TWI674416B - An automatic system for antenna measurement - Google Patents
An automatic system for antenna measurement Download PDFInfo
- Publication number
- TWI674416B TWI674416B TW107140123A TW107140123A TWI674416B TW I674416 B TWI674416 B TW I674416B TW 107140123 A TW107140123 A TW 107140123A TW 107140123 A TW107140123 A TW 107140123A TW I674416 B TWI674416 B TW I674416B
- Authority
- TW
- Taiwan
- Prior art keywords
- antenna
- under test
- radio frequency
- signal
- standard
- Prior art date
Links
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
一種用於量測天線的自動化系統包含一電波暗室、一量測支架、一標準天線及一控制單元。該量測支架設置在該電波暗室中,並包括一固定座及一滑軌單元。該固定座設置在該電波暗室的一底板。該滑軌單元包括一圓弧軌道及一滑動部件。該圓弧軌道與該固定座相接。該圓弧軌道可相對該固定座進行0度至360度的轉動。該滑動部件可沿著該圓弧軌道滑動。該標準天線設置於該滑動部件。該控制單元電連接該量測支架、該待測天線及該標準天線。該控制單元控制該圓弧軌道相對該固定座旋轉的一水平角度,並控制該滑動部件滑動到該圓弧軌道上的一預設位置,且透過該標準天線去量測該待測天線的天線增益。 An automated system for measuring antennas includes an anechoic chamber, a measuring bracket, a standard antenna, and a control unit. The measurement support is disposed in the anechoic chamber and includes a fixed base and a slide rail unit. The fixing base is disposed on a bottom plate of the anechoic chamber. The slide rail unit includes a circular arc track and a sliding member. The arc track is connected to the fixed seat. The circular arc track can be rotated from 0 degrees to 360 degrees with respect to the fixed base. The sliding member can slide along the arc track. The standard antenna is disposed on the sliding member. The control unit is electrically connected to the measurement support, the antenna under test and the standard antenna. The control unit controls a horizontal angle of rotation of the arc track relative to the fixed base, and controls the sliding member to slide to a preset position on the arc track, and measures the antenna of the antenna under test through the standard antenna. Gain.
Description
本發明是關於一種可以自動化量測天線的增益及建構半球面輻射場型的系統。 The invention relates to a system that can automatically measure the gain of an antenna and construct a hemispherical radiation field pattern.
參閱第1圖,先前技術的天線量測系統是在一電波暗室11中安裝一個高指向性天線12及一個旋轉基座13,再將一待測天線14放在該旋轉基座13上,該旋轉基座13具有繞著Z軸360度旋轉的功能,該高指向性天線12具有人工手動調整繞著X軸±90度旋轉的功能。該高指向性天線12與該待測天線14分別用來接收和發射一電磁波,並藉由該旋轉基座13連動該待測天線214繞著Z軸360度旋轉一圈而量得XY平面的二維輻射場型。 Referring to FIG. 1, the prior art antenna measurement system is to install a high-directional antenna 12 and a rotating base 13 in an anechoic chamber 11, and then place an antenna under test 14 on the rotating base 13. The rotation base 13 has a function of rotating 360 degrees around the Z axis, and the high directional antenna 12 has a function of manually adjusting the rotation around ± 90 degrees about the X axis. The highly directional antenna 12 and the antenna 14 to be tested are used to receive and transmit an electromagnetic wave, respectively, and the antenna 214 to be tested is rotated 360 degrees around the Z axis through the rotation base 13 to measure the XY plane. Two-dimensional radiation field type.
這種先前技術的缺點在於:人工手動不精準且非常耗時。原因在於此種系統需人工手動調整該高指向性天線12及該待測天線14的擺放位置,每次(該旋轉基座13繞著Z軸360度旋轉一圈稱為一次)只能量得一個二維平面的輻射場型,若要用N個二維平面的輻射場型去建構一個三維的輻射場型就必須人工手動N次去調整該待測天線14的傾斜角度然 後量測N次。 The disadvantages of this prior art are: manual manual is inaccurate and time consuming. The reason is that this system requires manual adjustment of the placement of the high-directional antenna 12 and the antenna under test 14. Each time (the rotation base 13 rotates 360 degrees around the Z axis once is called one time), it can only be measured. A two-dimensional plane radiation field pattern. If N two-dimensional plane radiation field patterns are to be used to construct a three-dimensional radiation field pattern, it is necessary to manually manually adjust the tilt angle of the antenna 14 to be tested N times. After measuring N times.
由於已知的天線量測系統有前述的問題,因此需要發展一種能自動化量測天線效能的系統,以增進研發效率及避免人為誤差。 Since the known antenna measurement system has the aforementioned problems, it is necessary to develop a system that can automatically measure the performance of the antenna in order to improve research and development efficiency and avoid human error.
本發明用於量測天線的自動化系統適用於量測一待測天線,該待測天線包括一主輻射面,該系統包含一電波暗室、一量測支架、一標準天線及一控制單元。該電波暗室包括一頂板,及相對於該頂板的一底板,該待測天線貼近該頂板設置,且該待測天線的主輻射面朝向該底板設置。該量測支架設置在該電波暗室中,並包括一固定座及一滑軌單元,該固定座設置在該電波暗室的底板,該滑軌單元包括相對應的一圓弧軌道及一滑動部件,該圓弧軌道與該固定座相接,且該圓弧軌道可相對該固定座進行0度至360度的轉動,該滑動部件可沿著該圓弧軌道滑動。該標準天線設置於該滑動部件。該控制單元電連接該量測支架、該待測天線及該標準天線,該控制單元控制該圓弧軌道相對該固定座旋轉的一水平角度,並控制該滑動部件滑動到該圓弧軌道上的一預設位置,且透過該待測天線及該標準天線對應收發一預設的電磁波去量測該待測天線的天線增益。 The automated system for measuring an antenna of the present invention is suitable for measuring an antenna to be measured. The antenna to be measured includes a main radiation surface. The system includes an anechoic chamber, a measurement bracket, a standard antenna, and a control unit. The anechoic chamber includes a top plate and a bottom plate opposite to the top plate. The antenna to be tested is disposed close to the top plate, and the main radiation surface of the antenna to be tested is disposed toward the bottom plate. The measuring bracket is disposed in the anechoic chamber and includes a fixed base and a slide rail unit. The fixed base is disposed on the bottom plate of the anechoic chamber. The slide rail unit includes a corresponding arc track and a sliding member. The arc track is connected to the fixed seat, and the arc track can rotate from 0 to 360 degrees with respect to the fixed seat, and the sliding member can slide along the arc track. The standard antenna is disposed on the sliding member. The control unit is electrically connected to the measurement bracket, the antenna under test and the standard antenna. The control unit controls a horizontal angle of rotation of the arc track relative to the fixed base, and controls the sliding member to slide onto the arc track. A preset position, and the antenna gain of the antenna under test is measured by transmitting and receiving a preset electromagnetic wave corresponding to the antenna under test and the standard antenna.
較佳地,該圓弧軌道的弧角大體上是π/2。 Preferably, the arc angle of the circular arc track is substantially π / 2.
較佳地,該圓弧軌道的弧角大體上是π。 Preferably, the arc angle of the circular arc track is substantially π.
較佳地,該待測天線及該固定座於該底板的一法線方向上的投影相重疊。 Preferably, the projections of the antenna under test and the fixed base in a normal direction of the base plate overlap.
較佳地,該電波暗室的頂板具有一開口,該電波暗室還包括一窗戶,該窗戶內面用以貼附該待測天線,當該窗戶打開時,該電波暗 室的內外空間透過該開口連通,而當該窗戶關上時,該頂板的開口被該窗戶蓋住,該待測天線的主輻射面是朝向該電波暗室的底板。 Preferably, the top plate of the anechoic chamber has an opening, and the anechoic chamber further includes a window. The inner surface of the window is used to attach the antenna to be tested. The internal and external space of the room communicates through the opening, and when the window is closed, the opening of the top plate is covered by the window, and the main radiation surface of the antenna to be tested faces the bottom plate of the anechoic chamber.
較佳地,該控制單元還記錄並利用多組的該水平角度、該預設位置,以及該天線增益建構出該待測天線的半球面輻射場型。 Preferably, the control unit also records and uses a plurality of groups of the horizontal angle, the preset position, and the antenna gain to construct a hemispherical radiation field pattern of the antenna under test.
較佳地,該控制單元包括一射頻訊號產生器、一訊號饋入夾具、一頻譜分析儀及一電腦。該射頻訊號產生器輸出一預設大小的射頻輸出訊號。該訊號饋入夾具電連接該射頻訊號產生器以接收該射頻輸出訊號,且具有一探針及一攝像鏡頭,該攝像鏡頭朝向該探針設置以輔助觀測該探針的影像,該探針用以碰觸該待測天線以將該射頻輸出訊號傳遞到該待測天線,該待測天線接收該射頻輸出訊號並轉換成該電磁波,該標準天線接收該電磁波並轉換成一射頻接收訊號。該頻譜分析儀電連接該標準天線以接收該射頻接收訊號,並量測該射頻接收訊號的振幅。該電腦電連接該頻譜分析儀以得到該射頻接收訊號的振幅,並根據該射頻接收訊號的振幅、該標準天線的天線增益、該標準天線到該待測天線之間的距離,以及該訊號饋入夾具的路徑損耗共同計算該待測天線的天線增益,並建構該待測天線的半球面輻射場型。 Preferably, the control unit includes a radio frequency signal generator, a signal feeding fixture, a spectrum analyzer, and a computer. The radio frequency signal generator outputs a radio frequency output signal of a preset size. The signal feeding fixture is electrically connected to the radio frequency signal generator to receive the radio frequency output signal, and has a probe and a camera lens. The camera lens is disposed toward the probe to assist in observing the image of the probe. Touching the antenna under test to transmit the RF output signal to the antenna under test, the antenna under test receives the RF output signal and converts it into the electromagnetic wave, and the standard antenna receives the electromagnetic wave and converts it into a radio frequency receiving signal. The spectrum analyzer is electrically connected to the standard antenna to receive the RF receiving signal, and measures the amplitude of the RF receiving signal. The computer is electrically connected to the spectrum analyzer to obtain the amplitude of the RF receiving signal, and according to the amplitude of the RF receiving signal, the antenna gain of the standard antenna, the distance between the standard antenna and the antenna under test, and the signal feed The path loss into the fixture is used to calculate the antenna gain of the antenna under test, and the hemispherical radiation field pattern of the antenna under test is constructed.
較佳地,該控制單元包括一射頻訊號產生器、一訊號饋入夾具、一頻譜分析儀及一電腦。該射頻訊號產生器輸出一預設大小的射頻輸出訊號,該標準天線電連接該射頻訊號產生器以接收該射頻輸出訊號並轉換成該電磁波,該待測天線接收該電磁波並轉換成一射頻接收訊號。該訊號饋入夾具具有一探針及一攝像鏡頭,該攝像鏡頭朝向該探針設置以輔助觀測該探針的影像,該探針用以碰觸該待測天線以接收該射頻接收訊 號。該頻譜分析儀電連接該探針以接收該射頻接收訊號,並量測該射頻接收訊號的振幅。該電腦電連接該頻譜分析儀以得到該射頻接收訊號的振幅,並根據該射頻接收訊號的振幅、該標準天線的天線增益、該標準天線到該待測天線之間的距離,以及該訊號饋入夾具的路徑損耗共同計算該待測天線的天線增益,並建構該待測天線的半球面輻射場型。 Preferably, the control unit includes a radio frequency signal generator, a signal feeding fixture, a spectrum analyzer, and a computer. The radio frequency signal generator outputs a radio frequency output signal of a preset size. The standard antenna is electrically connected to the radio frequency signal generator to receive the radio frequency output signal and convert it into the electromagnetic wave. The antenna under test receives the electromagnetic wave and converts it into a radio frequency reception signal. . The signal feeding fixture has a probe and a camera lens. The camera lens is disposed toward the probe to assist in observing the image of the probe. The probe is used to touch the antenna under test to receive the radio frequency receiving signal. number. The spectrum analyzer is electrically connected to the probe to receive the RF receiving signal, and measures the amplitude of the RF receiving signal. The computer is electrically connected to the spectrum analyzer to obtain the amplitude of the RF receiving signal, and according to the amplitude of the RF receiving signal, the antenna gain of the standard antenna, the distance between the standard antenna and the antenna under test, and the signal feed The path loss into the fixture is used to calculate the antenna gain of the antenna under test, and the hemispherical radiation field pattern of the antenna under test is constructed.
較佳地,該標準天線是偏焦天線(off set antenna)、導波管天線(waveguide antenna)、洩漏波天線(leaky wave antenna)、喇叭天線(horn antenna)及陣列天線(array antenna)的其中任一者。 Preferably, the standard antenna is one of an off-set antenna, a waveguide antenna, a leaky wave antenna, a horn antenna, and an array antenna. Either.
本發明之效果在於利用該控制單元自動控制該量測支架連動該標準天線移動到一個半球面上的多個預設位置去量測該待測天線的天線增益,並利用該電腦建構出半球面輻射場型,因而免除人工量測的缺點。 The effect of the present invention is to use the control unit to automatically control the measurement bracket to move the standard antenna to a plurality of preset positions on a hemispherical surface to measure the antenna gain of the antenna under test, and use the computer to construct a hemispherical surface. The radiation field type eliminates the disadvantages of manual measurement.
11‧‧‧電波暗室 11‧‧‧ Anechoic Chamber
12‧‧‧標準天線 12‧‧‧standard antenna
13‧‧‧旋轉基座 13‧‧‧Swivel base
14‧‧‧待測天線 14‧‧‧Antenna to be tested
2‧‧‧待測天線 2‧‧‧Antenna to be tested
21‧‧‧主輻射面 21‧‧‧ main radiation surface
3‧‧‧電波暗室 3‧‧‧ Anechoic Chamber
31‧‧‧頂板 31‧‧‧Top plate
311‧‧‧開口 311‧‧‧ opening
32‧‧‧底板 32‧‧‧ floor
33‧‧‧側板 33‧‧‧Side
34‧‧‧窗戶 34‧‧‧ windows
35‧‧‧電磁波吸收體 35‧‧‧ electromagnetic wave absorber
4‧‧‧量測支架 4‧‧‧Measurement bracket
41‧‧‧固定座 41‧‧‧Fixed
42‧‧‧滑軌單元 42‧‧‧Slide unit
421‧‧‧圓弧軌道 421‧‧‧arc orbit
422‧‧‧滑動部件 422‧‧‧Sliding parts
423‧‧‧配重 423‧‧‧ Counterweight
5‧‧‧標準天線 5‧‧‧standard antenna
51‧‧‧喇叭輻射元件 51‧‧‧Speaker radiating element
52‧‧‧碟型反射鏡 52‧‧‧Disc Mirror
6‧‧‧控制單元 6‧‧‧Control unit
61‧‧‧射頻訊號產生器 61‧‧‧RF signal generator
62‧‧‧訊號饋入夾具 62‧‧‧Signal feeding fixture
621‧‧‧探針 621‧‧‧ Probe
622‧‧‧攝像鏡頭 622‧‧‧ camera lens
63‧‧‧頻譜分析儀 63‧‧‧Spectrum Analyzer
64‧‧‧電腦 64‧‧‧Computer
A‧‧‧弧心點 A‧‧‧ arc center point
Z‧‧‧方向 Z‧‧‧ direction
第1圖是先前技術的示意圖。 FIG. 1 is a schematic diagram of the prior art.
第2圖是本發明用於量測天線的自動化系統的第一較佳實施例的示意圖。 FIG. 2 is a schematic diagram of a first preferred embodiment of an automated system for measuring antennas according to the present invention.
第3圖是第一較佳實施例的示意圖,說明控制單元的一種實施方式。 FIG. 3 is a schematic diagram of the first preferred embodiment, illustrating one embodiment of the control unit.
第4圖是第一較佳實施例的示意圖,說明控制單元的另一種實施方式。 FIG. 4 is a schematic diagram of the first preferred embodiment, illustrating another embodiment of the control unit.
第5圖是本發明的第二較佳實施例的示意圖。 Fig. 5 is a schematic diagram of a second preferred embodiment of the present invention.
第6圖是本發明的第一較佳實施例的示意圖,說明標準天線的一種實 施方式。 Fig. 6 is a schematic diagram of a first preferred embodiment of the present invention, illustrating a practical implementation of a standard antenna; 施 WAY.
第7圖是本發明的第一較佳實施例包括配重的示意圖。 Fig. 7 is a schematic diagram of a first preferred embodiment of the present invention including a counterweight.
參閱第2圖,本發明一種用於量測天線的自動化系統適用於量測一待測天線2的天線增益及建構該待測天線2的半球面輻射場型,該待測天線2包括一主輻射面21,本系統的第一較佳實施例包含一電波暗室3、一量測支架4、一標準天線5及一控制單元6。 Referring to FIG. 2, an automated system for measuring antennas according to the present invention is suitable for measuring the antenna gain of an antenna 2 to be tested and constructing a hemispherical radiation field pattern of the antenna 2 to be tested. The antenna 2 to be tested includes a main Radiation surface 21. The first preferred embodiment of the system includes an anechoic chamber 3, a measurement bracket 4, a standard antenna 5, and a control unit 6.
該電波暗室3的形狀大致上呈一中空的長方體,其包括一頂板31、一相對於該頂板31的底板32、四片連接該頂板31及該底板32的側板33,及一窗戶34。 The shape of the anechoic chamber 3 is substantially a hollow rectangular parallelepiped, which includes a top plate 31, a bottom plate 32 opposite to the top plate 31, four side plates 33 connecting the top plate 31 and the bottom plate 32, and a window 34.
該頂板31、該等側板33及該底板32貼有多個電磁波吸收體35,且該頂板31具有一開口311,該開口311大約位於該頂板31的幾何中心。 The top plate 31, the side plates 33, and the bottom plate 32 are attached with a plurality of electromagnetic wave absorbers 35, and the top plate 31 has an opening 311, which is located approximately at the geometric center of the top plate 31.
該窗戶34內面用以貼附該待測天線2,當該窗戶34打開時,該電波暗室3的內外空間透過該開口311連通,而當該窗戶34關上時,該頂板31的開口311被該窗戶34蓋住,且主輻射面21是面向該電波暗室3的底板32。 The inner surface of the window 34 is used to attach the antenna 2 to be tested. When the window 34 is opened, the inner and outer spaces of the anechoic chamber 3 communicate through the opening 311. When the window 34 is closed, the opening 311 of the top plate 31 is closed. The window 34 is covered, and the main radiating surface 21 is a bottom plate 32 facing the anechoic chamber 3.
該量測支架4設置在該電波暗室3中,並包括一固定座41及一滑軌單元42。 The measurement support 4 is disposed in the anechoic chamber 3 and includes a fixing base 41 and a slide rail unit 42.
該固定座41設置在該電波暗室3的底板32的幾何中心,且該待測天線2及該固定座41於該底板的一法線方向Z上的投影相重疊。 The fixed base 41 is disposed at the geometric center of the bottom plate 32 of the anechoic chamber 3, and the projections of the antenna 2 to be tested and the fixed base 41 in a normal direction Z of the bottom plate overlap.
該滑軌單元42包括相對應的一圓弧軌道421及一滑動部件 422,舉例說明,該滑動部件422及該圓弧軌道421分別是一組滑軌的內軌和外軌。 The slide rail unit 42 includes a corresponding arc track 421 and a sliding member. 422. By way of example, the sliding member 422 and the arc track 421 are an inner rail and an outer rail of a group of slide rails, respectively.
該圓弧軌道421與該固定座41相接,且該圓弧軌道421可相對該固定座41進行360度的轉動,例如繞著圖2中的Z方向旋轉ψ度(ψ=0~360度),該滑動部件422可沿著該圓弧軌道421滑動,且由於該圓弧軌道421的弧角大體上是π/2(90度),所以該滑動部件422具有繞著該圓弧軌道421的弧心點A旋轉θ度(θ=0~90度)的功能。 The arc track 421 is connected to the fixed seat 41, and the arc track 421 can be rotated 360 degrees with respect to the fixed seat 41, for example, rotated by ψ degrees (ψ = 0 ~ 360 degrees around the Z direction in FIG. 2) ), The sliding member 422 can slide along the arc track 421, and since the arc angle of the arc track 421 is substantially π / 2 (90 degrees), the sliding member 422 has a circle around the arc track 421 The function of rotating the arc center point A by θ degrees (θ = 0 ~ 90 degrees).
該標準天線5設置於該滑動部件422。 The standard antenna 5 is disposed on the sliding member 422.
該控制單元6電連接該量測支架4、該待測天線2及該標準天線5。該控制單元6控制該圓弧軌道421相對該固定座41旋轉的水平角度ψ,及控制該滑動部件422滑動到該圓弧軌道421上的一預設位置(該預設位置相關於繞著弧心點A旋轉的角度θ),以及透過該待測天線2及該標準天線5對應收發一預設的電磁波去量測該待測天線2的天線增益G。該控制單元6還記錄並利用多組的水平角度ψ、該標準天線5位於該圓弧軌道421上的預設位置θ,以及該待測天線2的天線增益G建構出該待測天線2的半球面輻射場型。 The control unit 6 is electrically connected to the measurement bracket 4, the antenna 2 to be tested and the standard antenna 5. The control unit 6 controls the horizontal angle ψ that the arc track 421 rotates relative to the fixed seat 41, and controls the sliding member 422 to slide to a preset position on the arc track 421 (the preset position is related to the arc The angle θ of the rotation of the center point A), and the antenna gain G of the antenna 2 to be measured is measured by transmitting and receiving a preset electromagnetic wave corresponding to the antenna 2 and the standard antenna 5. The control unit 6 also records and uses multiple sets of horizontal angles ψ, the preset position θ of the standard antenna 5 on the arc track 421, and the antenna gain G of the antenna 2 to construct the antenna 2 Hemispherical radiation field type.
以下更詳細地說明半球面輻射場型的建構方式,由於該標準天線5被該滑動部件422連動,且無論該滑動部件422滑動到該圓弧軌道421上的任何位置,該標準天線5與該待測天線2之間的距離都保持固定,而該標準天線5與該待測天線2之間的相對角度則是在ψ=0~360度且θ=0~90度這樣的範圍中變動,並且,一個半徑固定為R的預設半球面上的任一點的空間座標都可以用(R,ψ=0~360,θ=0~90)界定出來,所以該標 準天線5的所在位置(R,ψ,θ)及天線增益G就可以對應起來,從而知道該待測天線2不同角度時的天線增益,進而建構出該待測天線2的半球面輻射場型(ψ=0~360,θ=0~90,G),其中參數R是定值,所以建構輻射場型圖時可忽略,只要保留三個參數(ψ,θ,G)即可。 The construction method of the hemispherical radiation field type is explained in more detail below. Since the standard antenna 5 is linked by the sliding member 422, and regardless of the sliding member 422 sliding to any position on the arc track 421, the standard antenna 5 and the The distance between the antennas 2 to be tested is kept fixed, and the relative angle between the standard antenna 5 and the antenna 2 to be tested varies within a range of ψ = 0 ~ 360 degrees and θ = 0 ~ 90 degrees. In addition, the spatial coordinates of any point on a preset hemisphere with a fixed radius of R can be defined by (R, ψ = 0 ~ 360, θ = 0 ~ 90), so the location of the standard antenna 5 (R , ψ, θ) and the antenna gain G , so as to know the antenna gain of the antenna 2 under different angles, and then construct the hemispherical radiation field pattern of the antenna 2 (ψ = 0 ~ 360, θ = 0 ~ 90, G), where the parameter R is a fixed value, so it can be ignored when constructing the radiation field pattern, as long as three parameters (ψ, θ, G ) are retained.
參閱第3圖,其是為了說明當該待測天線2作為發射天線而該標準天線5作為接收天線時,該控制單元6的一種實施方式。 Referring to FIG. 3, it is used to describe an embodiment of the control unit 6 when the antenna 2 to be tested is used as a transmitting antenna and the standard antenna 5 is used as a receiving antenna.
該控制單元6包括一射頻訊號產生器61、一訊號饋入夾具62、一頻譜分析儀63及一電腦64。 The control unit 6 includes a radio frequency signal generator 61, a signal feeding fixture 62, a spectrum analyzer 63, and a computer 64.
該射頻訊號產生器61輸出一預設大小的射頻輸出訊號。 The radio frequency signal generator 61 outputs a radio frequency output signal of a preset size.
該訊號饋入夾具62電連接該射頻訊號產生器61以接收該射頻輸出訊號,且具有一探針621及一攝像鏡頭622,該攝像鏡頭622朝向該探針621設置以輔助觀測該探針621的影像,該探針621用以碰觸該待測天線2以將該射頻輸出訊號傳遞到該待測天線2,該待測天線2接收該射頻輸出訊號並轉換成電磁波,該標準天線5接收該電磁波並轉換成一射頻接收訊號。 The signal feeding fixture 62 is electrically connected to the radio frequency signal generator 61 to receive the radio frequency output signal, and has a probe 621 and a camera lens 622. The camera lens 622 is disposed toward the probe 621 to assist in observing the probe 621. Image, the probe 621 is used to touch the antenna 2 under test to transmit the RF output signal to the antenna 2 under test. The antenna 2 under test receives the RF output signal and converts it into electromagnetic waves. The standard antenna 5 receives The electromagnetic wave is converted into a radio frequency receiving signal.
該頻譜分析儀63電連接該標準天線5以接收該射頻接收訊號,並量測該射頻接收訊號的振幅。在實際應用上,該頻譜分析儀63也可以用網路分析儀取代。 The spectrum analyzer 63 is electrically connected to the standard antenna 5 to receive the RF receiving signal, and measures the amplitude of the RF receiving signal. In practical applications, the spectrum analyzer 63 can also be replaced with a network analyzer.
該電腦64電連接該頻譜分析儀63以接收該射頻接收訊號的振幅,並根據該射頻接收訊號的振幅、該標準天線5的天線增益、該標準天線5到該待測天線2之間的距離,以及該訊號饋入夾具62的路徑損耗(insertion loss)共同計算該待測天線2的天線增益G,並建構該待測天線 2的半球面輻射場型(ψ,θ,G)。 The computer 64 is electrically connected to the spectrum analyzer 63 to receive the amplitude of the RF receiving signal, and according to the amplitude of the RF receiving signal, the antenna gain of the standard antenna 5, and the distance between the standard antenna 5 and the antenna 2 to be tested And the path loss of the signal feeding fixture 62 to calculate the antenna gain G of the antenna 2 to be tested, and to construct a hemispherical radiation field pattern (ψ, θ, G ) of the antenna 2 to be tested.
參閱第4圖,其是為了說明當該標準天線5作為發射天線而該待測天線2作為接收天線時,該控制單元6的另一種實施方式。 Referring to FIG. 4, it is used to describe another embodiment of the control unit 6 when the standard antenna 5 is used as a transmitting antenna and the antenna under test 2 is used as a receiving antenna.
該射頻訊號產生器61輸出一預設大小的射頻輸出訊號。 The radio frequency signal generator 61 outputs a radio frequency output signal of a preset size.
該標準天線5電連接該射頻訊號產生器61以接收該射頻輸出訊號並轉換成該電磁波,該待測天線2接收該電磁波並轉換成一射頻接收訊號。 The standard antenna 5 is electrically connected to the radio frequency signal generator 61 to receive the radio frequency output signal and convert it into the electromagnetic wave, and the antenna 2 to be tested receives the electromagnetic wave and converts it into a radio frequency reception signal.
該訊號饋入夾具62包括一探針621及一攝像鏡頭622。該攝像鏡頭622朝向該探針621設置以輔助觀測該探針621的影像,該探針621用以碰觸該待測天線2以接收該射頻接收訊號。 The signal feeding fixture 62 includes a probe 621 and a camera lens 622. The camera lens 622 is disposed toward the probe 621 to assist in observing the image of the probe 621, and the probe 621 is used to touch the antenna 2 to be tested to receive the radio frequency receiving signal.
該頻譜分析儀63電連接該探針621以接收該射頻接收訊號,並量測該射頻接收訊號的振幅。 The spectrum analyzer 63 is electrically connected to the probe 621 to receive the RF receiving signal, and measures the amplitude of the RF receiving signal.
該電腦64電連接該頻譜分析儀63以得到該射頻接收訊號的振幅,並計算該待測天線2的天線增益G及建構該待測天線2的半球面輻射場型。 The computer 64 is electrically connected to the spectrum analyzer 63 to obtain the amplitude of the RF receiving signal, and calculates the antenna gain G of the antenna 2 to be tested and constructs a hemispherical radiation field pattern of the antenna 2 to be tested.
該待測天線2的天線增益G的計算方式補充說明如下:因為該訊號產生器61輸出的射頻輸出訊號的功率P1是已知,該標準天線5也是已知的天線(增益已知),所以可以計算出該標準天線5接收該射頻輸出訊號後輻射出的該電磁波的功率P2,並且,該電磁波行經的路徑距離是固定的,因此可以計算該電磁波到達該待測天線2時的功率P3,另外該頻譜分析儀63接可以量得該射頻接收訊號的功率P4,其中功率P4和功率P3的差異就是該待測天線2的增益和該訊號饋入夾具62 的路徑損耗(insertion loss)兩者造成的,而該路徑損耗又是已知(可用網路分析儀等工具量得),因此可以將該路徑損耗補償掉,故最終算得到該待測天線2的天線增益G。 The calculation method of the antenna gain G of the antenna 2 to be tested is supplementarily explained as the power P1 of the RF output signal output by the signal generator 61 is known, and the standard antenna 5 is also a known antenna (known gain), so The power P2 of the electromagnetic wave radiated by the standard antenna 5 after receiving the RF output signal can be calculated, and the path distance traveled by the electromagnetic wave is fixed, so the power P3 when the electromagnetic wave reaches the antenna 2 to be tested can be calculated. In addition, the spectrum analyzer 63 can measure the power P4 of the RF receiving signal. The difference between the power P4 and the power P3 is both the gain of the antenna 2 to be tested and the path loss of the signal feeding the fixture 62. Caused, and the path loss is known (measured by tools such as a network analyzer), so the path loss can be compensated, so the antenna gain G of the antenna 2 to be tested is finally calculated.
參閱第5圖,是本發明的第二較佳實施例,其與第一較佳實施例近似,差異的地方在於該圓弧軌道421的弧角大體上是π(180度),所以該滑動部件422具有繞著該圓弧軌道421的弧心點A旋轉θ=0~±90度的功能,而該圓弧軌道421可相對該固定座41進行ψ=0~180度的轉動功能。 Referring to FIG. 5, it is a second preferred embodiment of the present invention, which is similar to the first preferred embodiment. The difference is that the arc angle of the arc track 421 is substantially π (180 degrees), so the sliding The component 422 has a function of rotating θ = 0 ~ ± 90 degrees about the arc center point A of the arc track 421, and the arc track 421 can perform a rotation function of ψ = 0 ~ 180 degrees with respect to the fixed seat 41.
參閱第6圖,是該標準天線5採用偏焦天線(off set antenna)的一示意圖,該標準天線5具有一喇叭輻射元件51及一碟型反射鏡52,該控制單元6是電連接到該標準天線5的喇叭輻射元件51,該喇叭輻射元件51本身就在是一個喇叭天線。此外,該標準天線5還可以是導波管天線(waveguide antenna)、洩漏波天線(leaky wave antenna)、喇叭天線(horn antenna)、陣列天線(array antenna),或其它具有高指向性特徵的天線類型。 Referring to FIG. 6, it is a schematic diagram of the standard antenna 5 using an off-set antenna. The standard antenna 5 has a horn radiating element 51 and a dish-shaped mirror 52. The control unit 6 is electrically connected to the The horn radiating element 51 of the standard antenna 5 is itself a horn antenna. In addition, the standard antenna 5 may also be a waveguide antenna, leaky wave antenna, horn antenna, array antenna, or other antenna with high directivity characteristics. Types of.
參閱第7圖,該滑軌單元42還包括一與該圓弧軌道421相接的配重423,該配重423的功用在於降低該滑軌單元42高速旋轉時所產生的抖動。 Referring to FIG. 7, the slide rail unit 42 further includes a weight 423 connected to the arc track 421. The function of the weight 423 is to reduce the jitter generated when the slide rail unit 42 rotates at a high speed.
綜上所述,上述較佳實施例具有以下優點:利用該量測支架4連動該標準天線5在一個半球面上的多個空間點對該待測天線2進行自動化的天線增益量測,並利用該電腦64建構出該待測天線2的半球面輻射場型,不但免除了手動操作的費時更降低人工操作誤差,進而解決先前 技術的缺點。 To sum up, the above-mentioned preferred embodiment has the following advantages: the measurement bracket 4 is used to link the standard antenna 5 with multiple spatial points on a hemisphere to perform automated antenna gain measurement on the antenna 2 to be tested, and The computer 64 is used to construct the hemispherical radiation field pattern of the antenna 2 to be tested, which not only eliminates the time-consuming manual operation but also reduces the manual operation error, thereby solving the previous problem. Disadvantages of technology.
惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單地等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。 However, the above are only examples of the present invention. When the scope of implementation of the present invention cannot be limited by this, any simple equivalent changes and modifications made in accordance with the scope of the patent application and the content of the patent specification of the present invention are still Within the scope of the invention patent.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107140123A TWI674416B (en) | 2018-11-09 | 2018-11-09 | An automatic system for antenna measurement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107140123A TWI674416B (en) | 2018-11-09 | 2018-11-09 | An automatic system for antenna measurement |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI674416B true TWI674416B (en) | 2019-10-11 |
TW202018310A TW202018310A (en) | 2020-05-16 |
Family
ID=69023704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107140123A TWI674416B (en) | 2018-11-09 | 2018-11-09 | An automatic system for antenna measurement |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI674416B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI742545B (en) * | 2020-02-27 | 2021-10-11 | 佳思科技有限公司 | Comprehensive system for measuring the conduction and radiation characteristics of a packaged antenna |
CN113848394A (en) * | 2021-09-23 | 2021-12-28 | 南京捷希科技有限公司 | Compact range air interface test equipment |
TWI774237B (en) * | 2021-02-09 | 2022-08-11 | 國立臺灣大學 | Antenna measuring system with dish-shaped reflective surface |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWM316394U (en) * | 2006-10-05 | 2007-08-01 | Mitac Int Corp | Antenna measurement system and transmitting antenna structure thereof |
US8401506B2 (en) * | 2008-05-15 | 2013-03-19 | Zte Corporation | Method and system for testing the radiation performance of wireless terminal based on data mode |
TWI416793B (en) * | 2008-07-14 | 2013-11-21 | Hon Hai Prec Ind Co Ltd | A device of adjusting an antenna and a method of adjuxting the antenna |
CN103630761A (en) * | 2013-11-20 | 2014-03-12 | 中国电子科技集团公司第四十一研究所 | Multi-probe spherical near field channel calibration device and method |
TWI624160B (en) * | 2017-05-31 | 2018-05-11 | 川升股份有限公司 | Throughput measurement system for multiple input multiple output antennas |
-
2018
- 2018-11-09 TW TW107140123A patent/TWI674416B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWM316394U (en) * | 2006-10-05 | 2007-08-01 | Mitac Int Corp | Antenna measurement system and transmitting antenna structure thereof |
US8401506B2 (en) * | 2008-05-15 | 2013-03-19 | Zte Corporation | Method and system for testing the radiation performance of wireless terminal based on data mode |
TWI416793B (en) * | 2008-07-14 | 2013-11-21 | Hon Hai Prec Ind Co Ltd | A device of adjusting an antenna and a method of adjuxting the antenna |
CN103630761A (en) * | 2013-11-20 | 2014-03-12 | 中国电子科技集团公司第四十一研究所 | Multi-probe spherical near field channel calibration device and method |
TWI624160B (en) * | 2017-05-31 | 2018-05-11 | 川升股份有限公司 | Throughput measurement system for multiple input multiple output antennas |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI742545B (en) * | 2020-02-27 | 2021-10-11 | 佳思科技有限公司 | Comprehensive system for measuring the conduction and radiation characteristics of a packaged antenna |
TWI774237B (en) * | 2021-02-09 | 2022-08-11 | 國立臺灣大學 | Antenna measuring system with dish-shaped reflective surface |
US11552716B2 (en) | 2021-02-09 | 2023-01-10 | National Taiwan University | Antenna measurement system with disc-shaped reflection surface |
CN113848394A (en) * | 2021-09-23 | 2021-12-28 | 南京捷希科技有限公司 | Compact range air interface test equipment |
Also Published As
Publication number | Publication date |
---|---|
TW202018310A (en) | 2020-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI676035B (en) | An automatic measurement system for antenna radiation pattern | |
US7035594B2 (en) | Method and apparatus for testing and evaluating wireless communication devices | |
TWI674416B (en) | An automatic system for antenna measurement | |
US12050240B2 (en) | Radome measuring system and method | |
US7928906B2 (en) | Antenna measurement systems | |
CN103630761B (en) | A kind of Multi probe sphere near field passage calibrating installation and method | |
CN106199221B (en) | A kind of Antenna testing system | |
US20130141287A1 (en) | Apparatus for Measuring a Radiation Pattern of an Active Antenna Arrangement | |
CN109142890B (en) | Terahertz leaky-wave antenna measuring system | |
CN102445599B (en) | Frequency domain measuring method of array antenna directional pattern | |
RU2582892C2 (en) | Device for electromagnetic testing of object | |
TW201908745A (en) | Antenna radiation pattern measurement system for multipath scenario application | |
US11519949B2 (en) | Measurement system and method of performing an over-the-air test | |
WO2016161897A1 (en) | Wireless terminal testing system and method for controlling same | |
KR20090029978A (en) | Apparatus and method for measuring antenna radiation patterns | |
CN105352978A (en) | Handheld wave-absorbing material reflectivity measuring device | |
CN107076788A (en) | Antenna measurement device and method of testing | |
CN109286453B (en) | Measurement system with positioning system for beamforming measurements and measurement method | |
WO2016161654A1 (en) | Wireless terminal testing system and method for controlling same | |
KR20100049955A (en) | Apparatus for measurement of antenna radiation performance and method of designing thereof | |
CN110954755A (en) | Automatic measuring system for antenna radiation pattern | |
CN109709407B (en) | Cylindrical surface field quiet zone amplitude and phase detection system | |
CN108508393A (en) | A kind of Multi probe Antenna testing system probe calibration system and calibration method | |
JP2003057281A (en) | Anechoic chamber, system and method of measuring radiation electromagnetic waves | |
CN106291145B (en) | The test macro of wireless terminal |