TWI676221B - 尺寸量測裝置、研磨裝置以及研磨方法 - Google Patents

尺寸量測裝置、研磨裝置以及研磨方法 Download PDF

Info

Publication number
TWI676221B
TWI676221B TW105108627A TW105108627A TWI676221B TW I676221 B TWI676221 B TW I676221B TW 105108627 A TW105108627 A TW 105108627A TW 105108627 A TW105108627 A TW 105108627A TW I676221 B TWI676221 B TW I676221B
Authority
TW
Taiwan
Prior art keywords
wafer
polishing
thickness
resistivity
measurement error
Prior art date
Application number
TW105108627A
Other languages
English (en)
Other versions
TW201701382A (zh
Inventor
大葉茂
Shigeru Oba
天海史郎
Shiro AMAGAI
Original Assignee
日商信越半導體股份有限公司
Shin-Etsu Handotai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商信越半導體股份有限公司, Shin-Etsu Handotai Co., Ltd. filed Critical 日商信越半導體股份有限公司
Publication of TW201701382A publication Critical patent/TW201701382A/zh
Application granted granted Critical
Publication of TWI676221B publication Critical patent/TWI676221B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/26Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • B24B37/013Devices or means for detecting lapping completion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/08Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for double side lapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/205Lapping pads for working plane surfaces provided with a window for inspecting the surface of the work being lapped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

一種尺寸量測裝置,配置於研磨裝置,以雷射光干涉測定研磨中晶圓厚度,包含用於對研磨中晶圓照射雷射光的光源、接受被照射光源之雷射光的研磨中晶圓的反射光的受光件、自受光件受光的反射光計算出照射雷射光的研磨中晶圓的厚度的測定值的計算件,其中計算件基於預先求得的晶圓的電阻率及晶圓的厚度的測定誤差的值的相關關係,自研磨中晶圓的電阻率計算出研磨中晶圓的厚度的測定誤差的值,修正測定誤差而計算出研磨中晶圓厚度。藉此在連續研磨中,即使有研磨基板的批次變更的情況,能防止尺寸量測精密度低下,得到高尺寸量測精密度。

Description

尺寸量測裝置、研磨裝置以及研磨方法
本發明係關於尺寸量測裝置、研磨裝置以及研磨方法。
隨著半導體裝置的細微化與多層化的進展,DSP(Double Sided Polishing,雙面研磨)等的研磨技術成為在半導體裝置的製造步驟中不可或缺的必要的技術。
在用為平坦化的DSP中所為重要的規格的其中之一者,係為基板的完成厚度的表面內均一性(平坦度)。為了提升完成厚度的表面内均一性,正確地控制完成厚度係為重要。為此,為了將研磨中的晶圓的厚度予以精密度良好地監測,使用具有尺寸量測裝置的研磨裝置(例如,參考專利文獻1)。
近年來,對於完成厚度的基板表面内均一性(平坦度)的要求日益增高,成為被要求為尺寸量測精密度在±0.1μm程度以內,或是比這更高的精密度。
為了控制完成厚度,渦電流尺寸量測裝置、藉由將與載體上表面的間隔予以測定的尺寸量測裝置或是利用雷射光干涉的尺寸量測裝置等被採用。
然而,在藉由將與載體上表面的間隔予以測定的尺寸量測裝置中,無法保證必要的±0.1μm程度的尺寸量測精密度。再者,若將渦電流尺寸量測裝置與雷射光干涉尺寸量測裝置予以比較,以設置的環境的限制及測定精密度的方面來看,後者的雷射光干涉尺寸量測裝置較佳。
因此,隨著雷射光干涉尺寸量測裝置的普及之進展,雷射光干涉尺寸量測裝置成為特別在P- 或P+ 基板的高精密度加工所不可或缺的技術。亦即,雷射光干涉尺寸量測裝置成為提高DSP等的研磨後的完成厚度的均一性所不可或缺的技術。電阻率,大致上P- 基板為10Ω‧cm以上,P+ 基板為大於0.01Ω‧cm且未達10Ω‧cm,特別地,在本說明書的說明中的P++ 基板係為0.01Ω‧cm以下。
再者,近年來,在更低電阻率的P++ 基板中,高平坦度的對應也成為必須,而雷射光干涉尺寸量測裝置則再次被檢討。於此,以雙面研磨裝置為例,於以下對雷射光干涉尺寸量測裝置的構成進行說明。
雷射光干涉尺寸量測裝置係於形成為貫穿兩面研磨裝置的平盤的孔洞將光干涉用的雷射予以射入。於基板的研磨時,藉由旋轉嚙合於載具的齒輪而使基板自轉與公轉,而上述的孔洞係為於基板的自轉與公轉的軌道所通過的位置之上所被形成者。因此,雷射光干涉尺寸量測裝置係藉由將雷射光射入此孔洞,而能對研磨中的基板照射雷射光,並且幾乎同時以受光件接收來自基板的正反面的反射光。
該訊號係作為數位訊號而被接收,使用傅立葉變換而使作為基板的厚度資訊被辨識。此情況,雖然P- 或是P+ 基板的反面的反射光的訊號被充分地接收,但是P++ 基板的該反射光則為微弱。
第6圖係顯示基板(厚度775μm)的電阻率與雷射光的透射率的關係。一般尺寸量測裝置所使用的雷射光的波長約為1300nm,雖然此波長的透射率在P- 基板有50%程度,但是在P++ 基板僅為1%程度。
於此,在P++ 基板的厚度的測定之際,藉由將雷射光的輸出提高為P- 基板的厚度的測定時的兩倍程度,並且設定其頻率最佳的範圍,使測定P++ 基板的厚度成為可能。如此藉由雷射光干涉尺寸量測裝置並且藉由透過變更雷射波長或強度而使高精密度的尺寸量測成為可能。
如同以上,藉由雷射光的輸出,或是用於傅立葉變換的訊號的最佳化,變成不僅在P- 基板或P+ 基板,在更低電阻率的P++ 基板也能得到厚度的資料。 [先前技術文獻] [專利文獻]
[專利文獻1]日本特開平11-285956號公報
[發明所欲解決之問題] 然而,在基板的連續研磨中,按研磨的基板的群組(批次,lot),變得時常被觀測到變成無法維持必要的量測精密度的現象。特別在低電阻率的基板的研磨中,成為變更批次的最初的研磨批量(batch)中的量測精密度無法被保證,具有多為無法得到目標的基板的厚度的問題。
因此,在變更欲研磨的基板的批次時,為了維持研磨的精密度,而採取自該批次的最初的研磨批量的經研磨的基板的最初的完成厚度,計算與目標厚度的偏差,在接下來的研磨批量的加工時加上自目標厚度的偏差而調整目標厚度的方法。
然而,在此方法之中,由於試加工(為了求得自批次變更時的目標厚度的偏差),導致有生產率惡化、生產成本的增大的問題。
如同以上,按連續研磨中的研磨的基板的批次,會有變得無法維持必須的尺寸量測精密度之事,再者,為了抑制由於尺寸量測精密度的低下的偏差的試加工,在批次變更時每次都得進行,故有導致生產率的惡化的問題。
有鑒於如同前述的問題,本發明的目的在於提供一種尺寸量測裝置,能在連續研磨之中,即使有變更研磨的基板的批次的情況,防止尺寸量測精密度的低下,得到高尺寸量測精密度。
更進一步,本發明的目的亦提供一種研磨方法,能藉由防止由於變更研磨基板的批次所導致的尺寸量測精密度的低下,而使基板的試加工沒有必須進行的必要,並且得到自目標厚度的偏差為小的基板。 [解決問題之技術手段]
為了達成上述目的,本發明係提供一種尺寸量測裝置,係被配置在一研磨裝置,以藉由雷射光干涉而測定該研磨裝置研磨中的晶圓之厚度,該研磨裝置係藉由將晶圓滑接於定盤上所貼附的研磨布而研磨該晶圓的表面,該尺寸量測裝置包含:一光源,用於對該研磨中的晶圓照射雷射光;一受光件,接受來自被照射該光源的雷射光的該研磨中的晶圓的反射光;一計算件,自該受光件所受光的反射光,計算出被照射該雷射光的該研磨中的晶圓厚度的測定值,其中該計算件係基於預先求得的晶圓的電阻率及晶圓的厚度的測定誤差的值的相關關係,自該研磨中的晶圓的電阻率計算出該研磨中的晶圓的厚度的測定誤差的值,修正該測定誤差而計算出該研磨中的晶圓之厚度。
本發明的尺寸量測裝置係能自晶圓的電阻率與晶圓的厚度的測定誤差的值的相關關係和研磨中晶圓的電阻率,計算出藉由尺寸量測裝置的晶圓厚度的測定誤差。因此,在連續研磨中,即使在研磨的晶圓的批次改變、研磨的晶圓的電阻率改變的情況下,由於能因應該電阻率而修正測定誤差,而能精密度佳地測定研磨中的晶圓的實際厚度。
此時,該計算件係基於晶圓的電阻率及晶圓的厚度的測定誤差的值的相關關係,自該研磨中的晶圓的電阻率求得用於抵消該測定值中的測定誤差的偏移值,藉由對於該測定值加減該偏移值,而修正該研磨中的晶圓的厚度之測定誤差為佳。
如此,更具體來說,藉由以偏移值抵消測定誤差,而修正研磨中的晶圓的厚度的測定誤差,而能精密度良好地測定研磨中的晶圓的實際的厚度。
再者,此時該研磨中的晶圓的電阻率係能由切出該研磨中的晶圓的晶棒的兩端之電阻率及該晶棒的切出該研磨中的晶圓之部位所求得。
如此一來,研磨中的晶圓的電阻率係能以基板單元而容易地求得。
此時,該晶圓的電阻率及晶圓的厚度的測定誤差的值的相關關係係隨著該研磨裝置之不同而各別求得為佳。
晶圓的電阻率與晶圓的厚度的測定誤差的相關關係,由於有隨著研磨裝置之不同會有些許不同的情況,所以藉由使用隨著研磨裝置之不同的上述相關關係,成為能提升更進一步的量測精密度者。
再者,此時該晶圓的電阻率為0.01Ω‧cm以下為佳。
本發明的尺寸量測裝置係能特別合適地使用在測定電阻率為0.01Ω‧cm以下的低電阻的晶圓的厚度的情況。
再者,為了達成上述目的,本發明係提供一種配置有上述任一種尺寸量測裝置的研磨裝置。
若為如此的研磨裝置,由於能正確地計算出研磨中的晶圓的厚度,而能得到自目標厚度的偏差為少的晶圓。再者,由於沒有一定要實施為了計算從目標厚度的偏差的試加工的必要,故能提升生產率。
再者,為了達成上述目的,本發明係提供一種研磨方法,藉由在將晶圓滑接於定盤上所貼附的研磨布而研磨該晶圓的表面的研磨步驟中,以藉由雷射光干涉而測定研磨中的晶圓厚度的尺寸量測裝置,測定該研磨中的晶圓厚度同時進行研磨,在該尺寸量測裝置所得的研磨中的晶圓厚度的測定值到達規定值的時間點停止研磨,其中在進行該研磨步驟之前,該研磨方法包含一相關關係導出步驟,係預先求得晶圓的電阻率及晶圓的厚度的測定誤差的值的相關關係,以及在該研磨步驟中,該研磨方法係基於該晶圓的電阻率及晶圓的厚度的測定誤差的值的相關關係,自該研磨中的晶圓的電阻率計算出該研磨中的晶圓的厚度的測定誤差的值,修正該測定誤差而計算出該研磨中的晶圓厚度的同時研磨該晶圓。
若為本發明的研磨方法,自晶圓的電阻率及晶圓的厚度的測定誤差的值的相關關係以及研磨中的晶圓的電阻率,而藉由尺寸量測裝置而計算出晶圓的厚度的測定誤差係為可能。因此,在連續研磨中,即使在研磨的晶圓的批次改變、研磨的晶圓的電阻率改變的情況下,由於能因應該電阻率而修正測定誤差,故能得到自目標厚度的偏差為少的晶圓。再者,由於沒有一定要實施為了計算從目標厚度的偏差的試加工的必要,故能提升生產率。
此時,本發明的研磨方法係基於該晶圓的電阻率與晶圓的厚度的測定誤差的值之間的相關關係,自該研磨中的晶圓的電阻率求得用於抵消該測定值中的測定誤差的偏移值,藉由對於該測定值加減該偏移值,而修正該研磨中的晶圓的厚度的測定誤差為佳。
如此一來,更為具體地,藉由偏移值抵消測定誤差,而能修正該研磨中的晶圓的厚度的測定誤差。
再者此時,本發明的研磨方法係在該相關關係導出步驟之前,預先將電阻率相異的複數個試驗用晶圓,藉由該尺寸量測裝置,測定該試驗用晶圓厚度的同時進行試驗研磨,以及在該相關關係導出步驟中,係自該試驗研磨後的該試驗用晶圓厚度求得該晶圓的電阻率及晶圓的厚度的測定誤差的值之間的相關關係為佳。
本發明,更為具體地,藉此能求得晶圓的電阻率及晶圓的厚度的測定誤差的值的相關關係。
此時,該研磨的晶圓的電阻率係能由切出該研磨的晶圓的晶棒的兩端的電阻率及該晶棒的切出該研磨中的晶圓的部位所求得。
如此一來,研磨對象的晶圓的電阻率係能以基板單元而容易地求得。
再者此時,該晶圓的電阻率及晶圓的厚度的測定誤差的值的相關關係係隨著該研磨裝置之不同而各別求得為佳。
晶圓的電阻率與晶圓的厚度的測定誤差的相關關係,由於有隨著研磨裝置之不同會有些許不同的情況,藉由使用隨著研磨裝置之不同的上述相關關係,能更進一步提升量測精密度。
再者,該研磨的晶圓採用電阻率為0.01Ω‧cm以下者為佳。
本發明的研磨方法係能特別合適地使用在測定電阻率為0.01Ω‧cm以下的低電阻的晶圓的厚度的同時實施研磨的情況。 〔對照先前技術之功效〕
本發明由於能防止研磨的基板的批次變更所導致的尺寸量測精密度的低下且得到高的尺寸量測精密度,故能得到自目標厚度的偏差為小的基板,並且未有一定要進行基板的試加工的必要,故能提升生產率。
以下,雖然對本發明的實施方式進行說明,但本發明並非限定於此。
如同上述,研磨的晶圓的批次一旦改變,尺寸量測精密度則隨之變動,結果有研磨後的晶圓的厚度與目標厚度的偏差變大的問題。
於此,本發明人等為了解決如此的問題而努力進行研究,得知晶圓的電阻率與晶圓的厚度的測定誤差的值具有相關關係。因此,想到藉由自此相關關係及研磨對象的晶圓的電阻率而修正測定誤差,更正確地計算出晶圓的厚度,而完成了本發明。
首先,參考第1圖而對本發明的尺寸量測裝置及配置有該尺寸量測裝置的研磨裝置進行說明。第1圖係顯示在雙面研磨裝置設置本發明的尺寸量測裝置的一範例。如同第1圖所示,本發明的尺寸量測裝置1係能被設置於雙面研磨裝置10。
雙面研磨裝置10係如第1圖所示,包含以下上相對向而設置的上定盤11與下定盤12,於各定盤11、12各別貼附研磨布13。在上定盤11與下定盤12之間的中心部設置太陽齒輪14,於周緣部設置環狀的內齒輪15。晶圓W係被支承於載體16的支承孔,且被夾住於上定盤11及下定盤12之間。
再者,太陽齒輪14以及內齒輪15的各齒部係與載體16的外周齒嚙合,伴隨上定盤11以及下定盤12藉由未圖示的驅動源的旋轉,載體16係一邊自轉一邊在太陽齒輪14的周圍公轉。此時,載體16的支承孔所支承的晶圓W係藉由滑接於上下的研磨布13而使兩表面同時被研磨。另外,於晶圓W的研磨時,自未圖示的噴嘴供給研磨漿至晶圓W。
再者,本發明的尺寸量測裝置1,如第1圖所示,係為藉由雷射光干涉而測定以研磨裝置研磨中的晶圓的厚度者。此尺寸量測裝置1係具有:用於對藉由如同上述的雙面研磨裝置10研磨中的晶圓W照射雷射光的光源2、接受來自研磨中的晶圓W的反射光的受光件3以及自反射光計算出研磨中的晶圓W的厚度的測定值的計算件4。再者,如第1圖所示,向晶圓W的入射光以及來自晶圓W的反射光係通過設置於上定盤11的孔洞17。
然後,本發明的尺寸量測裝置1的計算件4係基於預先求得的晶圓的電阻率及晶圓的厚度的測定誤差的值的相關關係,自研磨中的晶圓W的電阻率計算出研磨中的晶圓的厚度的測定誤差的值,而能修正該測定誤差且計算出研磨中的晶圓W之厚度。
更具體來說,計算件4係基於晶圓的電阻率及晶圓的厚度的測定誤差的值的相關關係,自該研磨中的晶圓的電阻率求得用於抵消該測定值的測定誤差的偏移值,藉由對於該測定值加減該偏移值,而能修正該研磨中的晶圓的厚度的測定誤差。
再者,為了有效率地進行此一連串的作業,作為計算件4而利用個人電腦(PC)等的終端係被期望。藉由導入PC,來自資料庫的資料取得變成可能,使自動取得研磨對象的晶圓的電阻率資料、計算偏移值以及於測定值加減計算的偏移值,這些一連串的作業自動地進行變成可能。
接下來,參考第1圖所示的設置有本發明的尺寸量測裝置1的雙面研磨裝置10而對本發明的研磨方法進行說明。
首先,本發明的研磨方法係具有在進行晶圓W的研磨步驟之前預先求得晶圓的電阻率及晶圓的厚度的測定誤差的值的相關關係的相關關係導出步驟。
例如,能如同以下而求得上述的相關關係。首先,在相關關係倒出步驟之前,預先將電阻率相異的複數個試驗用晶圓,藉由尺寸量測裝置,一邊測定試驗用晶圓的厚度一邊實施試驗研磨的試驗研磨步驟。在試驗研磨中,在藉由尺寸量測裝置所得的試驗晶圓的厚度的測定值到達目標厚度值的時間點則停止研磨。
然後,紀錄在試驗研磨中所設定的目標厚度與研磨後的試驗用晶圓的實際的厚度。再者,自這些值的差異,計算出試驗研磨中試驗用晶圓的厚度的測定值的測定誤差的值。另外,在試驗研磨中,作為尺寸量測裝置而使用本發明的尺寸量測裝置1亦可。但是,由於在此時間點仍未求得上述的相關關係的緣故,試驗用晶圓的厚度的測定值中的測定誤差並未被修正。
接下來,進行相關關係導出步驟。於此,能由在試驗研磨中所發生的晶圓的厚度的測定誤差與該晶圓的電阻率的資料,求得晶圓的電阻率及晶圓的厚度的測定誤差的值的相關關係。
例如,自試驗研磨步驟中所記錄的各種電阻率的晶圓的研磨資料,藉由計算([試驗晶圓的實際厚度]-[目標厚度])而將求得[測定誤差]與[試驗晶圓的電阻率]的關係予以作圖,藉由最小平方法而能得到藉由電阻率的測定誤差的關係式。作為一範例,於第2圖與第3圖顯示在後述的實施例所求得的電阻率與測定誤差的關係。特別地,如第3圖,得知[測定誤差]與[試驗晶圓的電阻率]之間具有高度相關的近似直線係能被求得。如同以上,能求得晶圓的電阻率及晶圓的厚度的測定誤差的值的相關關係。
再者,晶圓的電阻率及晶圓的厚度的測定誤差的值的相關關係係隨著研磨裝置之不同而求得為佳。關於晶圓的電阻率及晶圓的厚度的測定誤差的值的關係式,隨著具有尺寸量測裝置的研磨裝置的不同而傾斜與切片有些微的不同的緣故,為了高精密度地計算出測定誤差,隨著研磨裝置的不同而求得相關關係為佳。再者,由於上述相關關係係受到研磨條件的影響的緣故,總是更新關係式並且利用,更提升尺寸量測精密度。
接下來,進行晶圓W的研磨步驟。在研磨步驟中,藉由利用雷射光干涉測定研磨中的晶圓厚度的尺寸量測裝置,一邊測定研磨中的晶圓的厚度一邊進行研磨。然後,在藉由尺寸量測裝置所得的研磨中的晶圓的厚度的測定值到達規定值的時間點停止研磨。
在本發明的研磨步驟中,基於以相關關係導出步驟所求得的晶圓的電阻率與晶圓的厚度的測定誤差的值的相關關係,而自研磨中的晶圓的電阻率計算出研磨中的晶圓的厚度的測定誤差的值。然後,修正此測定誤差,一邊計算出研磨中的晶圓厚度一邊研磨晶圓。
更具體為能如同以下修正測定誤差。首先,如第3圖所示,基於晶圓的電阻率與晶圓的厚度的測定誤差的值的相關關係,將用於抵消在藉由尺寸量測裝置所求得的研磨中的晶圓的厚度的測定值中的測定誤差的偏移值,自研磨的晶圓的電阻率所計算出。
研磨的晶圓的電阻率,能夠例如由切出該研磨中的晶圓的晶棒的兩端的電阻率與該晶棒的切出該研磨中的晶圓的部位所求得。晶棒的電阻率係由於切出(切片)晶圓之前必定被測定的緣故,晶棒的兩端的電阻率係能容易地得到。再者,藉由CZ提拉法所製造的晶棒,由於在提拉時發生偏析現象的緣故,使用自晶棒的端的距離而能容易地求得該部位的電阻率。因此,研磨的晶圓的電阻率藉由於切出的順序排列而區別的基板單元,能容易地求得。
然後,計算件4係藉由研磨中的晶圓的厚度的測定值加減偏移值而抵消測定誤差。藉此,能精密度佳地計算出晶圓的實際的厚度。
如同以上,本發明係使自晶圓的電阻率與晶圓的厚度的測定誤差的值的相關關係,以及自研磨的晶圓的電阻率,計算出本研磨中發生的測定誤差的值成為可能,藉由一邊修正該測定誤差一邊測定研磨中的晶圓的厚度,使精密度佳地計算出研磨中的晶圓的實際的厚度係為可能。因此,不盡然必須進行試加工,目標厚度與完成厚度的偏差為更少的研磨係為可能。再者,特別是藉由本發明,在如同P++ 基板的電阻率為0.01Ω‧cm以下的低電阻晶圓的研磨中,將自目標厚度的完成厚度的偏差抑制在±0.1μm程度或是比這更小係為可能。 [實施例]
以下,雖然顯示本發明的實施例與比較例而對本發明進行更具體的說明,但本發明不限定於此實施例。
(實施例) 使用如第1圖所示的具有尺寸量測裝置1的雙面研磨裝置10,以本發明的研磨方法而連續地研磨複數個直徑300mm的矽晶圓。研磨劑係於平均顆粒直徑為35~70nm的膠體矽中添加氫氧化鉀,以純水稀釋而使pH成為10.5。研磨布係使用市售的不織布類型。
首先,如第1圖所示,使用雙面研磨裝置10,連續地試驗研磨電阻率相異的複數個試驗用P++ 矽晶圓(電阻率7.2~9.3mΩ‧cm)。再者,使用PC作為計算件4,將該PC也連接於雙面研磨裝置10,而管理實際的晶圓完成厚度、目標厚度、偏移值及電阻率的輸入紀錄。另外,尺寸量測裝置的雷射光係使用紅外光波長可變雷射,波長為1300nm,輸出為10mW以上。
在研磨試驗中的試驗用晶圓的電阻率變化與測定誤差(完成厚度的自目標厚度的偏差)的關係係顯示於第2圖。如同從第2圖所得知,可見晶圓的電阻率與測定誤差有高相關性。
接下來,進行相關關係導出步驟。於此,從在試驗研磨步驟所記錄的研磨資料,將藉由計算([試驗晶圓的實際完成厚度]-[目標厚度])而求得的[測定誤差]及[試驗晶圓的電阻率]的關係製圖,藉由最小平方法而求得晶圓的電阻率與晶圓的厚度的測定誤差的相關關係。於此所得的[測定誤差]與[試驗晶圓的電阻率]的關係係表示於第3圖。如同從第3圖所得知,得到相關係高的近似直線。
接下來,進行研磨步驟。於此,研磨隨著批次之不同而電阻率相異(電阻率5~10mΩ‧cm)的晶圓。再者,此時如同以下而計算出偏移值。自顯示於第3圖的關係式,亦即[測定誤差(μm)]=0.2035×[電阻率(mΩ‧cm)]-1.7343,得知在此雙面研磨裝置中,在導入於批次變更時電阻率的差別為1mΩ‧cm的基板時,因應電阻率的變化測定誤差的值偏移約0.2035μm。例如,思考在已進行測定誤差的修正,在研磨(自第3圖所示的關係式,此情況,[偏移值]=0)電阻率為8.5mΩ‧cm的矽晶圓之後,研磨電阻率為9.5mΩ‧cm的矽晶圓的情況。在研磨電阻率為9.5mΩ‧cm的矽晶圓時,偏移值比之前的批次的電阻率為8.5mΩ‧cm的矽晶圓的研磨時大0.2035μm,亦即,[偏移值]=0.2035μm。然後,在研磨電阻率為9.5mΩ‧cm的矽晶圓時,將偏移值0.2035μm自測定值減去而能抵消測定誤差,即使為具有上述的相異電阻率的晶圓,也能得到相同完成厚度。再者,例如在研磨電阻率為9.5mΩ‧cm的矽晶圓之後,研磨下一批次的電阻率為7.5mΩ‧cm的矽晶圓的情況,偏移值比之前的批次的電阻率為9.5mΩ・cm的矽晶圓小0.4070μm,亦即,[偏移值]=-0.2035μm。然後,在研磨電阻率為7.5mΩ‧cm的矽晶圓時,將偏移值-0.2035μm自測定值減去(加上0.2035μm)而能抵消測定誤差,而得知如同上述,能得到相同的完成厚度。
再者,研磨的晶圓的電阻率係於基板的切出之前測定,與批次資訊一同記錄在PC(計算件4)的資料庫。然後,於計算件4中導入程式,此程式係在研磨前叫出批次資訊與電阻率的資料,並自研磨的晶圓的電阻率與該之前的批次的晶圓的電阻率之間的差值而自動計算偏移量。在實施例中,使用如此的程式,在批次變更時,一邊變更來自研磨的晶圓的電阻率的偏移值一邊實施研磨。若將如此的程式導入計算件4,則在想要變更目標厚度的時候亦能充分地對應。
如同以上的連續地研磨的晶圓的完成厚度的自目標厚度的偏差的分布係顯示於第4圖。如第4圖所示,與後述的比較例相比,與目標厚度的偏差被抑制到為小。特別在於,得知自目標厚度的偏差落在±0.1μm以內的晶圓的比率較後述的比較例為高。此為因應批次變更時的晶圓的電阻率的變化,藉由適當地修正厚度的測定誤差,而能進行精密度高的尺寸量測的緣故。
[比較例] 將尺寸量測裝置作為習知的不修正測定誤差而進行研磨的一般的尺寸量測裝置以外,以與實施例相同的條件而實施直徑300mm的矽晶圓的研磨。
如此所研磨的晶圓的完成厚度的自目標厚度的偏差的分布係顯示於第5圖。如第5圖所示,完成厚度的參差變大,自目標厚度的偏差也會增大。特別在於,自目標厚度的偏差落在±0.1μm以上的晶圓的比率,與實施例相比係大幅度地增加。
此外,本發明並不限定於上述的實施例。上述實施例為舉例說明,凡具有與本發明的申請專利範圍所記載之技術思想實質上同樣之構成,產生相同的功效者,不論為何物皆包含在本發明的技術範圍內。
1‧‧‧尺寸量測裝置
2‧‧‧光源
3‧‧‧受光件
4‧‧‧計算件
10‧‧‧雙面研磨裝置
11‧‧‧上定盤
12‧‧‧下定盤
13‧‧‧研磨布
14‧‧‧太陽齒輪
15‧‧‧內齒輪
16‧‧‧載體
17‧‧‧孔洞
W‧‧‧晶圓
第1圖係顯示本發明的尺寸量測裝置以及設置有該尺寸量測裝置的研磨裝置的一範例的示意剖面圖。 第2圖係顯示在實施例中所求得的試驗用晶圓的電阻率及試驗用晶圓的厚度的測定值中的測定誤差的關係的圖。 第3圖係顯示在實施例中所求得的晶圓的電阻率及晶圓的厚度的測定值中的測定誤差的關係的圖。 第4圖係顯示實施例的晶圓的研磨結果的圖。 第5圖係顯示比較例的晶圓的研磨結果的圖。 第6圖係顯示基板的電阻率及雷射光的透射率的關係的圖。

Claims (15)

  1. 一種尺寸量測裝置,係被配置在一研磨裝置,以藉由雷射光干涉而測定該研磨裝置研磨中的晶圓之厚度,該研磨裝置係藉由將晶圓滑接於定盤上所貼附的研磨布而研磨該晶圓的表面,該尺寸量測裝置包含: 一光源,用於對該研磨中的晶圓照射雷射光; 一受光件,接受來自被照射該光源的雷射光的該研磨中的晶圓的反射光; 一計算件,自該受光件所受光的反射光,計算出被照射該雷射光的該研磨中的晶圓厚度的測定值, 其中該計算件係基於預先求得的晶圓的電阻率及晶圓的厚度的測定誤差的值的相關關係,自該研磨中的晶圓的電阻率計算出該研磨中的晶圓的厚度的測定誤差的值,修正該測定誤差而計算出該研磨中的晶圓之厚度。
  2. 如請求項1所述的尺寸量測裝置,其中該計算件係基於晶圓的電阻率及晶圓的厚度的測定誤差的值的相關關係,自該研磨中的晶圓的電阻率求得用於抵消該測定值中的測定誤差的偏移值,藉由對於該測定值加減該偏移值,而修正該研磨中的晶圓的厚度之測定誤差。
  3. 如請求項1所述的尺寸量測裝置,其中該研磨中的晶圓的電阻率係由切出該研磨中的晶圓的晶棒的兩端之電阻率及該晶棒的切出該研磨中的晶圓之部位所求得。
  4. 如請求項2所述的尺寸量測裝置,其中該研磨中的晶圓的電阻率係由切出該研磨中的晶圓的晶棒的兩端之電阻率及該晶棒的切出該研磨中的晶圓之部位所求得。
  5. 如請求項1所述的尺寸量測裝置,其中該晶圓的電阻率及晶圓的厚度的測定誤差的值的相關關係隨著該研磨裝置之不同而各別求得。
  6. 如請求項2所述的尺寸量測裝置,其中該晶圓的電阻率及晶圓的厚度的測定誤差的值的相關關係隨著該研磨裝置之不同而各別求得。
  7. 如請求項3所述的尺寸量測裝置,其中該晶圓的電阻率及晶圓的厚度的測定誤差的值的相關關係係隨著該研磨裝置之不同而各別求得。
  8. 如請求項4所述的尺寸量測裝置,其中該晶圓的電阻率及晶圓的厚度的測定誤差的值之間的相關關係係隨著該研磨裝置之不同而各別求得。
  9. 如請求項1至8中任一項所述的尺寸量測裝置,其中該晶圓的電阻率為0.01Ω‧cm以下。
  10. 一種研磨裝置,係配置有如請求項1至8中任一項所述的尺寸量測裝置。
  11. 一種研磨裝置,係配置有如請求項9所述的尺寸量測裝置。
  12. 一種研磨方法,藉由在將晶圓滑接於定盤上所貼附的研磨布而研磨該晶圓的表面的研磨步驟中,以藉由雷射光干涉而測定研磨中的晶圓厚度的尺寸量測裝置,測定該研磨中的晶圓厚度同時進行研磨,在該尺寸量測裝置所得的研磨中的晶圓厚度的測定值到達規定值的時間點停止研磨,其中 在進行該研磨步驟之前, 該研磨方法包含一相關關係導出步驟,係預先求得晶圓的電阻率及晶圓的厚度的測定誤差的值的相關關係,以及 在該研磨步驟中, 該研磨方法係基於該晶圓的電阻率及晶圓的厚度的測定誤差的值的相關關係,自該研磨中的晶圓的電阻率計算出該研磨中的晶圓的厚度的測定誤差的值,修正該測定誤差而計算出該研磨中的晶圓厚度的同時研磨該晶圓。
  13. 如請求項12所述的研磨方法,其中基於該晶圓的電阻率及晶圓的厚度的測定誤差的值的相關關係,自該研磨中的晶圓的電阻率求得用於抵消該測定值中的測定誤差的偏移值,藉由對於該測定值加減該偏移值,而修正該研磨中的晶圓的厚度的測定誤差。
  14. 如請求項12所述的研磨方法,更包含一試驗研磨步驟,係在該相關關係導出步驟之前,預先將電阻率相異的複數個試驗用晶圓,藉由該尺寸量測裝置,測定該試驗用晶圓厚度的同時進行試驗研磨,以及 在該相關關係導出步驟中,係自該試驗研磨後的該試驗用晶圓厚度求得該晶圓的電阻率及晶圓的厚度的測定誤差的值之間的相關關係。
  15. 如請求項13所述的研磨方法,更包含一試驗研磨步驟,係在該相關關係導出步驟之前,預先將電阻率相異的複數個試驗用晶圓,藉由該尺寸量測裝置,測定該試驗用晶圓厚度的同時進行試驗研磨,以及 在該相關關係導出步驟中,係自該試驗研磨後的該試驗用晶圓厚度求得該晶圓的電阻率及晶圓的厚度的測定誤差的值的相關關係。
TW105108627A 2015-06-22 2016-03-21 尺寸量測裝置、研磨裝置以及研磨方法 TWI676221B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015124892A JP6222171B2 (ja) 2015-06-22 2015-06-22 定寸装置、研磨装置、及び研磨方法
JP2015-124892 2015-06-22

Publications (2)

Publication Number Publication Date
TW201701382A TW201701382A (zh) 2017-01-01
TWI676221B true TWI676221B (zh) 2019-11-01

Family

ID=57584977

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105108627A TWI676221B (zh) 2015-06-22 2016-03-21 尺寸量測裝置、研磨裝置以及研磨方法

Country Status (8)

Country Link
US (1) US10147656B2 (zh)
JP (1) JP6222171B2 (zh)
KR (1) KR102291391B1 (zh)
CN (1) CN107615455B (zh)
DE (1) DE112016002186T5 (zh)
SG (1) SG11201709628PA (zh)
TW (1) TWI676221B (zh)
WO (1) WO2016208101A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101660900B1 (ko) * 2015-01-16 2016-10-10 주식회사 엘지실트론 웨이퍼 연마 장치 및 이를 이용한 웨이퍼 연마 방법
JP6635003B2 (ja) * 2016-11-02 2020-01-22 株式会社Sumco 半導体ウェーハの両面研磨方法
US11199605B2 (en) * 2017-01-13 2021-12-14 Applied Materials, Inc. Resistivity-based adjustment of measurements from in-situ monitoring
DE102018202059A1 (de) * 2018-02-09 2019-08-14 Siltronic Ag Verfahren zum Polieren einer Halbleiterscheibe
JP7364217B2 (ja) * 2019-11-05 2023-10-18 スピードファム株式会社 研磨装置
CN112086350A (zh) * 2020-09-12 2020-12-15 北京航空航天大学 一种用于半导体晶圆的激光研磨工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7074109B1 (en) * 2003-08-18 2006-07-11 Applied Materials Chemical mechanical polishing control system and method
JP2010034462A (ja) * 2008-07-31 2010-02-12 Shin Etsu Handotai Co Ltd 両面研磨装置
US8010222B2 (en) * 2002-02-04 2011-08-30 Kla-Tencor Technologies Corp. Methods and systems for monitoring a parameter of a measurement device during polishing, damage to a specimen during polishing, or a characteristic of a polishing pad or tool
US8388409B2 (en) * 2003-12-19 2013-03-05 Ebara Corporation Substrate polishing apparatus
TW201511884A (zh) * 2013-05-16 2015-04-01 Shinetsu Handotai Kk 晶圓的雙面硏磨方法及雙面硏磨系統

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3429669B2 (ja) 1998-04-01 2003-07-22 株式会社日平トヤマ 心無し研削盤におけるワーク端面の位置調整機構
KR100771738B1 (ko) * 2003-04-03 2007-10-30 히다치 가세고교 가부시끼가이샤 연마패드, 그 제조방법 및 그것을 이용한 연마방법
JP2008142802A (ja) * 2006-12-06 2008-06-26 Ohara Inc 基板の製造方法および基板
US8106651B2 (en) * 2008-04-17 2012-01-31 Novellus Systems, Inc. Methods and apparatuses for determining thickness of a conductive layer
KR101587226B1 (ko) * 2008-07-31 2016-01-20 신에쯔 한도타이 가부시키가이샤 웨이퍼의 연마 방법 및 양면 연마 장치
JP5728239B2 (ja) * 2010-03-02 2015-06-03 株式会社荏原製作所 研磨監視方法、研磨方法、研磨監視装置、および研磨装置
JP5656132B2 (ja) * 2010-04-30 2015-01-21 株式会社Sumco シリコンウェーハの研磨方法
JP6033751B2 (ja) * 2013-10-07 2016-11-30 株式会社荏原製作所 研磨方法
US9275917B2 (en) * 2013-10-29 2016-03-01 Applied Materials, Inc. Determination of gain for eddy current sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8010222B2 (en) * 2002-02-04 2011-08-30 Kla-Tencor Technologies Corp. Methods and systems for monitoring a parameter of a measurement device during polishing, damage to a specimen during polishing, or a characteristic of a polishing pad or tool
US7074109B1 (en) * 2003-08-18 2006-07-11 Applied Materials Chemical mechanical polishing control system and method
US8388409B2 (en) * 2003-12-19 2013-03-05 Ebara Corporation Substrate polishing apparatus
JP2010034462A (ja) * 2008-07-31 2010-02-12 Shin Etsu Handotai Co Ltd 両面研磨装置
TW201511884A (zh) * 2013-05-16 2015-04-01 Shinetsu Handotai Kk 晶圓的雙面硏磨方法及雙面硏磨系統

Also Published As

Publication number Publication date
JP6222171B2 (ja) 2017-11-01
US20180138097A1 (en) 2018-05-17
US10147656B2 (en) 2018-12-04
KR20180019576A (ko) 2018-02-26
CN107615455B (zh) 2020-07-24
JP2017011099A (ja) 2017-01-12
CN107615455A (zh) 2018-01-19
SG11201709628PA (en) 2017-12-28
TW201701382A (zh) 2017-01-01
WO2016208101A1 (ja) 2016-12-29
KR102291391B1 (ko) 2021-08-20
DE112016002186T5 (de) 2018-02-01

Similar Documents

Publication Publication Date Title
TWI676221B (zh) 尺寸量測裝置、研磨裝置以及研磨方法
JP6146213B2 (ja) ワークの両面研磨装置及び両面研磨方法
US9862072B2 (en) Double-side polishing method
TWI680507B (zh) 晶圓研磨方法
JP5380912B2 (ja) 膜厚測定方法、エピタキシャルウェーハの製造方法、および、エピタキシャルウェーハ
CN104428882B (zh) 半导体晶片的评价方法及制造方法
TW201511884A (zh) 晶圓的雙面硏磨方法及雙面硏磨系統
CN109262445A (zh) 一种基于光谱的化学机械平坦化在线终点检测方法
CN105378894A (zh) 外延晶片的制造方法
TWI718542B (zh) 工件的兩面研磨裝置及兩面研磨方法
TWI740068B (zh) 工件的雙面研磨裝置及雙面研磨方法
JP2010034479A (ja) ウェーハの研磨方法
TW201933463A (zh) 載體的製造方法及晶圓的雙面研磨方法
JP2010034462A (ja) 両面研磨装置
KR20230147530A (ko) 양면연마장치 및 양면연마방법
JP5282440B2 (ja) 評価用ウェーハ及び両面研磨の研磨代の評価方法
JP2009027095A (ja) 半導体ウェハの評価方法、半導体ウェハの研削方法、及び半導体ウェハの加工方法
CN114083430B (zh) 一种精确获得晶片双面研磨中上下面去除量的有效方法
JP6123150B2 (ja) シリコンウェーハ加工量の評価方法およびシリコンウェーハの製造方法
TWI467645B (zh) 化學機械研磨方法與系統
CN117207055A (zh) 超高平坦度dsg调整操作方法