TWI670919B - Power supply with resonant converter and control method thereof - Google Patents

Power supply with resonant converter and control method thereof Download PDF

Info

Publication number
TWI670919B
TWI670919B TW107118371A TW107118371A TWI670919B TW I670919 B TWI670919 B TW I670919B TW 107118371 A TW107118371 A TW 107118371A TW 107118371 A TW107118371 A TW 107118371A TW I670919 B TWI670919 B TW I670919B
Authority
TW
Taiwan
Prior art keywords
resonant
converter
resonant converter
power supply
frequency
Prior art date
Application number
TW107118371A
Other languages
Chinese (zh)
Other versions
TW202005238A (en
Inventor
賴炎生
游閔翔
Original Assignee
賴炎生
游閔翔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 賴炎生, 游閔翔 filed Critical 賴炎生
Priority to TW107118371A priority Critical patent/TWI670919B/en
Application granted granted Critical
Publication of TWI670919B publication Critical patent/TWI670919B/en
Publication of TW202005238A publication Critical patent/TW202005238A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

本發明係關於一種具有諧振轉換器的電源及其控制方法,該電源包含交流對直流轉換器與一直流對直流諧振轉換器,該交流對直流轉換器將輸入的交流電源轉換為一直流電源,並送至直流對直流諧振轉換器轉換成輸出電壓的直流電源;該直流對直流諧振轉換器包含一諧振型轉換器,其偵測諧振電流並利用一零交越點偵測及一峰值檢測,得到該諧振轉換器的諧振頻率,並且藉由調整交流對直流轉換器的直流輸出電壓,以控制諧振型轉換器的切換頻率,使其趨近或等於諧振頻率,以提高效率,此控制方法為諧振頻率追蹤;藉此解決先前因諧振元件規格誤差,無法計算精確諧振頻率,以致於無法將切換頻率操作於諧振頻率的問題;此控制方法包含為穩態控制模式及暫態控制模式。在穩態控制模式下,執行上述的諧振頻率追蹤,以提高效率;另在暫態控制模式下,固定直流鏈電壓,諧振轉換器依據負載調整切換頻率,快速調整輸出電壓與改善暫態響應。 The present invention relates to a power supply having a resonant converter including an alternating current to direct current converter and a direct current to direct current resonant converter, and the alternating current to direct current converter converting an input alternating current power source into a direct current power source, And sent to a DC-to-DC resonant converter to convert the output voltage into a DC power supply; the DC-to-DC resonant converter includes a resonant converter that detects the resonant current and utilizes a zero-crossing point detection and a peak detection. Obtaining the resonant frequency of the resonant converter, and adjusting the switching output frequency of the resonant converter to adjust the switching frequency of the resonant converter to be close to or equal to the resonant frequency to improve efficiency by adjusting the DC output voltage of the AC-DC converter. Resonant frequency tracking; thereby solving the problem that the previous resonant frequency cannot be calculated due to the specification error of the resonant component, so that the switching frequency cannot be operated at the resonant frequency; the control method includes the steady state control mode and the transient control mode. In the steady-state control mode, the above-mentioned resonant frequency tracking is performed to improve efficiency; in the transient control mode, the DC link voltage is fixed, the resonant converter adjusts the switching frequency according to the load, and the output voltage is quickly adjusted to improve the transient response.

Description

具有諧振轉換器的電源暨其控制方法 Power supply with resonant converter and control method thereof

本發明係關於一具有諧振轉換器的電源及其控制方法,尤指一種可以偵測到諧振轉換器的實際諧振頻率並加快其響應速度的相關技術。 The present invention relates to a power supply having a resonant converter and a control method thereof, and more particularly to a related art that can detect the actual resonant frequency of the resonant converter and accelerate its response speed.

已知的一架構為具有諧振轉換器的電源是如圖1所示,其包含一交流對直流轉換器10和一直流對直流諧振轉換器,而直流對直流諧振轉換器是由諧振轉換器21所構成,該交流對直流轉換器10輸入為交流電源轉換為一高壓的直流電源,在經由直流對直流轉換器的諧振轉換器21將高壓的直流電源轉換為低壓的直流電源。 A known power supply having a resonant converter is shown in FIG. 1, which includes an AC-to-DC converter 10 and a DC-DC resonant converter, and the DC-DC resonant converter is a resonant converter 21 The AC-to-DC converter 10 inputs an AC power source into a high-voltage DC power source, and converts the high-voltage DC power source into a low-voltage DC power source via the DC converter of the DC-DC converter.

該電源之直流對直流轉換器是由諧振轉換器21構成,如圖1所示是一種諧振轉換器21架構,主要具有一全橋電路11、一諧振槽12、一變壓器27、一輸出電路13。而全橋電路11輸入端是一高壓電源並連接著諧振槽12,而諧振槽包含一諧振電容Cr、一諧振電感Lr和一變壓器的激磁電感Lm;此諧振頻率又分兩諧振頻率,第一諧振頻率fr為一諧振電容Cr、一諧振電感Lr所決定;第二諧振頻率fm為一諧振電容Cr、一諧 振電感Lr與一變壓器的激磁電感Lm所決定。 The DC-DC converter of the power source is composed of a resonant converter 21, as shown in FIG. 1 is a resonant converter 21 architecture, which mainly has a full-bridge circuit 11, a resonant tank 12, a transformer 27, and an output circuit 13. . The input end of the full-bridge circuit 11 is a high-voltage power supply connected to the resonant tank 12, and the resonant tank includes a resonant capacitor C r , a resonant inductor L r and a magnetizing inductance L m of a transformer; the resonant frequency is further divided into two resonant frequencies The first resonant frequency f r is determined by a resonant capacitor C r and a resonant inductor L r ; the second resonant frequency f m is determined by a resonant capacitor C r , a resonant inductor L r , and a magnetizing inductance L m of a transformer. .

該電源之諧振轉換器利用頻率調變的方式達到穩壓;當負載變重時,頻率由高頻往低頻移動以調節電壓達到穩壓的機制。 The resonant converter of the power supply uses voltage modulation to achieve voltage regulation; when the load becomes heavy, the frequency moves from high frequency to low frequency to adjust the voltage to achieve a voltage stabilization mechanism.

該電源之諧振轉換器依照特性不同可分為三個區域,其中操作於Region 3為電容性具有零電流切換之特性,較少操作於此區間。操作於Region 1(切換頻率大於第一諧振頻率fr)為電感性具有零電壓切換之特性,優點為具有零電壓切換於功率開關開啟時,降低開啟時之切換損失,但功率開關關閉時的切換損失較大因關閉時的電流較大;工作在Region 2(切換頻率介於第一諧振頻率fr與第二諧振頻率之間fm)時,其電壓增益大於1,優點相同為具有零電壓切換於功率開關開啟,而缺點為具有較大的環流損失於諧振槽中增加導通損失。 The resonant converter of the power supply can be divided into three regions according to different characteristics, wherein the operation of Region 3 is characterized by capacitive zero current switching, and is less operated in this interval. Operating in Region 1 (the switching frequency is greater than the first resonant frequency f r ) is characterized by inductive zero voltage switching. The advantage is that when there is zero voltage switching when the power switch is turned on, the switching loss when turning on is reduced, but when the power switch is turned off The switching loss is large because the current at the time of shutdown is large; when the operation is in Region 2 (the switching frequency is between the first resonance frequency f r and the second resonance frequency f m ), the voltage gain is greater than 1, and the advantage is the same as having zero. The voltage is switched to the power switch to be turned on, and the disadvantage is that a large circulating current loss increases the conduction loss in the resonant tank.

該電源之諧振轉換器之切換頻率操作於第一諧振頻率上,減少上述將轉換器操作於Region 1具有較大的切換損失與操作於Region 2具有較大的導通損失,當切換頻率接近第一諧振頻率時,具有零電壓切換的特性,於功率開關關閉時降低額外的環流損失於諧振槽中,也會減少此時的切換損失,以提升諧振轉換器的效率。 The switching frequency of the resonant converter of the power supply operates at the first resonant frequency, reducing the above-mentioned operation of the converter with a large switching loss of Region 1 and operating with a large conduction loss of Region 2, when the switching frequency is close to the first At the resonant frequency, the characteristic of zero voltage switching reduces the loss of additional circulating current in the resonant tank when the power switch is turned off, and also reduces the switching loss at this time to improve the efficiency of the resonant converter.

針對電源之諧振轉換器操作於諧振頻率上的技術以一先前技術(參照專利文獻1)進行說明,係對於第一諧振 頻率偵測方法需先送一切換頻率可使諧振電流呈現正弦波,此切換頻率為第一諧振頻率,得知第一諧振頻率後將此設為參考頻率,以此調整交流對直流轉換器輸出電壓,使諧振轉換器的切換頻率維持在諧振頻率上且達到穩壓,提升整體電源轉換器的效率。 A technique for operating a resonant converter of a power source to operate at a resonant frequency is described in a prior art (refer to Patent Document 1) for a first resonance The frequency detection method needs to send a switching frequency to make the resonant current appear a sine wave. The switching frequency is the first resonant frequency. After learning the first resonant frequency, the reference frequency is set to adjust the output of the AC to DC converter. The voltage maintains the switching frequency of the resonant converter at the resonant frequency and reaches regulation, improving the efficiency of the overall power converter.

針對電源之諧振轉換器操作於第一諧振頻率上的技術以另一先前技術(參照專利文獻2)進行說明,係對於第一諧振頻率偵測方法以線上偵測電流的變化以調整切換頻率,使切換頻率操作於第一諧振頻率上,提升諧振轉換器的效率。 A technique for operating a resonant converter of a power source to operate at a first resonant frequency is described in another prior art (refer to Patent Document 2) for detecting a change in current on a line to adjust a switching frequency for a first resonant frequency detecting method, The switching frequency is operated at the first resonant frequency to increase the efficiency of the resonant converter.

【參考文獻】【references】

Zih-Jie Su and Yen-Shin Lai, “On-line DC-link voltage control of LLC resonant converter for server power applications,” IEEE Conference Publications, Publication Year:2014, pp.5422-5428. Zih-Jie Su and Yen-Shin Lai, "On-line DC-link voltage control of LLC resonant converter for server power applications," IEEE Conference Publications, Publication Year: 2014, pp. 5422-5428.

TW 1617126 TW 1617126

本發明主要目的在提供一種包含諧振轉換器的電源及其控制方法,其根據電源的工作狀態以偵測實際的第一諧振頻率,再使諧振轉換器的切換頻率趨近或等於實際的第一諧振頻率,藉此達到效率的提升。 The main object of the present invention is to provide a power supply including a resonant converter and a control method thereof, which are configured to detect an actual first resonant frequency according to an operating state of the power source, and then make the switching frequency of the resonant converter approach or equal to the actual first Resonant frequency, thereby achieving an increase in efficiency.

為達成本發明之技術係上述需具有諧振轉換器 的電源包含:一交流對直流轉換器,具有一交流電源輸入端、一直流電源輸出端和一控制端;一直流對直流諧振轉換器,具有一諧振轉換器、一直流電源輸入端、一直流電源輸出端、一諧振轉換器控制器、一諧振電流零交越點偵測、一諧振電流峰值檢測。該電源之諧振電流零交越點偵測與峰值檢測分別與諧振轉換器、諧振轉換器控制器做連接,以分別取得一零交越點偵測和峰值檢測的方波電壓訊號,偵測兩方波電壓的上升緣以計算此段時間,得知此段時間為實際第一諧振週期的四分之一,再由諧振轉換器控制器換算成實際的第一諧振頻率與當下的切換頻率做運算,並將此補償量傳送至交流對直流轉換器的控制端,以改變該電源之交流對直流轉換器的輸出電壓,進而控制該電源之諧振轉換器的切換頻率。 In order to achieve the technology of the present invention, the above needs to have a resonant converter The power supply comprises: an AC-to-DC converter having an AC power input terminal, a DC power output terminal and a control terminal; a DC-to-DC resonant converter having a resonant converter, a DC power input terminal, and a DC current Power output, a resonant converter controller, a resonant current zero-crossing point detection, and a resonant current peak detection. The resonant current zero-crossing point detection and peak detection of the power supply are respectively connected with the resonant converter and the resonant converter controller to respectively obtain a zero-crossing point detection and peak detection square wave voltage signal, and detect two The rising edge of the square wave voltage is used to calculate the period of time, and it is known that this period is one quarter of the actual first resonance period, and then converted by the resonant converter controller into the actual first resonant frequency and the current switching frequency. The operation is performed, and the compensation amount is transmitted to the control end of the AC to DC converter to change the output voltage of the AC to DC converter of the power supply, thereby controlling the switching frequency of the resonant converter of the power supply.

前述諧振轉換器控制器偵測的方波電壓訊號是由諧振轉換器的諧振電流,經過零交越點偵測、峰值檢測所產生兩方波電壓訊號,並擷取此兩方波電壓訊號之上升緣之間的時間,以線上計算的方式得知實際的第一諧振週期,得知實際的第一諧振週期與當下的切換週期做運算並經過一可調電壓控制單元產生一調整交流對直流轉換器輸出電壓的參考值,而經由調整交流對直流轉換器的輸出電壓控制諧振轉換器的切換頻率接近第一諧振頻率,以提升效率。 The square wave voltage signal detected by the resonant converter controller is a resonant current of the resonant converter, and the two square wave voltage signals generated by the zero crossing point detection and the peak detection generate the two square wave voltage signals. The time between the rising edges, the actual first resonance period is known in an online calculation manner, and the actual first resonance period is calculated with the current switching period and an adjustable voltage is applied to the control unit to generate an adjusted AC to DC. The converter outputs a reference value of the voltage, and the switching frequency of the resonant converter is controlled to be close to the first resonant frequency by adjusting the output voltage of the alternating current to the direct current converter to improve efficiency.

本發明之另一目的在於提供一種加快諧振轉換器切換頻率固定操作於第一諧振頻率時的響應速度,以克服 諧振頻率追蹤的問題,當諧振轉換器控制器將諧振轉換器的切換頻率固定於第一諧振頻率,此時已不是傳統式諧振轉換器以頻率調變達到穩壓,而是利用調整交流對直流轉換器的輸出電壓以達到直流對直流轉換器輸出端穩定的電壓。 Another object of the present invention is to provide a response speed that accelerates the switching frequency of a resonant converter at a first resonant frequency to overcome The problem of resonant frequency tracking, when the resonant converter controller fixes the switching frequency of the resonant converter to the first resonant frequency, at this time, the conventional resonant converter is not regulated by frequency modulation, but is adjusted by using AC to DC. The output voltage of the converter is such that it is stable to the DC-to-DC converter output.

前述發明主要根據該電源之諧振轉換器輸出端電壓回授至控制器所產的誤差值做模式控制,在穩態時誤差值較低,模式控制模組使諧振轉換器切換頻率趨近或等於第一諧振頻率為線上諧振頻率追蹤模組;在負載變動時誤差值較大,模式判斷模組會判斷為需要利用諧振轉換器控制器達到快速的穩壓,進以提升輸出端的響應速度。 The foregoing invention mainly performs mode control according to the error value which the voltage of the resonant converter output terminal of the power supply is fed back to the controller, and the error value is low at steady state, and the mode control module makes the resonant converter switching frequency approach or equal to The first resonant frequency is an online resonant frequency tracking module; when the load changes, the error value is large, and the mode determining module determines that it is necessary to use the resonant converter controller to achieve rapid voltage regulation, thereby improving the response speed of the output end.

為了能更進一步瞭解本發明為達成預定目的所採取之技術及功效,請參閱以下有關本發明之詳細說明與附圖,以佐證本發明之目的、特徵與特點,當可由此得一深入且具體之瞭解,然而所附圖式僅提供參考與說明用,並非用來對本發明加以限制者。 In order to further understand the technology and efficacy of the present invention in order to achieve the intended purpose, reference should be made to the following detailed description of the invention and the accompanying drawings. The drawings are to be considered in all respects as illustrative and not restrictive

Vac‧‧‧交流輸入電壓 V ac ‧‧‧AC input voltage

Vbus‧‧‧交流對直流的輸出電壓 V bus ‧‧‧AC to DC output voltage

S1‧‧‧第一功率開關 S1‧‧‧first power switch

S2‧‧‧第二功率開關 S2‧‧‧second power switch

S3‧‧‧第三功率開關 S3‧‧‧ third power switch

S4‧‧‧第四功率開關 S4‧‧‧fourth power switch

S5‧‧‧第五功率開關 S5‧‧‧ fifth power switch

S6‧‧‧第六功率開關 S6‧‧‧ sixth power switch

Cr‧‧‧諧振電容 C r ‧‧‧Resonance capacitor

Lr‧‧‧諧振電感 L r ‧‧‧Resonant inductance

Lm‧‧‧激磁電感 L m ‧‧‧Magnetic inductance

T‧‧‧變壓器 T‧‧‧Transformer

CT‧‧‧電流檢測器 CT‧‧‧ current detector

Vout‧‧‧諧振轉換器輸出電壓 V out ‧‧‧Resonant converter output voltage

NP‧‧‧變壓器一次側繞組 N P ‧‧‧ Transformer primary winding

Ns1‧‧‧變壓器二次側第一繞組 N s1 ‧‧‧ transformer secondary side first winding

Ns2‧‧‧變壓器二次側第二繞組 N s2 ‧‧‧second secondary winding of transformer

Co‧‧‧輸出電容 C o ‧‧‧output capacitor

Vout_FB‧‧‧輸出電壓回授 V out_FB ‧‧‧Output voltage feedback

Vout_ref‧‧‧輸出電壓回授參考值 V out_ref ‧‧‧Output voltage feedback reference

Vgs1~Vgs6‧‧‧S1~S6閘極訊號 V gs1 ~V gs6 ‧‧‧S1~S6 gate signal

t1‧‧‧零交越點偵測方波電壓訊號上升緣時間 T1‧‧‧ zero crossing point detection square wave voltage signal rising edge time

t2‧‧‧峰值檢測方波電壓訊號上升緣時間 T2‧‧‧ peak detection square wave voltage signal rising edge time

Tr‧‧‧諧振週期 T r ‧‧‧resonance cycle

Ts‧‧‧切換週期 T s ‧‧‧ switching cycle

10‧‧‧交流對直流轉換器 10‧‧‧AC to DC converter

11‧‧‧全橋電路 11‧‧‧Full bridge circuit

12‧‧‧諧振槽 12‧‧‧Resonance tank

13‧‧‧輸出電路 13‧‧‧Output circuit

14‧‧‧零交越點偵測 14‧‧‧ Zero crossing detection

15‧‧‧峰值檢測 15‧‧‧ Peak detection

16‧‧‧線上諧振頻率計算單元 16‧‧‧On-line resonant frequency calculation unit

17‧‧‧閘極訊號產生器 17‧‧‧Gate signal generator

18‧‧‧諧振轉換器控制器 18‧‧‧Resonant Converter Controller

19‧‧‧控制器 19‧‧‧ Controller

20‧‧‧交流對直流轉換器控制器 20‧‧‧AC to DC converter controller

21‧‧‧諧振轉換器 21‧‧‧Resonance Converter

22‧‧‧半橋電路 22‧‧‧ Half-bridge circuit

23‧‧‧可調電壓控制單元 23‧‧‧Adjustable voltage control unit

24‧‧‧線上諧振頻率追蹤模組 24‧‧‧Online Resonant Frequency Tracking Module

26‧‧‧模式控制模組 26‧‧‧Mode Control Module

27‧‧‧變壓器 27‧‧‧Transformers

第1圖係為本發明具有諧振轉換器的電源一較佳實施例的電路圖;第2圖係為本發明具有諧振轉換器的電源又一較佳實施例的電路圖;第3圖係為本發明可調電壓控制單元方塊圖; 第4圖係為另一發明的操作方塊圖; 1 is a circuit diagram of a preferred embodiment of a power supply having a resonant converter of the present invention; and FIG. 2 is a circuit diagram of another preferred embodiment of a power supply having a resonant converter of the present invention; FIG. 3 is a view of the present invention Adjustable voltage control unit block diagram; Figure 4 is an operational block diagram of another invention;

茲有關本發明之技術內容及詳細說明,配合圖式說明如下:請參閱第1圖係為本發明具有諧振轉換器的電源第一較佳實施例之電路圖。包括一交流對直流轉換器10、一直流對直流諧振轉換器;其中,該交流對直流轉換器具有一交流輸入電源Vac、一直流輸出電源Vbus與一交流對直流控制器20。其架構主要由交流輸入電源端輸入市電交流電壓轉換為高壓的直流電壓,再經由直流電源輸出端輸出至Vbus上。 The technical content and detailed description of the present invention are as follows with reference to the drawings: Please refer to FIG. 1 for a circuit diagram of a first preferred embodiment of a power supply having a resonant converter of the present invention. The utility model comprises an AC-to-DC converter 10 and a DC-to-DC resonant converter. The AC-DC converter has an AC input power source V ac , a DC output power source V bus and an AC-DC controller 20 . The structure is mainly converted into a high-voltage DC voltage by inputting the commercial AC voltage from the AC input power terminal, and then outputted to the V bus via the DC power output.

在本實施例中,該電源之直流對直流諧振轉換器為諧振轉換器21,而此諧振轉換器由諧振轉換器所組成,其具有一全橋電路11、一諧振槽12、一變壓器27、一輸出電路13、一諧振轉換器控制器18、一零交越點偵測14、一峰值檢測15、一線上諧振頻率計算單元16和一閘極訊號產生器17。該全橋電路中S1~S4的功率開關的開關訊號由閘極訊號產生器17所產生並控制,而全橋電路連接著諧振槽12,其諧振槽之中包含一諧振電感Lr、一諧振電容Cr與一激磁電感Lm,激磁電感而是使用變壓器27的激磁電感Lm;而諧振槽12連接著直流對直流轉換器的輸出電路13。 In this embodiment, the DC-to-DC resonant converter of the power supply is a resonant converter 21, and the resonant converter is composed of a resonant converter having a full bridge circuit 11, a resonant tank 12, a transformer 27, An output circuit 13, a resonant converter controller 18, a zero crossing point detection 14, a peak detection 15, a line resonance frequency calculation unit 16 and a gate signal generator 17. The switching signal of the power switch of S1~S4 in the full bridge circuit is generated and controlled by the gate signal generator 17, and the full bridge circuit is connected to the resonant tank 12, and the resonant tank includes a resonant inductor Lr and a resonance. The capacitor C r and a magnetizing inductance L m , the magnetizing inductance, use the magnetizing inductance L m of the transformer 27; and the resonant tank 12 is connected to the output circuit 13 of the DC-to-DC converter.

在本實施例中,利用電流檢測器CT擷取諧振槽中的諧振電流並連接零交越點偵測14與峰值檢測15;而此兩偵 測將會產生兩方波電壓訊號,此時零交越點偵測14所產生的方波電壓訊號上升緣為t1,峰值檢測15所產生的方波電壓訊號上升緣為t2,再經由線上諧振頻率計算單元16擷取t1、t2此段時間並做計算,而此段時間為實際的第一諧振週期的四分之一。 In this embodiment, the current detector CT is used to capture the resonant current in the resonant tank and connect the zero-crossing point detection 14 with the peak detection 15; The measurement will generate two square wave voltage signals. At this time, the rising edge of the square wave voltage signal generated by the zero crossing point detection 14 is t1, and the rising edge of the square wave voltage signal generated by the peak detection 15 is t2, and then via the line resonance. The frequency calculation unit 16 takes time t1 and t2 and performs calculations, and this period of time is one quarter of the actual first resonance period.

第3圖控制方塊圖表示在經由線上諧振頻率計算單元16所得知實際諧振週期Tr後,並與當時的切換週期做計算,所得到的誤差值進入一可調電壓控制單元23,出來的補償量將與原本交流對直流轉換器輸出電壓參考值運算,並傳至交流對直流轉換器控制器20,以改變交流對直流轉換器的輸出電壓,利用調整輸出電壓使諧振轉換器的切換頻率做調變至接進第一諧振頻率,以達到效率提升的效果。 The control block diagram of Fig. 3 shows that after the actual resonance period T r is known by the on-line resonance frequency calculation unit 16, and is calculated with the switching period at that time, the obtained error value enters an adjustable voltage control unit 23, and the compensation is obtained. The amount will be calculated with the original AC to DC converter output voltage reference value, and passed to the AC to DC converter controller 20 to change the output voltage of the AC to DC converter, and adjust the output voltage to make the switching frequency of the resonant converter Modulate to the first resonant frequency to achieve the effect of efficiency improvement.

請參閱第2圖係為本發明具有諧振轉換器的電源第二較佳實施例之電路圖。在本實施例中,該直流對直流轉換器21具有諧振轉換器,而此諧振轉換器由諧振轉換器所組成,其具有一半橋電路22、一諧振槽12、一變壓器27、一輸出電路13、一諧振轉換器控制器18、一零交越點偵測14、一峰值檢測15、一線上諧振頻率計算單元16和一閘極訊號產生器17。該半橋電路中S1、S2的功率開關的開關訊號由閘極訊號產生器17所產生並控制,而半橋電路連接著諧振槽12,其諧振槽之中包含一諧振電感Lr、一諧振電容Cr與一激磁電感Lm,激磁電感而是使用變壓器27的激磁電感Lm;而諧振槽12 連接著直流對直流諧振轉換器的輸出電路13。其餘動作狀態皆與實施例一相同。 2 is a circuit diagram of a second preferred embodiment of a power supply having a resonant converter of the present invention. In the present embodiment, the DC-DC converter 21 has a resonant converter composed of a resonant converter having a half bridge circuit 22, a resonant tank 12, a transformer 27, and an output circuit 13. A resonant converter controller 18, a zero crossing point detection 14, a peak detection 15, a line resonance frequency calculation unit 16 and a gate signal generator 17. The switching signals of the power switches of S1 and S2 in the half-bridge circuit are generated and controlled by the gate signal generator 17, and the half-bridge circuit is connected to the resonant tank 12, and the resonant tank includes a resonant inductor L r and a resonance. The capacitor C r and a magnetizing inductance L m , the magnetizing inductance, use the magnetizing inductance L m of the transformer 27; and the resonant tank 12 is connected to the output circuit 13 of the DC-to-DC resonant converter. The rest of the action states are the same as in the first embodiment.

前述的發明技術諧振頻率追蹤主要用於轉換器操作於穩態時,控制諧振型轉換器的切換頻率,使其趨近或等於諧振頻率,以提高效率;當輸出負載變動時,因諧振轉換器的切換頻率已固定無法以頻率調變達到穩壓的動作,導致需以調整交流對直流轉換器的輸出電壓才可達到穩壓,而此響應速度相對是較慢的。本專利提出另一發明以解決上述之問題,主要目的在於加速在負載快速變動的暫態響應。 The foregoing inventive technology resonant frequency tracking is mainly used to control the switching frequency of the resonant type converter to be close to or equal to the resonant frequency when the converter operates at a steady state to improve efficiency; when the output load changes, the resonant converter The switching frequency is fixed and cannot be adjusted by frequency to achieve the voltage regulation action, so that the output voltage of the AC to DC converter needs to be adjusted to achieve the voltage regulation, and the response speed is relatively slow. This patent proposes another invention to solve the above problems, the main purpose of which is to accelerate the transient response that changes rapidly in the load.

請參閱第4圖係為結合諧振頻率追蹤與加快暫態響應速度的方塊圖,其包含一線上諧振頻率追蹤模組24、一諧振轉換器控制器18和一模式控制模組26,而線上諧振頻率追蹤模組24為以上所述的諧振頻率追蹤發明技術。 Please refer to FIG. 4 for a block diagram of combining resonant frequency tracking and accelerating transient response speed, comprising an on-line resonant frequency tracking module 24, a resonant converter controller 18 and a mode control module 26, and on-line resonance The frequency tracking module 24 tracks the inventive techniques for the resonant frequency described above.

在判斷切換不同模組主要是由模式控制模組26所決定。模式控制模組是由回授諧振轉換器21的輸出電壓回授與輸出電壓參考值做相減,並得到輸出電壓誤差值。在一般穩態時,模式控制模組中的S切換變數為0,表示此時為執行諧振頻率追蹤模組,當輸出電壓誤差值大於誤差值上限值,表示負載正在大幅度的變動,S切換變數將為1並將模式切換至諧振轉換器控制器,以諧振轉換器21的諧振轉換器控制器18利用切換頻率的變動以達到輸出電壓穩壓的動作;而當負載停止變動時,輸出電壓的誤差值漸漸的變小與原訂的 誤差值下限值做比較,如小於S切換變數將變為0,回到執行線上諧振頻率追蹤模組。 The decision to switch between different modules is primarily determined by the mode control module 26. The mode control module is subtracted from the output voltage feedback of the feedback resonant converter 21 and the output voltage reference value, and the output voltage error value is obtained. In the normal steady state, the S switching variable in the mode control module is 0, indicating that the resonant frequency tracking module is executed at this time. When the output voltage error value is greater than the upper limit of the error value, the load is undergoing a large change, S The switching variable will be 1 and the mode is switched to the resonant converter controller, with the resonant converter controller 18 of the resonant converter 21 utilizing the variation of the switching frequency to achieve the output voltage regulation action; and when the load stops changing, the output The error value of the voltage gradually becomes smaller and the original The lower limit of the error value is compared. If the S switch variable is less than 0, it will return to the execution of the on-line resonant frequency tracking module.

由以上兩發明可知,諧振頻率追蹤對於電源轉換器穩態時,因實際上諧振轉換器的元件的誤差與電路上所產生的寄生效應皆會影響實際的諧振頻率,並操作於實際的諧振頻率以提升效率;在負載變動暫態響應模式控制模組以模式切換的方式,加快諧振頻率追蹤所造成較慢的響應速度。 According to the above two inventions, when the resonance frequency is tracked to the steady state of the power converter, the error of the components of the resonant converter and the parasitic effects generated on the circuit affect the actual resonant frequency and operate at the actual resonant frequency. In order to improve efficiency; in the load change transient response mode control module to mode switching, speed up the slow response speed caused by the resonance frequency tracking.

Claims (8)

一種具有諧振轉換器的電源,包含:一交流對直流轉換器、具有一交流電源輸入端、一直流電源輸出端和一控制端;一直流對直流諧振轉換器、一諧振轉換器控制器、一零交越點偵測、一峰值檢測、一線上諧振頻率計算單元、可調電壓控制單元;該零交越點偵測和峰值檢測分別與直流對直流諧振轉換器連接,分別取得方波電壓訊號進入線上諧振頻率計算單元中運算實際第一諧振週期;取得實際第一諧振週期與實際的切換週期經過運算後的誤差進入該可調電壓控制單元,其中可調電壓控制單元之控制器的輸出補償量為交流對直流轉換器輸出電壓參考值送至交流對直流轉換器的控制端,以調整交流對直流轉換器的輸出電壓,進而控制諧振轉換器的切換頻率以接近諧振轉換器的第一諧振頻率。 A power supply having a resonant converter, comprising: an AC to DC converter, having an AC power input terminal, a DC power output terminal, and a control terminal; a DC-to-DC resonant converter, a resonant converter controller, and a control unit Zero-crossing point detection, one-peak detection, one-line resonance frequency calculation unit, and adjustable voltage control unit; the zero-crossing point detection and peak detection are respectively connected with a DC-to-DC resonant converter to obtain square wave voltage signals respectively Entering the online resonant frequency calculation unit to calculate the actual first resonance period; obtaining the actual first resonance period and the actual switching period after the calculated error enters the adjustable voltage control unit, wherein the output compensation of the controller of the adjustable voltage control unit The AC-to-DC converter output voltage reference value is sent to the control terminal of the AC-to-DC converter to adjust the output voltage of the AC-DC converter, thereby controlling the switching frequency of the resonant converter to approach the first resonance of the resonant converter. frequency. 如請求第1項所述具有諧振轉換器的電源,該電源之諧振轉換器包含一諧振槽,而諧振槽包含一諧振電容、一諧振電感和激磁電感;而在諧振槽中串聯一電流檢測器,擷取諧振電流至零交越點偵測和峰值檢測。 A power supply having a resonant converter as claimed in claim 1, wherein the resonant converter of the power supply comprises a resonant tank, and the resonant tank comprises a resonant capacitor, a resonant inductor and a magnetizing inductance; and a current detector is connected in series in the resonant tank , draw resonant current to zero crossover detection and peak detection. 如請求第2項所述具有諧振轉換器的電源,該電源之線上諧振頻率計算單元將擷取到零交越點偵測方波電壓訊號上升緣時間與峰值檢測方波電壓訊號上升緣時間,將這兩時間點經過計算後此段時間為四分之一的第一諧振週期,再反推即可得到第一諧振週期。 If the power supply with the resonant converter described in Item 2 is requested, the on-line resonant frequency calculation unit of the power supply detects the rise time of the square wave voltage signal and the rising edge time of the peak detection square wave voltage signal. After the two time points are calculated, the period of time is one quarter of the first resonance period, and then the first resonance period is obtained by pushing back. 如請求第3項所述具有諧振轉換器的電源,該電源之諧振轉換器具有電壓回授連接於諧振轉換器的輸出端與諧振轉換器控制器之間。 A power supply having a resonant converter as claimed in claim 3, the resonant converter of the power supply having a voltage feedback coupled between the output of the resonant converter and the resonant converter controller. 如請求第4項所述具有諧振轉換器的電源,該電源之諧振轉換器控制器主要接收輸出電壓回授並運算當下的切換頻率送出至可調電壓控制器。 If the power supply with the resonant converter described in claim 4 is requested, the resonant converter controller of the power supply mainly receives the output voltage feedback and calculates the current switching frequency to be sent to the adjustable voltage controller. 如請求第5項所述具有諧振轉換器的電源,該電源諧振轉換器控制器所送出的切換週期與線上諧振頻率計算單元所送出的第一諧振週期做運算,運算後的誤差值進入可調電壓控制單元,輸出補償量可做交流對直流轉換器的輸出電壓調整。 If the power supply with the resonant converter according to Item 5 is requested, the switching period sent by the power resonant converter controller and the first resonant period sent by the online resonant frequency calculating unit are calculated, and the calculated error value is adjusted. The voltage control unit, the output compensation amount can be used to adjust the output voltage of the AC to DC converter. 如請求第6項所述具有諧振轉換器的電源,該電源之諧振轉換器的切換頻率,在暫態下將會切換至諧振轉換器控制器輸出並停止交流對直流轉換器的電壓改變;在穩態下則切換至線上諧振頻率計算輸出並改變交流對直流轉換器的電壓參考。 As claimed in claim 6, the power supply having the resonant converter, the switching frequency of the resonant converter of the power supply, in the transient state, will switch to the output of the resonant converter controller and stop the voltage change of the alternating current to the direct current converter; At steady state, it switches to the online resonant frequency calculation output and changes the voltage reference of the AC to DC converter. 如請求第7項所述具有諧振轉換器的電源,該電源之諧振轉換器的暫態或穩態控制判斷係以輸出電壓誤差、輸出電流誤差或輸出入電流變化量為基準,誤差量或變化量大則為暫態,反之,則為穩態。 If the power supply with the resonant converter described in claim 7 is requested, the transient or steady-state control judgment of the resonant converter of the power supply is based on the output voltage error, the output current error, or the input/output current variation, and the error amount or variation The large amount is transient, and vice versa.
TW107118371A 2018-05-30 2018-05-30 Power supply with resonant converter and control method thereof TWI670919B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107118371A TWI670919B (en) 2018-05-30 2018-05-30 Power supply with resonant converter and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107118371A TWI670919B (en) 2018-05-30 2018-05-30 Power supply with resonant converter and control method thereof

Publications (2)

Publication Number Publication Date
TWI670919B true TWI670919B (en) 2019-09-01
TW202005238A TW202005238A (en) 2020-01-16

Family

ID=68618845

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107118371A TWI670919B (en) 2018-05-30 2018-05-30 Power supply with resonant converter and control method thereof

Country Status (1)

Country Link
TW (1) TWI670919B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113726156A (en) * 2020-05-26 2021-11-30 立锜科技股份有限公司 Resonant switching power converter
US11336173B1 (en) 2021-01-27 2022-05-17 Chicony Power Technology Co., Ltd. Power converter device and driving method
TWI767432B (en) * 2020-12-01 2022-06-11 產晶積體電路股份有限公司 Zero-voltage switching power control system
US11411504B1 (en) 2021-05-07 2022-08-09 Chicony Power Technology Co., Ltd. Voltage transforming device
US11532982B2 (en) 2021-03-08 2022-12-20 Chicony Power Technology Co., Ltd. Power factor correction circuit with fall time detection
US11901820B2 (en) 2021-05-07 2024-02-13 Chicony Power Technology Co., Ltd. Power supply apparatus with step-up and step-down conversion

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111313714B (en) * 2020-02-28 2021-04-09 中车青岛四方车辆研究所有限公司 Full-bridge LLC resonant converter resonant frequency tracking method and system
US11258368B2 (en) * 2020-06-10 2022-02-22 Monolithic Power Systems, Inc. Resonant converter circuit with switching frequency control based on input voltage
TWI747516B (en) * 2020-09-23 2021-11-21 群光電能科技股份有限公司 Power converter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201042897A (en) * 2009-05-18 2010-12-01 Silitek Electronic Guangzhou Resonant converting apparatus and synchronous rectification circuit
US20110085354A1 (en) * 2009-10-08 2011-04-14 Acbel Polytech Inc. Burst mode resonant power converter with high conversion efficiency
TW201128912A (en) * 2010-02-11 2011-08-16 Delta Electronics Inc Resonant converters and burst mode control methods thereof
TW201308844A (en) * 2011-05-23 2013-02-16 System General Corp Control circuit with ZVS-lock and asymmetrical PWM for resonant power converter and control method thereof
CN103518317A (en) * 2011-05-12 2014-01-15 株式会社村田制作所 Switching power supply device
EP1679783B1 (en) * 2005-01-07 2016-09-07 Harman International Industries, Incorporated Resonant switch mode power supply
US20170310231A1 (en) * 2014-02-11 2017-10-26 Fairchild Korea Semiconductor Ltd. Resonant converter and driving method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1679783B1 (en) * 2005-01-07 2016-09-07 Harman International Industries, Incorporated Resonant switch mode power supply
TW201042897A (en) * 2009-05-18 2010-12-01 Silitek Electronic Guangzhou Resonant converting apparatus and synchronous rectification circuit
US20110085354A1 (en) * 2009-10-08 2011-04-14 Acbel Polytech Inc. Burst mode resonant power converter with high conversion efficiency
TW201128912A (en) * 2010-02-11 2011-08-16 Delta Electronics Inc Resonant converters and burst mode control methods thereof
CN103518317A (en) * 2011-05-12 2014-01-15 株式会社村田制作所 Switching power supply device
TW201308844A (en) * 2011-05-23 2013-02-16 System General Corp Control circuit with ZVS-lock and asymmetrical PWM for resonant power converter and control method thereof
US20170310231A1 (en) * 2014-02-11 2017-10-26 Fairchild Korea Semiconductor Ltd. Resonant converter and driving method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113726156A (en) * 2020-05-26 2021-11-30 立锜科技股份有限公司 Resonant switching power converter
TWI767432B (en) * 2020-12-01 2022-06-11 產晶積體電路股份有限公司 Zero-voltage switching power control system
US11336173B1 (en) 2021-01-27 2022-05-17 Chicony Power Technology Co., Ltd. Power converter device and driving method
US11532982B2 (en) 2021-03-08 2022-12-20 Chicony Power Technology Co., Ltd. Power factor correction circuit with fall time detection
US11411504B1 (en) 2021-05-07 2022-08-09 Chicony Power Technology Co., Ltd. Voltage transforming device
US11901820B2 (en) 2021-05-07 2024-02-13 Chicony Power Technology Co., Ltd. Power supply apparatus with step-up and step-down conversion

Also Published As

Publication number Publication date
TW202005238A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
TWI670919B (en) Power supply with resonant converter and control method thereof
US10439501B2 (en) Resonant power converter and frequency tracking method for resonant power converter
TWI506939B (en) Ac/dc power converter, power supply and system that converts an ac input voltage into a dc output voltage
US11223349B2 (en) Joint control method with variable ZVS angles for dynamic efficiency optimization in wireless power charging for electric vehicles
Li et al. On automatic resonant frequency tracking in LLC series resonant converter based on zero-current duration time of secondary diode
US10439508B2 (en) Control device of a switching power supply
TWI683513B (en) Power converter and control method
US10491107B2 (en) Method for controlling power factor correction circuit, controller and system
US8854018B2 (en) Control circuit for reducing touch current of a power converter and operation method thereof
US20090034298A1 (en) Control Method And Apparatus Of Resonant Type DC/DC Converter With Low Power Loss At Light Load And Standby
US20150103562A1 (en) Switching Power Supply with a Resonant Converter and Method Controlling the Same
CN111478572B (en) Single-pole AC-DC converter modal smooth switching and power factor correction control method
CN111049392B (en) Double-active-bridge expanded phase-shifting minimum reflux power control method based on coordinate transformation
WO2020015391A1 (en) Control method for improving output precision of switching power supply
WO2017020644A1 (en) Method and apparatus for reducing excitation current of transformer during bypass conducted by isolated ups
Joung et al. Dynamic analysis and optimal design of high efficiency full bridge LLC resonant converter for server power system
Shih et al. Adaptive DC-link voltage control of LLC resonant converter
TWI617126B (en) Power converter and control method thereof
JP4393296B2 (en) DC-DC converter device
Gao et al. Analysis and optimal design of LCC resonant converter for anode power supply in ECRH
Tawfik et al. Single-stage isolated ac/ac converter with phase-shifted controller
Ganacim et al. Output power feedforward technique applied to a high power factor rectifier with high frequency transformer
US20240195291A1 (en) Power converter and method of operating the same
Luo et al. Power Boundary Controlled Single-Stage LLC Power Factor Correction Converter and Its Optimal Parameter Design
TWI816615B (en) Primary controller applied to a primary side of a power converter and operation method thereof