳訊。
圖2繪示一網狀網路的一個實例,其中非網狀STA連接至網狀STA/AP的一混合(實線)以及網狀STA連接至包括一網狀入口的其它網狀STA(虛線)。在網狀網路中的節點使用定義在用於探索相鄰者的802.11標準中的相同的掃描技術。網狀網路的識別由包含在信標與探測回應訊框中的網狀ID元素給出。在一個網狀網路中,所有的網狀STA使用相同的網狀設定檔。如果在網狀設定檔中的所有參數都匹配,則網狀設定檔被認為是相同的。網狀設定檔包含在信標與探測回應訊框中,使得網狀設定檔可以透過掃描藉由其相鄰者網狀STA獲得。
當一網狀STA透過掃描處理探索一相鄰者網狀STA時,探索的網狀STA被認為是一候選對等網狀STA。它可以成為網狀網路的成員,其中探索的網狀STA是其成員,並且建立與相鄰者網狀STA對等的一網狀。當網狀STA使用相同網狀設定檔作為接收的信標或用於相鄰者網狀STA之探測回應訊框指示時,探索的相鄰者網狀STA可以被認為是一候選對等網狀STA。
網狀STA嘗試在網狀相鄰者表中維護探索的相鄰者資訊,其中包括:(A)相鄰者MAC位址;(b)操作通道數量;以及(c)最近觀察到的鏈路狀態和品質資訊。如果沒有檢測到相鄰者,則網狀STA採用Mesh ID作為其最高優先級設定檔並保持主動。探索相鄰者網狀STA的所有先前傳訊都以廣播模式執行。應當理解到,802.11s不是針對具有定向無線通訊的網路。
圖3描繪一網狀識別元件(網狀ID元件),其用於宣傳一網狀網路的識別。網狀ID藉由一將加入一網狀網路的新STA在一探測請求中以及藉由現有網狀網路STA在信標和信號中傳輸。長度0的網狀ID欄位指示通配符網狀ID,其使用在一探測請求訊框內。通配符網狀ID是防止一非網狀STA加入一網狀網路的一特定ID。應該認識到,網狀站是具有比一非網狀站更多特徵的一STA,例如,它使得STA作為模組運行,除了用以服務網狀功能的一些其他模組。如果STA沒有此網狀模組,則不應允許其連接到網狀網路。
圖4描繪包含在信標訊框與藉由網狀STA傳輸之探測回應訊框中的一網狀組態元件,以及其用於宣傳網狀服務。網狀組態元件的主要內容為:(a)一路徑選擇協定識別符;(b)一路徑選擇度量識別符;(c)一擁塞控制模式識別符;(d)一同步方法識別符;以及(e)一鑑別協定識別符。網狀組態元件的內容與網狀ID一起形成一網狀設定檔。
標準802.11a定義了許多程序與網狀功能,其包括:網狀探索、網狀對等管理、網狀安全、網狀信標與同步、網狀協調功能、網狀功率管理、網狀通道切換、三個位址、四個位址以擴展的位址訊框格式、網狀路徑選擇與遞送、與外部網路相互影響、網狀內擁塞控制以及網狀BSS中的緊急服務支持。
1.3.在WLAN中的毫米波
毫米波頻帶中的WLAN通常需要使用定向天線進行傳輸、接收或兩者,以解決高路徑損耗並為通訊提供足夠的SNR。在傳輸或接收中使用定向天線也使得掃描處理具有方向性。IEEE 802.11ad與新標準802.11ay定義用於在毫米波頻帶上進行定向傳輸和接收的掃描和波束成形的程序。
1.4.IEEE 802.11ad掃描與BF訓練
毫米波WLAN最先進系統的一實例是802.11ad標準。
1.4.1.掃描
一新STA在被動或主動掃描模式下操作,用以掃描一特定SSID、SSID列表或所有探索的SSID。對於被動掃描,一STA掃描含有SSID的DMG信標訊框。對於主動掃描:一DMG STA傳輸含有所需SSID或一或多個SSID列表元素的探測請求訊框。DMG STA可能還必須在探測請求訊框的傳輸之前傳輸DMG信標訊框或執行波束成形訓練。
1.4.2.BF訓練
BF訓練為BF訓練訊框傳輸的一雙向序列, 其使用一扇區拂掠並提供必要的傳訊以允許每個STA判定用於傳輸和接收兩者的合適天線系統設定。
802.11ad BF訓練處理可分三個階段進行。(1)執行一扇區層級拂掠階段,從而對鏈路獲取執行具有低增益(準全向(quasi-omni))接收的定向傳輸。(2)執行一細化階段,其對於結合傳輸和接收增加接收增益和最終調整。(3)接著在資料傳輸期間執行追蹤以調整通道改變。
1.4.3.802.11ad SLS BF訓練階段
這集中於802.11ad標準的扇區層級拂掠(SLS)強制階段。SLS期間,一對STA在不同的天線扇區上交換一系列的扇區拂掠(SSW)訊框(或在PCP/AP處的傳輸扇區訓練的情況下的信標)以找到提供最高信號品質的訊框。第一傳輸的站稱為啟動器;第二傳輸的站稱為回應器。
在一傳輸扇區拂掠(TXSS)期間,SSW訊框在不同扇區上傳輸,而配對節點(回應器)利用一準全向定向場型接收。回應器從提供最佳鏈路品質(例如,SNR)的啟動器判定天線陣列扇區。
圖5描繪在802.11ad中扇區拂掠(SSW)的概念。在這圖中,給出了一實例,其中STA 1是SLS的啟動器,STA 2是回應器。STA 1拂掠所有傳輸天線場型扇區精細扇區,而STA 2在準全向場型下接收。STA 2將從STA 1接收的最佳扇區反饋給STA 1。
圖6繪示如在802.11ad規範中實施的扇區層級拂掠(SLS)協議的傳訊。在傳輸扇區拂掠中的每個訊框包括關於扇區倒數指示(CDOWN)的資訊、一扇區ID以及一天線ID。最佳扇區ID與天線ID資訊以扇區拂掠反饋與扇區拂掠ACK訊框反饋。
圖7描繪在802.11ad標準中使用的扇區拂掠訊框(一SSW訊框)的欄位,其中欄位概述如下。持續時間欄位設定為直到SSW訊框傳輸結束的時間。RA欄位含有STA的MAC位址,STA是扇區拂掠的預期接收器。TA欄位含有扇區拂掠訊框的傳輸器STA的MAC位址。
圖8繪示在SSW欄位內的資料元素。SSW欄位傳達的原則資訊如下。方向欄位被設定為0以指示訊框由波束成形啟動器傳輸以及設定為1以指示訊框由波束成形回應器傳輸。CDOWN欄位是向下計數器,其指示TXSS結束的剩餘DMG信標訊框傳輸的數量。扇區ID欄位被設定以指示扇區數量,透過該扇區數量傳輸含有SSW欄位的訊框。DMG天線ID欄位指示傳輸器當前用於此傳輸的DMG天線。RXSS長度欄位僅在一CBAP中傳輸時主動,否則保留。RXSS長度欄位指明由傳輸STA所需的一接收扇區拂掠的長度,並且以一SSW訊框為單位定義。SSW反饋欄位定義如下。
圖9A與圖9B描繪SSW反饋欄位。當作為一內部子層服務(ISS)的一部分傳輸時使用顯示在圖9A中的格式,而當不是作為一ISS的一部分傳輸時使用圖9B之格式。ISS欄位中的總扇區指示啟動器在ISS中使用的扇區總數量。RX DMG天線的子欄位的數量指示啟動器在一後續的接收扇區拂掠(RSS)期間使用的接收DMG天線的數量。扇區選擇欄位含有在前一個扇區拂掠中以最佳品質接收的訊框內SSW欄位的扇區ID子欄位的值。DMG天線選擇欄位指示在前一個扇區拂掠中以最佳品質接收的訊框內SSW欄位的DMG天線ID子欄位的值。SNR報告欄位被設定為來自在前一個扇區拂掠期間以最佳品質接收的訊框的SNR的值,並且在扇區選擇欄位中指示。輪詢所需欄位藉由一非PCP/非AP STA設定為1,以指示它需要PCP/AP發起與非PCP/非AP的通訊。輪詢所需欄位被設定為0,以指示非PCP/非AP沒有關於PCP/AP是否發起通訊的偏好。
2. 問題陳述
如前一節所述,當前的毫米波(mmWave)通訊系統通常在很大程度上需要依賴於定向通訊以在傳輸器和接收器之間獲得足夠的鏈結預算。在當前系統中,這個判定使用適當波束的處理需要顯著的傳訊負擔。例如,AP傳輸具有傳輸波束成形的多個信標訊框。
信標訊框用於網路探索目的,即被動掃描。為此,週期性地傳輸信標訊框,使得一新STA可以藉由在某些時間週期中執行被動掃描來辨識網路的存在。還可以使用主動掃描來實現網路探索,其中新節點在所有方向上傳輸探測請求以確保其可由網路中的附近節點接收。
為了使情況進一步複雜化,當前的技術趨向於使用更精細的波束成形,這允許更高的天線增益以確保更高的鏈結預算。然而,當STA採用更精細的波束時,負擔問題進一步惡化,因為STA隨後傳輸一更多數量的信標訊框以覆蓋一足夠的傳輸角度。信標始終在所有方向上傳輸,也可以週期地傳輸,以宣告網路、維持同步以及管理網路資源。
鑑於上述情況,在信標負擔和網路探索延遲之間存在重要的權衡。如果頻繁地發送信標,則信標負擔增加,儘管這允許新STA更快地找到現有網路。如果不太頻繁地發送信標,則可以減小信標負擔,然而,新STA很難以快速方式找到現有網路。
在考慮使用毫米波PHY技術形成一網狀網路的任務時,這種負擔困境變得更加嚴重。連接至一網狀網路的一STA需要探索所有的相鄰STA以決定到達一閘道/入口網狀STA的最佳方式以及這些相鄰STA每一者的能力。這意味著加入一網狀網路的所有STA都應具有信標能力,這會導致顯著的信令負擔。
因此,本揭露經組態用於解決這些當前和未來的信標負擔挑戰。
3. 毫米波多頻帶網路探索的好處
在所揭露的網路協定中,期望參與多頻帶網路探索的節點具有多頻帶(MB)能力,包括毫米波頻帶能力,並且還包括一較低頻率的通訊頻帶,例如低於6GHz。除了毫米波頻帶之外,MB節點還能夠使用低於6GHz的頻帶進行網路宣告和探索。藉由利用所提出的技術,毫米波通訊節點可以形成網狀拓撲網路,而不會受到顯著的傳訊負擔或網路探索延遲的影響。
本揭露敘述用於利用已經建立的低於6GHz網路來幫助尋找其他相鄰者的新節點的一機制。一網路節點以來自準全向天線週期性發送的一減小的功率訊息宣告低於6GHz頻帶上的毫米波網路。一旦新STA透過低於6GHz頻帶探索至少一個相鄰者,這個網狀站(MSTA)可以輔助新節點,並且還可以與其他網狀節點協調以幫助毫米波頻帶中的新STA進行波束成形並加入網路。
在本揭露中,站節點不在毫米波頻帶中所有時間的所有方向上發送信標。觸發節點以在請求幫助的一新節點上在所有方向上發送探索信標,而與所有方向上的連續信標傳輸相關聯的負擔和干擾是有限的。
4. 多頻帶網路探索實施例
4.1. 正在考慮的拓撲
圖10繪示毫米波無線節點之一網路的一實例實施例10,其中網狀STA(MSTA)節點12、14、16及18在網狀拓撲中彼此連接。一新STA 20正在掃描24,描繪了方向22a-22n,用於潛在相鄰MSTA和對節點的通訊媒體。在所示的實例中,節點能夠在低於6GHz頻帶以及毫米波上進行通訊,並且可以使用這個頻帶在彼此之間發送控制信號。連接到毫米波網狀網路的節點可以透過毫米波鏈路或透過低於6GHz頻帶互相存取。
新STA正在掃描用於潛在相鄰MSTA和對節點的媒體。對於毫米波,兩側始終不需要定向傳輸或接收。例如,一側可以使用定向傳輸/接收而另一側不使用。這種情況可能是有限的裝置能力或應用需求的結果,其中不需要從兩側進行定向傳輸(限制干擾/小距離)。
新節點可以使用全向/準全向定向或定向天線在毫米波頻帶進行傳輸和接收。MSTA可以使用全向/準全向定向或定向天線在毫米波頻帶進行傳輸和接收。對於毫米波通訊,至少一個MSTA節點或新STA應該使用定向天線來提供足夠的增益以解決路徑損耗並為鏈路提供足夠的SNR。新STA使用被動或主動掃描來掃描相鄰者。新STA經組態以繼續掃描,直到找到所有相鄰節點。在由新節點建構可用相鄰列表之後,做出關於連接到哪個相鄰者的決定。這個決定較佳地考慮應用需求、網路中的流量負載以及無線通道狀態。
4.2. STA硬體組態
圖11描繪節點硬體組態之一實例實施例30。在這個實例中,電腦處理器(CPU)36與記憶體(RAM)38耦合至一匯流排34,其耦合至給出節點外部I/O的一I/O路徑32,諸如感測器、致動器等等。來自記憶體的指令在處理器36上執行,以執行實施通訊協定的一程式。主機被顯示為組態有一毫米波數據機40,其將射頻(RF)電路42a、42b、42c耦合至複數個天線44a-44n、46a、46n、48a-48n,以傳輸和接收具有相鄰節點的訊框。此外,還可以看到主機具有將射頻(RF)電路52耦合至天線54的一低於6GHz數據機50。
因此,主機被顯示為組態有兩個數據機(多頻帶)及其相關的RF電路,以用於在兩個不同頻帶上提供通訊。毫米波頻帶數據機及其相關的RF電路在毫米波頻帶中傳輸和接收資料。低於6GHz數據機及其相關的RF電路在低於6GHz頻帶中傳輸和接收資料。
雖然在此實例中顯示為三個RF電路用於毫米波頻帶,但是本發明的實施例可被組態有耦合到任何任意數量的RF電路的數據機40。通常,使用大數量的RF電路將導致天線波束方向之更廣的覆蓋。應理解到使用的RF電路的數量和天線的數量由一特定裝置的硬體約束判定。當STA判定不需要與相鄰STA通訊時,可以禁用一些RF電路與天線。在至少一實施例中,RF電路包括頻率轉換器、陣列天線控制器等等,並且連接到多個天線,這些天線被控制以執行用於傳輸和接收的波束成形。這樣一來,STA可以使用多組波束圖案來傳輸信號,每一波束圖案方向被視為一天線扇區。
圖12繪示可由一節點使用來產生複數個(例如,36)毫米波天線扇區場型的毫米波天線方向的一實例實施例70。於此範例中,節點實施三個RF電路72a、72b、72c與連接的天線,以及每一RF電路與連接的天線產生一波束成形場型74a、74b、74c。天線場型74a被顯示為具有十二個波束成形場型76a、76b、76c、76d、76e、76f、76g、76h、76i、76j、76k與76n(「n」表示可以支持的任何數量的場型)。使用這個特定組態的實例站具有三十六(36)個天線扇區。然而,為了清楚和便於解釋,以下部分一般敘述具有較少數量的天線扇區的節點。應當理解,任何任意波束場型都可以映射到一天線扇區。通常,形成波束場型以產生一銳利的波束,但是可以產生波束場型以從多個角度傳輸或接收信號。
天線扇區由毫米波RF電路和毫米波陣列天線控制器指令的波束成形的一選擇判定。儘管STA硬體組件可能具有與上述不同的功能分區,但是這樣的組態可以被視為是所解釋的組態的一變化。當節點判定不需要與相鄰節點通訊時,可以禁用一些毫米波RF電路與天線。
在至少一實施例中,RF電路包括頻率轉換器、陣列天線控制器等等,並且連接到多個天線,這些天線被控制以執行用於傳輸和接收的波束成形。這樣一來,節點可以使用多組波束圖案來傳輸信號,每一波束圖案方向被視為一天線扇區。
圖13繪示假定使用附接到其RF電路92的一準全向天線94之低於6GHz數據機的天線場型的一實例實施例90。
4.3. 多頻帶網路探索架構
預期無線接收器與傳輸器將配備多頻帶晶片,其包括例如使用毫米波頻帶以及低於6GHz的頻帶。在毫米波頻帶中的操作可以受益於節點探索與相鄰者掃描中的低於6GHz的覆蓋。在低於6GHz頻帶中的信號傳播特性可以允許一節點更簡單地探索網狀網路的存在,然而相鄰者的局部化與找到正確的扇區或波束仍然是一個問題。
為了使用多頻帶網路探索,假設網狀節點能夠在低於6GHz頻帶上彼此通訊。這是以向網路的所有節點發送訊息或向特定節點發送一訊息的形式。這可以透過節點之間的直接通訊或透過節點之間的多跳躍通訊來執行。新節點也配備有低於6GHz存取,並且可以透過低於6GHz的通訊來存取WLAN網路或與網狀節點通訊。可以利用低於6GHz的頻帶執行探索與網路宣告,同時較佳地利用毫米波網路來形成連接並保持鏈路。應當理解,其他控制傳訊也可以移動到低於6GHz,但這不是本揭露的重點。
在毫米波WLAN與網狀網路中,信標係用於:(a)新網狀節點的網路探索與關聯;(b)同步;(c)頻譜存取與資源管理。對於毫米波長的探索與網路宣告,在被動掃描的情況下,信標必須在所有時間在所有方向上傳輸。應當理解,上述中「所有時間」的含義僅表示信標的連續週期性質,而「所有方向」僅指使用方向拂掠到任何期望的角度解析度。在主動掃描的情況下,節點在所有方向上傳輸探測請求。
在所提出的系統中,節點使用低於6GHz的探索和網路宣告,而同步、頻譜存取與資源管理資訊仍然透過毫米波網狀網路通訊。已經在毫米波網路中彼此連接的節點仍然僅在對等節點的方向上或圍繞這個方向彼此發送信標。因此,信標不會在所有方向上傳輸。
宣告訊框透過指示附近存在毫米波網路之低於6GHz頻帶發送。較佳地調整(例如,動態地或靜態地)宣告訊框的功率輸出以僅到達相關聯的毫米波信號可到達的節點,以便不在毫米波通訊方面繪製超出網路的節點。
由新節點或網狀節點對宣告訊框的接收可以在新節點附近由節點觸發的毫米波探索活動,以幫助找到新節點加入毫米波網路的正確扇區和相鄰者。毫米波探索活動涉及新節點周圍的其他節點按順序發送信標,以幫助新節點探索相鄰者及其方向性資訊。
圖14與圖15繪示利用低於6GHz頻帶將較低功率宣告訊框發送到其他節點以宣告網路或宣告請求協助加入一網路的一新節點的一實例實施例110、130。
在圖14中,看到網狀網路110具有MSTA A 112,以及節點114、116、118、120與一新節點122。在此實例中,MSTA A將低於6GHz宣告訊框傳輸至減小的宣告訊框區域124。可以看出,如果低於6GHz宣告訊框的傳輸功率足以126覆蓋網狀的廣度,包括圖右側的節點120,則圖中其他部分的節點(例如,左邊、上與下)都會被認為可以加入網路,但實際上會超出網路的毫米波能力範圍。
在圖15中,看到網狀網路130具有MSTA A 112,以及節點114、116、118、120與一新節點122。在此實例中,新節點122將低於6GHz宣告訊框作為加入請求傳輸至減小的宣告訊框區域132。類似地,可以看出,如果低於6GHz宣告訊框的傳輸功率足以134覆蓋網狀的廣度,包括圖右側的節點120,則可以觸發新節點的毫米波通訊範圍之外的網狀中的節點(諸如節點114、116與120)以回應新節點加入請求,儘管它們不能使用毫米波與新節點直接通訊。
4.4. 在毫米波網路中的信標
多頻帶網路中的信標仍然使用毫米波發生,但這僅發生在使用通訊或對等信標的對等節點上。通訊或對等信標用於已經建立(設置)連接的對等之間的通訊。這些信標可用於執行與維持同步、執行波束追蹤和管理網路中網狀節點之間的通道存取和資源相關的功能。每個網狀節點僅拂掠在相應於相鄰節點之方向的扇區中的信標,並且僅將信標傳輸至其相鄰者。
圖16A至16C繪示通過示例性而非限制性的方式考慮的一簡單毫米波網路實施例150的各個態樣。在圖16A中,可以看到實例實施例150具有三個節點152、154和156。在圖16B中,顯示了從STA節點152傳輸的信標,顯示在相應於朝向節點154和156的最佳扇區的方向上拂掠156a、156b對等信標。在圖16C中,STA節點152拂掠162探索信標以覆蓋來自160a、160b、160c、160d和160e的一特定空間區域。與傳統使用的相比,本發明僅在相應於節點C和B的節點A的方向上利用這些信標(如圖16B所示)。
圖17A和17B繪示藉由在判定的最佳扇區周圍(包圍)之一或多個扇區上執行傳輸來提供額外的堅固性的實例實施例170。在圖17A中,節點A 152與如圖17B所示之最佳扇區(路徑)為方向186的節點B 154相關。因此,儘管與節點B通訊的節點A具有最佳扇區186,但是所提出的協定還在最佳扇區的每一側選擇一或多個額外扇區182、184,以提高通訊堅固性,特別是考慮到節點B可能以與節點A相關移動的事實。
應當理解,由於每個對等鏈路的方向和時序是已知的,因此應該容易地協調上述對等信標。由於在所有方向上的信標傳輸而導致限制和管理干擾。
圖18繪示本發明之毫米波對等DMG信標超級訊框格式的一實例實施例190,其中信標僅在這兩格對等節點的方向上傳輸,因此使得BTI處理更短。在該圖中,傳輸包括示例性顯示的對等信標192,作為到對等1的信標194以及到對等2的信標196的兩個對等,接著是到對等1的一關聯波束成形訓練(ABFT)週期198,以及到對等2的ABFT週期199,在這之後開始資料轉移間隔(DTI)200。在這種情況下ABFT週期可以預先分配給與傳輸的信標相關聯的對等體,因為預期不會有其他節點使用這個時間週期。
4.5. 頻帶外探索
網狀節點可以在低於6GHz頻帶上傳輸與接收。因此,可在低於6GHz頻帶上廣播有關毫米波網路的存在與能力的一週期宣告訊框。嘗試存取毫米波網狀網路的一新節點可以在低於6GHz頻帶上發送一宣告請求訊框,以通知節點它的存在。可以分散或集中網狀節點宣告訊框回應的管理或新節點宣告請求。一新節點可以利用被動或主動掃描,以搜尋在網路中的節點和探索相鄰者。
為了限制干擾並確保僅存取可以以一直接毫米波鏈路存取的節點,宣告訊框以較低功率發送以反映毫米波鏈結預算。可以判定宣告訊框所需的傳輸功率,使得如果在毫米波頻帶中的鏈結預算允許毫米波網路中的節點存在一可行的資料鏈路,則訊框僅由節點接收。
如果以全功率傳輸宣告訊框,則在接收節點中的至少一個實施例中利用一臨限來決定是否回應這個訊框,或者不回應,因為它將在毫米波網狀節點覆蓋區域之外。可以執行這些臨限的判定,使得僅在毫米波頻帶中的鏈結預算允許毫米波網路中的可行資料鏈路時才考慮訊框。
新節點可以在低於6GHz頻帶上對毫米波網路使用被動掃描,或在低於6GHz頻帶上使用毫米波網路進行主動掃描。
4.5.1. 被動掃描
一新節點偵聽低於6GHz頻帶,等待從其中一節點發送的宣告訊框。傳輸和接收較佳地使用準全向天線。一旦找到宣告訊框,新節點就切換到毫米波頻帶以與探索節點連接。探索的節點開始在毫米波頻帶中傳輸信標以與新節點進行波束成形。節點可以使用來自低於6GHz頻帶的方向性資訊(如LOS的方向或最強的反射光線)以僅透過毫米波頻帶中的一些波束發送信標。
如果啟用了網狀輔助,則探索的節點觸發新節點之周圍區域中的其他節點以開始向新節點發送信標並且與其一起執行波束成形。可以在網狀節點之間協調信標的傳輸,以實現節點的快速連接和探索。
圖19繪示一處理的一實例實施例210,其中網狀節點根據被動掃描處置新節點。例程開始212,然後在低於6GHz頻帶上發送214毫米波網路宣告訊框。在方塊216,如果沒有接收到宣告回應,則執行返回到方塊214並發送一後續宣告。否則,如果接收到宣告回應,然後如果啟用了網狀輔助則做出218判定。如果未啟用網狀輔助,則在返回到方塊214並發送一網路宣告之前,到達觸發節點毫米波探索的方塊222。然而,如果啟用網狀輔助,則在返回到方塊214並發送一網路宣告之前,到達觸發網狀輔助協調的毫米波探索的方塊220。
4.5.2. 主動掃描
在主動掃描中,新節點以低於6GHz頻帶發送一宣告訊框請求並且等待從其中一節點發送的宣告訊框回應。在至少一較佳實施例中,這些通訊的傳輸和接收利用準全向天線。一旦接收到宣告訊框回應,新節點就切換到毫米波頻帶以與探索節點連接。探索的節點開始在毫米波頻帶中傳輸信標以與新節點進行波束成形。節點可以使用來自低於6GHz頻帶的方向性資訊(如LOS的方向或最強的反射光線)以僅透過毫米波頻帶中的一些波束發送信標。
如果啟用了網狀輔助,則探索的節點觸發新節點附近的其他節點以開始向新節點發送信標並且執行波束成形。可以在網狀節點之間協調信標的傳輸,以實現快速連接和節點探索。
圖20繪示一處理的一實例實施例230,其中網狀節點根據一主動掃描處置新節點。例程開始232,然後開始偵聽宣告請求訊框234。如果接收到一宣告請求,則做出236檢查。如果沒有,則處理繼續監聽234。否則,發送238對於宣告請求的一回應,以及如果啟用了網狀輔助則進行檢查240來判定。如果未啟用網狀輔助,在返回至232以偵聽宣告請求訊框之前,啟用244毫米波節點探索。如果啟用網狀輔助,則啟用242網狀輔助協調毫米波節點探索,然後返回至232以偵聽宣告請求訊框。
4.6.在低於6GHz上執行毫米波鑑別
一旦一新節點透過低於6GHz通訊探索一相鄰節點並且決定形成一毫米波鏈路時,其透過宣告訊框回應或請求通知相鄰者。
新節點可在切換至毫米波頻帶之前觸發鑑別請求,以保證在開始毫米波探索活動之前鑑別潛在毫米波鏈路,以致於避免在毫米波頻帶上的不必要的波束成形。新節點發送一鑑別請求並且等待鑑別回應,以及在至少一實施例中,新節點確認鑑別回應。如果鑑別回應與確認兩者都成功,則新節點和相鄰節點啟用毫米波探索活動。
在透過節點的地理探索區執行網狀輔助的情況下,如果啟用了網狀輔助,則網狀節點將鑑別回應中的所有潛在相鄰者列入新節點。新節點以潛在連接的感興趣節點列表進行回應。網狀節點僅考慮探索活動的確認訊息中的節點列表。
4.7.執行毫米波探索與波束成形
新節點透過低於6GHz頻帶內的主動或被動掃描探索相鄰者或網狀網路。新節點可以直接用於檢查相鄰者的毫米波頻帶和波束成形。新節點將開始掃描信標的毫米波頻帶。新節點可以使用準全向天線進行掃描,或者以特定週期切換接收方向波束,特定週期取決於網狀節點能力。透過在低於6GHz頻帶中執行的通訊,向新節點通 知網狀節點毫米波天線能力。一些方向性資訊(諸如,LOS的方向或最強的x波束)可以透過低於6GHz頻帶中繼到新節點,以限制新節點掃描的波束。網狀節點可以使用一些方向性資訊(諸如,LOS的方向或最強的x波束)來限制它向新節點發送信標的方向。
透過宣告回應或關於新節點加入網路之意圖的宣告請求由新節點通知所探索的網狀節點。如果新節點網狀設定檔與網路設定檔匹配,則網狀節點批准新節點網路加入在被動掃描的情況下來自新節點的宣告回應之後發送的確認訊息中或主動掃描的情況下透過發送到新節點的宣告請求回應中。
新節點將其能力通訊給網狀節點,並提供局部化資訊(如果可用)。網狀節點可使用這個資訊來最佳化毫米波波束成形的方向性或功率。網狀節點可在毫米波頻帶上切換至探索模式以允許節點在毫米波頻帶中波束成形它們的天線。
圖21繪示顯示製作信標傳輸的一主信標節點超級訊框格式的一實例實施例250,其可以與圖18中描繪的DMG對等信標進行比較。在幾個信標間隔之後或在探索新節點之後,網狀節點返回以僅傳輸信標至對等節點。在圖中,傳輸包括示例性顯示的對等信標252,作為信標256到對等1與信標258到對等2的兩個對等,其中信標254在所有方向上發送,隨後是關聯-波束成形訓練(ABFT)週期260。ABFT時隙與對等節點相關聯並且等於對等節點的數 量。在ABFT週期之後,開始資料轉移間隔(DTI)262。
圖22繪示透過排程的信標傳輸與SSW訊框交換之探索的一實例實施例270。在圖中可以看出,網路節點還可以在DTI週期中排程波束成形交談,以與新節點進行波束成形。看到信標272被傳輸274到對等1以及傳輸276至對等2,接著是一關聯波束成形訓練(ABFT)時段277,接著是資料轉移間隔(DTI)週期278。然後是排程的信標傳輸和SSW訊框週期280,信標傳輸279到新節點,ABFT 281傳輸到第一時隙,然後是另一個DTI 282。在圖中,網狀節點僅在信標傳輸週期中繼續將信標傳送到其對等,並且在透過藉由在DTI週期中排程低於6GHz掃描找到一新節點時意外地在所有方向上傳輸信標。
在排程週期中,SSW訊框交換可以僅專用於新節點探索,因此不需要具有許多SSW時隙,如IEEE 802.11標準中定義的ABFT週期。一旦探索到新節點並連接到網路,網狀節點就開始以每個信標傳輸間隔將一般對等信標傳輸到新節點。
圖23A與圖23B繪示用於頻帶外節點探索的傳訊的一實例實施例290。在圖中,粗箭頭表示在低於6GHz發送的信號,細箭頭表示在毫米波頻帶上發送的方向信號。圖描繪了新節點292、節點294相鄰者1、節點296相鄰者2、節點298相鄰者3與節點300相鄰者4之間的通訊。宣告訊框在低於6GHz頻帶上從302相鄰者4 300傳輸,並且從304相鄰者2 296傳輸到新節點292。這個實例中的 新節點從296相鄰者2接收到宣告信標,並且在低於6Ghz頻帶上發送毫米波宣告訊框回應306來對其進行回應。相鄰者節點296在低於6Ghz頻帶上發送毫米波宣告訊框確認(ACK)308來對其進行回應。在低於6Ghz頻帶上交換鑑別請求310、回應312以及確認314,以鑑別器對毫米波網路的節點存取。一旦新節點被鑑別器,相鄰者2 296開始傳輸探索信標316作為在所有或一些方向上的毫米波傳輸,這取決於從低於6GHz通訊可獲得的資訊。一旦新節點292接收到這些信標中的一個,它就用一信標回應或鏈路設置確認318進行回應。
與網路中的其他相鄰者298、294繼續相同的處理。節點298相鄰者3在低於6GHz頻帶上發送宣告訊框320,新節點292對它回應322,並且接著至節點298相鄰者3確認324。使用來自新節點292的請求326、一回應328來顯示鑑別,回應328由新節點292確認330。回應於此,節點298相鄰者3開始在所有或一些方向上傳輸探索信標332,這取決於從低於6GHz通訊可獲得的資訊。
在圖23B中,看到在低於6GHz頻帶上發送宣告訊框334的在節點294相鄰者1之間的類似處理,新節點在低於6GHz頻帶上回應336,節點294相鄰者1也在低於6GHz頻帶上確認344。回應於此,節點294相鄰者1在所有或一些方向上傳輸探索信標346,這取決於從低於6GHz通訊可獲得的資訊。回應於這些探索信標,新節點292發送信標回應/鏈路設置請求348。
然後可以看出,一般定向毫米波對等信標350如信標352從節點294相鄰者1接收以及信標354從節點296相鄰者2接收。
應注意,節點298相鄰者3和新節點292之間的交換不同於其他相鄰者的交換。特別是在所描繪的實例中,新節點在低於6GHz 320上接收宣告訊框並且在低於6GHz上成功鑑別器,但是新節點292沒有接收到信標332。這就是新節點不向相鄰者298發送信標回應或鏈路設置訊框的原因。在探索處理完成之後,新節點從它建立連接至相鄰者接收到的對等信標352、354。
4.8.網狀輔助、或協調、毫米波探索
透過低於6GHz掃描(主動或被動掃描)的一網狀節點的新節點探索可觸發網狀節點協調毫米波探索活動。作為實例而非限制,毫米波探索活動可以由聯繫的節點成員或新節點附近的所有節點來執行。
圖24A與圖24B繪示網狀協調毫米波節點探索的一實例實施例450,其具有由新節點在低於6GHz頻帶上探索的節點列表。新節點在低於6GHz頻帶上偵聽足夠的時間,以探索所有相鄰者。新節點回應其探索的每個相鄰者。由新節點聯繫的節點彼此協調,以形成一探索活動。
具體地說,圖描繪了新節點452、節點454相鄰者1、節點456相鄰者2、節點458相鄰者3與節點460相鄰 者4之間的互動。來自節點460相鄰者4的低於6GHz宣告訊框462不會到達新節點452。然而,來自節點458相鄰者3的一低於6GHz宣告訊框464由新節點接收,新節點發送466一低於6GHz回應訊框,其由節點458相鄰者3確認468。在本揭露的至少一實施例中,進行鑑別以及此處可看出新節點452發送一鑑別請求470,節點458相鄰者3向其發送一鑑別回應472,新節點452向其發送鑑別回應確認474。
節點454相鄰者1發送由新節點452接收的一宣告訊框476,新節點452發送回應478,亦即由節點454相鄰者1確認(ACK)480。新節點452發送一鑑別請求482,節點454相鄰者1向其發送一鑑別回應484,新節點452向其發送鑑別回應確認(ACK)486。
類似地,作為相鄰者2的節點456發送由新節點452接收的一宣告訊框488,新節點452發送回應490,亦即由作為相鄰者2的節點456確認492。新節點452發送一鑑別請求494,節點456相鄰者3向其發送一鑑別回應496,新節點452向其發送鑑別回應確認(ACK)498。執行網狀節點協調以形成一探索活動。為了簡單起見,用顯示圖中的通訊500、502與504的抽像圖繪示協調。透過分享有關新節點的資訊與決定哪些節點到達新節點的序列或順序來執行協調。協調應考慮到資源的干擾和排程。一旦探索活動完成,則新節點可以使用與網狀中的相鄰者進行毫米波通訊。可以看到作為相鄰者1的節點454在所有方向上發送毫米波探索信標506,其中一些在新節點452處接收,新節點452發送信標回應/鏈路設置508。類似地,可以看到作為相鄰者2的節點456在所有方向上發送毫米波探索信標510,其中一些在新節點452處接收,新節點452發送信標回應/鏈路設置512。也在這種方式下,可以看到作為相鄰者3的節點458在所有方向上發送毫米波探索信標514,其中一些在新節點452處接收。一般毫米波對等信標516,與來自節點454相鄰者1的傳輸518、以及來自節點456相鄰者2的520可以看出回應於新節點向這些相鄰者發送回應/鏈路設置請求而發送到新節點454相鄰者1。
圖25繪示一頻帶外網狀輔助探索的一實例實施例530。聯繫的網狀節點與新節點地理探索區中的所有節點協調,以開始新節點的一探索活動。所聯繫的網狀節點基於取決於探索的STA(在其地理探索區中的節點)的一估計而包含新節點的所有潛在的相鄰者。新節點偵聽低於6GHz頻帶,直到其探索至少一相鄰者。新節點在低於6GHz頻帶回應這個相鄰者,通知它在毫米波頻帶上與其對等的興趣。地理探索區被定義為與新節點成為潛在相鄰者的節點,因為它可以探索低於6GHz頻帶中的一或多個相鄰者。基於從低於6GHz掃描收集的資料,網狀協調新節點的一探索活動。探索活動可以以多種形式排程。
在圖中描繪了新節點532、節點534相鄰者1、節點536相鄰者2、節點538相鄰者3與節點540相鄰者4之間的交互。一低於6GHz宣告訊框542係從節點540相鄰者4發送,並且不會到達新節點532。然而,來自節點538相鄰者3的一低於6GHz宣告訊框544由新節點接收,新節點發送546一低於6GHz回應訊框,其由節點538相鄰者3確認548。在本揭露的至少一實施例中,進行鑑別以及此處可看出新節點532發送一鑑別請求550,節點538相鄰者3向其發送一鑑別回應552,新節點532向其發送鑑別回應確認554。
執行網狀節點協調556、558以形成一探索活動。這個協調可以透過與新節點的全部潛在相鄰者溝通並且協調每個節點將開始傳輸其探索信標的序列或時間。協調應考慮到資源的干擾和排程。一旦探索活動完成,則新節點可以使用與網狀中的相鄰者進行毫米波。可以看到作為相鄰者1的節點532在所有方向上發送毫米波探索信標560,其中一些在新節點532處接收,新節點532發送信標回應/鏈路設置562。類似地,可以看到作為相鄰者2的節點536在所有方向上發送毫米波探索信標564,其中一些在新節點532處接收,其中新節點發送一信標回應/鏈路設置566。也在這種方式下,可以看到作為相鄰者3的節點538在所有方向上發送毫米波探索信標568,其中一些在新節點532處接收。一般毫米波對等信標570被顯示為包含來自節點532相鄰者1的傳輸572,以及來自節點536相鄰者2的傳輸574,看出一般毫米波對等信標570被發送到新節點。
圖26A與圖26B繪示透過毫米波探索信標之探索輔助的一實例實施例670。在地理探索區中的節點在毫米波頻帶上切換至探索模式以允許節點在毫米波頻帶中波束成形它們的天線。圖式描繪MSTA A 672、MSTA B 674與MSTA C 676的傳輸。例如,在MSTA A中看到ABFT週期680,然後是DTI週期682,並且可以看出與額外的ABFT 680與DTI 682週期在所有方向上發送684信標。傳輸圖被標記以顯示輔助探索週期678,這導致新節點形成686一連接。
因此,圖顯示在信標傳輸週期中透過所有天線切換至傳輸信標。在幾個信標間隔之後或在探索新節點之後,網狀節點將返回以僅傳輸信標至對等節點。在網狀節點開始傳輸信標之前,網狀節點的ABFT週期包含用於傳輸的每個對等信標的時隙。這使得SSW訊框交換的時隙數量等於對等的數量。當網狀節點切換到發送探索信標時,它為新節點添加新的時隙。在探索階段結束時,網狀節點最終可以與新節點建立一連接,並在ABFT中為其永久分配一時隙,如MSTA B所示。
圖27A與圖27B繪示在毫米波頻帶上協調探索信標之傳輸以允許節點在毫米波頻帶中波束成形它們的天線之地理探索區中的節點的一實例實施例710。在圖中,傳輸透過在DTI週期中的所有天線扇區排程。網狀節點取決於由低於6GHz探索的新節點的能力重複信標的傳輸許多循環。
圖式描繪MSTA A 712、MSTA B 714與MSTA C 716的傳輸。例如,在MSTA A中看到ABFT週期718,然後是DTI週期720,其中進入輔助探索週期717,隨後是SSW訊框交換724,其中在所有方向722上發送信標週期,之後是可能的鏈路設置時隙725。看出由MSTA A 712的傳輸僅繼續在對等方向上發送的信標726,ABFT週期728和DTI週期730。圖還在MSTA B中顯示了新節點回應於輔助探索週期717形成732一連接。
因此,如圖所示,在每個信標傳輸循環結束時,從所有天線扇區傳輸信標,為SSW訊框交換分配一時隙。在至少一實施例中,還在所有信標循環與SSW時隙的傳輸結束時為對等鏈路建立保留一時間週期。在一般訊框中的信標傳輸的時間,如果新節點連接到網狀節點,則添加一對等信標和一分配的SSW時隙並且專用於新節點,如MSTA B所示。
4.9. 地理探索區
為每個MSTA或MSTA扇區建立節點的一地理群集。對於每個節點扇區,其中這個扇區覆蓋的區域表示這個扇區的足跡。可以在這個扇區的足跡中探索的一可能的相鄰節點或節點扇區集合包含地理探索節點/扇區集合。這個集合含有由這個扇區或在這個扇區中探索的任何新節點可能看到的節點或扇區。並非這個集合的所有成員通常都會被新節點探索,但它代表所有可能的潛在相鄰者。每當新節點加入網路以包括新的MSTA加入時,都應更新這個集合。可以使用測量活動收集、網路的拓撲資訊或天線場型分析的一些形式來構建這個集合。
圖28繪示一節點或扇區地理探索集合(扇區覆蓋區域)的一實例實施例790。圖描繪了具有扇區798a到798d的節點MSTA A 792、具有扇區800a到800d的MSTA B 794、以及具有扇區802a到802d的MSTA C 796,描繪了它們的重疊天線方向扇區。從圖中可以看出,由MSTA A 792、扇區3(S3)798c探索的任何節點可以具有MSTA C 796(S1)802a與(S2)802b、和/或MSTA B 794(S4)800d也作為相鄰者。由MSTA B 794(S1)800a探索的任何節點將僅具有MSTA A 792(S2)798b作為潛在相鄰者。地理探索區的形成可以由系統透過網路中的測量報告或藉由利用一分析單元規劃處理來執行。
分析單元規劃係基於在節點的扇區之每個覆蓋區域處估計潛在相鄰者是什麼,並在節點扇區處載入列表。為了透過測量報告產生這個列表,可以使用集中式或分佈式程序。每個節點和/或扇區維持由這個節點/扇區探索的相鄰節點/扇區的一列表。在至少一實施例中,集體地處理這些列表以形成它們之間的關係。結果是對於每個扇區估計如果探索到扇區其潛在相鄰者是什麼。
網路中的節點越多,探索區的估計就越準確。此外,當節點移動並探索新節點時,更新應該與可被探索的節點/扇區的一新集合發送。行動節點探索並忽略其他節點並形成可以同時看到的新相鄰者的列表。這些列表被儲存並且週期地處理。
在集中式程序中,節點將每個扇區的相鄰列表發送至一中央實體。中央實體從所有網路節點收集所有列表並形成地理探索區。中央實體在處理收集的列表之後將地理探索區集合發送至每一節點。一旦相鄰列表改變以更新網路資訊,節點可以周期性地或暫時地發送在一時間的週期內收集的所有列表的報告。
在分佈式程序中,節點將這些列表的每一個發送至這些列表的所有成員。在這種情況下,列表應該在列表更新到列表的所有成員之前發送,然後節點將看不到任何列表成員。一旦節點從另一個節點接收列表時,它就會將列表的所有成員添加到從其接收的扇區的探索區。
圖29繪示作為圖28中所示的情況的一變化的一實例實施例810,其描繪節點移動和形成新列表的情況。如表中所示,這些列表用於更新這些相鄰者的地理探索區集合。圖描繪了具有扇區798a到798d的節點MSTA A 792、具有扇區800a到800d的MSTA B 794、以及具有扇區802a到802d的MSTA C 796,描繪了它們的重疊天線方向扇區。一行動節點被顯示透過與三個固定節點相關聯的天線扇區移動,其中行動節點中間位置被視為812a至812f,因為當相鄰者關連從作為L1 812a處的唯一相鄰者的MSTA A 792(S4)改變為在L2 812b處的相鄰MSTA A 792(S4)和MSTA C 796(S1)、改變為在L3 812c處作為唯一相鄰者的MSTA C 796(S1)、改變為在L4 812d處的MSTA A 792(S3)和MSTA C 796(S1)、改變為在L5 812e處的MSTA A 792(S3)、MSTA C 796(S1)和MSTAB794(S4)、以及最終改變為在L6 812f處的MSTA A 792(S3)和MSTA B 794(S4)時建立新列表。
因此,圖顯示一節點移動和形成新列表的實例,用於更新這些相鄰者的地理探索區。表1詳述針對每個移動節點位置L1 至L6 的圖29的實例的相鄰列表和探索區更新。
4.10. 新訊框格式
4.10.1. 毫米波網路宣告
這個訊框在低於6GHz頻帶上週期地從網狀STA發送,以宣告節點的毫米波通訊能力。這個訊框還用於宣告毫米波RF和基帶的能力,並將所選資訊包括在新節點中以幫助其與STA進行波束成形,諸如減小負擔和/或加速波束成形處理。
在至少一實施例中,網路宣告訊框包含以下資訊:(a)SSID/SSID列表-新STA嘗試連接的毫米波SSID列表;(b)DMG能力-MSTA支持的能力;(c)網狀ID-網狀ID元素;以及(d)網狀輔助-如果網狀探索輔助是可選的,則為真。
4.10.2. 毫米波網路宣告回應
這個訊框在低於6GHz頻帶上從新節點發送作為接收一網路宣告訊框的一回應。這個訊框通至網狀STA存在嘗試連接到毫米波網路的新節點。該回應較佳地通訊毫米波RF和新節點的基帶的能力以及使新節點更容易與STA進行波束成形的任何資訊,例如減小波束成形的負擔和/或加速波束成形的處理。
在至少一實施例中,網路宣告回應訊框包含以下資訊:(a)NSID-新STA識別符;(b)SSID-新STA嘗試連接的毫米波SSID列表;(c)DMG能力-新STA支持的能力;(d)網狀ID-網狀ID元素;(e)網狀輔助-如果網狀探索輔助是請求的,則為真。
4.10.3. 毫米波網路宣告確認
這個訊框在低於6GHz頻帶上從網狀STA發送到新節點,作為用於接收網路宣告回應的一確認並且用以授權一節點連接到毫米波網路。這個訊框用於向新STA通知關於在毫米波頻帶上排程的探索活動的資訊。
在至少一實施例中,網路宣告確認訊框包含以下資訊:(a)NSID-新STA輔助的一識別符;(b)SSID/SSID列表-新STA嘗試連接的毫米波SSID列表;(c)網狀輔助-如果啟用了網狀探索輔助,則為真;(d)通道-其中MSTA傳輸探索信標的通道;(e)同步資訊-新STA期望毫米波信標的時間;(f)局部化資訊-幫助新節點指導其在STA方向上的波束成形的資訊。
4.10.4. 毫米波網路加入請求
這個訊框在低於6GHz頻帶上從一新節點發送至網狀STA,以宣告其存在並請求與相鄰節點的毫米波鏈路的建立。這個訊框還用於宣告毫米波RF和基帶的能力,以及一些資訊使新節點更容易與STA進行波束成形,諸如前面提到的關於降低負擔和/或加速波束成形處理。
在至少一實施例中,網路加入請求訊框包含以下資訊:(a)NSID-新STA輔助的一識別符;(b)DMG能力-MSTA支持的能力;(c)網狀ID-網狀ID元素;以及(d)網狀輔助-如果網狀探索輔助是可選的,則為真。
4.10.5. 毫米波網路加入回應
這個訊框在低於6GHz頻帶上從一網狀STA發送至新節點,作為對來自新STA的網路加入請求的一回應。傳輸這個訊框以通知新STA關於在毫米波頻帶上排程的探索活動的資訊。
在至少一實施例中,網路加入回應訊框包含以下資訊:(a)NSID-新STA輔助的識別符;(b)SSID/SSID列表-新STA嘗試連接的毫米波SSID列表;(c)網狀輔助-如果啟用了網狀探索輔助,則為真;(d)通道-其中MSTA傳輸探索信標的通道;(e)同步資訊-新STA期望毫米波信標的時間;(f)局部化資訊-幫助新節點在STA方向上指導其波束成形的資訊。
4.10.6. 毫米波鑑別請求
這個訊框在低於6GHz頻帶上從一新節點發送至網狀STA以請求在毫米波網路上的鑑別。如果新節點未被授權存取毫米波網路,則這個授權用於避免毫米波頻帶上的任何額外的活動(例如,新節點輔助)。
在至少一實施例中,鑑別請求訊框包含以下資訊:(a)NSID-新STA輔助的識別符;以及(b)鑑別資訊-鑑別資訊請求。
4.10.7. 毫米波鑑別回應
這個訊框在低於6GHz頻帶上從一或多個網狀STA發送至一新節點作為毫米波網路鑑別請求的一回應。如果允許網狀輔助,則網狀節點將在新節點的地理探索區中添加其他節點,以檢查新節點是否有興趣在毫米波頻帶探索它們。
在至少一實施例中,鑑別回應訊框包含以下資訊:(a)NSID-新STA輔助的識別符;(b)鑑別回應-真或假;以及(c)網狀輔助列表-在地理探索區中的節點列表。
4.10.8. 毫米波鑑別回應ACK
這個訊框在低於6GHz頻帶上從一新節點發送至網狀STA以確認毫米波網路鑑別回應的接收,以如果新節點未被授權存取毫米波網路,則避免對毫米波頻帶的任何活動(例如,新節點輔助)。如果允許網狀輔助,則新節點較佳地回應其有興趣在毫米波網路中探索的節點列表(如果列表是在鑑別回應訊框中發送的)。
在至少一實施例中,鑑別回應ACK訊框包含以下資訊:(a)NSID-新STA輔助的識別符;以及(b)網狀輔助列表回應-新節點有興趣在毫米波頻帶上探索的地理探索區中的節點列表。
4.10.9. 探索信標
這是一個類似於一般802.11 DMG信標訊框的一訊框,但具有一些元素支持額外的特徵。這些訊框較佳地由MSTA在所有方向上以毫米波頻帶發送,以幫助探索和宣告網路。訊框含有允許新節點探索網路的特定細節,並且不同於旨在同步和管理網狀對等和連接的STA的對等信標。如果新節點探索不需要802.11 DMG信標的許多元素,則可以將其刪除或視為選擇性。一旦節點連接到網狀網路,它就可以透過對等信標接收所有省略的資訊。這是一個非常輕的信標並且具有用以探索網狀節點、形成連接以及開始接收對等信標的一節點的基本資訊。
輔助回應訊息的訊框還將信標類型指示為探索或對等信標。
4.10.10. 對等信標
這是一個類似於一般802.11 DMG信標訊框的一訊框但具有一些元素支持額外的特徵。這些訊框由毫米波頻帶中的所有節點在其方向上或僅在其方向上傳輸至它們的對等STA。這個對等信標用於信標功能,例如同步、頻譜和通道管理。通訊的資訊旨在用於網路中的節點,用以管理網路並維持網路中的同步。如果當前網狀STA不需要802.11 DMG信標的許多元素則可以將其移除或視為是選擇性的,並且僅用於新節點探索和網狀形成。
對等信標的訊框應該至少含有信標類型的資訊,包括它是探索信標還是對等信標。
5. 總結
在毫米波頻帶上具有定向傳輸的無線通訊系統/設備/方法,其還組態用於至少一低於6GHz頻帶上傳輸和接收,以幫助掃描毫米波網狀網路探索。每一節點的編碼係組態以在低於6GHz頻帶上傳輸減小的功率毫米波網路宣告訊框,以宣告毫米波網路的存在和毫米波通訊設備的能力。每一節點的編碼係組態以在低於6GHz頻帶上接收減小的功率毫米波網路加入請求訊框,其宣告毫米波頻帶中存在一節點、其能力以及請求接收毫米波站尋求協助以尋找相鄰者並加入網路。
除了上述之外,在至少一實施例中,系統/設備/方法經組態以利用定向傳輸來傳輸信標以維持其相鄰對等站之間的現有鏈路。這些信標週期性地並且僅傳輸到相鄰對等STA,以維持同步和管理資源。這些毫米波信標不是始終在所有方向上傳輸。
除了上述之外,在至少一實施例中,尋找網路相鄰者的一新站(STA)經組態用於從一網路站接收低於6GHz頻帶上的減小的功率毫米波網路宣告訊框,新站藉由發送低於6GHz訊息回響,以通知網路站(STA)其存在。之後,新站切換到毫米波頻帶上的通訊以探索相鄰者。
除了上述之外,在至少一實施例中,在低於6GHz頻帶上從一新站接受一減小的功率毫米波網路加入請求訊框的一站經組態以回應新站並通訊有關毫米波網路的資訊。新站經組態以切換至毫米波頻帶以探索(多個)相鄰者。
除了上述之外,在至少一實施例中,透過低於6GHz頻帶與新節點通訊的毫米波網路中的站透過在所有方向上傳輸毫米波信標來協助新站,以及如果它在毫米波網路的一覆蓋區域內則與新站進行波束成形。
除了上述之外,在至少一實施例中,網路中透過低於6GHz頻帶與新站進行通訊的站與在毫米波網路中潛在相鄰者的其他站進行協調,以藉由在所有方向上傳輸毫米波信標來協助新站,並且如果它位於毫米波網路的覆蓋區域內,則與新站進行波束成形。
在所呈現技術中敘述的增強可以在各種毫米波傳輸器、接收器和收發器中實施。還應該理解,現代化的傳輸器、接收器和收發器較佳地實施為包括一或多個電腦處理器裝置(例如,CPU、微處理器、微控制器、電腦啟用的ASIC等等)以及相關的記憶體儲存指令(例如,RAM、DRAM、NVRAM、FLASH、電腦可讀取媒體等等),因此儲存在記憶體中的編程(指令)在處理器上執行,以履行文中所述的各種處理方法的步驟。
為了簡化說明,圖中未示出電腦和記憶體裝置,因為本領域技術人員理解到使用電腦裝置來執行涉及各種現代通訊裝置的步驟。所呈現的技術對於記憶體和電腦可讀取媒體是非限制性的,只要它們是非暫態的,且因此不構成一暫態電子信號。
還應當理解,在這些計算系統中的電腦可讀取媒體(記憶體儲存指令)是「非暫態的」,其包含任何和所有形式的電腦可讀取媒體,唯一的例外是一暫態、傳播信號。因此,所揭露的技術可以包括任何形式的電腦可讀取媒體,包括那些為隨機存取(例如,RAM)、需要週期刷新(例如,DRAM)、隨時間降低的那些(例如,EEPROMS、磁碟媒體)、或者僅在短時間週期內和/或僅在存在電力的情況下儲存資料,唯一的限制是用語「電腦可讀取媒體」不適用於暫態的一電子信號。
所呈現的技術的實施例可參考根據技術的實施例之方法和系統的流程圖解和/或程序、演算法、步驟、操作、方程式或其它計算描述在本文中敘述,其也可以實施為電腦程式產品。在這方面,一流程圖的每個區塊或步驟,以及流程圖中的方塊(和/或步驟)的組合,以及任何程序、演算法、步驟、操作、方程式或計算描繪可以藉由各種手段來實施,例如硬體、韌體和/或軟體,其包括嵌入在電腦可讀取程式碼中的一或多個電腦程式指令。如將理解的,任何此種電腦程式指令可以由一或多個電腦處理器執行,其包括但不限於一通用電腦或專用途電腦、或用於產生一機器的其他可編程處理設備,使得在電腦處理器上執行的(多個)電腦程式指令或其他可編程處理設備建立用於實施指明的(多個)功能的手段。
因此,本文敘述的流程圖的方塊和程序、演算法、步驟、操作、方程式或計算敘述支持用於執行特定功能、執行特定功能的步驟組合、以及電腦程式指令(諸如,嵌入在用於執行特地功能的電腦可讀取程式碼邏輯手段中)的手段的組合。還將理解,流程圖說明的每個方塊以及本文敘述的任何程序、演算法、步驟、操作、方程式或計算敘述及其組合可以藉由執行特定功能或步驟的專用基於硬體的電腦系統、或專用硬體和電腦可讀取程式碼的組合來實施。
此外,諸如嵌入在電腦可讀取程式碼中的這些電腦程式指令也可以儲存在一或多個電腦可讀取記憶體或記憶體裝置中,其可以指示電腦處理器或其他可編程處理設備以特定方式運行,使得儲存在電腦可讀取記憶體或記憶體裝置中的指令產生包括指令手段的製造物件,該指令手段實施在流程圖的一或多個方塊中指明的功能。電腦程序指令還可以由電腦處理器或其他可編程處理設備執行,以使得在電腦處理器或其他可編程處理設備上執行一系列操作步驟,以產生電腦實現的處理,使得在電腦處理器或其他可編程處理設備上執行的指令提供用於實施在流程圖的方塊、程序演算法、步驟、操作、方程式或計算敘述中指定的功能。
還應當理解,本文使用的用語「編程」或「程式可執行」是指可以由一或多個電腦處理器執行以執行如本文所述的一或多個功能的一或多個指令。指令可被嵌入在軟體、韌體或在軟體和韌體的組合中。指令可以在非暫態媒體中本地儲存在裝置中,或者可以遠程儲存在諸如伺服器上,或者可以本地和遠程地儲存全部或部分的指令。遠程儲存的指令可以藉由使用者啟動下載(推送)到裝置,或者基於一或多個因素自動地下載。
還應當理解,如本文所使用的用語處理器、硬體處理器、電腦處理器、中央處理單元(CPU)和電腦被同義地使用以表示能夠執行指令並與輸入/輸出介面和/或週邊裝置通訊的裝置,以及用語處理器、硬體處理器、電腦處理器、CPU和電腦旨在包括單個或多個裝置、單核和多核裝置及其它們的變化。
根據本文的描述,應理解到本揭露涵蓋多個實施例,其包括但不限於以下:
1.一種用於在網狀網路中的無線通訊的設備,其包含:(a) 一無線通訊電路,其組態以利用以下兩者與其它無線通訊站無線地通訊:(A) 定向性毫米波(mmW)通訊,其具有複數個天線場型扇區,該等天線場型扇區各具有不同的傳輸方向,以及(B)低於6GHz的無線通訊;(b)一處理器,其耦合至在一站內的該無線通訊電路,該站組態以操作於該網狀網路上;(c)一非暫態記憶體,其儲存可由該處理器執行的指令;以及(d)其中當該等指令由該處理器執行時,執行以下步驟,其包含:(d)(i)操作該站為在該網狀網路上的一對等站,以維持與在該網狀網路上的相鄰對等站的通訊;(d)(ii)使用具有包含時間同步與資源管理資訊之複數個天線場型扇區的該定向性毫米波通訊來傳輸一第一類型的信標、一對等信標,以維持在該網狀網路內的一或多個相鄰對等站之間的現有鏈路;(d)(iii)透過該低於6GHz無線通訊,傳輸來自該對等站之作為一網路探索信標的一第二類型的信標,其中該網路探索信標含有識別該網狀網路的網狀網路設定檔資訊,以幫助一新站的網路探索以加入該網狀網路;以及(d)(iv)透過該低於6GHz無線通訊接收該網狀網路的加入請求訊框,該加入請求將該新站連同該新站的能力與來自該新站的一請求發布給該網狀網路的任何接收站,該等接收站請求協助尋找相鄰者並加入該網狀網路。
2.一種用於在網狀網路中的無線通訊的設備,其包含:(a) 一無線通訊電路,其組態以利用以下兩者與其它無線通訊站無線地通訊:(A) 定向性毫米波(mmW)通訊,其具有複數個天線場型扇區,該等天線場型扇區各具有不同的傳輸方向,以及(B)低於6GHz的無線通訊;(b)一處理器,其耦合至在一站內的該無線通訊電路,該站組態以操作於該網狀網路上;(c)一非暫態記憶體,其儲存可由該處理器執行的指令;以及(d)其中當該等指令由該處理器執行時,執行以下步驟,其包含:(d)(i)操作該站為在該網狀網路上的一對等站,以維持與在該網狀網路上的相鄰對等站的通訊;(d)(ii)使用具有包含時間同步與資源管理資訊之複數個天線場型扇區的該定向性毫米波通訊來傳輸一第一類型的信標、一對等信標,以維持在該網狀網路內的一或多個相鄰對等站之間的現有鏈路;(d)(iii)透過該低於6GHz無線通訊,傳輸來自該對等站之作為一網路探索信標的一第二類型的信標,其中該網路探索信標含有識別該網狀網路的網狀網路設定檔資訊,以幫助一新站的網路探索以加入該網狀網路;(d)(iv)透過該低於6GHz無線通訊接收該網狀網路的加入請求訊框,該加入請求將該新站連同該新站的能力與來自該新站的一請求發布給該網狀網路的任何接收站,該等接收站請求協助尋找相鄰者並加入該網狀網路;(d)(v)如果該站尚未加入該網狀網路則將該站操作為該新站,其中該新站經組態以透過該低於6GHz無線通訊接收來自作為該網狀網路上一對等站連接的一發送站的一網路宣告訊框,並且藉由透過該低於6GHz無線通訊傳輸一回應訊息來回應,以通知該發送站它的存在;以及(d)(vi)切換該新站用於定向性毫米波通訊(mmW)通訊,以探索在該網狀網路上的一或多個相鄰者。
3.一種用於執行在網狀網路中的無線通訊的方法,其包含:(a)產生由一站的一處理器控制的無線通訊為具有複數個天線場型扇區的方向性毫米波(mmW)通訊,該等天線場型扇區各具有不同的傳輸方向,以及使用低於6GHz的無線通訊;(b)將在該網狀網路上的該站操作為一對等站,以維持與在該網狀網路上的相鄰對等站的通訊;(c)使用具有包含時間同步與資源管理資訊之複數個天線場型扇區的該方向性毫米波通訊來傳輸一第一類型的信標、一對等信標,以維持在該網狀網路內的一或多個相鄰對等站之間的現有鏈路;(d)透過該低於6GHz無線通訊,傳輸來自該對等站之作為一網路探索信標的一第二類型的信標,其中該網路探索信標含有識別該網狀網路的網狀網路設定檔資訊,以幫助一新站的網路探索以加入該網狀網路;以及(e)透過該低於6GHz無線通訊接收該網狀網路的加入請求訊框,該加入請求將該新站連同該新站的能力與來自該新站的一請求發布給該網狀網路的任何接收站,該等接收站請求協助尋找相鄰者並加入該網狀網路。
4.任何前述實施例的設備或方法,其中當該等指令由該處理器執行時進一步執行步驟,包含如果該站尚未加入該網狀網路則將該站操作為該新站,其中該新站經組態以透過該低於6GHz無線通訊接收來自作為該網狀網路上的一對等站連接的一發送站的一網路宣告訊框,並且藉由透過該低於6GHz無線通訊傳輸一回應訊息來回應,以通知該發送站它的存在。
5.任何前述實施例的設備或方法,其中當該等指令由該處理器執行時進一步執行步驟,包含切換該新站用於定向性毫米波通訊(mmW)通訊,以探索在該網狀網路上的一或多個相鄰者。
6.任何前述實施例的設備或方法,其中當該等指令由該處理器執行時進一步執行步驟,包含將該站操作為一對等站並且透過該低於6GHz無線通訊與該新站通訊,以藉由在所有方向上傳輸毫米波信標來協助該新站,並且如果它在該網狀網路的一覆蓋區域內時則與該新站進行波束成形。
7.任何前述實施例的設備或方法,其中當該等指令由該處理器執行時進一步執行步驟,包含將該站操作為一對等站並且與在該網狀網路中的該新站的潛在相鄰者的對等站協調,以藉由在所有方向上傳輸毫米波信標來協助該新站,並且如果它在該網狀網路的一覆蓋區域內時則與該新站進行波束成形。
8.任何前述實施例的設備或方法,其中當該等指令由該處理器執行時進一步執行步驟,包含執行鑑別,其中一新節點透過該低於6GHz無線通訊發送該網狀網路的一鑑別請求,以及如果該鑑別成功,則該新節點切換至用於波束成形的該定向性毫米波(mmW)通訊。
9.任何前述實施例的設備或方法,其中當該等指令由該處理器執行時進一步執行步驟,包含在該網狀網路上的對等站組態以藉由向該新節點發送一回應來回應來自該新節點的該鑑別請求。
10.任何前述實施例的設備或方法,其中當該等指令由該處理器執行時進一步執行步驟,包含在該網狀網路上的對等站組態以將該回應發送至該新節點,該新節點包括由該新節點使用的額外的資訊。
11.任何前述實施例的設備或方法,其中當該等指令由該處理器執行時進一步執行步驟,包含在該網狀網路上的對等站組態以將該回應發送至該新節點,其中該額外的資訊包含在該網狀網路上的其它相鄰節點的一列表。
12.任何前述實施例的設備或方法,其中當該等指令由該處理器執行時進一步執行步驟,包含將該站操作為一對等站並且透過該低於6GHz無線通訊與該新站通訊,以藉由在所有方向上傳輸毫米波信標來協助該新站,並且如果它在該網狀網路的一覆蓋區域內時則與該新站進行波束成形。
13.任何前述實施例的設備或方法,其中當該等指令由該處理器執行時進一步執行步驟,包含將該站操作為一對等站並且與在該網狀網路中的該新站的潛在鄰居的對等站協調,以藉由在所有方向上傳輸毫米波信標來協助該新站,並且如果它在該網狀網路的一覆蓋區域內時則與該新站進行波束成形。
14.任何前述實施例的設備或方法,其中當該等指令由該處理器執行時進一步執行步驟,包含執行鑑別,其中一新節點透過該低於6GHz無線通訊發送該網狀網路的一鑑別請求,以及如果該鑑別成功,則該新節點切換至用於波束成形的該定向性毫米波(mmW)通訊。
15.任何前述實施例的設備或方法,其中當該等指令由該處理器執行時進一步執行步驟,包含在該網狀網路上的對等站組態以藉由向該新節點發送一回應來回應來自該新節點的該鑑別請求。
16.任何前述實施例的設備或方法,其中當該等指令由該處理器執行時進一步執行步驟,包含在該網狀網路上的對等站組態以將該回應發送至該新節點,該新節點包括由該新節點使用的額外的資訊。
17.任何前述實施例的設備或方法,其中當該等指令由該處理器執行時進一步執行步驟,包含在該網狀網路上的對等站組態以將該回應發送至該新節點,其中該額外的資訊包含在該網狀網路上的其它相鄰節點的一列表。
18.任何前述實施例的設備或方法,進一步包含如果該站尚未加入該網狀網路則將該站操作為該新站,其中該新站經組態以透過該低於6GHz無線通訊接收來自作為該網狀網路上一對等站連接的一發送站的一網路宣告訊框,並且藉由透過該低於6GHz無線通訊傳輸一回應訊息來回應,以通知該發送站它的存在。
19.任何前述實施例的設備或方法,其中當該等指令由該處理器執行時進一步執行步驟,包含切換該新站用於定向性毫米波通訊(mmW)通訊,以探索在該網狀網路上的一或多個鄰居。
20.任何前述實施例的設備或方法,其中該新節點透過該低於6GHz無線通訊發送該網狀網路的一鑑別請求,以及如果該鑑別成功,該新節點切換至用於波束成形的該定向性毫米波(mmW)通訊。
如本文所用,除非上下文中另有明確規定,否則單數用語「一」、「一個」和「該」可包括複數指示。除非明確說明,否則以單數形式提及對象並不旨在表示「一個與僅一個」,而是「一或多個」。
如本文所用,用語「組」指的是一或多個物件的集合。因此,例如一組物件可以包括一單個物件或物件。
如本文所用,用語「實質上」與「約」被用來敘述和解釋小的變化。當與事件或情況一起使用時,用語可以指事件或情況恰好發生的實例以及事件或情況發生到類似的實例。當與數值結合使用時,用語可以指小於或等於該數值的±10%的變化範圍,諸如小於或等於±5%、小於或等於±4%、小於或等於±3%、小於或等於±2%、小於或等於±1%、小於或等於±0.5%、小於或等於±0.1%、或小於或等於±0.05%。例如,「實質上」可以指小於或等於該數值的±10°的角度變化範圍,諸如小於或等於±5°、小於或等於±4°、小於或等於±3°、小於或等於±2°、小於或等於±1°、小於或等於±0.5°、小於或等於±0.1°、或小於或等於±0.05°。
另外,數量、比率和其他數值有時可以以範圍格式呈現於本文中。應當理解,這種範圍格式是為了方便和簡潔而使用的,並且應該被靈活地理解為包括明確指明為範圍限制的數值,但是也包括包含在該範圍內的所有單獨數值或子範圍,如同明確指明的每個數值和子範圍。例如,約1至約200的比例應理解為包括明確列舉的約1和約200的限制,但也包括單獨的比例,諸如約2、約3和約4,以及諸如約10至約50、約20至約100等的子範圍。
然而,本文敘述包含許多細節,這些細節不應被解釋為限製本揭露的範圍,而是僅僅提供一些當前較佳實施例的說明。因此,應當理解到本揭露的範圍完全地包括對於那些熟悉此技藝人士變得顯而易見的實施例。
那些熟悉此技藝人士已知的所揭露實施例的元件的所有結構和功能均等物藉由引用明確地併入本文,並且旨在由本申請專利範圍所涵蓋。此外,無論元件、組件或方法步驟是否在申請專利範圍中明確地陳述,本揭露中的元件、組件或方法步驟都不旨在專用於公眾。本文中的申請專利範圍不應被解釋為「手段功能用語」元件,除非使用短語「用於......的手段」明確地敘述該元件。本文中的申請專利範圍不應被解釋為「步驟功能用語」元件,除非使用短語「用於......的步驟」明確地敘述該元件。
10、30、70、90、150、170、190、210、250、270、290、450、530、670、710、790‧‧‧實例實施例
12、14、16、18‧‧‧網狀STA(MSTA)節點
20‧‧‧新STA
22a-22n、722‧‧‧方向
24‧‧‧掃描
32‧‧‧I/O路徑
34‧‧‧匯流排
36‧‧‧處理器
38‧‧‧記憶體
40‧‧‧毫米波數據機
42a、42b、42c、52、72a、72b、72c、92‧‧‧射頻(RF)電路
44a-44n、46a、46n、48a-48n、54‧‧‧天線
50‧‧‧低於6GHz數據機
74a、74b、74c、76a、76b、76c、76d、76e、76f、76g、76h、76i、76j、76k、76n‧‧‧波束成形場型
94‧‧‧準全向天線
110、130‧‧‧網狀網路
112、672、712、792‧‧‧MSTA A
114、116、118、120、152、154、156、292、294、296、298、300、454、456、458、460、534、536、538、540‧‧‧節點
122、292、452、532‧‧‧新節點
124、132‧‧‧減小的宣告訊框區域
126、134‧‧‧足以
156a、156b、162‧‧‧拂掠
182、184‧‧‧額外的扇區
186‧‧‧最佳扇區
192、252‧‧‧對等信標
194、196、254、256、258、272、352、354、726‧‧‧信標
198、199、260、277、680、718、728‧‧‧關聯波束成形訓練(ABFT)週期
200、262、278、282、682、720、730‧‧‧資料轉移間隔(DTI)
212、232‧‧‧開始
214、238‧‧‧發送
216、220、222‧‧‧方塊
218、236‧‧‧做出
234‧‧‧訊框
240‧‧‧檢查
242、244‧‧‧啟用
274、276、279‧‧‧傳輸
280‧‧‧排程的信標傳輸和SSW訊框週期
302、304‧‧‧從
306‧‧‧毫米波宣告訊框回應
308‧‧‧毫米波宣告訊框確認(ACK)
310、470、482、494、550‧‧‧鑑別請求
312、328、478、4902‧‧‧回應
314‧‧‧確認
316、332、346‧‧‧探索信標
318‧‧‧信標回應或鏈路設置確認
320、334、462、464、542、544‧‧‧宣告訊框
322、336‧‧‧回應
324、330、344、‧‧‧ACK
326‧‧‧請求
348‧‧‧信標回應/鏈路設置請求
350‧‧‧一般定向毫米波對等信標
466、546、684‧‧‧發送
468、480、492、548‧‧‧確認
472、484、496、552‧‧‧鑑別回應
474、554‧‧‧鑑別回應確認
476、488‧‧‧宣告訊框
486、498‧‧‧鑑別回應確認
500、502、504‧‧‧通訊
508、512、560、566‧‧‧信標回應/鏈路設置
506、510、514、516、560、564、568‧‧‧毫米波探索信標
518、572、574‧‧‧傳輸
556、558‧‧‧網狀節點協調
570‧‧‧一般毫米波對等信標
674、714、794‧‧‧MSTA B
676、716、796‧‧‧MSTA C
678、717‧‧‧輔助探索週期
686、732‧‧‧形成
724‧‧‧SSW訊框交換
725‧‧‧可能的鏈路設置時隙
798a、798b、798c、798d、800a、800b、800c、800d、802a、802b、802c、802d‧‧‧扇區
812a‧‧‧L1
812b‧‧‧L2
812c‧‧‧L3
812d‧‧‧L4
812e‧‧‧L5
812f‧‧‧L6
文中所述的技術藉由參考僅為說明性目的的圖式將更全面地了解:
圖1為執行在IEEE 802.11無線區域網路(WLAN)中的主動掃描的一時序圖。
圖2為顯示網狀與非網狀站之組合的一網狀網路的一節點圖。
圖3為描繪用於IEEE 802.11 WLAN的一網狀識別元件的一資料欄位圖。
圖4為描繪用於IEEE 802.11 WLAN的一網狀組態元件的一資料欄位圖。
圖5為在IEEE 802.11ad協定中天線扇區拂掠(SSW)的一示意圖。
圖6為顯示在IEEE 802.11ad協定中扇區層級拂掠(SLS)之傳訊的一傳訊圖。
圖7為描繪用於IEEE 802.11ad的一扇區拂掠(SSW)訊框元件的一資料欄位圖。
圖8為描繪在用於IEEE 802.11ad的SSW訊框元件之內的SSW欄位的一資料欄位圖。
圖9A與9B為描繪作為圖9A中的部分的ISS傳輸時所顯示的SSW反饋欄位資料欄位圖,以及當不作為用於IEEE 802.11ad之圖9B中的部分的ISS傳輸時的資料欄位圖。
圖10是根據本揭露的一實施例使用在一無線網路中的無線毫米波節點的一無線節點拓撲實例。
圖11是根據本揭露的一實施例使用的站硬體的一方塊圖。
圖12是根據本揭露的一實施例使用的圖11的站硬體的一毫米波波束場型圖。
圖13是根據本揭露的一實施例之用於一次要頻帶通訊天線(即,低於6GHz)的一毫米波波束場型圖。
圖14是根據本揭露的一實施例之藉由一網狀節點發送之用於低於6GHz宣告訊框的一覆蓋區域的一天線場型圖。
圖15是根據本揭露的一實施例之藉由尋求加入網狀網路的一新節點發送之用於低於6GHz宣告訊框的一覆蓋區域的一天線場型圖。
圖16A至圖16C是根據本揭露的一實施例的一無線節點拓撲和相關聯的探索信標掃除。
圖17A與圖17B是根據本揭露的一實施例在其上執行最佳扇區通訊方向的包圍的一無線節點拓撲。
圖18是根據本揭露的一實施例使用之顯示一對等DMG信標超級訊框格式的一通訊週期圖。
圖19是根據本揭露的一實施例之低於6GHz輔助網狀節點被動掃描的一流程圖。
圖20是根據本揭露的一實施例之低於6GHz輔助網狀節點主動掃描的流程圖。
圖21是根據本揭露的一實施例使用之顯示一主信標節點超級訊框格式的一通訊週期圖。
圖22是根據本揭露的一實施例之顯示透過排程的信標傳輸的探索與SSW訊框交換的一通訊週期圖。
圖23A與圖23B是根據本揭露的一實施例之用於頻帶外節點探索的一訊息通過圖。
圖24A與圖24B是根據本揭露的一實施例之用於網狀協調毫米波節點探索的一訊息通過圖。
圖25是根據本揭露的一實施例之用於透過與地理探索區中的節點協調來進行頻帶外網目輔助探索的一訊息通過圖。
圖26A和圖26B是根據本揭露的一實施例之描繪利用毫米波探索信標的探索輔助的通訊週期圖。
圖27A和圖27B是根據本揭露的一實施例之描繪在DTI處輔助探索的一通訊週期圖。
圖28是根據本揭露的一實施例使用之顯示在節點之間的地理扇區覆蓋的一節點扇區覆蓋圖。
圖29是顯示回應於根據本揭露的一實施例之透過覆蓋區域的一新節點的移動影響之節點之間的扇區覆蓋的一節點扇區覆蓋圖。

Claims (20)

  1. 一種用於在網狀網路中的無線通訊的設備,其包含:(a)一無線通訊電路,其組態以利用以下兩者與其它無線通訊站無線地通訊:(A)定向性毫米波(mmW)通訊,其具有複數個天線場型扇區,該等天線場型扇區各具有不同的傳輸方向,以及(B)低於6GHz的無線通訊;(b)一處理器,其耦合至在一站內的該無線通訊電路,該站組態以操作於該網狀網路上;(c)一非暫態記憶體,其儲存可由該處理器執行的指令;以及(d)其中當該等指令由該處理器執行時,執行以下步驟,其包含:(i)操作該站為在該網狀網路上的一對等站,以維持與在該網狀網路上的相鄰對等站的通訊;(ii)使用具有包含時間同步與資源管理資訊之複數個天線場型扇區的該定向性毫米波通訊來傳輸一第一類型的信標、一對等信標,以維持在該網狀網路內的一或多個相鄰對等站之間的現有鏈路;(iii)透過該低於6GHz無線通訊,傳輸來自該對等站之作為一網路探索信標的一第二類型的信標,其中該網路探索信標含有識別該網狀網路的網狀網路設定檔資訊,以幫助一新站的網路探索以加入該網狀網路;(iv)透過該低於6GHz無線通訊接收該網狀網路的加入請求訊框,該加入請求將該新站連同該新站的能力與來自該新站的一請求發布給該網狀網路的任何接收站以請求協助尋找相鄰者並加入該網狀網路;(v)其中接收該加入請求訊框之該對等站觸發該新站周圍區域中的其他站,以便在向該新站發送信標時相互協調並且在網狀輔助毫米波(mmW)探索程序中利用該新站進行波束成形以實現節點的快速連接與探索;以及(vi)其中該協調包含分享有關該新站的資訊及決定哪個站到達該新站的序列或其他。
  2. 如申請專利範圍第1項所述之設備,其中當該等指令由該處理器執行時進一步執行步驟,包含如果該站尚未加入該網狀網路則將該站操作為該新站,其中該新站經組態以透過該低於6GHz無線通訊接收來自作為該網狀網路上的一對等站連接的一發送站的一網路宣告訊框,並且藉由透過該低於6GHz無線通訊傳輸一回應訊息來回應,以通知該發送站該新站的存在。
  3. 如申請專利範圍第2項所述之設備,其中當該等指令由該處理器執行時進一步執行步驟,包含切換該新站用於定向性毫米波通訊(mmW)通訊,以探索在該網狀網路上的一或多個相鄰者。
  4. 如申請專利範圍第1項所述之設備,其中當該等指令由該處理器執行時進一步執行步驟,包含將該站操作為一對等站並且透過該低於6GHz無線通訊與該新站通訊,以藉由在所有方向上傳輸毫米波信標來協助該新站,並且如果它在該網狀網路的一覆蓋區域內時則與該新站進行波束成形。
  5. 如申請專利範圍第4項所述之設備,其中當該等指令由該處理器執行時進一步執行步驟,包含將該站操作為一對等站並且與在該網狀網路中的該新站的潛在相鄰者的對等站協調,以藉由在所有方向上傳輸毫米波信標來協助該新站,並且如果它在該網狀網路的一覆蓋區域內時則與該新站進行波束成形。
  6. 如申請專利範圍第1項所述之設備,其中當該等指令由該處理器執行時進一步執行步驟,包含執行鑑別,其中一新節點透過該低於6GHz無線通訊發送該網狀網路的一鑑別請求,以及如果該鑑別成功,則該新節點切換至用於波束成形的該定向性毫米波(mmW)通訊。
  7. 如申請專利範圍第6項所述之設備,其中當該等指令由該處理器執行時進一步執行步驟,包含在該網狀網路上的對等站組態以藉由向該新節點發送一回應來回應來自該新節點的該鑑別請求。
  8. 如申請專利範圍第7項所述之設備,其中當該等指令由該處理器執行時進一步執行步驟,包含在該網狀網路上的對等站組態以將該回應發送至該新節點,該回應包括由該新節點使用的額外的資訊。
  9. 如申請專利範圍第8項所述之設備,其中當該等指令由該處理器執行時進一步執行步驟,包含在該網狀網路上的對等站組態以將該回應發送至該新節點,其中該額外的資訊包含在該網狀網路上的其它相鄰節點的一列表。
  10. 一種用於在網狀網路中的無線通訊的設備,其包含:(a)一無線通訊電路,其組態以利用以下兩者與其它無線通訊站無線地通訊:(A)定向性毫米波(mmW)通訊,其具有複數個天線場型扇區,該等天線場型扇區各具有不同的傳輸方向,以及(B)低於6GHz的無線通訊;(b)一處理器,其耦合至在一站內的該無線通訊電路,該站組態以操作於該網狀網路上;(c)一非暫態記憶體,其儲存可由該處理器執行的指令;以及(d)其中當該等指令由該處理器執行時,執行以下步驟,其包含:(i)操作該站為在該網狀網路上的一對等站,以維持與在該網狀網路上的相鄰對等站的通訊;(ii)使用具有包含時間同步與資源管理資訊之複數個天線場型扇區的該定向性毫米波通訊來傳輸一第一類型的信標、一對等信標,以維持在該網狀網路內的一或多個相鄰對等站之間的現有鏈路;(iii)透過該低於6GHz無線通訊,傳輸來自該對等站之作為一網路探索信標的一第二類型的信標,其中該網路探索信標含有識別該網狀網路的網狀網路設定檔資訊,以幫助一新站的網路探索以加入該網狀網路;(iv)透過該低於6GHz無線通訊接收該網狀網路的加入請求訊框,該加入請求將該新站連同該新站的能力與來自該新站的一請求發布給該網狀網路的任何接收站以請求協助尋找相鄰者並加入該網狀網路;(v)其中接收該加入請求訊框之該對等站觸發該新站周圍區域中的其他站,以便在向該新站發送信標時相互協調並且在網狀輔助毫米波(mmW)探索程序中利用該新站進行波束成形以實現節點的快速連接與探索;以及(vi)其中該協調包含分享有關該新站的資訊及決定哪個站到達該新站的序列或其他;(vii)如果該站尚未加入該網狀網路則將該站操作為該新站,其中該新站經組態以透過該低於6GHz無線通訊接收來自作為該網狀網路上的一對等站連接的一發送站的一網路宣告訊框,並且藉由透過該低於6GHz無線通訊傳輸一回應訊息來回應,以通知該發送站它的存在;以及(viii)將該新站切換到使用定向性毫米波(mmW)通訊來探索該網狀網路上的一或多個相鄰者。
  11. 如申請專利範圍第10項所述之設備,其中當該等指令由該處理器執行時進一步執行多個步驟,包含將該站操作為一對等站並且透過該低於6GHz無線通訊與該新站通訊,以藉由在所有方向上傳輸毫米波信標來協助該新站,並且如果它在該網狀網路的一覆蓋區域內時則與該新站進行波束成形。
  12. 如申請專利範圍第11項所述之設備,其中當該等指令由該處理器執行時進一步執行步驟,包含將該站操作為一對等站並且與在該網狀網路中的該新站的潛在相鄰者的對等站協調,以藉由在所有方向上傳輸毫米波信標來協助該新站,並且如果它在該網狀網路的一覆蓋區域內時則與該新站進行波束成形。
  13. 如申請專利範圍第10項所述之設備,其中當該等指令由該處理器執行時進一步執行步驟,包含執行鑑別,其中一新節點透過該低於6GHz無線通訊發送該網狀網路的一鑑別請求,以及如果該鑑別成功,則該新節點切換至用於波束成形的該定向性毫米波(mmW)通訊。
  14. 如申請專利範圍第13項所述之設備,其中當該等指令由該處理器執行時進一步執行步驟,包含在該網狀網路上的對等站組態以藉由向該新節點發送一回應來回應來自該新節點的該鑑別請求。
  15. 如申請專利範圍第14項所述之設備,其中當該等指令由該處理器執行時進一步執行步驟,包含在該網狀網路上的對等站組態以將該回應發送至該新節點,該回應包括由該新節點使用的額外的資訊。
  16. 如申請專利範圍第15項所述之設備,其中當該等指令由該處理器執行時進一步執行步驟,包含具有該網狀網路上的對等站將該回應發送至該新節點,其中該額外的資訊包含在該網狀網路上的其它相鄰節點的一列表。
  17. 一種用於執行在網狀網路中的無線通訊的方法,其包含:(a)產生由一站的一處理器控制的無線通訊為具有複數個天線場型扇區的定向性毫米波(mmW)通訊,該等天線場型扇區各具有不同的傳輸方向,以及使用低於6GHz的無線通訊;(b)將在該網狀網路上的該站操作為一對等站,以維持與在該網狀網路上的相鄰對等站的通訊;(c)使用具有包含時間同步與資源管理資訊之複數個天線場型扇區的該定向性毫米波通訊來傳輸一第一類型的信標、一對等信標,以維持在該網狀網路內的一或多個相鄰對等站之間的現有鏈路;(d)透過該低於6GHz無線通訊,傳輸來自該對等站之作為一網路探索信標的一第二類型的信標,其中該網路探索信標含有識別該網狀網路的網狀網路設定檔資訊,以幫助一新站的網路探索以加入該網狀網路;(e)透過該低於6GHz無線通訊接收該網狀網路的加入請求訊框,該加入請求將該新站連同該新站的能力與來自該新站的一請求發布給該網狀網路的任何接收站以請求協助尋找相鄰者並加入該網狀網路;(f)其中接收該加入請求訊框之該對等站觸發該新站周圍區域中的其他站,以便在向該新站發送信標時相互協調並且在網狀輔助毫米波(mmW)探索程序中利用該新站進行波束成形以實現節點的快速連接與探索;以及(g)其中該協調包含分享有關該新站的資訊及決定哪個站到達該新站的序列或其他。
  18. 如申請專利範圍第17項所述之方法,進一步包含如果該站尚未加入該網狀網路則將該站操作為該新站,其中該新站經組態以透過該低於6GHz無線通訊接收來自作為該網狀網路上的一對等站連接的一發送站的一網路宣告訊框,並且藉由透過該低於6GHz無線通訊傳輸一回應訊息來回應,以通知該發送站該新站的存在。
  19. 如申請專利範圍第18項所述之方法,其中當該等指令由該處理器執行時進一步執行步驟,包含切換該新站用於定向性毫米波通訊(mmW)通訊,以探索在該網狀網路上的一或多個相鄰者。
  20. 如申請專利範圍第17項所述之方法,其中該新節點透過該低於6GHz無線通訊發送該網狀網路的一鑑別請求,以及如果該鑑別成功,該新節點切換至用於波束成形的該定向性毫米波(mmW)通訊。
TW107130827A 2017-09-12 2018-09-03 多頻帶毫米波網路探索 TWI680652B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762557232P 2017-09-12 2017-09-12
US62/557,232 2017-09-12
US15/828,687 2017-12-01
US15/828,687 US10575240B2 (en) 2017-09-12 2017-12-01 Multi-band millimeter wave network discovery

Publications (2)

Publication Number Publication Date
TW201921852A TW201921852A (zh) 2019-06-01
TWI680652B true TWI680652B (zh) 2019-12-21

Family

ID=65631963

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107130827A TWI680652B (zh) 2017-09-12 2018-09-03 多頻帶毫米波網路探索

Country Status (7)

Country Link
US (3) US10575240B2 (zh)
EP (1) EP3659352A1 (zh)
JP (1) JP6974807B2 (zh)
KR (1) KR102280981B1 (zh)
CN (1) CN111034236B (zh)
TW (1) TWI680652B (zh)
WO (1) WO2019053539A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107810651B (zh) * 2015-07-23 2020-12-25 华为技术有限公司 激活游牧节点的方法以及相应的游牧节点和系统
WO2017164846A1 (en) * 2016-03-22 2017-09-28 Intel Corporation Sector sweeps for establishing two-way data communications with directional antennas
US10045197B1 (en) 2017-06-29 2018-08-07 Sony Corporation Discovery of neighbor nodes in wireless mesh networks with directional transmissions
WO2020040552A1 (ko) * 2018-08-23 2020-02-27 엘지전자 주식회사 무선랜 시스템에서 새로운 밴드에서 동작하는 통신 개체에 관한 정보를 획득하는 방법 및 장치
EP4221149A1 (en) * 2018-09-28 2023-08-02 Apple Inc. Ranging between mobile devices
US10813041B2 (en) 2018-11-09 2020-10-20 Sony Corporation Propagating discovery assistance request and response
CN111741499B (zh) * 2020-07-31 2022-06-03 深圳市吉祥腾达科技有限公司 一种智能无线组网多频段汇聚的方法
CN113590909B (zh) * 2021-07-28 2023-09-19 哈尔滨工业大学(威海) 一种基于多源信息定位域名根镜像节点地理位置的方法
WO2023191797A1 (en) * 2022-03-31 2023-10-05 Intel Corporation Apparatus, system, and method of beamforming training over a millimeterwave (mmwave) wireless communication channel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070011435A1 (en) * 2005-06-02 2007-01-11 Samsung Electronics Co., Ltd. Mesh node association method in a mesh network, and mesh network supporting the same
US20150382171A1 (en) * 2013-02-07 2015-12-31 Interdigital Patent Holdings, Inc. Long-range device discovery with directional transmissions
US20170086211A1 (en) * 2014-03-14 2017-03-23 Interdigital Patent Holdings, Inc. Method and apparatus for dual-band mesh operations

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7333458B2 (en) 2002-01-10 2008-02-19 Harris Corporation Wireless communication network including directional and omni-directional communication links and related methods
US7664054B2 (en) * 2005-03-28 2010-02-16 Microsoft Corporation Neighbor location discovery with directional antennas in a mesh network
KR101099993B1 (ko) 2006-12-07 2011-12-28 미쓰비시덴키 가부시키가이샤 무선 통신 시스템, 무선 단말국, 무선 기지국 및 무선 통신 방법
US8509159B2 (en) * 2007-01-19 2013-08-13 Samsung Electronics Co., Ltd. Method and system for wireless communication using out-of-band channels
US8041333B2 (en) 2007-06-14 2011-10-18 Broadcom Corporation Method and system for 60 GHz antenna adaptation and user coordination based on base station beacons
US8503377B2 (en) * 2008-09-25 2013-08-06 Intel Corporation Methods for multi-band wireless communication and bandwidth management
US8817676B2 (en) 2008-11-03 2014-08-26 Samsung Electronics Co., Ltd. Method and system for station-to-station directional wireless communication
US8422961B2 (en) 2009-02-23 2013-04-16 Nokia Corporation Beamforming training for functionally-limited apparatuses
JP5434137B2 (ja) 2009-02-26 2014-03-05 ソニー株式会社 通信装置及び通信方法、コンピューター・プログラム、通信システム、並びに情報処理装置
US8755302B2 (en) 2009-09-24 2014-06-17 Samsung Electronics Co., Ltd. Method and system for ad-hoc communications over millimeter wave wireless channels in wireless systems
US20110199918A1 (en) * 2009-11-20 2011-08-18 Qualcomm Incorporated Methods and apparatus for assisting in network discovery
US20110205969A1 (en) 2010-02-24 2011-08-25 Interdigital Patent Holdings, Inc. Communication using directional antennas
HUE049267T2 (hu) * 2010-02-24 2020-09-28 Interdigital Patent Holdings Inc Eljárás és berendezés hálózattársításra beacon jel használatával
JP2011223135A (ja) 2010-04-06 2011-11-04 Sony Corp 通信装置及び通信方法、並びに通信システム
US8427942B2 (en) 2010-06-03 2013-04-23 Deutsche Telekom Ag Method, apparatus, and system for connecting a mobile client to wireless networks
JP5683715B2 (ja) * 2010-11-16 2015-03-11 インターデイジタル パテント ホールディングス インコーポレイテッド 無線ダイレクトリンクオペレーションに関する方法および装置
US20120155443A1 (en) * 2010-12-16 2012-06-21 Carlos Cordeiro Millimeter-wave communication station and methods for station and information discovery in a millimeter-wave basic service set
JP5804407B2 (ja) * 2011-03-18 2015-11-04 国立研究開発法人情報通信研究機構 無線装置
US9456462B2 (en) 2011-06-15 2016-09-27 Intel Corporation Method, apparatus and system of frame tunneling operation of multiple frequency bands device
US9295033B2 (en) 2012-01-31 2016-03-22 Qualcomm Incorporated Systems and methods for narrowband channel selection
CN104604300B (zh) 2012-07-09 2018-06-29 诺基亚通信公司 具有接入点集群的毫米波接入架构
EP2915382B1 (en) 2012-11-02 2017-05-31 Interdigital Patent Holdings, Inc. Power control methods and procedures for wireless local area networks
WO2014074894A1 (en) 2012-11-09 2014-05-15 Interdigital Patent Holdings, Inc. Beamforming methods and methods for using beams
KR20150115015A (ko) 2013-02-07 2015-10-13 인터디지탈 패튼 홀딩스, 인크 방향성 메시 네트워크에서의 간섭 측정 및 관리
EP2954710A1 (en) * 2013-02-07 2015-12-16 Interdigital Patent Holdings, Inc. Method and apparatus for directional mesh initialization
US10321484B2 (en) 2013-03-15 2019-06-11 Interdigital Patent Holdings, Inc. Multi-band operation for wireless LAN systems
US9258046B2 (en) 2013-10-14 2016-02-09 Broadcom Corporation Efficient beacon transmission and reception
CN105766047B (zh) 2013-10-16 2019-08-23 瑞典爱立信有限公司 基于所指示的干扰的针对上行链路传输的资源利用
GB2520039B (en) * 2013-11-07 2016-06-29 Canon Kk Node Discovery in a communication network
CN105981310A (zh) 2013-11-11 2016-09-28 英迪股份有限公司 站点及其无线链路设置方法
EP3046378B1 (en) 2013-11-25 2018-06-27 Huawei Technologies Co., Ltd. Communication system, device and method
JP6330599B2 (ja) 2013-12-27 2018-05-30 パナソニック株式会社 通信装置及び通信方法
WO2015126916A2 (en) 2014-02-18 2015-08-27 Qualcomm Incorporated Antenna selection in lte/lte-a networks with unlicensed spectrum
WO2015134746A1 (en) * 2014-03-05 2015-09-11 Interdigital Patent Holdings, Inc. Pcp handover in a mesh network after a change of role of a station associated with a first nop receving from another node an indication of association
US9497785B2 (en) 2014-06-02 2016-11-15 Intel Corporation Techniques for exchanging beamforming information for a dual connection to user equipment
US10659135B2 (en) * 2014-06-16 2020-05-19 Qualcomm Incorporated Coordinated discovery of MMW connection points and UES
WO2016065068A2 (en) 2014-10-21 2016-04-28 Intel IP Corporation Methods and apparatuses to form self-organized multi-hop millimeter wave backhaul links
WO2016086144A1 (en) 2014-11-26 2016-06-02 Interdigital Patent Holdings, Inc. Initial access in high frequency wireless systems
US10411780B2 (en) 2014-12-31 2019-09-10 Samsung Electronics Co., Ltd. Fast association in millimeter wave wireless local area network systems
US10085283B2 (en) 2014-12-31 2018-09-25 Qualcomm Incorporated Antenna subset and directional channel access in a shared radio frequency spectrum band
US10129878B2 (en) * 2015-02-02 2018-11-13 Qualcomm Incorporated Systems and methods for dynamic band switching
US9882621B2 (en) 2015-06-25 2018-01-30 Intel IP Corporation Techniques using a first band of communication to synchronize beamforming for a second band of communication
JP6962823B2 (ja) 2015-06-25 2021-11-05 アイディーエーシー ホールディングス インコーポレイテッド ビームフォーミングを使用した初期セル探索および選択のための方法および装置
US20180206139A1 (en) 2015-07-08 2018-07-19 Interdigital Patent Holdings, Inc. Method and system for directional-band relay enhancements
US20170111094A1 (en) 2015-10-14 2017-04-20 Futurewei Technologies, Inc. Method and apparatus for providing user equipment access to millimeter wave stations through a microwave station
US10149311B2 (en) * 2015-11-30 2018-12-04 Google Llc Constructing a self-organizing mesh network using 802.11AD technology
US9923619B2 (en) 2015-12-21 2018-03-20 Intel Corporation Techniques for passive beamforming training
CN107041012B (zh) 2016-02-03 2022-11-22 北京三星通信技术研究有限公司 基于差分波束的随机接入方法、基站设备及用户设备
US10212630B2 (en) 2016-02-03 2019-02-19 Intel IP Corporation Apparatus, system and method of fast basic service set (BSS) transition (FT)
MX2018010621A (es) 2016-03-11 2019-01-17 Panasonic Ip Corp America Aparato de comunicacion inalambrica y metodo de comunicacion inalambrica.
JP2017188836A (ja) 2016-04-08 2017-10-12 富士通株式会社 通信装置、検出方法、及び通信システム
US10116349B2 (en) 2016-05-26 2018-10-30 Futurewei Technologies, Inc. System and method for time division duplexed multiplexing in transmission-reception point to transmission-reception point connectivity
US10039147B2 (en) 2016-09-30 2018-07-31 Intel IP Corporation Apparatus, system and method of triggering a wireless docking session between a mobile device and a wireless docking device
US10405348B2 (en) 2016-10-25 2019-09-03 Qualcomm Incorporated Slotted transmission and directional reception of RTS
US10333594B2 (en) 2016-11-01 2019-06-25 Electronics And Telecommunications Research Institute Method of transmitting discovery signal and radio link setup method using the same
US10880870B2 (en) 2017-01-09 2020-12-29 Huawei Technologies Co., Ltd. Methods and systems for transmitting operating channel indicators
US10219142B2 (en) * 2017-05-15 2019-02-26 Amazon Technologies, Inc. Neighbor discovery and neighbor selection of mesh network devices in a mesh network
US11272426B2 (en) 2017-05-26 2022-03-08 Qualcomm Incorporated Techniques for directional discovery in millimeter wave communications system
US10912103B2 (en) 2017-08-02 2021-02-02 Qualcomm Incorporated Time division duplexed (TDD) service period
KR102070785B1 (ko) 2017-08-04 2020-01-29 엘지전자 주식회사 비면허 대역을 지원하는 무선 통신 시스템에서 단말이 상향링크 신호를 전송하는 방법 및 이를 지원하는 장치
US20190075607A1 (en) * 2017-09-05 2019-03-07 Lg Electronics Inc. METHOD AND APPARATUS FOR PROVIDING WFD SERVICE ON BASIS OF 60GHz FREQUENCY IN WIRELESS COMMUNICATION SYSTEM
US10925090B2 (en) 2017-09-29 2021-02-16 Qualcomm Incorporated On-demand listen-before-talk
CN107949057B (zh) 2017-10-30 2020-12-15 华为技术有限公司 时域资源信息上报的方法和装置
US10742299B2 (en) 2018-08-20 2020-08-11 Sony Corporation Allocation and directional information distribution in millimeter wave WLAN networks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070011435A1 (en) * 2005-06-02 2007-01-11 Samsung Electronics Co., Ltd. Mesh node association method in a mesh network, and mesh network supporting the same
US20150382171A1 (en) * 2013-02-07 2015-12-31 Interdigital Patent Holdings, Inc. Long-range device discovery with directional transmissions
US20170086211A1 (en) * 2014-03-14 2017-03-23 Interdigital Patent Holdings, Inc. Method and apparatus for dual-band mesh operations

Also Published As

Publication number Publication date
KR102280981B1 (ko) 2021-07-26
JP2020532247A (ja) 2020-11-05
US20220353791A1 (en) 2022-11-03
US10575240B2 (en) 2020-02-25
CN111034236B (zh) 2022-08-26
JP6974807B2 (ja) 2021-12-01
TW201921852A (zh) 2019-06-01
US20190082379A1 (en) 2019-03-14
US11432228B2 (en) 2022-08-30
EP3659352A1 (en) 2020-06-03
US11665626B2 (en) 2023-05-30
WO2019053539A1 (en) 2019-03-21
US20200169946A1 (en) 2020-05-28
CN111034236A (zh) 2020-04-17
KR20200030601A (ko) 2020-03-20

Similar Documents

Publication Publication Date Title
TWI680652B (zh) 多頻帶毫米波網路探索
US11178599B2 (en) Mesh assisted node discovery
US11297481B2 (en) Multi-band millimeter wave discovery in WLAN distribution networks
US11246080B2 (en) Beaconing in small wavelength wireless networks
KR102454139B1 (ko) 지향성 비컨 전송 및 수신 활동 표시