TWI680109B - Molten glass heating device, glass manufacturing device, and glass article manufacturing method - Google Patents
Molten glass heating device, glass manufacturing device, and glass article manufacturing method Download PDFInfo
- Publication number
- TWI680109B TWI680109B TW105118961A TW105118961A TWI680109B TW I680109 B TWI680109 B TW I680109B TW 105118961 A TW105118961 A TW 105118961A TW 105118961 A TW105118961 A TW 105118961A TW I680109 B TWI680109 B TW I680109B
- Authority
- TW
- Taiwan
- Prior art keywords
- pipe
- molten glass
- main pipe
- branch pipe
- current
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B5/00—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
- C03B5/16—Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
- C03B5/235—Heating the glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B7/00—Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
- C03B7/02—Forehearths, i.e. feeder channels
- C03B7/06—Means for thermal conditioning or controlling the temperature of the glass
- C03B7/07—Electric means
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B5/00—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
- C03B5/16—Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
- C03B5/23—Cooling the molten glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B7/00—Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
- C03B7/08—Feeder spouts, e.g. gob feeders
- C03B7/094—Means for heating, cooling or insulation
- C03B7/096—Means for heating, cooling or insulation for heating
- C03B7/098—Means for heating, cooling or insulation for heating electric
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Glass Melting And Manufacturing (AREA)
- Control Of Resistance Heating (AREA)
- Resistance Heating (AREA)
Abstract
本發明提供一種以不產生溫度差之方式對熔融玻璃進行加熱,從而抑制熔融玻璃之非均質化之熔融玻璃加熱裝置。 The present invention provides a molten glass heating device that heats a molten glass so as not to cause a temperature difference, thereby suppressing the heterogeneity of the molten glass.
本發明之熔融玻璃加熱裝置210具有:複合管構造體220,其包括與水平方向大致垂直地延伸之主管1、自主管1之上部側方分支之上部分支管2及自主管1之下部側方分支之下部分支管3;以及通電加熱部230,其包括設置於主管1之上端1a之電極4、設置於主管1之下端1b之電極5及設置於上部分支管2之側方端部2a之電極6,形成將電流供給至電極4與電極5之間之第1電流供給路徑21,且形成將電流供給至電極4與電極6之間之第2電流供給路徑22;且複合管構造體220係以滿足「0.4<(於主管1之上端1a與分支部上端Ja之間(γ)流動之電流之電阻及於上部分支管2之分支部J與側方端部2a之間(β)流動之電流之電阻的合計/於主管1之上端1a與下端1b之間(α)流動之電流之電阻)<0.8」之方式構成。 The molten glass heating device 210 according to the present invention includes a composite pipe structure 220 including a main pipe 1 extending substantially perpendicularly to a horizontal direction, a branch pipe 2 above an upper side branch of the autonomous pipe 1, and a lower side of the autonomous pipe 1. A branch pipe 3 below the branch; and an electric heating section 230 including an electrode 4 provided at the upper end 1a of the main pipe 1, an electrode 5 provided at the lower end 1b of the main pipe 1, and a side end 2a of the upper branch pipe 2 The electrode 6 forms a first current supply path 21 for supplying a current between the electrode 4 and the electrode 5, and forms a second current supply path 22 for supplying a current between the electrode 4 and the electrode 6; and the composite tube structure 220 It satisfies "0.4 <(the resistance of the current flowing between the upper end 1a of the main pipe 1 and the upper end Ja of the branch (γ) and the flow between the branch J of the upper branch pipe 2 and the side end 2a (β) The total resistance of the current / resistance of the current flowing between the upper end 1a and the lower end 1b (α) of the main pipe 1) is configured as 0.8.
Description
本發明係關於一種熔融玻璃加熱裝置、玻璃製造裝置、及玻璃物品之製造方法。 The present invention relates to a molten glass heating device, a glass manufacturing device, and a method for manufacturing glass articles.
於玻璃製造裝置中,供高溫之熔融玻璃通過其內部之導管係使用鉑、或如鉑-金合金、鉑-銠合金般之鉑合金製之中空管。於玻璃製造裝置中,為了確保熔融玻璃之流動性,而對熔融玻璃所通過之導管進行加熱。關於導管之加熱,雖亦存在藉由加熱器等熱源自外部對導管進行加熱之情形,但於導管為鉑或鉑合金製之中空管之情形時,廣泛進行如下操作:於該中空管設置通電用之電極,對該中空管進行通電加熱。 In a glass manufacturing apparatus, a hollow tube made of platinum or a platinum alloy such as a platinum-gold alloy or a platinum-rhodium alloy is used as a conduit through which high-temperature molten glass passes. In the glass manufacturing apparatus, in order to ensure the fluidity of the molten glass, a pipe through which the molten glass passes is heated. Regarding the heating of the duct, although the duct may be heated from the outside by heat such as a heater, when the duct is a hollow tube made of platinum or a platinum alloy, the following operations are widely performed: An electrode for energization is provided, and the hollow tube is electrically heated.
於導管之加熱時設置有主管及分支管之情形時,存在發生分支管中之加熱不充分之可能性。 When the main pipe and the branch pipe are provided during the heating of the duct, there is a possibility that insufficient heating in the branch pipe occurs.
作為針對分支管中之加熱不充分之對策,於專利文獻1中,揭示有對可用作熔融玻璃之導管之鉑製之複合管構造體進行通電加熱之方法。如圖6所示,藉由該加熱方法而被加熱之複合管構造體100包含2個主管101、102、及連結主管101、102之間之分支管103。 As a countermeasure against insufficient heating in a branch pipe, Patent Document 1 discloses a method of electrically heating a composite pipe structure made of platinum that can be used as a conduit for molten glass. As shown in FIG. 6, the composite pipe structure 100 heated by this heating method includes two main pipes 101 and 102 and a branch pipe 103 connecting the main pipes 101 and 102.
於該例中,將對分支管103進行通電之路徑分割為第1通電路徑(電流供給路徑)120、及第2通電路徑121。第1通電路徑120將第1主管101與分支管103連結。第2通電路徑121將分支管103與第2主管102連結。而且,分別獨立地實施第1通電路徑120及第2通電路徑121中之通 電控制。 In this example, a path for energizing the branch pipe 103 is divided into a first energization path (current supply path) 120 and a second energization path 121. The first current path 120 connects the first main pipe 101 and the branch pipe 103. The second current path 121 connects the branch pipe 103 and the second main pipe 102. In addition, the communication between the first current path 120 and the second current path 121 is performed independently. Electric control.
[專利文獻1]國際公開第2006/123479號 [Patent Document 1] International Publication No. 2006/123479
然而,專利文獻1之加熱方法並未對主管之內部、及主管與分支管之連接部(分支部)中之溫度差進行考慮。因此,存在如下情況:於熔融玻璃通過主管與分支管之內部時,熔融玻璃產生溫度差,而導致熔融玻璃之非均質化。 However, the heating method of Patent Document 1 does not consider the temperature difference between the inside of the main pipe and the connection portion (branch) between the main pipe and the branch pipe. Therefore, when the molten glass passes through the inside of the main pipe and the branch pipe, there is a case where a temperature difference occurs in the molten glass, resulting in heterogeneity of the molten glass.
本發明係鑒於上述問題而完成者,目的在於提供一種以不產生溫度差之方式對熔融玻璃進行加熱,從而可抑制熔融玻璃之非均質化之熔融玻璃加熱裝置。 The present invention has been made in view of the above-mentioned problems, and an object thereof is to provide a molten glass heating device that can heat molten glass so as not to cause a temperature difference, thereby suppressing the heterogeneity of the molten glass.
為了解決上述問題,根據本發明之一態樣,提供一種熔融玻璃加熱裝置,其係包括供熔融玻璃通過之複合管構造體及對該複合管構造體進行通電加熱之通電加熱部者,且上述複合管構造體包括:主管,其相對於水平方向大致垂直地延伸;上部分支管,其於上述主管之上部側方自上述主管分支;及下部分支管,其於上述主管之下部側方自上述主管分支;上述通電加熱部包括設置於上述主管之上端之第1電極、設置於上述主管之下端之第2電極、及設置於上述上部分支管之側方端部之第3電極,形成將電流供給至上述第1電極與上述第2電極之間之第1電流供給路徑,且形成將電流供給至上述第1電極與上述第3電極之間之第2電流供給路徑,於上述複合管構造體中, 以滿足0.4<(於上述主管之上述上端與分支部上端之間流動之電流之電阻、及於上述上部分支管之分支部與上述側方端部之間流動之電流之電阻的合計/於上述主管之上述上端與上述下端之間流動之電流之電阻)<0.8 In order to solve the above problems, according to one aspect of the present invention, a molten glass heating device is provided, which includes a composite pipe structure through which molten glass passes, and an electric current heating unit that electrically heats the composite pipe structure. The composite pipe structure includes: a main pipe, which extends substantially perpendicularly to the horizontal direction; an upper branch pipe, which is branched from the main pipe side above the main pipe; and a lower branch pipe, which is from the above side pipe under the main pipe. The main branch; the above-mentioned current heating and heating part includes a first electrode provided on the upper end of the main tube, a second electrode provided on the lower end of the main tube, and a third electrode provided on the side end of the upper branch tube to form a current A first current supply path is provided between the first electrode and the second electrode, and a second current supply path is provided to supply current between the first electrode and the third electrode. in, Satisfy 0.4 <(total of the resistance of the current flowing between the upper end of the main pipe and the upper end of the branch and the resistance of the current flowing between the branch of the upper branch pipe and the lateral end of the above The resistance of the current flowing between the upper end and the lower end of the main pipe) <0.8
之方式,對上述主管配置上述上部分支管。 In other words, the upper branch pipe is arranged on the main pipe.
根據本發明之一態樣,於熔融玻璃加熱裝置中,能以不產生溫度差之方式對熔融玻璃進行加熱,從而抑制熔融玻璃之非均質化。 According to one aspect of the present invention, in the molten glass heating device, the molten glass can be heated without causing a temperature difference, thereby suppressing the heterogeneity of the molten glass.
1‧‧‧主管(主體管) 1‧‧‧Supervisor (main body manager)
1a‧‧‧上端 1a‧‧‧upper
1b‧‧‧下端 1b‧‧‧ bottom
1R‧‧‧主管(主體管) 1R‧‧‧Supervisor (main management)
2‧‧‧上部分支管 2‧‧‧upper branch pipe
2a‧‧‧側方端部 2a‧‧‧side end
2c‧‧‧側方端部 2c‧‧‧side end
2R‧‧‧上部分支管 2R‧‧‧Upper branch pipe
3‧‧‧下部分支管 3‧‧‧ lower branch pipe
3a‧‧‧側方端部 3a‧‧‧side end
3R‧‧‧下部分支管 3R‧‧‧Lower branch pipe
4(4a、4b)‧‧‧第1電極 4 (4a, 4b) ‧‧‧1st electrode
5(5a、5b)‧‧‧第2電極 5 (5a, 5b) ‧‧‧ 2nd electrode
6(6a、6b)‧‧‧第3電極 6 (6a, 6b) ‧‧‧3rd electrode
7(7a、7b)‧‧‧第4電極 7 (7a, 7b) ‧‧‧ 4th electrode
10‧‧‧熔解裝置 10‧‧‧ Melting device
11‧‧‧熔解爐 11‧‧‧ melting furnace
11a‧‧‧熔解室 11a‧‧‧melting room
12‧‧‧燃燒器 12‧‧‧ burner
20‧‧‧熔融玻璃搬送裝置 20‧‧‧ Molten glass transfer device
21‧‧‧第1電流供給路徑 21‧‧‧The first current supply path
22‧‧‧第2電流供給路徑 22‧‧‧ 2nd current supply path
23‧‧‧第3電流供給路徑 23‧‧‧3rd current supply path
24A‧‧‧第1電源 24A‧‧‧1st power supply
24B‧‧‧第2電源 24B‧‧‧Second Power Supply
24C‧‧‧第3電源 24C‧‧‧3rd Power Supply
25‧‧‧電流平衡機構 25‧‧‧Current balancing mechanism
25R‧‧‧電流平衡機構 25R‧‧‧Current balancing mechanism
30‧‧‧成形裝置 30‧‧‧forming device
31‧‧‧成形爐 31‧‧‧forming furnace
31a‧‧‧成形室 31a‧‧‧forming room
32‧‧‧成形加熱器 32‧‧‧Forming heater
40‧‧‧連接裝置 40‧‧‧ Connected device
41‧‧‧連接爐 41‧‧‧Connected Furnace
41a‧‧‧連接室 41a‧‧‧Connecting Room
42‧‧‧中間加熱器 42‧‧‧ Intermediate heater
43‧‧‧提昇輥 43‧‧‧Lifting roller
50‧‧‧緩冷裝置 50‧‧‧ Slow cooling device
51‧‧‧緩冷爐 51‧‧‧ Slow cooling furnace
51a‧‧‧緩冷室 51a‧‧‧ Slow Cooling Room
52‧‧‧緩冷加熱器 52‧‧‧ Slow cooling heater
53‧‧‧緩冷輥 53‧‧‧Chill Roll
100‧‧‧複合管構造體 100‧‧‧ composite pipe structure
101‧‧‧第1主管 101‧‧‧first supervisor
102‧‧‧第2主管 102‧‧‧ 2nd Supervisor
103‧‧‧分支管 103‧‧‧ branch pipe
120‧‧‧第1通電路徑 120‧‧‧The first power-on path
121‧‧‧第2通電路徑 121‧‧‧ 2nd power-on path
200‧‧‧熔融玻璃加熱系統 200‧‧‧ Molten Glass Heating System
210‧‧‧熔融玻璃加熱裝置(第1熔融玻璃加熱裝置) 210‧‧‧ molten glass heating device (first molten glass heating device)
220‧‧‧複合管構造體 220‧‧‧ composite pipe structure
230‧‧‧通電加熱部 230‧‧‧ Electric heating section
240‧‧‧第2熔融玻璃加熱裝置 240‧‧‧The second molten glass heating device
250‧‧‧複合管構造體 250‧‧‧ composite pipe structure
260‧‧‧通電加熱部 260‧‧‧ Electric heating section
311‧‧‧浮拋窯 311‧‧‧floating kiln
312‧‧‧頂部 312‧‧‧Top
D1‧‧‧主管1之內徑 D1‧‧‧Inner diameter of Supervisor 1
D2‧‧‧上部分支管2之內徑 D2‧‧‧Inner diameter of upper branch pipe 2
G1‧‧‧玻璃原料 G1‧‧‧Glass Raw Materials
G2‧‧‧熔融玻璃 G2‧‧‧ molten glass
G3‧‧‧玻璃帶 G3‧‧‧glass ribbon
Hm‧‧‧主管1之高度(長度) Hm‧‧‧ height (length) of supervisor 1
h‧‧‧自主管1之上端1a至與上部分支管2之分支部上端Ja之距離 h‧‧‧ The distance from the upper end 1a of the autonomous pipe 1 to the upper end Ja of the branch of the upper branch pipe 2
ia‧‧‧單相交流電流 ia‧‧‧Single-phase AC current
ib‧‧‧單相交流電流 ib‧‧‧ single-phase AC current
ic‧‧‧單相交流電流 ic‧‧‧Single-phase AC current
J‧‧‧分支部(連接部) J‧‧‧ branch (connection)
Ja‧‧‧分支部上端 Ja‧‧‧ Branch top
Jb‧‧‧分支部下端 Jb‧‧‧Bottom of the branch
L‧‧‧上部分支管2之長度 L‧‧‧ Length of upper branch pipe 2
LD‧‧‧自主管之上端通過主管向分支部下端流動之電流之最短路徑、與自分支部下端通過上部分支管之內周部最下部沿圓筒狀之上部分支管之母線方向朝上部分支管之側方端部流動之電流之路徑的合計 LD‧‧‧The shortest path of the current flowing from the upper end of the autonomous pipe to the lower end of the branch through the main pipe, and from the lower end of the branch to the inner peripheral portion of the upper branch pipe through the lower part of the upper branch pipe toward the upper branch pipe in the direction of the bus of the cylindrical upper branch pipe. Total of the path of the current flowing to the side end
M‧‧‧熔融金屬 M‧‧‧ Molten Metal
S10‧‧‧熔解步驟 S10‧‧‧ Melting step
S20‧‧‧熔融玻璃搬送步驟 S20‧‧‧Molten glass transfer steps
S30‧‧‧成形步驟 S30‧‧‧Forming steps
S50‧‧‧緩冷步驟 S50‧‧‧Slow cooling step
SD‧‧‧自主管之上端通過主管向分支部上端流動之電流之最短路徑、與自分支部上端通過上部分支管之內周部最上部沿圓筒狀之上部分支管之母線方向朝上部分支管之側方端部流動之電流之路徑的合計 SD‧‧‧ The shortest path of the current flowing from the upper end of the autonomous pipe to the upper end of the branch through the main pipe, and the uppermost branch pipe from the upper end of the branch through the inner peripheral part of the upper branch Total of the path of the current flowing to the side end
α‧‧‧主管1整體 α‧‧‧Supervisor 1 Overall
β‧‧‧上部分支管2 β‧‧‧ Upper branch tube 2
γ‧‧‧主管1中之分支上方部 γ‧‧‧Upper branch in supervisor 1
圖1係表示搭載有本發明之第1實施形態之熔融玻璃加熱裝置之玻璃製造裝置的剖視圖。 FIG. 1 is a cross-sectional view showing a glass manufacturing apparatus equipped with a molten glass heating apparatus according to a first embodiment of the present invention.
圖2係表示圖1之製造裝置之玻璃物品之製造方法之流程圖。 FIG. 2 is a flowchart showing a method for manufacturing a glass article in the manufacturing apparatus of FIG. 1. FIG.
圖3係本發明之第1實施形態之熔融玻璃加熱裝置之概略圖。 Fig. 3 is a schematic view of a molten glass heating device according to the first embodiment of the present invention.
圖4係對本發明之第1實施形態之複合管構造體中之上部分支管相對於主管之位置進行說明之透視立體圖。 FIG. 4 is a perspective perspective view illustrating the position of the upper branch pipe relative to the main pipe in the composite pipe structure of the first embodiment of the present invention.
圖5係具備本發明之第2實施形態之熔融玻璃加熱裝置之系統的概略圖。 Fig. 5 is a schematic diagram of a system including a molten glass heating device according to a second embodiment of the present invention.
圖6係先前例之通電加熱裝置之概念圖。 FIG. 6 is a conceptual diagram of the electric heating device of the previous example.
以下,參照圖式,對用以實施本發明之形態進行說明。於各圖式中,對於相同或對應之構成,標註相同或對應之符號,並省略說明。於本說明書中,表示數值範圍之「~」意指包含其前後之數值之範圍。 Hereinafter, the form for implementing this invention is demonstrated with reference to drawings. In each drawing, the same or corresponding components are marked with the same or corresponding symbols, and descriptions thereof are omitted. In this specification, "~" indicating a numerical range means a range including numerical values before and after.
[玻璃製造裝置] [Glass manufacturing equipment]
圖1係表示搭載有本發明之第1實施形態之熔融玻璃加熱裝置之玻璃板(玻璃物品)之製造裝置的剖視圖。如圖1所示,玻璃板之製造 裝置具有熔解裝置10、熔融玻璃搬送裝置20、成形裝置30、連接裝置40、及緩冷裝置50。 FIG. 1 is a cross-sectional view showing a manufacturing apparatus for a glass plate (glass article) equipped with a molten glass heating apparatus according to a first embodiment of the present invention. As shown in Figure 1, the manufacture of glass plates The device includes a melting device 10, a molten glass transfer device 20, a forming device 30, a connection device 40, and a slow cooling device 50.
熔解裝置10藉由將玻璃原料G1熔解而製作熔融玻璃G2。熔解裝置10例如具有熔解爐11、及燃燒器12。 The melting device 10 melts the glass raw material G1 to produce a molten glass G2. The melting device 10 includes, for example, a melting furnace 11 and a burner 12.
熔解爐11形成將玻璃原料G1熔解之熔解室11a。於熔解室11a中收容熔融玻璃G2。 The melting furnace 11 forms a melting chamber 11a for melting the glass raw material G1. The molten glass G2 is accommodated in the melting chamber 11a.
燃燒器12於熔解室11a之上部空間形成火焰。藉由該火焰之輻射熱,玻璃原料G1逐漸熔化為熔融玻璃G2。 The burner 12 forms a flame in a space above the melting chamber 11a. By the radiant heat of the flame, the glass raw material G1 is gradually melted into the molten glass G2.
熔融玻璃搬送裝置20將熔融玻璃G2自熔解裝置10搬送至成形裝置30,並將熔融玻璃G2供給至成形裝置30。於熔融玻璃搬送裝置20中,設置有下述熔融玻璃加熱裝置210。 The molten glass transfer device 20 transfers the molten glass G2 from the melting device 10 to the molding device 30, and supplies the molten glass G2 to the molding device 30. The molten glass transfer device 20 is provided with a molten glass heating device 210 described below.
成形裝置30將自熔融玻璃搬送裝置20供給之熔融玻璃G2成形為帶板狀之玻璃帶G3。成形裝置30例如具有成形爐31、及成形加熱器32。 The molding device 30 shapes the molten glass G2 supplied from the molten glass transfer device 20 into a strip-shaped glass ribbon G3. The molding apparatus 30 includes, for example, a molding furnace 31 and a molding heater 32.
成形爐31形成將熔融玻璃G2成形之成形室31a。自成形爐31之入口越朝向成形爐31之出口,成形室31a之溫度越低。成形爐31具有浮拋窯311、及配設於浮拋窯311之上方之頂部312。 The molding furnace 31 forms a molding chamber 31a for molding the molten glass G2. The temperature from the inlet of the forming furnace 31 toward the outlet of the forming furnace 31 decreases, and the temperature of the forming chamber 31a decreases. The forming furnace 31 includes a floating throwing kiln 311 and a top portion 312 disposed above the floating throwing kiln 311.
浮拋窯311收容熔融金屬M。作為熔融金屬M,例如使用熔融錫。除熔融錫以外,亦能夠使用熔融錫合金等。為了抑止熔融金屬M之氧化,成形室31a之上部空間由還原性氣體充滿。還原性氣體例如包含氫氣與氮氣之混合氣體。 The floating kiln 311 contains molten metal M. As the molten metal M, for example, molten tin is used. In addition to molten tin, molten tin alloys and the like can also be used. In order to suppress the oxidation of the molten metal M, the space above the forming chamber 31a is filled with a reducing gas. The reducing gas includes, for example, a mixed gas of hydrogen and nitrogen.
浮拋窯311利用熔融金屬M之液面將連續地被供給至熔融金屬M之上之熔融玻璃G2成形為帶板狀之玻璃帶G3。玻璃帶G3一面自浮拋窯311之上游側向下游側流動一面逐漸被固化,且於浮拋窯311之下游區域中自熔融金屬M被提起。 The floating kiln 311 uses the liquid surface of the molten metal M to form the molten glass G2 continuously supplied onto the molten metal M into a glass ribbon G3 having a plate shape. The glass ribbon G3 gradually solidifies while flowing from the upstream side to the downstream side of the floating throw kiln 311, and is lifted from the molten metal M in the downstream region of the floating throw kiln 311.
成形加熱器32自頂部312被懸吊。成形加熱器32於玻璃帶G3之流 動方向上隔開間隔而設置有複數個,對玻璃帶G3之流動方向上之溫度分佈進行調整。又,成形加熱器32於玻璃帶G3之寬度方向上隔開間隔而設置有複數個,對玻璃帶G3之寬度方向上之溫度分佈進行調整。 The forming heater 32 is suspended from the top 312. Forming heater 32 on glass ribbon G3 A plurality of them are provided at intervals in the moving direction, and the temperature distribution in the flow direction of the glass ribbon G3 is adjusted. In addition, a plurality of forming heaters 32 are provided at intervals in the width direction of the glass ribbon G3, and the temperature distribution in the width direction of the glass ribbon G3 is adjusted.
連接裝置40連接成形裝置30與緩冷裝置50。可於連接裝置40與緩冷裝置50之間之狹小間隙填滿隔熱材料。連接裝置40具有連接爐41、中間加熱器42、及提昇輥43。 The connecting device 40 connects the forming device 30 and the slow cooling device 50. The narrow gap between the connection device 40 and the slow cooling device 50 can be filled with thermal insulation material. The connection device 40 includes a connection furnace 41, an intermediate heater 42, and a lift roller 43.
連接爐41配設於成形爐31與下述緩冷爐51之間,且形成限制在其等之間被搬送之玻璃帶G3之脫熱之連接室41a。可於成形爐31與緩冷爐51之間防止玻璃帶G3之急冷。 The connection furnace 41 is disposed between the forming furnace 31 and the slow cooling furnace 51 described below, and forms a connection chamber 41a that restricts the heat release of the glass ribbon G3 to be transported between them. The rapid cooling of the glass ribbon G3 can be prevented between the forming furnace 31 and the slow cooling furnace 51.
中間加熱器42配設於連接室41a。中間加熱器42於玻璃帶G3之搬送方向上隔開間隔而設置有複數個,對玻璃帶G3之搬送方向上之溫度分佈進行調整。中間加熱器42亦可於玻璃帶G3之寬度方向上被分割,從而對玻璃帶G3之寬度方向上之溫度分佈進行調整。 The intermediate heater 42 is disposed in the connection chamber 41a. The intermediate heater 42 is provided at plural intervals in the conveyance direction of the glass ribbon G3, and adjusts the temperature distribution in the conveyance direction of the glass ribbon G3. The intermediate heater 42 may also be divided in the width direction of the glass ribbon G3, so as to adjust the temperature distribution in the width direction of the glass ribbon G3.
提昇輥43配設於連接室41a。提昇輥43由馬達等旋轉驅動,將玻璃帶G3自熔融金屬M提起,並自成形爐31搬送至緩冷爐51。提昇輥43於玻璃帶G3之搬送方向上隔開間隔而設置有複數個。 The lift roller 43 is disposed in the connection chamber 41a. The lift roller 43 is rotationally driven by a motor or the like, lifts the glass ribbon G3 from the molten metal M, and transfers the glass ribbon G3 from the forming furnace 31 to the slow cooling furnace 51. A plurality of lift rollers 43 are provided at intervals in the conveyance direction of the glass ribbon G3.
緩冷裝置50將於成形裝置30中成形之玻璃帶G3緩冷。緩冷裝置50具有緩冷爐51、緩冷加熱器52、及緩冷輥53。 The slow cooling device 50 cools the glass ribbon G3 formed in the forming device 30 slowly. The slow cooling device 50 includes a slow cooling furnace 51, a slow cooling heater 52, and a slow cooling roller 53.
緩冷爐51形成將玻璃帶G3緩冷之緩冷室51a。自緩冷爐51之入口越朝向緩冷爐51之出口,緩冷室51a之溫度越低。 The slow cooling furnace 51 forms a slow cooling chamber 51 a that slowly cools the glass ribbon G3. As the entrance from the slow cooling furnace 51 is directed toward the exit of the slow cooling furnace 51, the temperature of the slow cooling chamber 51a becomes lower.
緩冷加熱器52配設於緩冷室51a。緩冷加熱器52於玻璃帶G3之搬送方向上隔開間隔而設置有複數個,對玻璃帶G3之搬送方向上之溫度分佈進行調整。緩冷加熱器52亦可於玻璃帶G3之寬度方向上被分割,從而對玻璃帶G3之寬度方向上之溫度分佈進行調整。 The slow cooling heater 52 is disposed in the slow cooling chamber 51a. A plurality of slow cooling heaters 52 are provided at intervals in the conveyance direction of the glass ribbon G3, and adjust the temperature distribution in the conveyance direction of the glass ribbon G3. The slow cooling heater 52 can also be divided in the width direction of the glass ribbon G3, so as to adjust the temperature distribution in the width direction of the glass ribbon G3.
緩冷輥53配設於緩冷室51a。緩冷輥53由馬達等旋轉驅動,從而 自緩冷爐51之入口朝向緩冷爐51之出口搬送玻璃帶G3。緩冷輥53於玻璃帶G3之搬送方向上隔開間隔而設置有複數個。 The slow cooling roller 53 is arranged in the slow cooling chamber 51a. The moderating roller 53 is rotationally driven by a motor or the like, so that The glass ribbon G3 is conveyed from the entrance of the slow cooling furnace 51 toward the exit of the slow cooling furnace 51. A plurality of slow cooling rollers 53 are provided at intervals in the conveyance direction of the glass ribbon G3.
於緩冷裝置50中經緩冷之玻璃帶G3係利用切斷機切斷為特定之尺寸,從而獲得作為製品之玻璃板。 The slow-cooled glass ribbon G3 in the slow-cooling device 50 is cut to a specific size by a cutter to obtain a glass plate as a product.
再者,玻璃板之製造裝置可為多種多樣。例如,玻璃板之製造裝置亦可於熔融玻璃搬送裝置20中具有使熔融玻璃G2所包含之泡消泡之澄清裝置。 Moreover, the manufacturing apparatus of a glass plate can be various. For example, the glass plate manufacturing device may include a clarification device for defoaming the bubbles contained in the molten glass G2 in the molten glass transfer device 20.
[玻璃物品之製造方法] [Manufacturing method of glass articles]
其次,參照圖2,對使用上述構成之玻璃板之製造裝置之玻璃板之製造方法進行說明。圖2係表示第1實施形態之玻璃物品之製造方法之流程圖。如圖2所示,玻璃板之製造方法具有熔解步驟S10、熔融玻璃搬送步驟S20、成形步驟S30、及緩冷步驟S50。 Next, a glass plate manufacturing method using the glass plate manufacturing apparatus having the above-mentioned configuration will be described with reference to FIG. 2. Fig. 2 is a flowchart showing a method for manufacturing a glass article according to the first embodiment. As shown in FIG. 2, the method for manufacturing a glass plate includes a melting step S10, a molten glass transfer step S20, a forming step S30, and a slow cooling step S50.
於熔解步驟S10中,藉由將玻璃原料G1熔解而製作熔融玻璃G2。 In the melting step S10, a molten glass G2 is produced by melting the glass raw material G1.
於熔融玻璃搬送步驟S20中,將熔融玻璃G2自熔解裝置10搬送至成形裝置30。 In the molten glass transfer step S20, the molten glass G2 is transferred from the melting device 10 to the molding device 30.
於成形步驟S30中,將藉由熔解步驟S10而製作之熔融玻璃G2成形為帶板狀之玻璃帶G3。例如,於成形步驟S30中,將熔融玻璃G2連續地供給至熔融金屬M之上,利用熔融金屬M之液面使熔融玻璃G2成形為帶板狀之玻璃帶G3。玻璃帶G3一面自浮拋窯311之上游側向下游側流動,一面逐漸被固化。 In the forming step S30, the molten glass G2 produced in the melting step S10 is formed into a glass ribbon G3 having a plate shape. For example, in the forming step S30, the molten glass G2 is continuously supplied onto the molten metal M, and the molten glass G2 is formed into a strip-shaped glass ribbon G3 using the liquid level of the molten metal M. The glass ribbon G3 is gradually solidified while flowing from the upstream side to the downstream side of the floating kiln 311.
於緩冷步驟S50中,將藉由成形步驟S30而成形之玻璃帶G3緩冷。 In the slow cooling step S50, the glass ribbon G3 formed in the forming step S30 is slowly cooled.
經緩冷之玻璃帶G3係利用切斷機切斷為特定之尺寸,從而獲得作為製品之玻璃板。 The slow-cooled glass ribbon G3 is cut to a specific size by a cutter to obtain a glass plate as a product.
再者,玻璃板之製造方法可為多種多樣。例如,玻璃板之製造方法亦可於熔融玻璃搬送步驟S20中具有將熔融玻璃G2中所包含之泡 消泡之澄清步驟。 Furthermore, there are various methods for manufacturing glass plates. For example, the method for manufacturing a glass plate may include a bubble included in the molten glass G2 in the molten glass transfer step S20. Defoaming clarification step.
[熔融玻璃加熱裝置] [Molten glass heating device]
<第1實施形態> <First Embodiment>
其次,參照圖3,對本發明之熔融玻璃加熱裝置210進行說明。圖3係對本發明之第1實施形態之熔融玻璃加熱裝置210進行說明之模式圖。 Next, a molten glass heating device 210 according to the present invention will be described with reference to FIG. 3. FIG. 3 is a schematic diagram illustrating a molten glass heating device 210 according to the first embodiment of the present invention.
熔融玻璃加熱裝置210包括複合管構造體220及通電加熱部230。複合管構造體220包含形成熔融玻璃G2所通過之流路之導管。通電加熱部230對複合管構造體220進行通電加熱。 The molten glass heating device 210 includes a composite pipe structure 220 and a current heating unit 230. The composite pipe structure 220 includes a duct that forms a flow path through which the molten glass G2 passes. The electric heating unit 230 electrically heats the composite pipe structure 220.
圖3所示之複合管構造體220包括主管(亦稱為主體管)1、上部分支管2、及下部分支管3作為導管。 The composite pipe structure 220 shown in FIG. 3 includes a main pipe (also referred to as a main pipe) 1, an upper branch pipe 2, and a lower branch pipe 3 as conduits.
主管1相對於水平方向大致垂直地延伸,上部分支管2於主管1之上部側方自主管1分支,且內部與主管1連通。此處,所謂相對於水平方向大致垂直係指相對於鉛垂方向為±10度以內。下部分支管3於主管1之下部側方自主管1分支,且內部與主管1連通。 The main pipe 1 extends substantially perpendicularly to the horizontal direction, and the upper branch pipe 2 branches from the main pipe 1 on the upper side of the main pipe 1 and communicates with the main pipe 1 inside. Here, the term “substantially perpendicular to the horizontal direction” means within ± 10 degrees with respect to the vertical direction. The lower branch pipe 3 is branched from the main pipe 1 on the lower side of the main pipe 1 and communicates with the main pipe 1 inside.
於圖3之構成中,下部分支管3係將熔融玻璃G2向主管1導入之導入管,上部分支管2係將熔融玻璃G2自主管1排出之排出管,但亦可如下述圖5般為相反之構成。 In the structure of FIG. 3, the lower branch pipe 3 is an introduction pipe that introduces the molten glass G2 to the main pipe 1, and the upper branch pipe 2 is an exhaust pipe that discharges the molten glass G2 from the main pipe 1. The opposite constitutes.
主管1、上部分支管2及下部分支管3係鉑製或鉑合金製之中空管。作為鉑合金之具體例,可列舉鉑-金合金、鉑-銠合金。又,於鉑製或鉑合金製等情形時,亦包含使金屬氧化物分散於鉑或鉑合金而成之強化鉑製。於此情形時,作為被分散之金屬氧化物,可列舉以Al2O3、或ZrO2或者Y2O3為代表之週期表中之III族、IV族或者13族之金屬氧化物。 The main pipe 1, the upper branch pipe 2 and the lower branch pipe 3 are hollow pipes made of platinum or platinum alloy. Specific examples of the platinum alloy include a platinum-gold alloy and a platinum-rhodium alloy. In addition, in the case of platinum or a platinum alloy, a reinforced platinum made by dispersing a metal oxide in platinum or a platinum alloy is also included. In this case, as the dispersed metal oxide, a metal oxide of group III, group IV, or group 13 in the periodic table represented by Al 2 O 3 , or ZrO 2 or Y 2 O 3 may be mentioned.
為了將電流導入至此種含有鉑之中空管之壁,而於主管1之上端1a、主管1之下端1b、上部分支管2之側方端部2a、及下部分支管3之 側方端部3a設置有下述電極4、5、6、7。 In order to introduce current to the wall of such a hollow tube containing platinum, the upper end 1a of the main pipe 1, the lower end 1b of the main pipe 1, the lateral end portion 2a of the upper branch pipe 2, and the lower branch pipe 3 The lateral ends 3a are provided with the electrodes 4, 5, 6, and 7 described below.
可於設置於主管1之上端1a之電極4之外側(上側)設置防止自熔融玻璃G2之散熱之蓋構件。 A cover member for preventing heat radiation from the molten glass G2 may be provided on the outer side (upper side) of the electrode 4 provided on the upper end 1a of the main pipe 1.
於對上述構成之複合管構造體220進行通電加熱之通電加熱部230中,電極4接合於主管1之上端1a之外周,電極5接合於主管1之下端1b之外周,電極6接合於上部分支管2之側方端部2a之外周,及電極7接合於下部分支管3之側方端部3a之外周。 In the electric heating section 230 which electrically heats the composite pipe structure 220 configured as described above, the electrode 4 is joined to the periphery of the upper end 1a of the main pipe 1, the electrode 5 is joined to the periphery of the lower end 1b of the main pipe 1, and the electrode 6 is joined to the upper section. The outer periphery of the lateral end portion 2 a of the branch pipe 2 and the electrode 7 are joined to the outer periphery of the lateral end portion 3 a of the lower branch pipe 3.
電極4、5、6、7包含鉑製或鉑合金製之環狀之電極4a、5a、6a、7a、及接合於環狀之電極4a、5a、6a、7a之外緣之一端之引出電極4b、5b、6b、7b。引出電極4b、5b、6b、7b連接於下述電源24A、24B、24C,當進行通電時,電流自引出電極4b、5b、6b、7b經由環狀之電極4a、5a、6a、7a向導管1、2、3流動。 The electrodes 4, 5, 6, and 7 include a ring-shaped electrode 4a, 5a, 6a, 7a made of platinum or a platinum alloy, and a lead-out electrode joined to one end of the ring-shaped electrode 4a, 5a, 6a, 7a. 4b, 5b, 6b, 7b. The lead-out electrodes 4b, 5b, 6b, and 7b are connected to the following power sources 24A, 24B, and 24C. When the current is applied, current flows from the lead-out electrodes 4b, 5b, 6b, and 7b to the conduit through the ring-shaped electrodes 4a, 5a, 6a, and 7a. 1, 2, 3 flows.
亦可於環狀之電極4a、5a、6a、7a之外緣設置除鉑或鉑合金以外之金屬材料製之部位。作為此種金屬材料,可列舉銠、銥、鉬、鎢、鎳、鈀、銅、及其等之合金等。 A portion made of a metal material other than platinum or a platinum alloy may be provided on the outer edges of the ring-shaped electrodes 4a, 5a, 6a, and 7a. Examples of such a metal material include rhodium, iridium, molybdenum, tungsten, nickel, palladium, copper, and alloys thereof.
關於引出電極4b、5b、6b、7b,亦較佳為將鉑作為主要之構成材料。但是,並不限定於此,亦可為除上述鉑或鉑合金以外之金屬材料製。 Regarding the extraction electrodes 4b, 5b, 6b, and 7b, it is also preferable to use platinum as a main constituent material. However, it is not limited to this, and may be made of a metal material other than the above-mentioned platinum or platinum alloy.
而且,形成有將主管1之上端1a之電極(第1電極)4與下端1b之電極(第2電極)5連接且供給電流之第1電流供給路徑21。形成有將主管1之上端1a之電極4與上部分支管2之側方端部2a之電極6(第3電極)連接且供給電流之第2電流供給路徑22。形成有將主管1之下端1b之電極5與下部分支管3之側方端部3a之電極(第4電極)7連接且供給電流之第3電流供給路徑23。 Further, a first current supply path 21 is formed that connects the electrode (first electrode) 4 at the upper end 1a of the main pipe 1 and the electrode (second electrode) 5 at the lower end 1b and supplies a current. A second current supply path 22 is formed that connects the electrode 4 at the upper end 1a of the main pipe 1 with the electrode 6 (third electrode) at the lateral end 2a of the upper branch pipe 2 and supplies a current. A third current supply path 23 is formed to connect the electrode 5 at the lower end 1b of the main pipe 1 to the electrode (fourth electrode) 7 at the lateral end portion 3a of the lower branch pipe 3 and to supply a current.
分別第1電流供給路徑21向電極5、4供給電流,第2電流供給路徑22向電極4、6供給電流,第3電流供給路徑23向電極7、5供給電 流,藉此對複合管構造體220進行通電加熱。 The first current supply path 21 supplies current to the electrodes 5 and 4, the second current supply path 22 supplies current to the electrodes 4 and 6, and the third current supply path 23 supplies power to the electrodes 7 and 5. As a result, the composite pipe structure 220 is electrically heated by this flow.
又,於通電加熱部230中,於第1電流供給路徑21設置有(插入有)第1電源24A,於第2電流供給路徑22設置有第2電源24B,於第3電流供給路徑23設置有第3電源24C。即,第1電源24A電性連接於電極5、4,第2電源24B電性連接於電極4、6,第3電源24C電性連接於電極7、5。 In the energization heating unit 230, a first power supply 24A is provided (inserted) in the first current supply path 21, a second power supply 24B is provided in the second current supply path 22, and a third current supply path 23 is provided Third power source 24C. That is, the first power source 24A is electrically connected to the electrodes 5 and 4, the second power source 24B is electrically connected to the electrodes 4 and 6, and the third power source 24C is electrically connected to the electrodes 7 and 5.
進而,通電加熱部230包括電流平衡機構25,該電流平衡機構25對第1電流供給路徑21、第2電流供給路徑22、及第3電流供給路徑23之各電極間之電流(電流密度)進行調整。 Further, the energization heating unit 230 includes a current balancing mechanism 25 that performs a current (current density) between the electrodes of the first current supply path 21, the second current supply path 22, and the third current supply path 23. Adjustment.
作為一例,三相交流之電源24A、電源24B及電源24C分別供給單相交流電流ia、單相交流電流ib及單相交流電流ic。 As an example, the three-phase AC power source 24A, the power source 24B, and the power source 24C supply a single-phase AC current ia, a single-phase AC current ib, and a single-phase AC current ic, respectively.
此處,電流平衡機構25具備如下之電流平衡功能,即,對利用電源24A、電源24B及電源24C所產生之單相交流電流ia、單相交流電流ib及單相交流電流ic之電流位準進行調整,而取得電源間之電流位準之平衡。作為電流位準之調整,亦可調整電流之相位。 Here, the current balancing mechanism 25 has a current balancing function for the current levels of the single-phase AC current ia, the single-phase AC current ib, and the single-phase AC current ic generated by the power source 24A, 24B, and 24C. Make adjustments to balance the current levels between the power sources. As an adjustment of the current level, the phase of the current can also be adjusted.
電流平衡機構25例如包含:包括複數個供給三相交流相中之R、S間、R、T間、S、T間之單相交流之匝數比可調整之線圈的變壓器、三端雙向可控矽開關、Automatic Current Regulator(ACR,自動電流調整器)等。 The current balancing mechanism 25 includes, for example, a transformer including a plurality of coils capable of adjusting the turns ratio of single-phase AC between R, S, R, T, S, and T in a three-phase AC phase, and three-terminal bidirectional Silicon controlled switches, Automatic Current Regulator (ACR).
再者,於圖3中,對將電流平衡機構25與電源24A、24B、24C分開記載之例進行了說明,但亦可將電流平衡機構25與電源24A、24B、24C合併而構成為電源系統。 In addition, in FIG. 3, an example is described in which the current balancing mechanism 25 is separated from the power sources 24A, 24B, and 24C. However, the current balancing mechanism 25 and the power sources 24A, 24B, and 24C may be combined to form a power supply system. .
作為一例,本實施形態之電流平衡機構25以使電源24A之單相交流電流ia、電源24B之單相交流電流ib、及電源24C之單相交流電流ic之相位差成為2π/3、4π/3之方式調整電流。若以此方式設定相位差,則3個電源24A、24B、24C之電位差之和始終固定。 As an example, the current balancing mechanism 25 of this embodiment makes the phase difference between the single-phase AC current ia of the power source 24A, the single-phase AC current ib of the power source 24B, and the single-phase AC current ic of the power source 24C 2π / 3, 4π / 3 ways to adjust the current. If the phase difference is set in this way, the sum of the potential differences of the three power sources 24A, 24B, 24C is always fixed.
由此,於將主管1之上端1a與下端1b連接之第1電流供給路徑21流動之電流ia、於將主管1之上端1a與上部分支管2之側方端部2a連接之第2電流供給路徑22流動之電流ib、及於將主管1之下端1b與下部分支管3之側方端部3a連接之第3電流供給路徑23流動之電流ic係以變得相互相等之方式被控制。 As a result, the current ia flowing through the first current supply path 21 connecting the upper end 1a and the lower end 1b of the main pipe 1 and the second current supply connecting the upper end 1a of the main pipe 1 and the side end 2a of the upper branch pipe 2 The current ib flowing in the path 22 and the current ic flowing in the third current supply path 23 connecting the lower end 1b of the main pipe 1 and the lateral end portion 3a of the lower branch pipe 3 are controlled so as to be equal to each other.
於如上所述般對各電流供給路徑供給有均勻之電流之情形時,於圖3中,於主管1與上部分支管2之分支部上端(連接部上端、上方角部)Ja,自第1電流供給路徑21及第2電流供給路徑22供給之電流重複地流動。進而,分支部上端Ja位於自主管1之上端1a向上部分支管2流動之電流之最短路徑。因此,分支部上端Ja成為電流集中之部位。 When a uniform current is supplied to each of the current supply paths as described above, in FIG. 3, at the upper end (the upper end of the connection portion, the upper corner portion) Ja of the branch portion of the main pipe 1 and the upper branch pipe 2, since the first The currents supplied from the current supply path 21 and the second current supply path 22 repeatedly flow. Further, the upper end Ja of the branch portion is located at the shortest path of the current flowing from the upper end 1a of the autonomous pipe 1 to the upper branch pipe 2. Therefore, the upper end Ja of the branch portion becomes a portion where the current is concentrated.
由此,分支部上端Ja由於電流集中,故而有產生局部加熱之虞。 As a result, the current at the upper end Ja of the branch portion may be concentrated, which may cause local heating.
因此,較佳為於對上部分支管2進行通電加熱時,使分支部上端Ja處不產生局部加熱,故而於本實施形態中,藉由規定複合管構造體220之尺寸,而緩和電流之集中。詳細而言,於本實施形態之熔融玻璃加熱裝置210中,藉由在複合管構造體220中相對於主管1之高度(長度)Hm適當地設定上部分支管2之位置,能以於分支部上端Ja處不產生局部加熱之方式容易且適當地進行通電控制。 Therefore, it is preferable to prevent local heating at the upper end Ja of the branch portion when the upper branch pipe 2 is electrically heated, so in this embodiment, the size of the composite pipe structure 220 is specified to reduce the concentration of current. . In detail, in the molten glass heating device 210 of this embodiment, the position of the upper branch pipe 2 can be appropriately set by setting the height (length) Hm of the composite pipe structure 220 relative to the main pipe 1 to the branch portion. It is easy and appropriate to perform the energization control in a manner that local heating is not generated at the upper end Ja.
此處,關於具體之局部加熱之產生緣由,就複合管構造體220之尺寸之方面進行研究。 Here, the cause of the specific local heating will be studied in terms of the size of the composite pipe structure 220.
於對包圍熔融玻璃G2之複合管構造體220進行通電加熱時,將P設為熱量(W),將I設為電流(A),將R設為電阻值(Ω),以下式:[數1]P=I2×R‧‧‧(1) When the composite tube structure 220 surrounding the molten glass G2 is electrically heated, P is set as heat (W), I is set as current (A), and R is set as resistance (Ω), the following formula: [数1) P = I 2 × R ‧‧‧ (1)
產生熱量。此處,若將H設為發熱量(J),將T設為時間(sec),則產生 [數2] H=P.T‧‧‧(2) Generates heat. Here, if H is the calorific value (J) and T is the time (sec), then [Number 2] H = P. T‧‧‧ (2)
之發熱量。 Of heat.
此時,流動之電流係將V設為電圧(V),而為如下所示,
此處,電阻係將S設為導體(導管)之截面面積(m2),將1設為導體之長度(m),將ρ設為材料之比電阻(電阻率)(Ω‧m),而以下式表示,
若將導管之內徑(內側直徑)設為D,將導管之厚度設為t,並應用於式(4),則
此處,由於主管1及上部分支管2之厚度t為0.1mm~3mm左右,相對於導管之內徑D顯著較小(D>>t),故而式(5)可如下般近似。 Here, since the thickness t of the main pipe 1 and the upper branch pipe 2 is about 0.1 mm to 3 mm, which is significantly smaller than the inner diameter D of the catheter (D >> t), the formula (5) can be approximated as follows.
由於π為圓周率,ρ為材料之比電阻,t為厚度,故而式(6)之「2ρ/πt」於所有導管1、2、3中為固定。由此,於本實施形態之複合管構造體220中,對電流所流動之部位之「1/D」之比率進行比較,藉此可比較導管之電阻值R、及流動之電流值,故而可利用電流量預測局部之熱之產生。 Since π is the circumference, ρ is the specific resistance of the material, and t is the thickness, the "2ρ / πt" of formula (6) is fixed in all the conduits 1, 2, and 3. Therefore, in the composite pipe structure 220 of this embodiment, the ratio of "1 / D" of the portion where the current flows is compared, so that the resistance value R of the catheter and the value of the flowing current can be compared. The amount of current is used to predict local heat generation.
於本實施形態中,為了防止分支部上端Ja處之局部之熱之產生,而如下所述般設定複合管構造體220中之各導管之尺寸及連接位置(分 支位置)之尺寸。再者,該等尺寸係考慮下述實施例之溫度算出結果而規定。 In the present embodiment, in order to prevent local heat generation at the upper end Ja of the branch portion, the sizes and connection positions (minutes) of the respective conduits in the composite pipe structure 220 are set as follows. Support position). In addition, these dimensions are prescribed | regulated considering the calculation result of the temperature of a following example.
再者,設置於主管之上端1a、下端1b、分支管2、3之側方端部2a、3a之環狀之電極4、5、6、7之尺寸與導管1、2、3之圓筒狀之本體部之尺寸相比,小至可忽視之程度。由此,電極4、5、6、7之電阻係設為與導管1、2、3之圓筒狀之本體部之電阻相比小至可忽視之程度。 In addition, the dimensions of the ring-shaped electrodes 4, 5, 6, 7 and the cylinders of the tubes 1, 2, 3 are provided on the upper end 1a, the lower end 1b of the main pipe, and the lateral ends 2a, 3a of the branch pipes 2, 3. Compared with the size of the body part, it is so small that it can be ignored. Therefore, the resistances of the electrodes 4, 5, 6, and 7 are set to be as small as negligible compared with the resistance of the cylindrical body portion of the catheters 1, 2, and 3.
圖4係對上部分支管2相對於主管1之位置進行說明之透視立體圖。於圖4中,α表示主管1整體,β表示上部分支管2,γ表示主管1中之分支上方部(較分支部上端Ja更靠上方之部分)。 FIG. 4 is a perspective perspective view illustrating the position of the upper branch pipe 2 relative to the main pipe 1. In FIG. 4, α represents the entire main pipe 1, β represents the upper branch pipe 2, and γ represents the upper branch portion (the portion higher than the upper end Ja of the branch portion) in the main pipe 1.
於本實施形態中,為了相對於主管1適當地設置上部分支管2之位置,較佳為著眼於自主管1之上端1a至分支部上端Ja之位置(距離h)而如下所述般規定。 In the present embodiment, in order to appropriately set the position of the upper branch pipe 2 with respect to the main pipe 1, it is preferable to specify the position (distance h) of the upper end 1a of the autonomous pipe 1 to the upper end Ja of the branch portion as follows.
於本實施形態中,較佳為滿足「0.4<(於主管1之上端1a與分支部上端Ja之間(γ)流動之電流之電阻、及於上部分支管2之分支部J與側方端部2a之間(β)流動之電流之電阻的合計/於主管1之上端1a與下端1b之間(α)流動之電流之電阻)<0.8」。 In this embodiment, it is preferable to satisfy "0.4 <(the resistance of the current flowing between the upper end 1a of the main pipe 1 and the upper end Ja of the branch portion (γ), and the branch portion J and the side ends of the upper branch tube 2 The total resistance of the current flowing between the parts 2a (β) / the resistance of the current flowing between the upper end 1a and the lower end 1b of the main pipe 1 (α)) <0.8 ".
此處,將上述「[於主管1之上端1a與分支部上端Ja之間(γ)流動之電流之電阻]與[於上部分支管2之分支部J與側方端部2a之間(β)流動之電流之電阻]的合計除以[於主管1之上端1a與下端1b之間(α)流動之電流之電阻]所得之數值」規定為比率A。 Here, [the resistance of the current flowing between the upper end 1a of the main pipe 1 and the upper end Ja of the branch portion (γ)] and [between the branch portion J of the upper branch tube 2 and the side end portion 2a (β The total value of the resistance of the flowing current] divided by [the resistance of the current flowing between the upper end 1a and the lower end 1b of the main pipe 1] is defined as the ratio A.
此處,所謂上部分支管2之分支部J係指主管1與上部分支管2之連接部。例如,於主管1沿鉛垂方向延伸,上部分支管2自主管1垂直地分支之情形時,作為連接部之分支部J為大致圓形狀。 Here, the branch portion J of the upper branch pipe 2 refers to a connection portion between the main pipe 1 and the upper branch pipe 2. For example, in a case where the main pipe 1 extends in the vertical direction and the upper branch pipe 2 branches vertically from the main pipe 1, the branch portion J as the connection portion has a substantially circular shape.
比率A更佳為大於0.45,進而較佳為大於0.5。又,比率A更佳為小於0.75,進而較佳為小於0.7。 The ratio A is more preferably greater than 0.45, and even more preferably greater than 0.5. The ratio A is more preferably less than 0.75, and even more preferably less than 0.7.
作為具體例,於主管1沿鉛垂方向延伸,上部分支管2相對於主管1垂直地分支而沿水平方向延伸,且側方端部2a之電極6相對於上部分支管2被垂直地設置之情形時,比率A係以下式表示。 As a specific example, the main pipe 1 extends in the vertical direction, the upper branch pipe 2 branches vertically with respect to the main pipe 1 and extends in the horizontal direction, and the electrode 6 at the lateral end portion 2a is provided vertically with respect to the upper branch pipe 2 In this case, the ratio A is expressed by the following formula.
於將主管1之高度(長度)設為Hm,將主管1之內徑設為D1,將上部分支管2之長度(即,圓筒狀之上部分支管2之周面之母線之長度)設為L,將上部分支管2之內徑設為D2,將自主管1之上端1a至與上部分支管2之分支部上端Ja之距離設為h之情形時,相對於主管1設置上部分支管2之位置可設定為:
於此情形時,亦較佳為滿足0.4<比率A=((h/D1)+(L/D2))/(Hm/D1)<0.8。 In this case, it is also preferable to satisfy 0.4 <the ratio A = ((h / D1) + (L / D2)) / (Hm / D1) <0.8.
此處,上部分支管2亦可不沿水平方向延伸而傾斜。於上部分支管2不沿水平方向延伸而傾斜且側方端部2a之電極6設置於鉛垂方向之情形時,無需由式(7)進行修正。 Here, the upper branch pipe 2 may be inclined without extending in the horizontal direction. In a case where the upper branch pipe 2 is inclined without extending in the horizontal direction and the electrode 6 of the lateral end portion 2a is provided in the vertical direction, it is not necessary to correct by the formula (7).
再者,比率A並不限定於式(7)。例如,於上部分支管2不沿水平方向延伸而傾斜且側方端部2a之電極6未設置於鉛垂方向之情形時,關於上部分支管2(β)之截面面積S及長度L,基於根據分支之角度及端部之角度之關係之情形區分,需要由式(7)進行相加或相減之修正。 The ratio A is not limited to the formula (7). For example, when the upper branch pipe 2 is inclined without extending in the horizontal direction and the electrode 6 of the lateral end portion 2a is not provided in the vertical direction, the cross-sectional area S and length L of the upper branch pipe 2 (β) are based on According to the situation of the relationship between the angle of the branch and the angle of the end, it is necessary to correct the addition or subtraction by formula (7).
無論於上部分支管2為水平、傾斜之任一情形時,上述比率A均表示「[於主管1中之分支上方部γ流動之電流之電阻]與[於上部分支管2(β)流動之電流之電阻]之合計除以[於主管1之整體α流動之電流之電阻]所得的比率]。 Regardless of whether the upper branch pipe 2 is horizontal or inclined, the above ratio A means "[the resistance of the current flowing through the upper part of the branch γ in the main pipe 1] and [the current flowing through the upper branch pipe 2 (β) The ratio of the current resistance] divided by [the resistance of the current flowing through the entire α of the main pipe 1].
藉由以此方式設定為0.4<比率A<0.8,可抑止於分支部上端Ja產生之局部加熱,而於複合管構造體220內將熔融玻璃G2均勻地加熱,從而可抑制非均質化。 By setting the ratio to 0.4 <a ratio A <0.8 in this way, local heating generated at the upper end Ja of the branch portion can be suppressed, and the molten glass G2 can be uniformly heated in the composite pipe structure 220, so that heterogeneity can be suppressed.
又,於本發明中,相對於主管1之上端1a設置上部分支管2之位置較佳為滿足下式。此處,於圖3中,分支部下端Jb為主管1與上部分支管2之連接部下端(下方角部)。 In the present invention, the position where the upper branch pipe 2 is provided with respect to the upper end 1a of the main pipe 1 preferably satisfies the following formula. Here, in FIG. 3, the lower end Jb of the branch portion is the lower end (lower corner portion) of the connection portion between the main pipe 1 and the upper branch pipe 2.
「0.55<(自主管1之上端1a通過主管1向分支部上端Ja流動之電流之最短路徑、與自分支部上端Ja通過上部分支管2之內周部最上部沿圓筒狀之上部分支管2之母線方向朝上部分支管2之側方端部2a流動之電流之路徑的合計SD/自主管1之上端1a通過主管1向分支部下端Jb流動之電流之最短路徑、與自分支部下端Jb通過上部分支管2之內周部最下部沿圓筒狀之上部分支管2之母線方向朝上部分支管2之側方端部2a流動之電流之路徑的合計LD)<0.77」 "0.55 <(The shortest path of the current flowing from the upper end 1a of the autonomous pipe 1 to the upper end Ja of the branch through the main pipe 1 and the uppermost part of the inner peripheral part of the upper branch pipe 2 from the upper end Ja of the branch pipe 2 along the cylindrical upper branch pipe 2 The total path of the current flowing from the busbar direction to the side end 2a of the upper branch pipe 2 SD / the shortest path of the current flowing from the upper end 1a of the autonomous pipe 1 to the lower end Jb of the branch through the main pipe 1 and the lower end Jb of the branch The total lowermost part of the inner peripheral part of the upper branch pipe 2 in the direction of the busbar of the cylindrical upper part branch pipe 2 toward the lateral end portion 2a of the upper branch pipe 2 (total LD) <0.77 ''
此處,將上述「[自主管1之上端1a通過主管1向分支部上端Ja流動之電流之最短路徑、與自分支部上端Ja通過上部分支管2之內周部最上部沿圓筒狀之上部分支管2之母線方向朝上部分支管2之側方端部2a流動之電流之路徑的合計SD]除以[自主管1之上端1a通過主管1向分支部下端Jb流動之電流之最短路徑、與自分支部下端Jb通過上部分支管2之內周部最下部沿圓筒狀之上部分支管2之母線方向朝上部分支管2之側方端部2a流動之電流之路徑的合計LD]所得的比率」規定為比率B。 Here, the above-mentioned "[the shortest path of the current flowing from the upper end 1a of the autonomous tube 1 to the upper end Ja of the branching portion through the main pipe 1 and the uppermost portion of the inner peripheral portion of the upper branching tube 2 from the upper end Ja of the branching portion 2 to a cylindrical shape The total SD of the path of the current flowing from the direction of the busbar of the partial branch pipe 2 to the side end 2a of the upper branch pipe 2 is divided by [the shortest path of the current flowing from the upper end 1a of the autonomous pipe 1 through the main pipe 1 to the lower end Jb of the branch, And the total LD obtained from the path of the current flowing from the lower end Jb of the branched portion through the lowermost part of the inner peripheral portion of the upper branched tube 2 in the direction of the busbar of the cylindrical upper branched branch tube 2 to the side end 2a of the upper branched tube 2]. "Ratio" is defined as ratio B.
由於主管1相對於水平方向大致垂直地配置,故而電流自主管1之上端1a通過主管1向分支部上端Ja沿大致鉛垂方向流動。 Since the main pipe 1 is arranged substantially perpendicular to the horizontal direction, the upper end 1 a of the current main tube 1 flows through the main pipe 1 to the upper end Ja of the branch portion in a substantially vertical direction.
又,電流自主管1之上端1a通過主管1向主管1與上部分支管2之連接部(即,上部分支管2之分支部J)之側端(左端或右端)沿大致鉛垂方向流動後,自分支部J之側端沿著分支部J之圓弧向分支部下端Jb流 動。 In addition, the upper end 1a of the current autonomous tube 1 flows through the main tube 1 to the side end (left or right end) of the connection portion between the main tube 1 and the upper branch tube 2 (that is, the branch portion J of the upper branch tube 2) in a substantially vertical direction. , Flows from the side end of the branch J along the arc of the branch J to the lower end Jb of the branch move.
又,如圖4所示,於主管1沿鉛垂方向延伸,上部分支管2自主管1垂直地分支之情形時,為橫向之圓筒形狀之上部分支管2之母線方向為水平方向。 As shown in FIG. 4, when the main pipe 1 extends in the vertical direction and the upper branch pipe 2 branches vertically from the main pipe 1, the direction of the generatrix of the branch pipe 2 in the horizontal cylindrical shape is the horizontal direction.
比率B更佳為大於0.60。又,比率B更佳為小於0.70。 The ratio B is more preferably greater than 0.60. The ratio B is more preferably less than 0.70.
作為具體例,於主管1沿鉛垂方向延伸,上部分支管2自主管1垂直地分支而沿水平方向延伸,且側方端部2a之電極6相對於上部分支管2被垂直地設置之情形時,由於直圓筒形狀之上部分支管2之母線之長度與上部分支管2之長度L相等,故而比率B可設定為:
於此情形時,亦較佳為滿足0.55<比率B=(h+L)/(h+(5/4)D2+L)<0.77。 In this case, it is also preferable to satisfy 0.55 <the ratio B = (h + L) / (h + (5/4) D2 + L) <0.77.
再者,如圖4所示,通過路徑SD(h+L)之電流通過主管1與上部分支管2之分支部上端Ja,通過路徑LD(h+(5/4)D2+L)之電流通過分支部下端Jb。 Furthermore, as shown in FIG. 4, the current passing through the path SD (h + L) passes through the upper end Ja of the branch portion of the main pipe 1 and the upper branch pipe 2, and the current passing through the path LD (h + (5/4) D2 + L) passes. The lower end of the branch Jb.
此處,上部分支管2亦可不沿水平方向延伸而傾斜。若上部分支管2不沿水平方向延伸而傾斜,且側方端部2a之電極6被設置於鉛垂方向,而為成為上部分支管2之圓筒之底面之圓形之側方端部2a與圓周面之母線傾斜地相交之斜圓筒形狀,則無需由式(8)進行修正。 Here, the upper branch pipe 2 may be inclined without extending in the horizontal direction. If the upper branch pipe 2 is inclined without extending in the horizontal direction, and the electrode 6 of the lateral end portion 2a is provided in the vertical direction, it is a circular side end portion 2a that becomes the bottom surface of the cylinder of the upper branch tube 2. The oblique cylindrical shape intersecting obliquely with the generatrix of the circumferential surface need not be corrected by the formula (8).
再者,比率B並不限定於式(8)。例如,於上部分支管2不沿水平方向延伸而傾斜且側方端部2a之電極6未設置於鉛垂方向之情形時,關於上部分支管2(β)之長度L,基於根據分支之角度及端部之角度之關係之情形區分,亦可能存在需要由式(8)進行相加或相減之修正之 情況。例如,為如下情形等:藉由使底面與圓周面之母線呈直角相交之直圓筒形狀發生傾斜並將其切斷而連接。 The ratio B is not limited to the formula (8). For example, when the upper branch pipe 2 is inclined without extending in the horizontal direction and the electrode 6 of the lateral end portion 2a is not provided in the vertical direction, the length L of the upper branch pipe 2 (β) is based on the angle according to the branch And the relationship between the angles of the ends, there may also be corrections that need to be added or subtracted by equation (8). Happening. For example, it is the case where the straight cylinder shape which the base surface and the peripheral surface of a circumferential surface intersect at right angles is inclined, and it cuts and connects.
如此,表示「[自主管1之上端1a通過主管1向分支部上端Ja流動之電流之最短路徑、與自分支部上端Ja通過上部分支管2之內周部最上部沿圓筒狀之上部分支管2之母線方向朝上部分支管2之側方端部2a流動之電流之路徑的合計SD]除以[自主管1之上端1a通過主管1向分支部下端Jb流動之電流之最短路徑、與自分支部下端Jb通過上部分支管2之內周部最下部沿圓筒狀之上部分支管2之母線方向朝上部分支管2之側方端部2a流動之電流之路徑的合計LD]所得之比率」的比率B包含上部分支管2為水平之情形(直圓筒形狀之情形)、傾斜之情形(直圓筒形狀、斜圓筒形狀之情形)之兩者。 In this way, "[The shortest path of the current flowing from the upper end 1a of the autonomous tube 1 to the upper end Ja of the branch portion through the main pipe 1 and the uppermost part of the inner peripheral portion of the upper branch tube 2 from the upper end portion of the branch portion Ja to the upper branch tube 2 along the cylindrical upper part The total SD of the path of the current flowing from the direction of the bus bar 2 to the side end 2a of the upper branch pipe 2 is divided by [the shortest path of the current flowing from the upper end 1a of the autonomous pipe 1 through the main pipe 1 to the lower end Jb of the branch, and The lower end of the branch Jb passes the total LD of the path of the current flowing through the lowermost part of the inner peripheral portion of the upper branch pipe 2 in the direction of the busbar of the cylindrical upper branch pipe 2 toward the side end 2a of the upper branch pipe 2]. " The ratio B includes both the case where the upper branch pipe 2 is horizontal (in the case of a straight cylindrical shape) and the case where it is inclined (in the case of a straight cylindrical shape and an oblique cylindrical shape).
藉由以此方式設定為0.55<比率B<0.77,可抑制上部分支管2之管內部之上方與下方之溫度差之產生,從而可抑制複合管構造體220中之熔融玻璃G2之溫度差之產生。 By setting 0.55 <the ratio B <0.77 in this way, it is possible to suppress the generation of a temperature difference between above and below the inside of the pipe of the upper branch pipe 2, and to suppress the temperature difference of the molten glass G2 in the composite pipe structure 220. produce.
改變複合管構造體220之尺寸、上部分支管2之設置位置後之情形時之比率A、B之變化之關係性如下所示。 The relationship between changes in the ratios A and B when the size of the composite pipe structure 220 and the installation position of the upper branch pipe 2 are changed is shown below.
若自主管1之上端1a至上部分支管2之分支部上端Ja之距離h變長,則比率A、比率B之任一者均變大。 When the distance h from the upper end 1a of the main pipe 1 to the upper end Ja of the branch portion of the upper branch pipe 2 becomes longer, either of the ratio A and the ratio B becomes larger.
若主管1之高度Hm變低,則比率B保持不變,但分支上方部分β之比例變大,故而比率A變大。 If the height Hm of the main pipe 1 becomes low, the ratio B remains unchanged, but the ratio β of the portion above the branch becomes larger, so the ratio A becomes larger.
若上部分支管2之長度L變長,則比率A、比率B之任一者均變大。 When the length L of the upper branch pipe 2 becomes longer, either of the ratio A and the ratio B becomes larger.
於變更距離h及高度Hm等2個以上之尺寸之情形時,根據其變更之比率,比率A、比率B連動地變化。 When two or more dimensions such as the distance h and the height Hm are changed, the ratio A and the ratio B are changed in accordance with the ratio of the change.
於滿足上述比例而設定導管之長度之情形時,主管1之高度Hm較佳為500mm~3000mm,上部分支管2之長度L較佳為50mm~1500 mm。高度Hm更佳為800mm以上,進而較佳為1100mm以上。又,高度Hm更佳為2700mm以下,進而較佳為2400mm以下。長度L更佳為150mm以上,進而較佳為250mm以上。又,長度L更佳為1300mm以下,進而較佳為1100mm以下。若主管1之高度Hm為3000mm以下,則可抑制主管1之電流之電阻,從而可充分地對熔融玻璃G2進行加熱。又,若上部分支管2之長度L為1500mm以下,則可抑制上部分支管2之電流之電阻,從而可充分地對熔融玻璃G2進行加熱。 When the length of the duct is set to satisfy the above ratio, the height Hm of the main pipe 1 is preferably 500 mm to 3000 mm, and the length L of the upper branch pipe 2 is preferably 50 mm to 1500. mm. The height Hm is more preferably 800 mm or more, and even more preferably 1100 mm or more. The height Hm is more preferably 2700 mm or less, and even more preferably 2400 mm or less. The length L is more preferably 150 mm or more, and even more preferably 250 mm or more. The length L is more preferably 1300 mm or less, and even more preferably 1100 mm or less. If the height Hm of the main pipe 1 is 3000 mm or less, the resistance of the current of the main pipe 1 can be suppressed, and the molten glass G2 can be sufficiently heated. When the length L of the upper branch pipe 2 is 1500 mm or less, the resistance of the current of the upper branch pipe 2 can be suppressed, and the molten glass G2 can be sufficiently heated.
又,主管1之內徑D1較佳為50mm~500mm。內徑D1更佳為100mm以上,進而較佳為150mm以上。又,內徑D1更佳為450mm以下,進而較佳為400mm以下。 The inner diameter D1 of the main pipe 1 is preferably 50 mm to 500 mm. The inner diameter D1 is more preferably 100 mm or more, and even more preferably 150 mm or more. The inner diameter D1 is more preferably 450 mm or less, and even more preferably 400 mm or less.
為了將上部分支管2設置於主管1之上部(自一半以上),上部分支管2之內徑D2必須短於主管之高度Hm之一半,上部分支管2之內徑D2較佳為50mm~500mm。內徑D2更佳為100mm以上,進而較佳為150mm以上。又,內徑D2更佳為450mm以下,進而較佳為400mm以下。 In order to set the upper branch pipe 2 above the main pipe 1 (more than half), the inner diameter D2 of the upper branch pipe 2 must be shorter than one and a half of the height Hm of the main pipe. The inner diameter D2 of the upper branch pipe 2 is preferably 50 mm to 500 mm. . The inner diameter D2 is more preferably 100 mm or more, and even more preferably 150 mm or more. The inner diameter D2 is more preferably 450 mm or less, and even more preferably 400 mm or less.
為了將上部分支管2設置於主管1之上部(自一半以上),自主管1之上端1a至上部分支管2之分支部上端Ja之距離h必須短於主管1之高度Hm之一半,距離h較佳為50mm~500mm。距離h更佳為100mm以上,進而較佳為150mm以上。又,距離h更佳為450mm以下,進而較佳為400mm以下。 In order to arrange the upper branch pipe 2 above the main pipe 1 (from more than half), the distance h from the upper end 1a of the autonomous pipe 1 to the upper end Ja of the branch pipe of the upper branch pipe 2 must be shorter than half of the height Hm of the main pipe 1. It is preferably 50mm ~ 500mm. The distance h is more preferably 100 mm or more, and even more preferably 150 mm or more. The distance h is more preferably 450 mm or less, and even more preferably 400 mm or less.
若距離h過短,則上部分支管2接近於主管1之上端1a,故有於熔融玻璃G2之搬送過程中夾帶氣泡之虞,若距離h過長,則分支部上端Ja之溫度變得易於升高,故可藉由設定適當之距離h而抑制不良情況之產生。 If the distance h is too short, the upper branch pipe 2 is close to the upper end 1a of the main pipe 1. Therefore, bubbles may be trapped during the transportation of the molten glass G2. If the distance h is too long, the temperature of the upper end Ja of the branch portion becomes easy. It can be raised, so it is possible to suppress the occurrence of bad conditions by setting an appropriate distance h.
又,於玻璃製造裝置中,亦可於複合管構造體220之主管1設置用以攪拌熔融玻璃G2之攪拌器。於在主管1設置有攪拌器之情形時, 可提高熔融玻璃G2之狀態(溫度或均質性等)之均質化。 Further, in the glass manufacturing apparatus, a stirrer for stirring the molten glass G2 may be provided on the main pipe 1 of the composite pipe structure 220. In the case where a stirrer is provided in the main pipe 1, The homogenization of the state (temperature, homogeneity, etc.) of the molten glass G2 can be improved.
再者,於自上方觀察上述構成之情形時,下部分支管3設置於相對於主管1為與上部分支管2相反之側之側面,但上部分支管2與下部分支管3無需設置於180度相反之側,亦可以成為45度以上之特定角度之方式設置。 When the above configuration is viewed from above, the lower branch pipe 3 is disposed on the side opposite to the main pipe 1 on the side opposite to the upper branch pipe 2, but the upper branch pipe 2 and the lower branch pipe 3 need not be disposed at 180 degrees. On the opposite side, it can also be set to a specific angle of 45 degrees or more.
又,上述對分支管2、3自主管1水平地分支之情形進行了說明,但分支管2、3亦可於不會變為垂直之範圍內自主管1傾斜而分支。於該情形時,亦較佳為以滿足如上所述之比率之方式構成複合管構造體220。 In the above description, the case where the branch pipes 2 and 3 branch horizontally from the main pipe 1 has been described, but the branch pipes 2 and 3 may be branched by tilting the main pipe 1 within a range that does not become vertical. In this case, it is also preferable to constitute the composite pipe structure 220 so as to satisfy the ratio as described above.
<第2實施形態> <Second Embodiment>
於本實施形態中,對在圖1中所示之熔融玻璃搬送裝置20之內部並列設置2個上述熔融玻璃加熱裝置之情形進行說明。 In the present embodiment, a case where two molten glass heating devices are arranged in parallel inside the molten glass transfer device 20 shown in FIG. 1 will be described.
圖5表示具備本發明之第2實施形態之熔融玻璃加熱裝置之系統200。 FIG. 5 shows a system 200 including a molten glass heating device according to a second embodiment of the present invention.
與圖3之構成同樣地,於記載於圖5之左側之熔融玻璃加熱裝置210之複合管構造體220中,下部分支管3係將熔融玻璃G2向主管1導入之入口側之導入管,上部分支管2係將熔融玻璃G2自主管1排出之排出管。 As in the structure of FIG. 3, in the composite pipe structure 220 of the molten glass heating device 210 described on the left side of FIG. 5, the lower branch pipe 3 is an introduction pipe on the inlet side that introduces the molten glass G2 to the main pipe 1. Part of the branch pipe 2 is a discharge pipe that discharges the molten glass G2 from the main pipe 1.
於第2熔融玻璃加熱裝置240之複合管構造體250中,上部分支管2R係將自上部分支管2排出之熔融玻璃G2導入至主管1R之入口側之導入管,下部分支管3R係將已通過主管1R之熔融玻璃G2排出之出口側之管。上部分支管2R之側方端部2c係以與第1熔融玻璃加熱裝置210之上部分支管2之側方端部2a對向之方式配置。 In the composite pipe structure 250 of the second molten glass heating device 240, the upper branch pipe 2R is an introduction pipe that introduces the molten glass G2 discharged from the upper branch pipe 2 to the inlet side of the main pipe 1R, and the lower branch pipe 3R has been An outlet-side tube discharged through the molten glass G2 of the main pipe 1R. The lateral end portion 2c of the upper branch pipe 2R is disposed so as to face the lateral end portion 2a of the partial branch pipe 2 above the first molten glass heating device 210.
於本實施形態中,由於在第1熔融玻璃加熱裝置210之通電加熱部230、與第2熔融玻璃加熱裝置240之通電加熱部260中分別設置有電流平衡機構25、25R,故而通電加熱被獨立地控制。 In the present embodiment, the current balancing mechanisms 25 and 25R are provided in the current heating section 230 of the first molten glass heating device 210 and the current heating section 260 of the second molten glass heating device 240, respectively. Therefore, the current heating is independent.地 控制。 Control.
本發明之實施形態之熔融玻璃加熱裝置(系統)並不限定於圖1及圖2所示之浮式法,亦可應用於熔融法或其他玻璃物品之製造方法。 The molten glass heating device (system) according to the embodiment of the present invention is not limited to the float method shown in FIG. 1 and FIG. 2, and can also be applied to the melting method or other glass article manufacturing methods.
又,使用搭載有本發明之熔融玻璃加熱裝置之玻璃製造裝置而製造之玻璃物品並不限定於玻璃板,亦可為各種形狀。 Moreover, the glass article manufactured using the glass manufacturing apparatus equipped with the molten-glass heating apparatus of this invention is not limited to a glass plate, and may be various shapes.
以上,對熔融玻璃加熱裝置之實施形態等進行了說明,但本發明並不限定於上述實施形態等,可於申請專利範圍所記載之本發明之主旨之範圍內進行各種變化、改良。 The embodiments and the like of the molten glass heating device have been described above, but the present invention is not limited to the above embodiments and the like, and various changes and improvements can be made within the scope of the gist of the present invention described in the scope of the patent application.
[實施例] [Example]
對於上述熔融玻璃加熱裝置,改變尺寸,並藉由模擬(有限元素法)算出複合管構造體之表面溫度。下述例1~例7為實施例,例8~例10為比較例。 For the above-mentioned molten glass heating device, the dimensions were changed, and the surface temperature of the composite pipe structure was calculated by simulation (finite element method). Examples 1 to 7 below are examples, and examples 8 to 10 are comparative examples.
<例1~10> <Examples 1 to 10>
於例1中,熔融玻璃加熱裝置中之各部之尺寸為如下所示。 In Example 1, the dimensions of each part in the molten glass heating device are as follows.
主管高度Hm:1000mm Head height Hm: 1000mm
主管內徑D1:200mm Main tube inner diameter D1: 200mm
分支管長度L:450mm Branch tube length L: 450mm
分支管內徑D2:200mm Branch tube inner diameter D2: 200mm
主管上端與分支管上端之距離h:220mm Distance between upper end of main pipe and upper end of branch pipe: 220mm
於例2~10中,將例1之熔融玻璃加熱裝置中之各部之尺寸如表示相對於主管改變了上部分支管之位置之複合管構造體中之熔融玻璃之溫度的表1所示般變更。 In Examples 2 to 10, the dimensions of each part in the molten glass heating device of Example 1 were changed as shown in Table 1 indicating the temperature of the molten glass in the composite pipe structure in which the position of the upper branch pipe was changed with respect to the main pipe. .
於表1中,T0表示主管1之中央部之溫度,T1表示主管1之上部(分支上方部γ)之溫度,T2表示主管1與上部分支管2之分支部上端(角部)Ja之溫度,及T3表示主管1與上部分支管2之分支部下端(角部)Jb之溫度。 In Table 1, T0 indicates the temperature of the central part of the main pipe 1, T1 indicates the temperature of the upper part of the main pipe 1 (the branch upper part γ), and T2 indicates the temperature of the upper end (corner part) of the branch of the main pipe 1 and the upper branch pipe 2. , And T3 represents the temperature of the lower end (corner) Jb of the branch portion of the main pipe 1 and the upper branch pipe 2.
再者,已算出溫度T0之主管1之中央部意指主管1之高度Hm之一 半左右之鉛垂方向位置。 Furthermore, the central portion of the main pipe 1 whose temperature T0 has been calculated means one of the heights Hm of the main pipe 1 Half-right vertical position.
由表1可知,於比率A為0.33(例8)、1.41(例9)時,主管1之中央部與分支上方部γ、主管1之中央部與分支部上端Ja之溫度差<T1-T0>、<T2-T0>分別超過20℃。又,於比率A為0.80(例10)時,主管1之中央部與分支部上端Ja、主管1之中央部與分支部下端Jb之溫度差<T2-T0>、<T3-T0>分別超過20℃。 As can be seen from Table 1, when the ratio A is 0.33 (Example 8) and 1.41 (Example 9), the temperature difference between the central portion of the main pipe 1 and the upper branch portion γ, and the central portion of the main pipe 1 and the upper end Ja of the branch portion <T1-T0 > And <T2-T0> exceed 20 ° C, respectively. When the ratio A is 0.80 (Example 10), the temperature differences <T2-T0> and <T3-T0> of the central portion of the main pipe 1 and the upper end Ja of the branch 1 and the lower portion Jb of the main pipe 1 exceed 20 ° C.
由此,比率A較佳為超過0.4且未達0.8。 Therefore, the ratio A is preferably more than 0.4 and less than 0.8.
又,由表1可知,於比率B為0.44(例8)、0.77(例9)時,主管1之中央部與分支上方部γ、主管1之中央部與分支部上端Ja之溫度差<T1-T0>、<T2-T0>分別超過20℃。又,於比率B為0.90(例10)時,主管1之中央部與分支部上端Ja、主管1之中央部與分支部下端Jb<T2-T0>、<T3-T0>之溫度差分別超過20℃。 As can be seen from Table 1, when the ratio B is 0.44 (Example 8) and 0.77 (Example 9), the temperature difference between the central portion of the main pipe 1 and the upper branch portion γ, and the central portion of the main pipe 1 and the upper end Ja of the branch portion <T1 -T0> and <T2-T0> exceed 20 ° C, respectively. When the ratio B is 0.90 (Example 10), the temperature difference between the central portion of the main pipe 1 and the upper end Ja of the branch 1 and the central portion of the main pipe 1 and the lower ends of the branch portions Jb <T2-T0> and <T3-T0> respectively exceed 20 ° C.
由此,比率B較佳為超過0.55且未達0.77。 Therefore, the ratio B is preferably more than 0.55 and less than 0.77.
又,於設定尺寸時,進而較佳為於上述比率A、比率B之範圍內滿足上述兩者之範圍。 When setting the size, it is more preferable to satisfy the above two ranges within the range of the above ratio A and ratio B.
於滿足比率A、比率B之兩者之範圍之情形時,如例1~例7所示,可減小主管1之中央部與分支上方部γ、主管1之中央部與分支部 上端Ja、主管1之中央部與分支部下端Jb之溫度差<T1-T0>、<T2-T0>、<T3-T0>,從而較佳。 When the range of both the ratio A and the ratio B is satisfied, as shown in Examples 1 to 7, the central portion and the upper branch portion γ of the main pipe 1 and the central portion and the branch portion of the main pipe 1 can be reduced. The temperature difference <T1-T0>, <T2-T0>, <T3-T0> between the upper end Ja, the central portion of the main pipe 1 and the lower end Jb of the branch portion is preferable.
本發明之熔融玻璃加熱裝置由於可恰好地將包含於複合管構造體之主管及分支管整體通電加熱至所需之溫度,故而可應用於玻璃製造裝置中之熔融玻璃之流路之通電加熱。 The molten glass heating device of the present invention can be used to electrically heat the main pipe and the branch pipe included in the composite pipe structure to the required temperature, so it can be applied to the heating of the flow path of the molten glass in the glass manufacturing device.
Claims (16)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015149560A JP6500679B2 (en) | 2015-07-29 | 2015-07-29 | Molten glass heating apparatus, glass manufacturing apparatus, and method of manufacturing glass article |
JP2015-149560 | 2015-07-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201722864A TW201722864A (en) | 2017-07-01 |
TWI680109B true TWI680109B (en) | 2019-12-21 |
Family
ID=57927166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105118961A TWI680109B (en) | 2015-07-29 | 2016-06-16 | Molten glass heating device, glass manufacturing device, and glass article manufacturing method |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6500679B2 (en) |
KR (1) | KR102584109B1 (en) |
CN (2) | CN205933599U (en) |
TW (1) | TWI680109B (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6500679B2 (en) * | 2015-07-29 | 2019-04-17 | Agc株式会社 | Molten glass heating apparatus, glass manufacturing apparatus, and method of manufacturing glass article |
JP6744001B2 (en) * | 2018-06-22 | 2020-08-19 | Agc株式会社 | Heater, glass article manufacturing apparatus, and glass article manufacturing method |
WO2020023218A1 (en) * | 2018-07-27 | 2020-01-30 | Corning Incorporated | Methods for heating a metallic vessel in a glass making process |
US12091352B2 (en) | 2018-09-28 | 2024-09-17 | Corning Incorporated | Apparatus and method for mitigating electrochemical attack of precious metal components in a glass making process |
CN113165928B (en) | 2018-09-28 | 2023-05-05 | 康宁公司 | Apparatus and method for mitigating electrochemical corrosion of noble metal components in glass making processes |
CN113874329B (en) * | 2019-07-03 | 2024-02-02 | 日本电气硝子株式会社 | Method and apparatus for manufacturing glass article |
DE102019120064A1 (en) * | 2019-07-24 | 2021-01-28 | Schott Ag | Device and method for producing glass ribbons |
WO2021125040A1 (en) * | 2019-12-20 | 2021-06-24 | Agc株式会社 | Heater for melting glass |
CN114762453A (en) * | 2019-12-20 | 2022-07-15 | Agc株式会社 | Heater, glass article manufacturing device, and glass article manufacturing method |
JP2021169382A (en) * | 2020-04-14 | 2021-10-28 | 日本電気硝子株式会社 | Manufacturing method of glass article and manufacturing apparatus of glass article |
JP7473872B2 (en) * | 2020-04-14 | 2024-04-24 | 日本電気硝子株式会社 | Glass article manufacturing method and glass article manufacturing device |
JP7393742B2 (en) * | 2020-04-14 | 2023-12-07 | 日本電気硝子株式会社 | Glass article manufacturing method and glass article manufacturing device |
DE102020117532A1 (en) * | 2020-07-02 | 2022-01-05 | Schott Ag | Glass product and process for its manufacture |
CN115784568B (en) * | 2022-12-01 | 2024-07-05 | 湖南洪康新材料科技有限公司 | Glass bubbling device and control method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102444761A (en) * | 2010-09-30 | 2012-05-09 | 旭硝子株式会社 | Method for electrifying-heating platinum structural body of composite tube |
TW201437166A (en) * | 2013-01-24 | 2014-10-01 | Corning Inc | Process and apparatus for refining molten glass |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4816056A (en) * | 1987-10-02 | 1989-03-28 | Ppg Industries, Inc. | Heating and agitating method for multi-stage melting and refining of glass |
JP2841516B2 (en) * | 1989-08-11 | 1998-12-24 | 旭硝子株式会社 | Method and apparatus for homogenizing hot melt |
JPH0920521A (en) * | 1995-07-04 | 1997-01-21 | Asahi Glass Co Ltd | Heating of multi-way conductive pipe |
JP4561468B2 (en) * | 2005-04-28 | 2010-10-13 | 旭硝子株式会社 | GLASS MANUFACTURING APPARATUS AND ITS COMPONENTS, METHOD FOR ELECTRIC HEATING THE COMPONENTS, AND GLASS MANUFACTURING METHOD |
WO2006123479A1 (en) * | 2005-05-18 | 2006-11-23 | Asahi Glass Company, Limited | Method of electrically heating composite tube structure made of platinum |
US8256951B2 (en) * | 2006-12-21 | 2012-09-04 | Corning Incorporated | Stirrers for minimizing erosion of refractory metal vessels in a glass making system |
JP5652707B2 (en) * | 2010-11-09 | 2015-01-14 | 日本電気硝子株式会社 | Molten glass transfer tube |
JP5719797B2 (en) * | 2012-04-06 | 2015-05-20 | AvanStrate株式会社 | Glass plate manufacturing method and glass plate manufacturing apparatus |
WO2014073594A1 (en) * | 2012-11-12 | 2014-05-15 | 旭硝子株式会社 | Molten glass conveying equipment element, method for manufacturing molten glass conveying equipment element, glass manufacturing apparatus comprising molten glass conveying equipment element and method for manufacturing glass product |
JP5931986B2 (en) * | 2013-12-26 | 2016-06-08 | AvanStrate株式会社 | Glass substrate manufacturing method and glass substrate manufacturing apparatus |
JP6500679B2 (en) * | 2015-07-29 | 2019-04-17 | Agc株式会社 | Molten glass heating apparatus, glass manufacturing apparatus, and method of manufacturing glass article |
-
2015
- 2015-07-29 JP JP2015149560A patent/JP6500679B2/en active Active
-
2016
- 2016-06-16 TW TW105118961A patent/TWI680109B/en active
- 2016-07-21 KR KR1020160092417A patent/KR102584109B1/en active IP Right Grant
- 2016-07-26 CN CN201620795671.6U patent/CN205933599U/en not_active Withdrawn - After Issue
- 2016-07-26 CN CN201610596872.8A patent/CN106396344B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102444761A (en) * | 2010-09-30 | 2012-05-09 | 旭硝子株式会社 | Method for electrifying-heating platinum structural body of composite tube |
TW201437166A (en) * | 2013-01-24 | 2014-10-01 | Corning Inc | Process and apparatus for refining molten glass |
Also Published As
Publication number | Publication date |
---|---|
KR20170015168A (en) | 2017-02-08 |
KR102584109B1 (en) | 2023-10-04 |
CN106396344B (en) | 2019-12-06 |
CN106396344A (en) | 2017-02-15 |
TW201722864A (en) | 2017-07-01 |
JP6500679B2 (en) | 2019-04-17 |
CN205933599U (en) | 2017-02-08 |
JP2017030987A (en) | 2017-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI680109B (en) | Molten glass heating device, glass manufacturing device, and glass article manufacturing method | |
JP6463384B2 (en) | Equipment for use in direct resistance heating of platinum containing containers | |
KR101808962B1 (en) | Apparatus for use in direct resistance heating of platinum-containing vessels | |
JP6885873B2 (en) | Equipment and methods for heating metal containers | |
JP6754469B2 (en) | Glass making equipment and methods | |
JP5701391B2 (en) | Energy efficient high temperature purification | |
JP7535496B2 (en) | Method for heating a metal container in a glass manufacturing process - Patents.com | |
JP6990010B2 (en) | Equipment and methods for heating metal containers | |
CN110114319A (en) | For managing the cooling method and apparatus of glass tape | |
JP2017214272A (en) | Device and method for producing glass product from glass melt, while avoiding bubble formation | |
JP4581877B2 (en) | Method of energizing and heating a depressurization defoaming tank of a depressurization defoaming device, method of energizing and heating a depressurization defoaming device, and depressurization defoaming method, glass manufacturing method, and depressurization defoaming device using them | |
JP2018531206A6 (en) | Apparatus and method for heating a metal container | |
CN110234610A (en) | Method and device for compensating dimensional changes of shaped bodies | |
KR20170003381A (en) | Molten glass supply device, glass plate manufacturing device and glass plate manufacturing method | |
TW202406861A (en) | Direct heated edge director assembly |