TWI683513B - Power converter and control method - Google Patents

Power converter and control method Download PDF

Info

Publication number
TWI683513B
TWI683513B TW107140964A TW107140964A TWI683513B TW I683513 B TWI683513 B TW I683513B TW 107140964 A TW107140964 A TW 107140964A TW 107140964 A TW107140964 A TW 107140964A TW I683513 B TWI683513 B TW I683513B
Authority
TW
Taiwan
Prior art keywords
converter
resonant
resonance
frequency
switching
Prior art date
Application number
TW107140964A
Other languages
Chinese (zh)
Other versions
TW202021248A (en
Inventor
賴炎生
游閔翔
Original Assignee
賴炎生
游閔翔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 賴炎生, 游閔翔 filed Critical 賴炎生
Priority to TW107140964A priority Critical patent/TWI683513B/en
Application granted granted Critical
Publication of TWI683513B publication Critical patent/TWI683513B/en
Publication of TW202021248A publication Critical patent/TW202021248A/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

The invention relates to a power converter with a resonant converter and its control method. The power converter includes an AC-DC converter and a DC-DC converter. The AC-DC converter converts the AC voltage to DC voltage. The input voltage of DC-DC converter is from the output of the AC-DC converter. The DC-DC converter includes a resonant converter. The real resonant frequency of the resonant converter is obtained from zero cross point detection and peak current detection of resonant current. To improve the efficiency, the AC-DC converter output voltage is regulated to control the switching frequency approximate or equal to the resonance frequency of resonant converter. This resonant frequency tracking control method deals with the issues caused by the resonant component tolerance which results in inaccurate calculation of resonant frequency and therefore the switching frequency cannot be operate at the resonant frequency.
The control method includes the control modes under steady state and transient conditions, respectively. For the control mode under steady state condition, the above-mentioned resonant frequency tracking to increase the efficiency. For the control mode under transient condition, the DC link voltage is kept constant while switching frequency is determined by the load condition to fast regulate the output voltage and improve the transient response.

Description

電源轉換器及其控制方法 Power converter and its control method

本發明係關於一具有諧振式轉換器的電源轉換器及其控制方法,尤指一種可以偵測到諧振式轉換器的實際諧振頻率並加快其響應速度的相關技術。 The invention relates to a power converter with a resonant converter and its control method, in particular to a related technology that can detect the actual resonant frequency of the resonant converter and speed up its response speed.

已知的一架構為具有諧振槽轉換器的電源轉換器是如圖1所示,其包含一交流對直流轉換器10和一直流對直流轉換器,而直流對直流轉換器是由具有諧振槽轉換器所構成,該交流對直流轉換器10輸入為交流電源轉換為一高壓的直流電源,在經由直流對直流轉換器的具有諧振槽轉換器將高壓的直流電源轉換為低壓的直流電源。 A known power converter with a resonant tank converter is shown in FIG. 1, which includes an AC-to-DC converter 10 and a DC-to-DC converter. The DC-to-DC converter is composed of a resonant tank The converter is constituted by the AC-to-DC converter 10 inputted into an AC power source and converted into a high-voltage DC power source, and the high-voltage DC power source is converted into a low-voltage DC power source via a DC-DC converter with a resonant tank converter.

該直流對直流轉換器是由具有諧振槽轉換器23構成,如圖1所示是其中一種具有諧振槽轉換器23架構,主要具有一切換電路11、一一次側諧振槽12、一變壓器13、一二次側諧振槽14、一整流電路15。切換電路11輸入端是一高壓電源並連接著一次側諧振槽12,一次側諧振槽12連接著變壓器13,而變壓器13連接著二次側諧振槽14,而此兩諧振槽可得到兩個諧振頻率;而此諧振頻率又分兩諧振頻率,第一諧振頻率fr 為一較高頻之諧振頻率;第二諧振頻率fm為較低頻之諧振頻率。 The DC-DC converter is composed of a converter 23 with a resonant tank. As shown in FIG. 1, it has a converter 23 with a resonant tank. It mainly includes a switching circuit 11, a primary resonant tank 12, and a transformer 13. 、A secondary side resonance tank 14 and a rectifier circuit 15. The input terminal of the switching circuit 11 is a high-voltage power supply and is connected to the primary resonance tank 12, the primary resonance tank 12 is connected to the transformer 13, and the transformer 13 is connected to the secondary resonance tank 14, and the two resonance tanks can obtain two resonances Frequency; and this resonance frequency is divided into two resonance frequencies, the first resonance frequency fr is a higher frequency resonance frequency; the second resonance frequency f m is a lower frequency resonance frequency.

該具有諧振槽轉換器利用頻率調變的方式達到穩壓;當負載變重時,頻率由高頻往低頻移動以調節電壓達到穩壓的機制。 The converter with a resonant tank uses frequency modulation to achieve voltage regulation; when the load becomes heavier, the frequency moves from high frequency to low frequency to adjust the voltage to achieve voltage regulation.

該具有諧振槽轉換器之切換頻率操作於第一諧振頻率上,減少轉換器操作於各區域造成較大的切換損失與導通損失,當切換頻率接近第一諧振頻率時,具有零電壓切換的特性,且功率開關關閉時可降低額外的環流損失於諧振槽中,也減少此時的切換損失,以提升轉換器的效率。 The switching frequency of the converter with a resonant tank operates at the first resonant frequency, which reduces the large switching loss and conduction loss caused by the converter operating in each area. When the switching frequency is close to the first resonant frequency, it has the characteristics of zero voltage switching And, when the power switch is closed, additional circulating current loss can be reduced in the resonant tank, and the switching loss at this time can also be reduced to improve the efficiency of the converter.

針對具有諧振槽轉換器操作於諧振頻率上的技術以一先前技術(參照專利文獻1)進行說明,係對於第一諧振頻率偵測方法需先送一切換頻率可使諧振電流呈現正弦波,此切換頻率為第一諧振頻率,得知第一諧振頻率後將此設為參考頻率,以此調整交流對直流轉換器輸出電壓,使轉換器的切換頻率維持在諧振頻率上且達到穩壓,提升整體電源轉換器的效率。 The technology for operating the resonant tank converter at the resonant frequency is described with a prior art (refer to Patent Document 1). For the first resonant frequency detection method, a switching frequency needs to be sent first to make the resonant current exhibit a sine wave. The switching frequency is the first resonant frequency. After learning the first resonant frequency, set this as the reference frequency to adjust the output voltage of the AC-to-DC converter, so that the switching frequency of the converter is maintained at the resonant frequency and the voltage regulation is reached. Overall power converter efficiency.

針對具有諧振槽轉換器操作於第一諧振頻率上的技術以另一先前技術(參照專利文獻2)進行說明,係對於第一諧振頻率偵測方法以線上偵測電流的變化以調整切換頻率,使切換頻率操作於第一諧振頻率上,提升轉換器的效率。 The technology with the resonant tank converter operating at the first resonant frequency is described with another prior art (refer to Patent Document 2). The first resonant frequency detection method detects the change of current on the line to adjust the switching frequency. The switching frequency is operated at the first resonance frequency, and the efficiency of the converter is improved.

【參考文獻】【references】

Zih-Jie Su and Yen-Shin Lai, “On-line DC-link voltage control of LLC resonant converter for server power applications,” IEEE Conference Publications, Publication Year: 2014, pp.5422-5428. Zih-Jie Su and Yen-Shin Lai, “On-line DC-link voltage control of LLC resonant converter for server power applications,” IEEE Conference Publications, Publication Year: 2014, pp.5422-5428.

TW I617126 TW I617126

本發明主要目的在提供一種包含具有諧振槽的電源轉換器及其控制方法,其根據諧振槽轉換器的工作狀態以偵測實際的第一諧振頻率,再使轉換器的切換頻率趨近或等於實際的第一諧振頻率,藉此達到效率的提升。 The main object of the present invention is to provide a power converter including a resonant tank and a control method thereof, which detects the actual first resonant frequency according to the working state of the resonant tank converter, and then makes the switching frequency of the converter approach or equal to The actual first resonance frequency, thereby achieving an increase in efficiency.

為達成本發明之技術係上述需具有諧振槽的電源轉換器包含:一交流對直流轉換器,具有一交流電源輸入端、一直流電源輸出端和一控制端;一直流對直流轉換器,具有一直流電源輸入端、一直流電源輸出端、一直流對直流轉換器控制器、一諧振電流零交越點偵測、一諧振電流峰值檢測。該諧振電流零交越點偵測與峰值檢測分別與具有諧振槽轉換器、直流對直流轉換器控制器做連接,以分別取得一零交越點偵測和峰值檢測的方波電壓訊號,偵測兩方波電壓的上升緣以計算此段時間,得知此段時間為實際第一諧振週期的四分之一,再由直流對直流轉換器控制器換算成實際的第一諧振頻率與當下的切換頻率做運算,並將此補償量傳送至交流對 直流轉換器的控制端,以改變交流對直流轉換器的輸出電壓,進而控制具有諧振槽轉換器的切換頻率。 In order to achieve the cost of the invention, the above-mentioned power converter that requires a resonant tank includes: an AC-to-DC converter with an AC power input, a DC power output and a control terminal; a DC-to-DC converter with A DC power input terminal, a DC power output terminal, a DC-DC converter controller, a resonance current zero-crossing point detection, and a resonance current peak detection. The resonant current zero-crossing point detection and peak detection are respectively connected with a controller with a resonant tank converter and a DC-DC converter to obtain a square wave voltage signal of a zero-crossing point detection and peak detection, respectively. Measure the rising edge of the two square wave voltages to calculate this period of time, knowing that this period of time is one quarter of the actual first resonance period, and then converted by the DC-DC converter controller into the actual first resonance frequency and the current To calculate the switching frequency of The control end of the DC converter to change the output voltage of the AC to DC converter, thereby controlling the switching frequency of the converter with a resonant tank.

前述偵測的方波電壓訊號是由具有諧振槽轉換器的諧振電流,經過零交越點偵測、峰值檢測所產生兩方波電壓訊號,並擷取此兩方波電壓訊號之上升緣之間的時間,以線上計算的方式得知實際的第一諧振週期,得知實際的第一諧振週期與當下的切換週期做運算並經過一可調電壓控制器單元產生一調整交流對直流轉換器輸出電壓的參考值,而經由調整交流對直流轉換器的輸出電壓控制轉換器的切換頻率趨近或等於第一諧振頻率,以提升效率。 The aforementioned square wave voltage signal is generated by the resonant current of the converter with a resonant tank through zero-crossing point detection and peak detection to generate two square wave voltage signals, and extract the rising edge of the two square wave voltage signals The time between, the actual first resonance period is obtained by online calculation, the actual first resonance period and the current switching period are calculated, and an adjustable AC to DC converter is generated by an adjustable voltage controller unit The reference value of the output voltage, and the switching frequency of the converter is controlled to be close to or equal to the first resonant frequency by adjusting the output voltage of the AC-to-DC converter to improve efficiency.

本發明之另一目的在於提供一種加快具有諧振頻率追蹤功能的響應速度,當直流對直流控制器將轉換器的切換頻率趨近或等於第一諧振頻率,此時已不是傳統式以頻率調變達到穩壓,而是利用調整交流對直流轉換器的輸出電壓以達到直流對直流轉換器輸出端穩定的電壓。 Another object of the present invention is to provide a faster response speed with a resonant frequency tracking function. When the DC-to-DC controller approaches the converter switching frequency close to or equal to the first resonant frequency, frequency modulation is no longer the traditional method. To achieve voltage stabilization, the output voltage of the AC-to-DC converter is adjusted to achieve a stable voltage at the output end of the DC-to-DC converter.

前述發明主要根據諧振式轉換器輸出端電壓回授至控制器所產的誤差值做模式控制,在穩態時誤差值較低,模式控制模組使轉換器切換頻率趨近或等於第一諧振頻率為線上諧振頻率追蹤模組;在負載變動時誤差值較大,模式判斷模組會判斷為需要利用頻率調變模組達到快速的穩壓,進以提升輸出端的響應速度。 The aforementioned invention mainly performs mode control based on the error value output from the output voltage of the resonant converter to the controller. In the steady state, the error value is low. The mode control module makes the converter switching frequency approach or equal to the first resonance The frequency is the online resonant frequency tracking module; when the load changes, the error value is large, and the mode judgment module will judge that the frequency modulation module needs to be used to achieve fast voltage regulation, so as to improve the response speed of the output end.

為了能更進一步瞭解本發明為達成預定目的所採取之技術及功效,請參閱以下有關本發明之詳細說明與附圖,以佐證本發明之目的、特徵與特點,當可由此得一深入且具體之瞭解,然而所附圖式僅提供參考與說明用,並非用來對本發明加以限制者。 In order to further understand the technology and effects of the present invention to achieve the intended purpose, please refer to the following detailed description and drawings of the present invention to prove the purpose, features and characteristics of the present invention, which can be obtained in depth and specific For the sake of understanding, the attached drawings are provided for reference and explanation only, and are not intended to limit the present invention.

Vac‧‧‧交流輸入電壓 V ac ‧‧‧ AC input voltage

Vbus‧‧‧交流對直流的輸出電壓 Vbus‧‧‧AC to DC output voltage

S1‧‧‧第一功率開關 S1‧‧‧ First power switch

S2‧‧‧第二功率開關 S2‧‧‧second power switch

S3‧‧‧第三功率開關 S3‧‧‧third power switch

S4‧‧‧第四功率開關 S4‧‧‧The fourth power switch

S5‧‧‧第五功率開關 S5‧‧‧ fifth power switch

S6‧‧‧第六功率開關 S6‧‧‧ sixth power switch

S7‧‧‧第七功率開關 S7‧‧‧ seventh power switch

S8‧‧‧第八功率開關 S8‧‧‧Eighth power switch

Cr1‧‧‧一次側諧振電容 Cr1‧‧‧primary resonance capacitor

Lr1‧‧‧一次側諧振電感 Lr1‧‧‧primary resonance inductor

Cr2‧‧‧二次側諧振電容 Cr2‧‧‧Secondary side resonance capacitor

Lr2‧‧‧二次側諧振電感 Lr2‧‧‧secondary resonant inductor

Cr11‧‧‧一次側第一諧振電容 Cr11‧‧‧ Primary resonance capacitor

Cr12‧‧‧一次側第二諧振電容 Cr12‧‧‧primary second resonant capacitor

Cr21‧‧‧二次側第一諧振電容 Cr21‧‧‧Second Side Resonance Capacitor

Cr22‧‧‧二次側第二諧振電容 Cr22‧‧‧Second resonant capacitor on the secondary side

T‧‧‧變壓器 T‧‧‧Transformer

CT‧‧‧電流檢測器 CT‧‧‧current detector

Vout‧‧‧諧振式轉換器輸出電壓 Vout‧‧‧Resonant converter output voltage

NP‧‧‧變壓器一次側繞組 NP‧‧‧Transformer primary winding

Ns1‧‧‧變壓器二次側第一繞組 Ns1‧‧‧Transformer secondary side first winding

Co‧‧‧輸出電容 Co‧‧‧ Output capacitance

Vout_FB‧‧‧輸出電壓回授 Vout_FB‧‧‧Output voltage feedback

Vout_ref‧‧‧輸出電壓回授參考值 Vout_ref‧‧‧Output voltage feedback reference value

Vgs1~Vgs8 S1~S8‧‧‧閘極訊號 Vgs1~Vgs8 S1~S8 ‧‧‧Gate signal

t1‧‧‧零交越點偵測方波電壓訊號上升緣時間 t1‧‧‧Zero crossing point detection square wave voltage signal rising edge time

t2‧‧‧峰值檢測方波電壓訊號上升緣時間 t2‧‧‧Peak detection square wave voltage signal rising edge time

Tr‧‧‧諧振週期 Tr‧‧‧Resonance period

Ts‧‧‧切換週期 Ts‧‧‧ switching cycle

10‧‧‧交流對直流轉換器 10‧‧‧AC to DC converter

11‧‧‧切換電路 11‧‧‧Switch circuit

12‧‧‧一次側諧振槽 12‧‧‧primary resonance tank

13‧‧‧變壓器 13‧‧‧Transformer

14‧‧‧二次側諧振槽 14‧‧‧Secondary side resonance tank

15‧‧‧整流電路 15‧‧‧Rectifier circuit

16‧‧‧零交越點偵測 16‧‧‧Zero crossing detection

17‧‧‧線上諧振頻率計算單元 17‧‧‧ Online resonance frequency calculation unit

18‧‧‧峰值檢測 18‧‧‧Peak detection

19‧‧‧閘極訊號產生器 19‧‧‧Gate signal generator

20‧‧‧交流對直流轉換器控制器 20‧‧‧AC to DC converter controller

21‧‧‧可調電壓控制器單元 21‧‧‧Adjustable voltage controller unit

22‧‧‧直流對直流轉換器控制器 22‧‧‧DC to DC converter controller

23‧‧‧具有諧振槽轉換器 23‧‧‧With resonant tank converter

24‧‧‧全橋切換電路 24‧‧‧Full bridge switching circuit

25‧‧‧第一種一次側諧振槽 25‧‧‧The first primary resonance tank

26‧‧‧第一種二次側諧振槽 26‧‧‧The first secondary side resonance tank

27‧‧‧全橋整流電路 27‧‧‧Full bridge rectifier circuit

28‧‧‧第一種具有諧振槽轉換器 28‧‧‧The first converter with resonant tank

29‧‧‧半橋切換電路 29‧‧‧ Half-bridge switching circuit

30‧‧‧第二種一次側諧振槽 30‧‧‧Second primary resonance tank

31‧‧‧第二種二次側諧振槽 31‧‧‧Second secondary resonance tank

32‧‧‧半橋整流電路 32‧‧‧Half-bridge rectifier circuit

33‧‧‧第二種具有諧振槽轉換器 33‧‧‧The second converter with resonant tank

34‧‧‧控制器 34‧‧‧Controller

35‧‧‧線上諧振頻率追蹤模組 35‧‧‧Online resonance frequency tracking module

36‧‧‧頻率調變模組 36‧‧‧ Frequency Modulation Module

37‧‧‧模式控制模組 37‧‧‧Mode control module

第1圖係為本發明電源轉換器一電路圖;第2圖係為本發明電源轉換器又一較佳實施例的電路圖;第3圖係為本發明電源轉換器又一較佳實施例的電路圖;第4圖係為本發明可調電壓控制器單元方塊圖;第5圖係為另一發明的操作方塊圖; Figure 1 is a circuit diagram of the power converter of the present invention; Figure 2 is a circuit diagram of another preferred embodiment of the power converter of the present invention; Figure 3 is a circuit diagram of another preferred embodiment of the power converter of the present invention Figure 4 is a block diagram of the adjustable voltage controller unit of the present invention; Figure 5 is an operation block diagram of another invention;

茲有關本發明之技術內容及詳細說明,配合圖式說明如下: The technical content and detailed description of the present invention are explained as follows in conjunction with the drawings:

請參閱第2圖係為本發明電源轉換器第一較佳實施例之電路圖。包括一交流對直流轉換器10、一直流對直流轉換器具有第一種具有諧振槽轉換器28;其中,該交流對直流轉換器具有一交流輸入電壓Vac、一直流輸出電源Vbus與一交流對直流轉換器控制器20。其架構主要由交流輸入電源端輸入市電交流電壓轉換為高壓的直流電壓,再經由直流電源輸出 端輸出至Vbus上。 Please refer to FIG. 2 for a circuit diagram of the first preferred embodiment of the power converter of the present invention. It includes an AC-to-DC converter 10, a DC-to-DC converter having a first converter 28 with a resonant tank; wherein, the AC-to-DC converter has an AC input voltage V ac , a DC output power source V bus and an AC Controller 20 of the DC converter. Its structure is mainly converted from the AC input voltage of the AC input power supply end to the high-voltage DC voltage, and then output to the V bus through the DC power output end.

在本實施例中,該直流對直流轉換器為第一種具有諧振槽轉換器28,其具有全橋切換電路24、第一種一次側諧振槽25,一變壓器13,第一種二次側諧振槽26,一直流對直流轉換器控制器22、一零交越點偵測16、一峰值檢測18、一線上諧振頻率計算單元17和一閘極訊號產生器19。該全橋切換電路中S1~S4的功率開關的開關訊號由閘極訊號產生器19所產生並控制,而全橋切換電路24連接著第一種一次側諧振槽25,其此一次側諧振槽之中包含一一次側諧振電感Lr1,一一次側諧振電容Cr1與一激磁電感Lm,激磁電感而是使用變壓器13的激磁電感Lm;而變壓器13連接著第一種二次側諧振槽26,此二次側諧振槽之中包含一二次側諧振電感Lr2、一二次側諧振電容Cr2,其第一種二次側諧振槽26連接著此轉換器的全橋整流電路27。 In this embodiment, the DC-to-DC converter is the first converter with a resonant tank 28, which has a full-bridge switching circuit 24, the first primary resonant tank 25, a transformer 13, the first secondary side The resonant tank 26 has a DC-DC converter controller 22, a zero-crossing point detection 16, a peak detection 18, an online resonance frequency calculation unit 17, and a gate signal generator 19. The switching signals of the power switches S1 to S4 in the full-bridge switching circuit are generated and controlled by the gate signal generator 19, and the full-bridge switching circuit 24 is connected to the first-type primary resonance tank 25, and the primary-side resonance tank It includes a primary resonance inductance L r1 , a primary resonance capacitance C r1 and a magnetizing inductance L m , the magnetizing inductance uses the magnetizing inductance L m of the transformer 13; and the transformer 13 is connected to the first secondary Side resonance tank 26, the secondary side resonance tank includes a secondary side resonance inductance L r2 and a secondary side resonance capacitor C r2 , the first type secondary resonance tank 26 is connected to the full bridge of the converter Rectifier circuit 27.

在本實施例中,利用電流檢測器CT擷取諧振槽中的諧振電流並連接零交越點偵測16與峰值檢測18;而此兩偵測將會產生兩方波電壓訊號,此時零交越點偵測16所產生的方波電壓訊號上升緣為t1,峰值檢測18所產生的方波電壓訊號上升緣為t2,再經由線上諧振頻率計算單元17擷取t1、t2此段時間並做計算,而此段時間為實際的第一諧振週期的四分之一。 In this embodiment, the current detector CT is used to capture the resonant current in the resonant tank and connect the zero crossing point detection 16 and the peak detection 18; and these two detections will generate two square wave voltage signals, at this time zero The rising edge of the square wave voltage signal generated by the crossover point detection 16 is t1, the rising edge of the square wave voltage signal generated by the peak detection 18 is t2, and then the time t1 and t2 are captured by the online resonance frequency calculation unit 17 and Do the calculation, and this period of time is a quarter of the actual first resonance period.

第4圖控制方塊圖表示在經由線上諧振頻率計算單元17所得知實際諧振週期Tr後,並與當時的切換週期做計算,所得到的誤差值進入一控制器34,出來的補償量將與原本交流對直流轉換器輸出電壓參考值運算,並傳至交流對直流轉換器控制器20,以改變交流對直流轉換器的輸出電壓,利用調整輸出電壓使諧振式轉換器的切換頻率做調變趨近或等於第一諧振頻率,以達到效率提升的效果。 FIG. 4 shows a control block diagram after the actual resonance period T r calculating unit 17 via the line that the resonant frequency, and the switching cycle time to do the calculation, the resulting value of the error enters a controller 34, and the amount of compensation out The original AC-to-DC converter output voltage reference value is calculated and passed to the AC-to-DC converter controller 20 to change the AC-to-DC converter output voltage, and the switching frequency of the resonant converter is modulated by adjusting the output voltage Approaching or equal to the first resonance frequency to achieve the effect of improving efficiency.

請參閱第3圖係為本發明電源轉換器第二較佳實施例之電路圖。在本實施例中,該直流對直流轉換器由第二種具有諧振槽轉換器33所組成,其具有一半橋切換電路29、第二種一次側諧振槽30,一變壓器13,第二種二次側諧振槽31,一半橋整流電路32,一直流對直流轉換器控制器22、一零交越點偵測16、一峰值檢測18、一線上諧振頻率計算單元17和一閘極訊號產生器19。該半橋切換電路29中S1、S2的功率開關的開關訊號由閘極訊號產生器19所產生並控制,而半橋切換電路29連接著第二種一次側諧振槽30,其第二種一次側諧振槽之中包含一一次側諧振電感Lr1,一一次側第一諧振電容Cr11、一一次側第二諧振電容Cr12與一激磁電感Lm,激磁電感而是使用變壓器13的激磁電感Lm;而變壓器13連接著第二種二次側諧振槽31,第二種二次側諧振槽之中包含一二次側諧振電感Lr2、一二次側第一諧振電容Cr21、一二次側第二諧振電容 Cr22,其第二種二次側諧振槽31連接著半橋整流電路32。其於動作狀態接與實施例一相同。 Please refer to FIG. 3 for a circuit diagram of a second preferred embodiment of the power converter of the present invention. In this embodiment, the DC-to-DC converter is composed of a second converter 33 with a resonant tank, which has a half-bridge switching circuit 29, a second primary resonant tank 30, a transformer 13, and a second two Secondary side resonant tank 31, half-bridge rectifier circuit 32, DC-DC converter controller 22, a zero-crossing point detection 16, a peak detection 18, an online resonance frequency calculation unit 17 and a gate signal generator 19. The switching signals of the power switches S1 and S2 in the half-bridge switching circuit 29 are generated and controlled by the gate signal generator 19, and the half-bridge switching circuit 29 is connected to the second type primary resonance tank 30, the second type The side resonance tank includes a primary resonance inductance L r1 , a primary resonance capacitance Cr11, a primary resonance capacitance Cr12 and a magnetizing inductance L m . The magnetizing inductance uses the excitation of the transformer 13 instead The inductance L m ; and the transformer 13 is connected to the second secondary resonance tank 31, the second secondary resonance tank includes a secondary resonance inductor L r2 , a secondary resonance capacitor Cr21, a The second-side secondary resonance capacitor Cr22 has a second-type secondary-side resonance tank 31 connected to the half-bridge rectifier circuit 32. Its operation state is the same as the first embodiment.

前述的發明技術諧振頻率追蹤主要用於具有諧振槽的轉換器操作於穩態時,並控制轉換器的切換頻率,使其操作趨近或等於諧振頻率,以提高效率;當輸出負載變動時,因轉換器的切換頻率已固定無法以頻率調變達到穩壓的動作,導致需以調整交流對直流轉換器的輸出電壓才可達到穩壓,而此響應速度相對是較慢的。本專利提出另一發明以解決上述之問題,主要目的在於加速在負載快速變動的暫態響應。 The aforementioned invention technology resonant frequency tracking is mainly used when the converter with a resonant tank operates in a steady state, and controls the switching frequency of the converter to make its operation approach or equal to the resonant frequency to improve efficiency; when the output load fluctuates, Because the switching frequency of the converter has been fixed and the frequency regulation can not be used to achieve voltage regulation, the output voltage of the AC to DC converter needs to be adjusted to achieve voltage regulation, and the response speed is relatively slow. This patent proposes another invention to solve the above-mentioned problems. The main purpose is to accelerate the transient response to rapid changes in load.

請參閱第5圖係為結合諧振頻率追蹤與加快暫態響應速度的方塊圖,其包含一線上諧振頻率追蹤模組35、一頻率調變模組36和一模式控制模組37,而線上諧振頻率追蹤模組35為以上所述的諧振頻率追蹤發明技術。 Please refer to Figure 5 for a block diagram of combining resonance frequency tracking and speeding up transient response speed, which includes an online resonance frequency tracking module 35, a frequency modulation module 36 and a mode control module 37, while the online resonance The frequency tracking module 35 is the above-mentioned invention of resonant frequency tracking technology.

在判斷切換不同模組主要是由模式控制模組37所決定。模式控制模組是由回授具有諧振槽的轉換器輸出電壓回授與輸出電壓參考值做相減,並得到輸出電壓誤差值。在一般穩態時,模式控制模組中的S切換變數為0,表示此時為執行線上諧振頻率追蹤模組35,當輸出電壓誤差值大於誤差值上限值,表示負載正在大幅度的變動,S切換變數將為1並將模式切換至頻率調變模組36,以具有諧振槽的轉換器的直流對直流轉換器控制器22利用切換頻率的變動以達到輸出電壓穩 壓的動作;而當負載停止變動時,輸出電壓的誤差值漸漸的變小與原訂的誤差值下限值做比較,如小於S切換變數將變為0,回到執行線上諧振頻率追蹤模組35。 It is mainly determined by the mode control module 37 in determining whether to switch between different modules. The mode control module subtracts the output voltage feedback of the converter with the resonant tank and the output voltage reference value, and obtains the output voltage error value. In the general steady state, the S switching variable in the mode control module is 0, indicating that the on-line resonance frequency tracking module 35 is being executed. When the output voltage error value is greater than the upper limit value of the error value, it indicates that the load is changing greatly The S switching variable will be 1 and the mode is switched to the frequency modulation module 36. The DC-to-DC converter controller 22 of the converter with a resonant tank uses the change in the switching frequency to achieve output voltage stability Pressure action; and when the load stops changing, the error value of the output voltage gradually becomes smaller and compared with the original lower limit value of the error value, if it is less than S, the switching variable will become 0, and return to the execution line resonance frequency tracking mode Group 35.

由以上兩發明可知,諧振頻率追蹤對於電源轉換器穩態時,因實際上具有諧振槽轉換器的元件的誤差與電路上所產生的寄生效應皆會影響實際的第一諧振頻率,並操作於實際的第一諧振頻率以提升效率;在負載變動暫態響應模式控制模組以模式切換的方式,加快諧振頻率追蹤所造成較慢的響應速度。 As can be seen from the above two inventions, when the resonant frequency tracking is stable for the power converter, the actual first resonant frequency will be affected by the error of the component with the resonant tank converter and the parasitic effects generated on the circuit, and operate at The actual first resonant frequency improves efficiency; in the transient response mode of load change, the control module uses mode switching to speed up the slower response speed caused by the resonant frequency tracking.

Vac‧‧‧交流輸入電壓 V ac ‧‧‧ AC input voltage

10‧‧‧交流對直流轉換器 10‧‧‧AC to DC converter

11‧‧‧切換電路 11‧‧‧Switch circuit

12‧‧‧一次側諧振槽 12‧‧‧primary resonance tank

13‧‧‧變壓器 13‧‧‧Transformer

14‧‧‧二次側諧振槽 14‧‧‧Secondary side resonance tank

15‧‧‧整流電路 15‧‧‧Rectifier circuit

16‧‧‧零交越點偵測 16‧‧‧Zero crossing detection

17‧‧‧線上諧振頻率計算單元 17‧‧‧ Online resonance frequency calculation unit

18‧‧‧峰值檢測 18‧‧‧Peak detection

19‧‧‧閘極訊號產生器 19‧‧‧Gate signal generator

20‧‧‧交流對直流轉換器控制器 20‧‧‧AC to DC converter controller

21‧‧‧可調電壓控制器單元 21‧‧‧Adjustable voltage controller unit

22‧‧‧交流對直流轉換器控制器 22‧‧‧AC to DC converter controller

23‧‧‧具有諧振式轉換器 23‧‧‧With resonant converter

Vbus‧‧‧交流對直流的輸出電壓 V bus ‧‧‧AC to DC output voltage

S1‧‧‧第一功率開關 S1‧‧‧ First power switch

S2‧‧‧第二功率開關 S2‧‧‧second power switch

S3‧‧‧第三功率開關 S3‧‧‧third power switch

S4‧‧‧第四功率開關 S4‧‧‧The fourth power switch

S5‧‧‧第五功率開關 S5‧‧‧ fifth power switch

S6‧‧‧第六功率開關 S6‧‧‧ sixth power switch

S7‧‧‧第七功率開關 S7‧‧‧ seventh power switch

S8‧‧‧第八功率開關 S8‧‧‧Eighth power switch

CT‧‧‧電流檢測器 CT‧‧‧current detector

Vout‧‧‧諧振式轉換器輸出電壓 V out ‧‧‧Resonant converter output voltage

NP‧‧‧變壓器一次側繞組 N P ‧‧‧ Primary winding of transformer

Ns1‧‧‧變壓器二次側繞組 N s1 ‧‧‧ transformer secondary winding

Co‧‧‧輸出電容 C o ‧‧‧ output capacitance

T‧‧‧變壓器 T‧‧‧Transformer

Vgs1~Vgs8 S1~S8‧‧‧閘極訊號 V gs1 ~V gs8 S1~S8‧‧‧Gate signal

t1‧‧‧零交越點偵測方波電壓訊號上升緣時間點 t 1 ‧‧‧ Zero crossing point detection square wave voltage signal rising edge time point

t2‧‧‧峰值檢測方波電壓訊號上升緣時間點 t 2 ‧‧‧ Peak detection square wave voltage signal rising edge time

Tr‧‧‧諧振週期 T r ‧‧‧ resonance period

Ts‧‧‧切換週期 T s ‧‧‧ switching cycle

Claims (24)

一種電源轉換器,包含:一交流對直流轉換器,包含一交流電源輸入端、一直流電源輸出端和一交流對直流控制端、一直流對直流轉換器;其包含一切換電路,根據切換頻率開關切換電路中的開關,以將一直流電壓轉換為一交流訊號;一一次側諧振槽,電性連接於該側的切換電路,用以接收交流訊號以提供一諧振電流;一變壓器,其電性連接一一次側諧振槽以提供能量至二次側;一二次側諧振槽,電性連接變壓器以提供電流至一整流電路;一整流電路,電性連接於二次側諧振槽,用以對二次側諧振槽輸出的交流訊號進行整流並提供一輸出電壓;一直流對直流轉換器控制器,依照輸出電壓所運算出該切換電路所需的切換頻率。 A power converter includes: an AC to DC converter, including an AC power input terminal, a DC power output terminal, and an AC to DC control terminal, a DC to DC converter; it includes a switching circuit, according to the switching frequency A switch in a switch switching circuit to convert a DC voltage into an AC signal; a primary-side resonant tank, electrically connected to the switching circuit on the side, for receiving an AC signal to provide a resonant current; a transformer, which Electrically connected to a primary side resonant tank to provide energy to the secondary side; a secondary side resonant tank, electrically connected to a transformer to provide current to a rectifier circuit; a rectifier circuit, electrically connected to the secondary side resonant tank, It is used to rectify the AC signal output from the secondary side resonance tank and provide an output voltage; the DC-DC converter controller calculates the switching frequency required by the switching circuit according to the output voltage. 如請求第1項所述的電源轉換器,更包含一閘極訊號產生器,該閘極訊號產生器連接於直流對直流轉換器控制器、切換電路和整流電路等開關,該直流對直流轉換器控制器根據輸出電壓的變化做計算,並輸出對應的切換頻率於閘極訊號產生器以控制開關的啟閉。 The power converter as claimed in item 1 further includes a gate signal generator connected to a switch such as a DC-DC converter controller, a switching circuit, and a rectifier circuit. The DC-DC converter The controller calculates according to the change of the output voltage, and outputs the corresponding switching frequency to the gate signal generator to control the opening and closing of the switch. 如請求第1項所述的電源轉換器,具有諧振頻率追蹤的功能,其提供諧振電流至一零交越點偵測和一峰值檢測,該零交越點偵測和峰值偵測可分別提供電壓訊號至一線上諧振頻率計算單元,其線上諧振頻率計算單元將提供實際第一諧振週期的四分之一,再輸出至一可調電壓控制器單元,調 整交流對直流轉換器的輸出電壓,使直流對直流轉換器的切換頻率操作趨近或等於諧振轉換器的第一諧振頻率。 The power converter as claimed in item 1 has the function of resonant frequency tracking, which provides resonant current to a zero-crossing point detection and a peak detection. The zero-crossing point detection and peak detection can be provided separately The voltage signal is sent to an online resonance frequency calculation unit. The online resonance frequency calculation unit will provide a quarter of the actual first resonance period and output it to an adjustable voltage controller unit. Adjust the output voltage of the AC-to-DC converter so that the switching frequency operation of the DC-to-DC converter approaches or equals the first resonant frequency of the resonant converter. 如請求第3項所述的電源轉換器,該線上諧振頻率計算將擷取到零交越點偵測電壓訊號上升緣時間與峰值檢測電壓訊號上升緣時間,將兩時間點經過計算後,定義此段時間為四分之一的實際第一諧振週期,即可得到諧振轉換器的第一諧振頻率。 If the power converter described in item 3 is requested, the resonant frequency calculation on the line will capture the zero-crossing point detection voltage signal rising edge time and the peak detection voltage signal rising edge time. After calculating the two time points, define This period of time is a quarter of the actual first resonance period, and the first resonance frequency of the resonant converter can be obtained. 如請求第3項所述的電源轉換器,線上諧振頻率計算單元提供實際第一諧振週期的四分之一後,取得實際第一諧振週期和直流對直流轉換器控制器所提供實際的切換週期,提供至一可調電壓控制器單元運算出差值和需調整交流對直流轉換器的輸出電壓值,其控制器的輸出提供給交流對直流轉換器的控制端,以調整交流對直流轉換器的輸出電壓,控制直流對直流轉換器的切換頻率趨近或等於諧振轉換器的第一諧振頻率。 As requested in the power converter described in item 3, after the online resonance frequency calculation unit provides a quarter of the actual first resonance period, the actual first resonance period and the actual switching period provided by the DC-DC converter controller are obtained , Provided to an adjustable voltage controller unit to calculate the difference and the output voltage value of the AC-DC converter to be adjusted, the output of the controller is provided to the control end of the AC-DC converter to adjust the AC-DC converter The output voltage of the DC to DC converter is controlled to approach or equal to the first resonant frequency of the resonant converter. 如請求第5項所述的電源轉換器,其該可調電壓控制器單元所得到實際的切換週期大於實際的第一諧振週期,該可調電壓控制器單元將提升原交流對直流轉換器的輸出電壓參考值,以提升直流對直流轉換器的切換頻率。 According to the power converter described in item 5, the actual switching period obtained by the adjustable voltage controller unit is greater than the actual first resonance period, and the adjustable voltage controller unit will increase the Output voltage reference value to increase the switching frequency of the DC-DC converter. 如請求第5項所述的電源轉換器,其該可調電壓控制器單元所得到實際的切換週期小於實際的第一諧振週期,該可調 電壓控制器單元將降低原交流對直流轉換器的輸出電壓參考值,以降低直流對直流轉換器的切換頻率。 According to the power converter described in item 5, the actual switching period obtained by the adjustable voltage controller unit is less than the actual first resonance period, the adjustable The voltage controller unit will reduce the reference value of the output voltage of the original AC-to-DC converter to reduce the switching frequency of the DC-to-DC converter. 如請求第1項所述的電源轉換器,更具有快速響應的功能,將上述的諧振頻率追蹤功能模組化,而另一模組為頻率調變模組,即為偵測輸出電壓以調整切換頻率的功能,以此兩模組做模式控制,而此控制為模式控制模組。 The power converter as claimed in item 1 has a quick response function, and the above-mentioned resonance frequency tracking function is modularized, and the other module is a frequency modulation module, which is to detect the output voltage to adjust The function of switching frequency uses these two modules as the mode control, and this control is the mode control module. 如請求第8項所述的電源轉換器,該模式控制決定主要由諧振轉換器的輸出電壓與輸出電壓參考值做運算,以運算後的輸出誤差值做判斷;在穩態情況下,誤差值小於一門檻值,將會工作於諧振頻率追蹤模組;當誤差值大於另一門檻值,模組將會切換至頻率調變模組,以提升響應速度。 For the power converter described in item 8 of the request, the mode control decision is mainly calculated by the output voltage of the resonant converter and the reference value of the output voltage, and the output error value after the calculation is used to judge; in the steady state, the error value If it is less than a threshold value, it will work in the resonance frequency tracking module; when the error value is greater than another threshold value, the module will switch to the frequency modulation module to improve the response speed. 如請求第1~9項所述的電源轉換器,且具有快速響應的功能,該直流對直流轉換器具有諧振槽轉換器,其具有一切換電路、一一次側諧振槽、一變壓器、一二次側諧振槽、一整流電路、一直流對直流轉換器控制器和一閘極訊號產生器。 該切換電路中的功率開關的開關訊號由閘極訊號產生器所產生並控制,而切換電路連接一次側諧振槽,而一次側諧振槽連接變壓器,而變壓器連接二次側諧振槽,其二次側諧振槽連接著直流對直流轉換器的整流電路。 The power converter described in items 1 to 9 is requested and has a fast response function. The DC-DC converter has a resonant tank converter, which has a switching circuit, a primary resonant tank, a transformer, a The secondary side resonance tank, a rectifier circuit, a DC-DC converter controller and a gate signal generator. The switching signal of the power switch in the switching circuit is generated and controlled by the gate signal generator, and the switching circuit is connected to the primary resonance tank, and the primary resonance tank is connected to the transformer, and the transformer is connected to the secondary resonance tank. The side resonance tank is connected to the rectifier circuit of the DC-DC converter. 如請求第1~9項所述的電源轉換器,且具有快速響應的功能,該直流對直流轉換器具有諧振槽轉換器,具有一切換電 路,而此切換電路由全橋切換電路、半橋切換電路或三階切換電路所組成;具有一一次側諧振槽,而此一次側諧振槽包含諧振電容、諧振電感或激磁電感,各元件可由不同串並聯方式組成;具有一二次側諧振槽,而此二次側諧振槽可包含諧振電容或諧振電感,各元件可由不同串並聯方式組成;而二次側整流電路由全橋整流、半橋整流或中心抽頭整流電路所組成。 The power converter as described in items 1 to 9 is requested and has a fast response function. The DC-DC converter has a resonant tank converter and has a switching power supply And the switching circuit is composed of a full-bridge switching circuit, a half-bridge switching circuit, or a third-order switching circuit; it has a primary resonance tank, and the primary resonance tank contains a resonance capacitor, resonance inductance, or magnetizing inductance. It can be composed of different series and parallel methods; it has a secondary side resonant tank, and this secondary side resonant tank can contain resonant capacitors or resonant inductors, and each component can be composed of different series and parallel modes; and the secondary side rectifier circuit is composed of full bridge rectification, It is composed of half-bridge rectification or center-tap rectification circuit. 一種電源轉換器,包含:一交流對直流轉換器,包含一交流電源輸入端、一直流電源輸出端和一交流對直流控制端、一直流對直流轉換器;其包含一切換電路,該切換電路中的開關根據閘極產生器選擇性的開啟或關閉,以將一直流電壓轉換為一交流訊號;一一次側諧振槽,電性連接於該側的切換電路,用以接收交流訊號以提供一諧振電流;一電流偵測電路,用以偵測諧振電流並根據諧振電流輸出一電流訊號;一變壓器,包含:一一次側繞組,其連接一次側諧振槽,接收一次側的交流訊號;一二次側繞組將感應一次側的交流訊號至二次側,並提供給二次側諧振槽;一二次側諧振槽,電性連接變壓器以提供電流至一整流電路;一整流電路,電性連接於二次側諧振槽,用以對二次側諧振槽輸出的交流訊號進行整流並提供一輸出電壓;一直流對直流轉換器控制器,依照輸出電壓所運算出該切換電路所需的切換 頻率。 A power converter includes: an AC to DC converter, including an AC power input terminal, a DC power output terminal, and an AC to DC control terminal, a DC to DC converter; it includes a switching circuit, the switching circuit The switch in is selectively turned on or off according to the gate generator to convert the DC voltage into an AC signal; a primary resonant tank electrically connected to the switching circuit on the side for receiving the AC signal to provide A resonant current; a current detection circuit for detecting the resonant current and outputting a current signal according to the resonant current; a transformer, including: a primary winding, which is connected to the primary resonance tank and receives the primary AC signal; The primary and secondary windings will induce the AC signal from the primary side to the secondary side and provide it to the secondary side resonant tank; a secondary side resonant tank, electrically connected to the transformer to provide current to a rectifier circuit; a rectifier circuit, electric It is connected to the secondary-side resonant tank to rectify the AC signal output by the secondary-side resonant tank and provide an output voltage; the DC-DC converter controller calculates the required switching circuit according to the output voltage. Switch frequency. 如請求第12項所述的電源轉換器,更包含一閘極訊號產生器,該閘極訊號產生器連接於直流對直流轉換器控制器、切換電路和整流電路等開關,該直流對直流轉換器控制器根據輸出電壓的變化做計算,並輸出對應的切換頻率於閘極訊號產生器以控制開關的啟閉。 The power converter as claimed in item 12 further includes a gate signal generator which is connected to a switch such as a DC-DC converter controller, a switching circuit, and a rectifier circuit. The DC-DC converter The controller calculates according to the change of the output voltage, and outputs the corresponding switching frequency to the gate signal generator to control the opening and closing of the switch. 如請求第12項所述的電源轉換器,具有諧振頻率追蹤的功能,其中利用一電流檢測器偵測諧振電流至一零交越點偵測和一峰值檢測,該零交越點偵測和峰值偵測可分別提供電壓訊號至一線上諧振頻率計算單元,其線上諧振頻率計算單元將提供實際第一諧振週期的四分之一,再利用一可調電壓控制單元,調整交流對直流轉換器的輸出電壓,使直流對直流轉換器的切換頻率操作趨近或等於諧振轉換器的第一諧振頻率。 The power converter as claimed in item 12 has a function of resonant frequency tracking, wherein a current detector is used to detect the resonant current to a zero-crossing point detection and a peak detection, and the zero-crossing point detection and Peak detection can provide voltage signals to an online resonance frequency calculation unit, and the online resonance frequency calculation unit will provide a quarter of the actual first resonance period, and then use an adjustable voltage control unit to adjust the AC to DC converter The output voltage of the DC-DC converter makes the switching frequency operation approach or equal to the first resonant frequency of the resonant converter. 如請求第14項所述的電源轉換器,該線上諧振頻率計算將擷取到零交越點偵測電壓訊號上升緣時間與峰值檢測電壓訊號上升緣時間,將兩時間點經過計算後,定義此段時間為四分之一的實際第一諧振週期,即可得到諧振轉換器的第一諧振頻率。 If the power converter described in item 14 is requested, the resonant frequency calculation on the line will capture the zero-crossing point detection voltage signal rising edge time and the peak detection voltage signal rising edge time. After calculating the two time points, define This period of time is a quarter of the actual first resonance period, and the first resonance frequency of the resonant converter can be obtained. 如請求第14項所述的電源轉換器,線上諧振頻率計算單元提供實際第一諧振週期的四分之一後,取得實際第一諧振 週期和直流對直流轉換器控制器所提供實際的切換週期,該可調電壓控制器單元運算出差值和需調整交流對直流轉換器的輸出電壓值,其控制器的輸出送至交流對直流轉換器的控制端,以調整交流對直流轉換器的輸出電壓,控制直流對直流轉換器的切換頻率趨近或等於諧振轉換器的第一諧振頻率。 If the power converter described in item 14 is requested, after the online resonance frequency calculation unit provides a quarter of the actual first resonance period, the actual first resonance is obtained Cycle and the actual switching cycle provided by the DC-DC converter controller. The adjustable voltage controller unit calculates the difference and the output voltage value of the AC-DC converter to be adjusted. The output of the controller is sent to the AC-DC converter. The control end of the converter adjusts the output voltage of the AC-to-DC converter and controls the switching frequency of the DC-to-DC converter to approach or equal to the first resonant frequency of the resonant converter. 如請求第16項所述的電源轉換器,其該可調電壓控制器單元所得到實際的切換週期大於實際的第一諧振週期,該可調電壓控制器單元將提升原交流對直流轉換器的輸出電壓參考值,以提升直流對直流轉換器的切換頻率。 According to the power converter described in item 16, the actual switching period obtained by the adjustable voltage controller unit is greater than the actual first resonance period, and the adjustable voltage controller unit will increase the Output voltage reference value to increase the switching frequency of the DC-DC converter. 如請求第16項所述的電源轉換器,其該可調電壓控制器單元所得到實際的切換週期小於實際的第一諧振週期,該可調電壓控制器單元將降低原交流對直流轉換器的輸出電壓參考值,以降低直流對直流轉換器的切換頻率。 According to the power converter described in item 16, the actual switching period obtained by the adjustable voltage controller unit is less than the actual first resonance period, and the adjustable voltage controller unit will reduce the original AC to DC converter's Output voltage reference value to reduce the switching frequency of the DC-DC converter. 如請求第12項所述的電源轉換器,更具有快速響應的功能,將上述的諧振頻率追蹤功能模組化,而另一模組為頻率調變模組,即為偵測輸出電壓以調整切換頻率的功能,以此兩模組做模式控制,而此控制為模式控制模組。 The power converter as claimed in item 12 has a quick response function, and the above-mentioned resonance frequency tracking function is modularized, and the other module is a frequency modulation module, which is to detect the output voltage to adjust The function of switching frequency uses these two modules as the mode control, and this control is the mode control module. 如請求第12項所述的電源轉換器,該模式控制決定主要由諧振轉換器的輸出電壓與輸出電壓參考值做運算,以運算後的輸出誤差值做判斷;在穩態情況下,誤差值小於一門檻 值,將會工作於諧振頻率追蹤模組;當誤差值大於另一門檻值,模組將會切換至頻率調變模組,以提升響應速度。 For the power converter described in item 12 of the request, the mode control decision is mainly calculated by the output voltage of the resonant converter and the reference value of the output voltage, and the output error value after the calculation is used to judge; in the steady state, the error value Less than a threshold Value, it will work on the resonant frequency tracking module; when the error value is greater than another threshold, the module will switch to the frequency modulation module to improve the response speed. 如請求第12~20項所述的電源轉換器,且具有快速響應的功能,該直流對直流轉換器具有諧振槽轉換器,其具有一切換電路、一一次側諧振槽、一電流偵測電路、一變壓器、一二次側諧振槽、一整流電路、一直流對直流轉換器控制器和一閘極訊號產生器。該切換電路中的功率開關的開關訊號由閘極訊號產生器所產生並控制,而切換電路連接一次側諧振槽,而一次側諧振槽連接變壓器,而變壓器連接二次側諧振槽,其二次側諧振槽連接著直流對直流轉換器的整流電路。 The power converter described in items 12 to 20 is requested and has a fast response function. The DC-DC converter has a resonant tank converter, which has a switching circuit, a primary resonant tank, and a current detection The circuit, a transformer, a secondary resonance tank, a rectifier circuit, a DC-DC converter controller and a gate signal generator. The switching signal of the power switch in the switching circuit is generated and controlled by the gate signal generator, and the switching circuit is connected to the primary resonance tank, and the primary resonance tank is connected to the transformer, and the transformer is connected to the secondary resonance tank. The side resonance tank is connected to the rectifier circuit of the DC-DC converter. 如請求第12~20項所述的電源轉換器,且具有快速響應的功能,該直流對直流轉換器具有諧振槽轉換器,具有一切換電路,而此切換電路由全橋切換電路、半橋切換電路或三階切換電路所組成;具有一一次側諧振槽,而此一次側諧振槽包含諧振電容、諧振電感或激磁電感,各元件可由不同串並聯方式組成;具有一二次側諧振槽,而此二次側諧振槽可包含諧振電容或諧振電感,各元件可由不同串並聯方式組成;而二次側整流電路由全橋整流、半橋整流或中心抽頭整流電路所組成。 The power converter as described in items 12 to 20 is requested and has a fast response function. The DC-to-DC converter has a resonant tank converter and has a switching circuit. The switching circuit is composed of a full-bridge switching circuit and a half-bridge. It consists of a switching circuit or a third-order switching circuit; it has a primary-side resonant tank, and this primary-side resonant tank contains a resonant capacitor, a resonant inductor or a magnetizing inductance, and each element can be composed of different series and parallel ways; it has a secondary-side resonant tank The secondary-side resonant tank may contain a resonant capacitor or a resonant inductor, and each element may be composed of different series-parallel connections; the secondary-side rectifier circuit is composed of a full-bridge rectifier, a half-bridge rectifier, or a center-tapped rectifier circuit. 一種電源轉換器的控制方法,包含:透過一電源轉換器中 的一閘極訊號產生器,輸出一閘極訊號控制該電源轉換器中一次側切換電路中對應的開關,以切換該電源轉換器中一諧振電路所接收的一交流訊號;透過該電源轉換器中的一電流偵測電路,偵測流經該電源轉換器中該諧振電路的一諧振電流,並擷取諧振電流的零交越點和峰值偵測點的時間提供至一線上諧振頻率計算單元,經過線上諧振頻率計算單元可得實際第一諧振週期的四分之一,再利用一可調電壓控制器單元,調整交流對直流轉換器的輸出電壓,使直流對直流轉換器的切換頻率操作趨近或等於諧振轉換器的第一諧振頻率。 A control method of a power converter includes: through a power converter A gate signal generator outputs a gate signal to control the corresponding switch in the primary side switching circuit in the power converter to switch an AC signal received by a resonant circuit in the power converter; through the power converter A current detection circuit in the system detects a resonant current flowing through the resonant circuit in the power converter, and extracts the time of the zero-crossing point and peak detection point of the resonant current to provide to an online resonant frequency calculation unit Through the online resonant frequency calculation unit, a quarter of the actual first resonant period can be obtained, and then an adjustable voltage controller unit is used to adjust the output voltage of the AC-to-DC converter to operate the switching frequency of the DC-to-DC converter. Approaching or equal to the first resonant frequency of the resonant converter. 如請求項23所述的電源轉換器的控制方法,其中調整該閘極訊號產生器的該切換頻率包含:當可調電壓控制器單元所得到實際的切換週期大於實際的第一諧振週期,該可調電壓控制器單元將提升原交流對直流轉換器的輸出電壓參考值,以提升直流對直流轉換器的切換頻率;以及可調電壓控制器單元所得到實際的切換週期小於實際的第一諧振週期,該可調電壓控制器單元將降低原交流對直流轉換器的輸出電壓參考值,以降低直流對直流轉換器的切換頻率。 The control method of the power converter according to claim 23, wherein adjusting the switching frequency of the gate signal generator includes: when the actual switching period obtained by the adjustable voltage controller unit is greater than the actual first resonance period, the The adjustable voltage controller unit will increase the reference value of the original AC-to-DC converter output voltage to increase the switching frequency of the DC-to-DC converter; and the actual switching period obtained by the adjustable voltage controller unit is less than the actual first resonance During the period, the adjustable voltage controller unit will reduce the reference value of the output voltage of the original AC-to-DC converter to reduce the switching frequency of the DC-to-DC converter.
TW107140964A 2018-11-19 2018-11-19 Power converter and control method TWI683513B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107140964A TWI683513B (en) 2018-11-19 2018-11-19 Power converter and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107140964A TWI683513B (en) 2018-11-19 2018-11-19 Power converter and control method

Publications (2)

Publication Number Publication Date
TWI683513B true TWI683513B (en) 2020-01-21
TW202021248A TW202021248A (en) 2020-06-01

Family

ID=69942376

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107140964A TWI683513B (en) 2018-11-19 2018-11-19 Power converter and control method

Country Status (1)

Country Link
TW (1) TWI683513B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI760788B (en) * 2020-07-13 2022-04-11 大陸商光寶電子(廣州)有限公司 Converter with half-bridge circuit
TWI767432B (en) * 2020-12-01 2022-06-11 產晶積體電路股份有限公司 Zero-voltage switching power control system
US11594976B2 (en) 2020-06-05 2023-02-28 Delta Electronics, Inc. Power converter and control method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI800101B (en) * 2021-11-16 2023-04-21 致茂電子股份有限公司 Ac-dc power conversion module and driving method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM449408U (en) * 2012-11-08 2013-03-21 Chung Shan Inst Of Science Secondary-side series resonance full-bridge DC/DC converter
TW201433074A (en) * 2012-12-07 2014-08-16 Apple Inc A hysteretic-mode pulse frequency modulated (HM-PFM) resonant AC to DC converter
US20150180353A1 (en) * 2013-12-19 2015-06-25 Fsp Technology Inc. Power conversion apparatus
CN105186892A (en) * 2014-05-27 2015-12-23 晶宝智电科技有限公司 Digital AD/DC power converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM449408U (en) * 2012-11-08 2013-03-21 Chung Shan Inst Of Science Secondary-side series resonance full-bridge DC/DC converter
TW201433074A (en) * 2012-12-07 2014-08-16 Apple Inc A hysteretic-mode pulse frequency modulated (HM-PFM) resonant AC to DC converter
US20150180353A1 (en) * 2013-12-19 2015-06-25 Fsp Technology Inc. Power conversion apparatus
CN105186892A (en) * 2014-05-27 2015-12-23 晶宝智电科技有限公司 Digital AD/DC power converter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11594976B2 (en) 2020-06-05 2023-02-28 Delta Electronics, Inc. Power converter and control method thereof
TWI801891B (en) * 2020-06-05 2023-05-11 台達電子工業股份有限公司 Power converter and control method thereof
US11777417B2 (en) 2020-06-05 2023-10-03 Delta Electronics, Inc. Power converter and control method thereof
TWI760788B (en) * 2020-07-13 2022-04-11 大陸商光寶電子(廣州)有限公司 Converter with half-bridge circuit
TWI767432B (en) * 2020-12-01 2022-06-11 產晶積體電路股份有限公司 Zero-voltage switching power control system

Also Published As

Publication number Publication date
TW202021248A (en) 2020-06-01

Similar Documents

Publication Publication Date Title
TWI683513B (en) Power converter and control method
TWI670919B (en) Power supply with resonant converter and control method thereof
Fei et al. Two-stage 48 V-12 V/6 V-1.8 V voltage regulator module with dynamic bus voltage control for light-load efficiency improvement
Mallik et al. Variable-switching-frequency state-feedback control of a phase-shifted full-bridge DC/DC converter
Kim et al. A simple switching control technique for improving light load efficiency in a phase-shifted full-bridge converter with a server power system
US9973099B2 (en) AC/DC converters with wider voltage regulation range
US10079545B2 (en) Current resonant type DC voltage converter, control integrated circuit, and current resonant type DC voltage conversion method
KR101756546B1 (en) Secondary side control of resonant dc/dc converters
CN108736727B (en) Power converter and control method thereof
US10044278B2 (en) Power conversion device
Kim et al. Analysis and design of a multioutput converter using asymmetrical PWM half-bridge flyback converter employing a parallel–series transformer
EP3622609A1 (en) Modular medium voltage fast chargers
Baggio et al. Isolated interleaved-phase-shift-PWM DC-DC ZVS converter
TW201424240A (en) AC-DC resonant converter that provides high efficiency and high power density
Gong et al. 6.6 kW three-phase interleaved totem pole PFC design with 98.9% peak efficiency for HEV/EV onboard charger
O'Sullivan et al. A family of single-stage resonant AC/DC converters with PFC
US9337741B2 (en) DC-DC conversion circuit and method
US20130250620A1 (en) Control circuit for reducing touch current of a power converter and operation method thereof
WO2014169821A1 (en) Apparatus and method for resonant converters
US20170317579A1 (en) Pfc circuits with very low thd
EP2975753B1 (en) A three-level converter
CN110445387B (en) Topological structure and control method of formation and grading power supply
Hu et al. Natural boundary transition and inherent dynamic control of a hybrid-mode-modulated dual-active-bridge converter
TWI617126B (en) Power converter and control method thereof
EP2677651A1 (en) Synchronized isolated AC-AC converter with variable regulated output voltage