TWI665847B - Power switch system - Google Patents

Power switch system Download PDF

Info

Publication number
TWI665847B
TWI665847B TW107141170A TW107141170A TWI665847B TW I665847 B TWI665847 B TW I665847B TW 107141170 A TW107141170 A TW 107141170A TW 107141170 A TW107141170 A TW 107141170A TW I665847 B TWI665847 B TW I665847B
Authority
TW
Taiwan
Prior art keywords
terminal
transistor
resistor
voltage
control signal
Prior art date
Application number
TW107141170A
Other languages
Chinese (zh)
Other versions
TW202021231A (en
Inventor
周宜群
陳昱瑾
蔡安綺
Original Assignee
聯陽半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯陽半導體股份有限公司 filed Critical 聯陽半導體股份有限公司
Priority to TW107141170A priority Critical patent/TWI665847B/en
Priority to CN201910207264.7A priority patent/CN111200313B/en
Application granted granted Critical
Publication of TWI665847B publication Critical patent/TWI665847B/en
Publication of TW202021231A publication Critical patent/TW202021231A/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electronic Switches (AREA)

Abstract

電源切換系統包含第一電源供應器、複數個電晶體、第一電阻、第一加速電路、第二電源供應器、第二電阻、第二加速電路、電容以及負載。複數個電晶體中的一些電晶體用以接收第一控制訊號、第二控制訊號、第三控制訊號及第四控制訊號。第一電源供應器用以提供第一電壓。第二電源供應器用以提供第二電壓。電容用以輸出電壓至負載。第一控制訊號、第二控制訊號、第三控制訊號及第四控制訊號用以透過複數個電晶體,控制電壓由第一電壓切換為第二電壓,或由第二電壓切換為第一電壓。 The power switching system includes a first power supply, a plurality of transistors, a first resistor, a first acceleration circuit, a second power supply, a second resistor, a second acceleration circuit, a capacitor, and a load. Some of the plurality of transistors are used to receive a first control signal, a second control signal, a third control signal, and a fourth control signal. The first power supply is used to provide a first voltage. The second power supply is used to provide a second voltage. The capacitor is used to output the voltage to the load. The first control signal, the second control signal, the third control signal, and the fourth control signal are used to pass a plurality of transistors, and the control voltage is switched from the first voltage to the second voltage, or from the second voltage to the first voltage.

Description

電源切換系統 Power switching system

本發明描述一種電源切換系統,尤指一種切換速度快且穩定性高的電源切換系統。 The invention describes a power supply switching system, in particular a power supply switching system with fast switching speed and high stability.

隨著科技日新月異,許多的電子產品的功能也越來越強,運算速度也越來越快。然而,將電子產品的功能擴充以及提高運算能力會增加功率消耗。因此,具有執行多功能且運算能力強大的電子產品,也因功率消耗增大而導致操作時間的縮減。為了延長電子產品的操作時間或是擴充電子產品的供電來源之支援性,雙電池或是雙電源的供電系統於目前生活中也越來越常見。例如,筆記型電腦的主電池與外接電源擴充埠(Power Docking)裝置中的備用電池可以同時連接於筆記型電腦。換句話說,筆記型電腦的供電來源可以是內建的主電池或是外接電源擴充埠裝置中的備用電池。 With the rapid development of technology, many electronic products are becoming more powerful and faster. However, expanding the functions of electronic products and increasing computing power will increase power consumption. Therefore, electronic products that have multiple functions and powerful computing capabilities also reduce operating time due to increased power consumption. In order to extend the operating time of electronic products or expand the supportability of the power supply source of electronic products, dual-battery or dual-power supply systems are becoming more and more common in current life. For example, a notebook computer's main battery and a backup battery in a Power Docking device can be connected to the notebook computer at the same time. In other words, the laptop can be powered by a built-in main battery or a backup battery in an external power expansion port device.

目前的雙電池或是雙電源的供電系統應用於電子產品上時,需要一個單刀雙擲(Single Pole Double Throw,SPDT)開關來做供電來源的切換,並由控制器根據主電池以及備用電池的儲能狀況來決定此開關的切換狀態。然而,以目前具有單刀雙擲開關之雙電池或是雙電源的供電系統而言,切換速度與靜態耗電量很難取得平衡。換句話說,單刀雙擲開關內的共用電阻關聯於切換速度與靜態耗電量。共用電阻越大,靜態耗電量越小,但是切換速度越慢。反之, 共用電阻越小,切換速度越快,但是靜態耗電量越大。過大的靜態耗電量會造成額外功率消耗量增加,而太慢的切換速度會造成供電系統的暫態時間過長而導致電壓不穩定。 When the current dual-battery or dual-power supply system is applied to electronic products, a Single Pole Double Throw (SPDT) switch is required to switch the power source, and the controller uses the main battery and the backup battery to switch the power source. The state of energy storage determines the switching state of this switch. However, for a current dual-battery or dual-power supply system with a single-pole double-throw switch, it is difficult to balance switching speed and static power consumption. In other words, the common resistance in a single pole double throw switch is related to the switching speed and static power consumption. The larger the common resistance, the smaller the static power consumption, but the slower the switching speed. on the contrary, The smaller the common resistance, the faster the switching speed, but the larger the static power consumption. Excessive static power consumption will increase the amount of extra power consumption, and too slow switching speed will cause the transient time of the power supply system to be too long, resulting in voltage instability.

本發明一實施例提出一種電源切換系統,包含第一電源供應子系統、第二電源供應子系統、電容以及負載。第一電源供應子系統包含第一電源供應器、第一電晶體、第二電晶體、第三電晶體、第一電阻、第一加速電路、第四電晶體。第二電源供應子系統包含第二電源供應器、第五電晶體、第六電晶體、第七電晶體、第二電阻、第二加速電路、第八電晶體。第一電源供應器用以提供第一電壓。第一電晶體包含耦接於第一電源供應器的第一端、控制端、及第二端。第二電晶體包含耦接於第一電晶體之控制端的第一端、用以接收第一控制訊號的控制端、及耦接於接地端的第二端。第三電晶體包含第一端、用以接收第二控制訊號的控制端、及耦接於接地端的第二端。第一電阻包含耦接於第一電晶體之第二端的第一端、及耦接於第三電晶體之第一端的第二端。第一加速電路耦接於第一電阻之第一端、第一電阻之第二端及第二電晶體之第一端。第四電晶體包含耦接於第一電阻之第一端的第一端、耦接於第二電晶體之第一端的控制端、及第二端。第二電源供應器用以提供第二電壓。第五電晶體包含耦接於第二電源供應器的第一端、控制端、及第二端。第六電晶體包含耦接於第五電晶體之控制端的第一端、用以接收第三控制訊號的控制端、及耦接於接地端的第二端。第七電晶體包含第一端、用以接收第四控制訊號的控制端、及耦接於接地端的第二端。第二電阻包含耦接於第五電晶體之第二端的第一端、及耦接於第七電晶體之第一端的第二端。第二加速電路耦接於第二電阻之第一端、第二電阻之第二端及第六電晶體之第一端。第八電晶體包含耦接於第 二電阻之第一端的第一端、耦接於第六電晶體之第一端的控制端、及耦接於第四電晶體之第二端的第二端。電容包含耦接於第八電晶體之第二端用以輸出電壓的第一端、及耦接於接地端的第二端。負載耦接於電容之第一端,用以接收電壓。第一控制訊號、第二控制訊號、第三控制訊號及第四控制訊號用以控制電壓由第一電壓切換為第二電壓,或由第二電壓切換為第一電壓。 An embodiment of the present invention provides a power switching system including a first power supply subsystem, a second power supply subsystem, a capacitor, and a load. The first power supply subsystem includes a first power supply, a first transistor, a second transistor, a third transistor, a first resistor, a first acceleration circuit, and a fourth transistor. The second power supply subsystem includes a second power supply, a fifth transistor, a sixth transistor, a seventh transistor, a second resistor, a second acceleration circuit, and an eighth transistor. The first power supply is used to provide a first voltage. The first transistor includes a first terminal, a control terminal, and a second terminal coupled to the first power supply. The second transistor includes a first terminal coupled to the control terminal of the first transistor, a control terminal for receiving the first control signal, and a second terminal coupled to the ground terminal. The third transistor includes a first terminal, a control terminal for receiving a second control signal, and a second terminal coupled to the ground terminal. The first resistor includes a first terminal coupled to the second terminal of the first transistor, and a second terminal coupled to the first terminal of the third transistor. The first acceleration circuit is coupled to the first terminal of the first resistor, the second terminal of the first resistor, and the first terminal of the second transistor. The fourth transistor includes a first terminal coupled to the first terminal of the first resistor, a control terminal coupled to the first terminal of the second transistor, and a second terminal. The second power supply is used to provide a second voltage. The fifth transistor includes a first terminal, a control terminal, and a second terminal coupled to the second power supply. The sixth transistor includes a first terminal coupled to the control terminal of the fifth transistor, a control terminal for receiving a third control signal, and a second terminal coupled to the ground terminal. The seventh transistor includes a first terminal, a control terminal for receiving a fourth control signal, and a second terminal coupled to the ground terminal. The second resistor includes a first terminal coupled to the second terminal of the fifth transistor, and a second terminal coupled to the first terminal of the seventh transistor. The second acceleration circuit is coupled to the first terminal of the second resistor, the second terminal of the second resistor, and the first terminal of the sixth transistor. The eighth transistor includes a coupling A first terminal of the first terminal of the two resistors, a control terminal coupled to the first terminal of the sixth transistor, and a second terminal coupled to the second terminal of the fourth transistor. The capacitor includes a first terminal coupled to the second terminal of the eighth transistor to output a voltage, and a second terminal coupled to the ground terminal. The load is coupled to the first terminal of the capacitor for receiving a voltage. The first control signal, the second control signal, the third control signal and the fourth control signal are used to control the voltage to be switched from the first voltage to the second voltage, or from the second voltage to the first voltage.

100‧‧‧電源切換系統 100‧‧‧ Power Switching System

SYS1‧‧‧第一電源供應子系統 SYS1‧‧‧First Power Supply Subsystem

SYS2‧‧‧第二電源供應子系統 SYS2‧‧‧Second power supply subsystem

EN1‧‧‧第一控制訊號 EN1‧‧‧First Control Signal

EN2‧‧‧第二控制訊號 EN2‧‧‧Second Control Signal

EN3‧‧‧第三控制訊號 EN3‧‧‧Third Control Signal

EN4‧‧‧第四控制訊號 EN4‧‧‧Fourth control signal

AS1‧‧‧第一加速電路 AS1‧‧‧first acceleration circuit

AS2‧‧‧第二加速電路 AS2‧‧‧second acceleration circuit

PS1‧‧‧第一電源供應器 PS1‧‧‧First Power Supply

PS2‧‧‧第二電源供應器 PS2‧‧‧Second Power Supply

L‧‧‧負載 L‧‧‧Load

C1‧‧‧電容 C1‧‧‧capacitor

GND‧‧‧接地端 GND‧‧‧ ground terminal

R1‧‧‧第一電阻 R1‧‧‧first resistor

R2‧‧‧第二電阻 R2‧‧‧Second resistor

R3‧‧‧第三電阻 R3‧‧‧Third resistor

R4‧‧‧第四電阻 R4‧‧‧Fourth resistor

T1‧‧‧第一電晶體 T1‧‧‧First transistor

T2‧‧‧第二電晶體 T2‧‧‧Second transistor

T3‧‧‧第三電晶體 T3‧‧‧Third transistor

T4‧‧‧第四電晶體 T4‧‧‧Fourth transistor

T5‧‧‧第五電晶體 T5‧‧‧Fifth transistor

T6‧‧‧第六電晶體 T6‧‧‧sixth transistor

T7‧‧‧第七電晶體 T7‧‧‧Seventh transistor

T8‧‧‧第八電晶體 T8‧‧‧Eight transistor

T9‧‧‧第九電晶體 T9‧‧‧Ninth transistor

T10‧‧‧第十電晶體 T10‧‧‧Tenth transistor

A至F‧‧‧節點 A to F‧‧‧nodes

F1至F5‧‧‧電流方向 F1 to F5‧‧‧ Current direction

PS1C‧‧‧第一供電區間 PS1C‧‧‧First power supply interval

PS2C‧‧‧第二供電區間 PS2C‧‧‧Second Power Supply Section

OPN‧‧‧開路區間 OPN‧‧‧Open Road

第1圖係為本發明之電源切換系統之實施例的電路架構圖。 FIG. 1 is a circuit architecture diagram of an embodiment of a power switching system according to the present invention.

第2圖係為第1圖之電源切換系統中,第一電源供應器提供第一電壓且第二電源供應器為開路時,所有的控制訊號以及電子元件之狀態的示意圖。 FIG. 2 is a schematic diagram of the state of all control signals and electronic components when the first power supply provides the first voltage and the second power supply is open in the power switching system of FIG.

第3圖係為第1圖之電源切換系統中,第二電源供應器提供第二電壓且第一電源供應器為開路時,所有的控制訊號以及電子元件之狀態的示意圖。 FIG. 3 is a schematic diagram of the states of all control signals and electronic components in the power switching system of FIG. 1 when the second power supply provides a second voltage and the first power supply is open.

第4圖係為第1圖之電源切換系統中,第一電源供應器及第二電源供應器均為開路時,控制訊號以及各電子元件之狀態的示意圖。 FIG. 4 is a schematic diagram of the control signals and the states of the electronic components in the power switching system of FIG. 1 when the first power supply and the second power supply are open.

第5圖係為第1圖之電源切換系統中,所有的控制訊號的波形隨時間變化之示意圖。 Figure 5 is a schematic diagram of the waveforms of all control signals in the power switching system of Figure 1 as a function of time.

第1圖係為本發明之電源切換系統100之實施例的電路架構圖。電源切換系統100可視為一種雙電池或是雙電源的供電系統,具有在兩個供電來源間切換的能力。例如,在電源切換系統100中,第一電源供應子系統SYS1可視為一個供電來源的系統,而第二電源供應子系統SYS2可視為另一個供電來源的系統。第一電源供應子系統SYS1與第二電源供應子系統SYS2可為對稱之電路架構 的兩系統,其電路架構類似。以下將說明電源切換系統100的電路細節。電源切換系統100包含第一電源供應子系統SYS1、第二電源供應子系統SYS2、電容C1以及負載L。第一電源供應子系統SYS1包含第一電源供應器PS1、第一電晶體T1、第二電晶體T2、第三電晶體T3、第一電阻R1、第一加速電路AS1、第四電晶體T4。第二電源供應子系統SYS2包含第二電源供應器PS2、第五電晶體T5、第六電晶體T6、第七電晶體T7、第二電阻R2、第二加速電路AS2、第八電晶體T8。第一電源供應器PS1用以提供第一電壓。第一電源供應器PS1可為任何形式的電池組或是外接式電源。第一電晶體T1包含耦接於第一電源供應器PS1的第一端、控制端、及第二端。第二電晶體T2包含耦接於第一電晶體T1之控制端的第一端、用以接收第一控制訊號EN1的控制端、及耦接於接地端GND的第二端。第三電晶體T3包含第一端、用以接收第二控制訊號EN2的控制端、及耦接於接地端GND的第二端。第一電阻R1包含耦接於第一電晶體T1之第二端的第一端、及耦接於第三電晶體T3之第一端的第二端。第一加速電路AS1耦接於第一電阻R1之第一端、第一電阻R1之第二端及第二電晶體T2之第一端。第四電晶體T4包含耦接於第一電阻R1之第一端的第一端、耦接於第二電晶體T2之第一端的控制端、及第二端。 FIG. 1 is a circuit architecture diagram of an embodiment of a power switching system 100 according to the present invention. The power switching system 100 can be regarded as a dual-battery or dual-power supply system, and has the ability to switch between two power sources. For example, in the power switching system 100, the first power supply subsystem SYS1 can be regarded as a system of one power source, and the second power supply subsystem SYS2 can be regarded as a system of another power source. The first power supply subsystem SYS1 and the second power supply subsystem SYS2 may have symmetrical circuit architectures. The two systems have similar circuit architectures. The circuit details of the power switching system 100 will be described below. The power switching system 100 includes a first power supply subsystem SYS1, a second power supply subsystem SYS2, a capacitor C1, and a load L. The first power supply subsystem SYS1 includes a first power supply PS1, a first transistor T1, a second transistor T2, a third transistor T3, a first resistor R1, a first acceleration circuit AS1, and a fourth transistor T4. The second power supply subsystem SYS2 includes a second power supply PS2, a fifth transistor T5, a sixth transistor T6, a seventh transistor T7, a second resistor R2, a second acceleration circuit AS2, and an eighth transistor T8. The first power supply PS1 is used to provide a first voltage. The first power supply PS1 may be any type of battery pack or an external power source. The first transistor T1 includes a first terminal, a control terminal, and a second terminal coupled to the first power supply PS1. The second transistor T2 includes a first terminal coupled to the control terminal of the first transistor T1, a control terminal for receiving the first control signal EN1, and a second terminal coupled to the ground terminal GND. The third transistor T3 includes a first terminal, a control terminal for receiving the second control signal EN2, and a second terminal coupled to the ground terminal GND. The first resistor R1 includes a first terminal coupled to the second terminal of the first transistor T1 and a second terminal coupled to the first terminal of the third transistor T3. The first acceleration circuit AS1 is coupled to a first terminal of the first resistor R1, a second terminal of the first resistor R1, and a first terminal of the second transistor T2. The fourth transistor T4 includes a first terminal coupled to the first terminal of the first resistor R1, a control terminal coupled to the first terminal of the second transistor T2, and a second terminal.

第二電源供應器PS2用以提供第二電壓。第二電源供應器PS2可為任何形式的電池組或是外接式電源。第五電晶體T5包含耦接於第二電源供應器PS2的第一端、控制端、及第二端。第六電晶體T6包含耦接於第五電晶體T5之控制端的第一端、用以接收第三控制訊號EN3的控制端、及耦接於接地端GND的第二端。第七電晶體T7包含第一端、用以接收第四控制訊號EN4的控制端、及耦接於接地端GND的第二端。第二電阻R2包含耦接於第五電晶體T5之第二端的第一端、及耦接於第七電晶體T7之第一端的第二端。第二加速電路AS2耦接於第二電阻R2之第一端、第二電阻R2之第二端及第六電晶體T6之第一端。第八電晶體 T8包含耦接於第二電阻R2之第一端的第一端、耦接於第六電晶體T6之第一端的控制端、及耦接於第四電晶體T4之第二端的第二端。電容C1包含耦接於第八電晶體T8之第二端且用以輸出電壓的第一端、及耦接於接地端GND的第二端。負載L耦接於電容C1之第一端,用以接收電壓。在電源切換系統100中,第一控制訊號EN1、第二控制訊號EN2、第三控制訊號EN3及第四控制訊號EN4可以控制第一電源供應子系統SYS1以及第二電源供應子系統SYS2的操作狀態,以使電容C1所接收的電壓由第一電壓切換為第二電壓,或由第二電壓切換為第一電壓。並且,第一電晶體T1、第四電晶體T4、第五電晶體T5及第八電晶體T8可為P型金屬氧化物半導體場效電晶體(P-Type Metal-Oxide-Semiconductor,PMOS),且第二電晶體T2、第三電晶體T3、第六電晶體T6及第七電晶體T7可為N型金屬氧化物半導體場效電晶體(N-Type Metal-Oxide-Semiconductor,NMOS)。 The second power supply PS2 is used to provide a second voltage. The second power supply PS2 can be any type of battery pack or an external power supply. The fifth transistor T5 includes a first terminal, a control terminal, and a second terminal coupled to the second power supply PS2. The sixth transistor T6 includes a first terminal coupled to the control terminal of the fifth transistor T5, a control terminal for receiving the third control signal EN3, and a second terminal coupled to the ground terminal GND. The seventh transistor T7 includes a first terminal, a control terminal for receiving the fourth control signal EN4, and a second terminal coupled to the ground terminal GND. The second resistor R2 includes a first terminal coupled to the second terminal of the fifth transistor T5 and a second terminal coupled to the first terminal of the seventh transistor T7. The second acceleration circuit AS2 is coupled to the first terminal of the second resistor R2, the second terminal of the second resistor R2, and the first terminal of the sixth transistor T6. Eighth transistor T8 includes a first terminal coupled to the first terminal of the second resistor R2, a control terminal coupled to the first terminal of the sixth transistor T6, and a second terminal coupled to the second terminal of the fourth transistor T4. . The capacitor C1 includes a first terminal coupled to the second terminal of the eighth transistor T8 and used to output a voltage, and a second terminal coupled to the ground terminal GND. The load L is coupled to the first terminal of the capacitor C1 for receiving a voltage. In the power switching system 100, the first control signal EN1, the second control signal EN2, the third control signal EN3, and the fourth control signal EN4 can control the operating states of the first power supply subsystem SYS1 and the second power supply subsystem SYS2. So that the voltage received by the capacitor C1 is switched from the first voltage to the second voltage, or from the second voltage to the first voltage. In addition, the first transistor T1, the fourth transistor T4, the fifth transistor T5, and the eighth transistor T8 may be P-Type Metal-Oxide-Semiconductor (PMOS), In addition, the second transistor T2, the third transistor T3, the sixth transistor T6, and the seventh transistor T7 may be N-type metal oxide semiconductor field effect transistors (N-Type Metal-Oxide-Semiconductor, NMOS).

如前述提及,電源切換系統100具有在兩個供電來源間切換的能力。並且,為了降低切換時間以增加電壓穩定性,電源切換系統100引入了前述提及之第一加速電路AS1以及第二加速電路AS2。第一加速電路AS1以及第二加速電路AS2的功能以及電源切換系統100切換供電來源的方法將於後文詳述。在電源切換系統100中,第一加速電路AS1包含第九電晶體T9及第三電阻R3。第九電晶體T9包含耦接於第一電阻R1之第一端的第一端、耦接於第一電阻R1之第二端的控制端、及第二端。第三電阻R3包含耦接於第九電晶體T9之第二端的第一端、及耦接於第二電晶體T2之第一端的第二端。在第一加速電路AS1中,第九電晶體T9可為P型金屬氧化物半導體場效電晶體(PMOS),且第三電阻R3的電阻值小於第一電阻R1的電阻值。舉例而言,第三電阻R3的電阻值可為100歐姆,而第一電阻R1的電阻值可為10000歐姆。類似地,第二加速電路AS2包含第十電晶體T10及第四電阻R4。第十電晶體T10包含耦接於第二電阻R2之第一端的第一端、耦接於第二電阻R2之第二端的控制端、及第二端。第四電阻R4包含耦接於第十電 晶體T10之第二端的第一端、及耦接於第六電晶體T6之第一端的第二端。在第二加速電路AS2中,第十電晶體T10可為P型金屬氧化物半導體場效電晶體(PMOS),且第四電阻R4的電阻值小於第二電阻R2的電阻值。舉例而言,第四電阻R4的電阻值可為100歐姆,而第二電阻R2的電阻值可為10000歐姆。然而,第一加速電路AS1的結構也可以經過合理的變更,其電路也落入本發明的揭露範疇。 As mentioned earlier, the power switching system 100 has the ability to switch between two power sources. In addition, in order to reduce the switching time to increase the voltage stability, the power switching system 100 introduces the aforementioned first acceleration circuit AS1 and the second acceleration circuit AS2. The functions of the first acceleration circuit AS1 and the second acceleration circuit AS2 and the method for the power source switching system 100 to switch the power source will be described in detail later. In the power switching system 100, the first acceleration circuit AS1 includes a ninth transistor T9 and a third resistor R3. The ninth transistor T9 includes a first terminal coupled to the first terminal of the first resistor R1, a control terminal coupled to the second terminal of the first resistor R1, and a second terminal. The third resistor R3 includes a first terminal coupled to the second terminal of the ninth transistor T9 and a second terminal coupled to the first terminal of the second transistor T2. In the first acceleration circuit AS1, the ninth transistor T9 may be a P-type metal oxide semiconductor field effect transistor (PMOS), and a resistance value of the third resistor R3 is smaller than a resistance value of the first resistor R1. For example, the resistance value of the third resistor R3 may be 100 ohms, and the resistance value of the first resistor R1 may be 10,000 ohms. Similarly, the second acceleration circuit AS2 includes a tenth transistor T10 and a fourth resistor R4. The tenth transistor T10 includes a first terminal coupled to the first terminal of the second resistor R2, a control terminal coupled to the second terminal of the second resistor R2, and a second terminal. The fourth resistor R4 includes a resistor coupled to the tenth resistor. The first end of the second end of the crystal T10 and the second end of the first end of the sixth transistor T6 are coupled. In the second acceleration circuit AS2, the tenth transistor T10 may be a P-type metal oxide semiconductor field effect transistor (PMOS), and a resistance value of the fourth resistor R4 is smaller than a resistance value of the second resistor R2. For example, the resistance value of the fourth resistor R4 may be 100 ohms, and the resistance value of the second resistor R2 may be 10,000 ohms. However, the structure of the first acceleration circuit AS1 can also be reasonably changed, and its circuit also falls into the scope of the disclosure of the present invention.

為了描述更有邏輯性,以下將針對電源切換系統100的三個狀態進行說明。第一個狀態為,電源切換系統100使用第一電源供應器PS1所提供的能量為供電來源,因此第一電源供應器PS1對於負載L而言是短路,故能提供負載L第一電壓。同時,第二電源供應器PS2對於負載L而言是斷路,因此無法提供能量。第二個狀態為,電源切換系統100使用第二電源供應器PS2所提供的能量為供電來源,因此第二電源供應器PS2對於負載L而言是短路,故能提供負載L第二電壓。同時,第一電源供應器PS1對於負載L而言是斷路,因此無法提供能量。第三個狀態為,電源切換系統100在切換第一個狀態至第二個狀態,或切換第二個狀態至第一個狀態之間必須要執行保護機制,即「斷路之後連接(Break-Before-Make)」的暫態操作。因此,在第三個狀態下,第一電源供應器PS1以及第二電源供應器PS2對於負載L而言均為斷路。 To make the description more logical, the three states of the power switching system 100 will be described below. The first state is that the power switching system 100 uses the energy provided by the first power supply PS1 as a power source. Therefore, the first power supply PS1 is short-circuited to the load L, and thus can provide the first voltage of the load L. At the same time, the second power supply PS2 is open to the load L and therefore cannot provide energy. The second state is that the power switching system 100 uses the energy provided by the second power supply PS2 as a power source, so the second power supply PS2 is short-circuited to the load L, and therefore can provide the second voltage of the load L. At the same time, the first power supply PS1 is open to the load L and therefore cannot provide energy. The third state is that the power switching system 100 must implement a protection mechanism between switching the first state to the second state, or switching the second state to the first state, that is, "Break-Before -Make) ". Therefore, in the third state, the first power supply PS1 and the second power supply PS2 are both open to the load L.

第2圖係為電源切換系統100中,第一電源供應器PS1提供第一電壓且第二電源供應器PS2為開路時,所有的控制訊號以及電子元件之狀態的示意圖。第2圖可視為前述提及之第一個狀態的示意圖。於此,第一控制訊號EN1為高電壓,第二控制訊號EN2為低電壓,第三控制訊號EN3為低電壓且第四控制訊號EN4為高電壓。對於第一電源供應子系統SYS1(如第1圖所示)而言,由於第一控制訊號EN1為高電壓,因此第二電晶體T2會被導通。導通後的第二電晶體T2會使節點A的電壓趨近於接地端GND的低電壓。由於節點A為低電壓,因此第一電 晶體T1會被導通,且第四電晶體T4也會被導通。並且,由於第二控制訊號EN2為低電壓,因此第三電晶體T3會被截止。沒有漏電路徑的情況下,節點B會透過第一電晶體T1維持第一電源供應器PS1所提供之高電壓的第一電壓。由於節點B為高電壓且第三電晶體T3截止,因此節點C也為高電壓,進而使第九電晶體T9截止。因此,第一電源供應器PS1所提供的能量(第一電壓),會沿著電流方向F1透過導通的第一電晶體T1以及第四電晶體T4傳送至負載L,同時也會將電容C1充電。電容C1所輸出之電壓為第一電壓。 FIG. 2 is a schematic diagram of states of all control signals and electronic components when the first power supply PS1 provides a first voltage and the second power supply PS2 is open in the power switching system 100. Fig. 2 can be regarded as a schematic diagram of the first state mentioned above. Here, the first control signal EN1 is a high voltage, the second control signal EN2 is a low voltage, the third control signal EN3 is a low voltage, and the fourth control signal EN4 is a high voltage. For the first power supply subsystem SYS1 (as shown in FIG. 1), since the first control signal EN1 is a high voltage, the second transistor T2 is turned on. After the second transistor T2 is turned on, the voltage of the node A approaches the low voltage of the ground terminal GND. Because node A has a low voltage, The crystal T1 is turned on, and the fourth transistor T4 is also turned on. In addition, since the second control signal EN2 has a low voltage, the third transistor T3 is turned off. In the case where there is no leakage path, the node B will maintain the first voltage of the high voltage provided by the first power supply PS1 through the first transistor T1. Since the node B is at a high voltage and the third transistor T3 is turned off, the node C is also at a high voltage, so that the ninth transistor T9 is turned off. Therefore, the energy (first voltage) provided by the first power supply PS1 is transmitted to the load L through the first transistor T1 and the fourth transistor T4 that are turned on along the current direction F1, and the capacitor C1 is also charged . The voltage output by the capacitor C1 is a first voltage.

對於第二電源供應子系統SYS2(如第1圖所示)而言,由於第三控制訊號EN3為低電壓,因此第六電晶體T6會被截止。由於第四控制訊號EN4為高電壓,因此第七電晶體T7會被導通。由於第七電晶體T7被導通,因此節點F的電壓會趨近於接地端GND的低電壓。由於節點F為低電壓,因此第十電晶體T10會被導通。第十電晶體T10導通後,配合第四電阻R4即形成一個電流路徑。第五電晶體T5以及第八電晶體T8的初始化狀態為導通,因此節點E的初始電壓為高電壓。然而,因導通後的第十電晶體T10配合第四電阻R4形成一個電流路徑,因此節點E的高電壓會透過第十電晶體T10及第四電阻R4將第五電晶體T5以及第八電晶體T8截止。並且,第二電阻R2以及第七電晶體T7會形成電流方向F2。然而,當第二電阻R2很大時,電流方向F2所洩漏的功率會降低,因此額外的功率消耗幾乎可以忽略。並且,當第四電阻R4很小時,節點D將會快速地升壓而將第五電晶體T5以及第八電晶體T8快速地截止。由於第五電晶體T5以及第八電晶體T8為截止,因此第二電源供應器PS2的能量(第二電壓)會被阻隔,等同於第二電源供應器PS2對於負載L而言是開路狀態。因此,前述提及的「第二加速電路AS2」的功能實為將第二電源供應器PS2快速地變為開路狀態。 For the second power supply subsystem SYS2 (as shown in FIG. 1), since the third control signal EN3 is a low voltage, the sixth transistor T6 is turned off. Since the fourth control signal EN4 is a high voltage, the seventh transistor T7 is turned on. Since the seventh transistor T7 is turned on, the voltage of the node F will approach the low voltage of the ground terminal GND. Since the node F has a low voltage, the tenth transistor T10 is turned on. After the tenth transistor T10 is turned on, a current path is formed with the fourth resistor R4. The initial state of the fifth transistor T5 and the eighth transistor T8 is on, so the initial voltage of the node E is a high voltage. However, since the tenth transistor T10 is turned on to form a current path with the fourth resistor R4, the high voltage of node E will pass the fifth transistor T5 and the eighth transistor through the tenth transistor T10 and the fourth resistor R4. T8 ends. In addition, the second resistor R2 and the seventh transistor T7 form a current direction F2. However, when the second resistor R2 is large, the power leaked in the current direction F2 is reduced, so the additional power consumption is almost negligible. In addition, when the fourth resistor R4 is very small, the node D will be quickly boosted and the fifth transistor T5 and the eighth transistor T8 will be quickly turned off. Since the fifth transistor T5 and the eighth transistor T8 are turned off, the energy (second voltage) of the second power supply PS2 is blocked, which is equivalent to the second power supply PS2 being open to the load L. Therefore, the aforementioned function of the "second acceleration circuit AS2" is to quickly turn the second power supply PS2 into an open circuit state.

第3圖係為電源切換系統100中,第二電源供應器PS2提供第二電壓且第一電源供應器PS1為開路時,所有的控制訊號以及電子元件之狀態的示意圖。 第3圖可視為前述提及之第二個狀態的示意圖。於此,第一控制訊號EN1為低電壓,第二控制訊號EN2為高電壓,第三控制訊號EN3為高電壓且第四控制訊號EN4為低電壓。對於第一電源供應子系統SYS1(如第1圖所示)而言,由於第一控制訊號EN1為低電壓,因此第二電晶體T2會被截止。由於第二控制訊號EN2為高電壓,因此第三電晶體T3會被導通。由於第三電晶體T3被導通,因此節點C的電壓會趨近於接地端GND的低電壓。由於節點C為低電壓,因此第九電晶體T9會被導通。第九電晶體T9導通後,配合第三電阻R3即形成一個電流路徑。第一電晶體T1以及第四電晶體T4的初始化狀態為導通,因此節點B的初始電壓為高電壓。然而,因導通後的第九電晶體T9配合第三電阻R3形成一個電流路徑,因此節點B的高電壓會透過第九電晶體T9及第三電阻R3將第一電晶體T1以及第四電晶體T4截止。並且,第一電阻R1以及第三電晶體T3會形成電流方向F3。然而,當第一電阻R1很大時,電流方向F3所洩漏的功率會降低,因此額外的功率消耗幾乎可以忽略。並且,當第三電阻R3很小時,節點A將會快速地升壓而將第一電晶體T1以及第四電晶體T4快速地截止。由於第一電晶體T1以及第四電晶體T4為截止,因此第一電源供應器PS1的能量(第一電壓)會被阻隔,等同於第一電源供應器PS1對於負載L而言是開路狀態。因此,前述提及的「第一加速電路AS1」的功能實為將第一電源供應器PS1快速地變為開路狀態。 FIG. 3 is a schematic diagram of the state of all control signals and electronic components when the second power supply PS2 provides a second voltage and the first power supply PS1 is open in the power switching system 100. Fig. 3 can be regarded as the schematic diagram of the second state mentioned above. Here, the first control signal EN1 is a low voltage, the second control signal EN2 is a high voltage, the third control signal EN3 is a high voltage, and the fourth control signal EN4 is a low voltage. For the first power supply subsystem SYS1 (as shown in FIG. 1), since the first control signal EN1 is a low voltage, the second transistor T2 is turned off. Since the second control signal EN2 is at a high voltage, the third transistor T3 is turned on. Since the third transistor T3 is turned on, the voltage of the node C will approach the low voltage of the ground terminal GND. Since the node C has a low voltage, the ninth transistor T9 is turned on. After the ninth transistor T9 is turned on, a current path is formed in cooperation with the third resistor R3. The initialization states of the first transistor T1 and the fourth transistor T4 are on, so the initial voltage of the node B is a high voltage. However, because the ninth transistor T9 and the third resistor R3 form a current path after being turned on, the high voltage of the node B will pass the first transistor T1 and the fourth transistor through the ninth transistor T9 and the third resistor R3. T4 ends. In addition, the first resistor R1 and the third transistor T3 form a current direction F3. However, when the first resistor R1 is large, the power leaked in the current direction F3 is reduced, so the additional power consumption can be almost ignored. In addition, when the third resistor R3 is very small, the node A will be quickly boosted and the first transistor T1 and the fourth transistor T4 will be quickly turned off. Since the first transistor T1 and the fourth transistor T4 are off, the energy (first voltage) of the first power supply PS1 will be blocked, which is equivalent to the first power supply PS1 being open to the load L. Therefore, the aforementioned function of the "first acceleration circuit AS1" is to quickly turn the first power supply PS1 into an open circuit state.

對於第二電源供應子系統SYS2(如第1圖所示)而言,由於第三控制訊號EN3為高電壓,因此第六電晶體T6會被導通。導通後的第六電晶體T6會使節點D的電壓趨近於接地端GND的低電壓。由於節點D為低電壓,因此第五電晶體T5會被導通,且第八電晶體T8也會被導通。並且,由於第四控制訊號EN4為低電壓,因此第七電晶體T7會被截止。沒有漏電路徑的情況下,節點E會透過第五電晶體T5維持第二電源供應器PS2所提供之高電壓的第二電壓。由於節點E為高電壓且第七電晶體T7截止,因此節點F也為高電壓,進而使第十電晶體T10截止。 因此,第二電源供應器PS2所提供的能量(第二電壓),會沿著電流方向F4透過導通的第五電晶體T5以及第八電晶體T8傳送至負載L,同時也會將電容C1充電。電容C1所輸出之電壓為第二電壓。 For the second power supply subsystem SYS2 (as shown in FIG. 1), since the third control signal EN3 is a high voltage, the sixth transistor T6 is turned on. After the sixth transistor T6 is turned on, the voltage of the node D approaches the low voltage of the ground terminal GND. Because the node D has a low voltage, the fifth transistor T5 will be turned on, and the eighth transistor T8 will also be turned on. In addition, since the fourth control signal EN4 is at a low voltage, the seventh transistor T7 is turned off. In the case where there is no leakage path, the node E will maintain the second voltage of the high voltage provided by the second power supply PS2 through the fifth transistor T5. Since the node E is at a high voltage and the seventh transistor T7 is turned off, the node F is also at a high voltage, and the tenth transistor T10 is turned off. Therefore, the energy (second voltage) provided by the second power supply PS2 is transmitted to the load L through the fifth transistor T5 and the eighth transistor T8 that are turned on along the current direction F4, and the capacitor C1 is also charged . The voltage output by the capacitor C1 is the second voltage.

第4圖係為電源切換系統100中,第一電源供應器PS1及第二電源供應器PS2均為開路時,控制訊號以及各電子元件之狀態的示意圖。如前述提及,電源切換系統100在切換第一個狀態至第二個狀態,或切換第二個狀態至第一個狀態之間必須要執行保護機制,即「斷路之後連接(Break-Before-Make)」的暫態操作。在暫態操作下,第一電源供應器PS1及第二電源供應器PS2均為開路。並且,如前述第2圖以及第3圖的說明中,當第一控制訊號EN1為低電壓且第二控制訊號EN2為高電壓時,第一電源供應器PS1對於負載L而言是開路狀態。當第三控制訊號EN3為低電壓且第四控制訊號EN4為高電壓時,第二電源供應器PS2對於負載L而言是開路狀態。因此,當第一控制訊號EN1為低電壓、第二控制訊號EN2為高電壓、第三控制訊號EN3為低電壓且第四控制訊號EN4為高電壓時,兩個電源供應器(第一電源供應器PS1及第二電源供應器PS2)對於負載L而言均是開路狀態。換句話說,在第4圖的條件下,第一電源供應器PS1或第二電源供應器PS2停止對電容C1充電。電容C1需要消耗本身存儲的能量,沿著電流方向F5提供負載L能量。並且,第一電源供應器PS1及第二電源供應器PS2變為開路的運作原理已於前文中詳述,故細節於此將不再贅述。 FIG. 4 is a schematic diagram of the control signals and the states of various electronic components when the first power supply PS1 and the second power supply PS2 are both open in the power switching system 100. As mentioned above, the power switching system 100 must implement a protection mechanism between switching the first state to the second state, or switching the second state to the first state, that is, "Break-Before- Make) "transient operation. In the transient operation, both the first power supply PS1 and the second power supply PS2 are open. Moreover, as described in the foregoing FIG. 2 and FIG. 3, when the first control signal EN1 is a low voltage and the second control signal EN2 is a high voltage, the first power supply PS1 is open to the load L. When the third control signal EN3 is a low voltage and the fourth control signal EN4 is a high voltage, the second power supply PS2 is open to the load L. Therefore, when the first control signal EN1 is a low voltage, the second control signal EN2 is a high voltage, the third control signal EN3 is a low voltage, and the fourth control signal EN4 is a high voltage, two power supplies (the first power supply Both the power supply PS1 and the second power supply PS2) are open to the load L. In other words, under the condition of FIG. 4, the first power supply PS1 or the second power supply PS2 stops charging the capacitor C1. The capacitor C1 needs to dissipate the energy stored in it, and provides the load L energy along the current direction F5. In addition, the operation principle of the first power supply PS1 and the second power supply PS2 becoming open is described in detail above, so the details will not be repeated here.

如前述提及,由於第一加速電路AS1以及第二加速電路AS2可以優化第一電源供應器PS1及第二電源供應器PS2的切換時間。因此,第4圖所示之電源切換系統100在暫態操作時的第三個狀態的時間將可以被大幅度地縮短。暫態操作的時間縮短也意味著電容C1的儲能空間不需要很大,原因為電容C1僅需要在沒有供電來源的情況下,短時間內維持輸入負載L的電壓即可。 As mentioned above, since the first acceleration circuit AS1 and the second acceleration circuit AS2 can optimize the switching time of the first power supply PS1 and the second power supply PS2. Therefore, the time of the third state of the power switching system 100 shown in FIG. 4 during the transient operation can be greatly shortened. The shortening of the transient operation time also means that the energy storage space of the capacitor C1 does not need to be large, because the capacitor C1 only needs to maintain the voltage of the input load L for a short time without a power supply source.

第5圖係為電源切換系統100中,所有的控制訊號的波形隨時間變化 之示意圖。Y軸表示時間軸。在第一供電區間PS1C內,第一控制訊號EN1為高電壓、第二控制訊號EN2為低電壓、第三控制訊號EN3為低電壓且第四控制訊號EN4為高電壓。對應第2圖的結果,第一電源供應器PS1對於負載L而言為短路,因此可以提供第一電壓的能量至負載L。第二電源供應器PS2對於負載L而言為開路,因此其能量將會被阻隔。在第二供電區間PS2C內,第一控制訊號EN1為低電壓、第二控制訊號EN2為高電壓、第三控制訊號EN3為高電壓且第四控制訊號EN4為低電壓。對應第3圖的結果,第一電源供應器PS1對於負載L而言為開路,因此其能量將會被阻隔。第二電源供應器PS2對於負載L而言為短路,因此可以提供第二電壓的能量至負載L。第一電壓與第二電壓可為兩相同或相異的電壓。而在第一供電區間PS1C與第二供電區間PS2C之開路區間OPN內,第一控制訊號EN1為低電壓、第二控制訊號EN2為高電壓、第三控制訊號EN3為低電壓且第四控制訊號EN4為高電壓。對應第4圖的結果,兩個電源供應器(第一電源供應器PS1及第二電源供應器PS2)對於負載L而言均是開路狀態。無論哪一種操作模式,第一控制訊號EN1與第二控制訊號EN2互為反向,且第三控制訊號EN3與第四控制訊號EN4互為反向。然而,如同前述提及,電源切換系統100於暫態操作的開路區間OPN可以很短暫,因此不需要很大儲能空間的電容C1。 Figure 5 shows the waveforms of all control signals in the power switching system 100. The schematic. The Y axis represents the time axis. In the first power supply interval PS1C, the first control signal EN1 is a high voltage, the second control signal EN2 is a low voltage, the third control signal EN3 is a low voltage, and the fourth control signal EN4 is a high voltage. Corresponding to the result of FIG. 2, the first power supply PS1 is short-circuited to the load L, so it can provide energy of the first voltage to the load L. The second power supply PS2 is open to the load L, so its energy will be blocked. In the second power supply interval PS2C, the first control signal EN1 is a low voltage, the second control signal EN2 is a high voltage, the third control signal EN3 is a high voltage, and the fourth control signal EN4 is a low voltage. Corresponding to the result of FIG. 3, the first power supply PS1 is open to the load L, so its energy will be blocked. The second power supply PS2 is short-circuited to the load L, so it can provide energy of the second voltage to the load L. The first voltage and the second voltage may be two identical or different voltages. In the open circuit interval OPN of the first power supply interval PS1C and the second power supply interval PS2C, the first control signal EN1 is a low voltage, the second control signal EN2 is a high voltage, the third control signal EN3 is a low voltage, and the fourth control signal EN4 is high voltage. Corresponding to the result of FIG. 4, the two power supplies (the first power supply PS1 and the second power supply PS2) are both open to the load L. Regardless of the operation mode, the first control signal EN1 and the second control signal EN2 are opposite to each other, and the third control signal EN3 and the fourth control signal EN4 are opposite to each other. However, as mentioned above, the open-circuit interval OPN of the power switching system 100 during transient operation may be short, so the capacitor C1 with a large energy storage space is not required.

並且,如前述之第1圖至第4圖,電源切換系統100中的靜態耗電(低自放電路徑)對應的電阻與加速電路中所用的電阻不同。例如,第一電源供應子系統SYS1之電流方向F3所用的電阻為第一電阻R1,第一加速電路AS1所用的電阻為第三電阻R3。第二電源供應子系統SYS2之電流方向F2所用的電阻為第二電阻R2,第二加速電路AS2所用的電阻為第四電阻R4。當第一電阻R1遠大於第三電阻R3且第二電阻R2遠大於第四電阻R4時。電源切換系統100中的靜態耗電量將會減少,且切換速度將會變快。因此,電源切換系統100將可以同時滿足優良的靜態耗電量以及高速的切換速度之特性。 In addition, as shown in FIGS. 1 to 4, the resistance corresponding to the static power consumption (low self-discharge path) in the power switching system 100 is different from the resistance used in the acceleration circuit. For example, the resistor used in the current direction F3 of the first power supply subsystem SYS1 is the first resistor R1, and the resistor used by the first acceleration circuit AS1 is the third resistor R3. The resistor used in the current direction F2 of the second power supply subsystem SYS2 is a second resistor R2, and the resistor used in the second acceleration circuit AS2 is a fourth resistor R4. When the first resistor R1 is much larger than the third resistor R3 and the second resistor R2 is much larger than the fourth resistor R4. The static power consumption in the power switching system 100 will be reduced, and the switching speed will be faster. Therefore, the power switching system 100 can simultaneously satisfy the characteristics of excellent static power consumption and high-speed switching speed.

綜上所述,本發明描述了一種電源切換系統。電源切換系統利用多個控制訊號控制電源切換系統的供電狀態。由於電源切換系統具有加速電路,因此電源切換系統具有很快的切換速度,故暫態操作的時間可以大幅度地縮短,電源切換系統不需要很大儲能空間的電容即可實現供電高速切換的功能。並且,由於電源切換系統中之靜態耗電對應的電阻與加速電路中所用的電阻不同,因此電源切換系統可在靜態耗電量以及切換速度之間取得平衡。換句話說,本發明的電源切換系統可以同時滿足優良的靜態耗電量以及高速的切換速度之功能,故可提供優良且高穩定度的供電品質。 In summary, the present invention describes a power switching system. The power switching system uses multiple control signals to control the power supply state of the power switching system. Because the power switching system has an acceleration circuit, the power switching system has a fast switching speed, so the time of transient operation can be greatly shortened. The power switching system does not require a large energy storage capacitor to achieve high-speed power supply switching. Features. In addition, since the resistance corresponding to the static power consumption in the power switching system is different from the resistance used in the acceleration circuit, the power switching system can achieve a balance between the static power consumption and the switching speed. In other words, the power switching system of the present invention can simultaneously satisfy the functions of excellent static power consumption and high-speed switching speed, and thus can provide excellent and high-stability power supply quality.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above description is only a preferred embodiment of the present invention, and all equivalent changes and modifications made in accordance with the scope of patent application of the present invention shall fall within the scope of the present invention.

Claims (12)

一種電源切換系統,包含:一第一電源供應子系統,包含:一第一電源供應器,用以提供一第一電壓;一第一電晶體,包含:一第一端,耦接於該第一電源供應器;一控制端;及一第二端;一第二電晶體,包含:一第一端,耦接於該第一電晶體之該控制端;一控制端,用以接收一第一控制訊號;及一第二端,耦接於一接地端;一第三電晶體,包含:一第一端;一控制端,用以接收一第二控制訊號;及一第二端,耦接於該接地端;一第一電阻,包含:一第一端,耦接於該第一電晶體之該第二端;及一第二端,耦接於該第三電晶體之該第一端;一第一加速電路,耦接於該第一電阻之該第一端、該第一電阻之該第二端及該第二電晶體之該第一端;及一第四電晶體,包含:一第一端,耦接於該第一電阻之該第一端;一控制端,耦接於該第二電晶體之該第一端;及一第二端;一第二電源供應子系統,包含:一第二電源供應器,用以提供一第二電壓;一第五電晶體,包含:一第一端,耦接於該第二電源供應器;一控制端;及一第二端;一第六電晶體,包含:一第一端,耦接於該第五電晶體之該控制端;一控制端,用以接收一第三控制訊號;及一第二端,耦接於該接地端;一第七電晶體,包含:一第一端;一控制端,用以接收一第四控制訊號;及一第二端,耦接於該接地端;一第二電阻,包含:一第一端,耦接於該第五電晶體之該第二端;及一第二端,耦接於該第七電晶體之該第一端;一第二加速電路,耦接於該第二電阻之該第一端、該第二電阻之該第二端及該第六電晶體之該第一端;及一第八電晶體,包含:一第一端,耦接於該第二電阻之該第一端;一控制端,耦接於該第六電晶體之該第一端;及一第二端,耦接於該第四電晶體之該第二端;一電容,包含:一第一端,耦接於該第八電晶體之該第二端,用以輸出一電壓;及一第二端,耦接於該接地端;及一負載,耦接於該電容之該第一端,用以接收該電壓;其中該第一控制訊號、該第二控制訊號、該第三控制訊號及該第四控制訊號用以控制該電壓由該第一電壓切換為該第二電壓,或由該第二電壓切換為該第一電壓。A power switching system includes: a first power supply subsystem including: a first power supply for providing a first voltage; a first transistor including: a first terminal coupled to the first A power supply; a control terminal; and a second terminal; a second transistor including: a first terminal coupled to the control terminal of the first transistor; a control terminal for receiving a first A control signal; and a second terminal coupled to a ground terminal; a third transistor including: a first terminal; a control terminal for receiving a second control signal; and a second terminal, coupled Connected to the ground terminal; a first resistor including: a first terminal coupled to the second terminal of the first transistor; and a second terminal coupled to the first transistor of the third transistor A first acceleration circuit coupled to the first terminal of the first resistor, the second terminal of the first resistor, and the first terminal of the second transistor; and a fourth transistor including: : A first terminal coupled to the first terminal of the first resistor; a control terminal coupled to the first terminal of the second transistor And a second terminal; a second power supply subsystem including: a second power supply for providing a second voltage; a fifth transistor including: a first terminal coupled to the first Two power supplies; a control terminal; and a second terminal; a sixth transistor including: a first terminal coupled to the control terminal of the fifth transistor; a control terminal for receiving a first Three control signals; and a second terminal coupled to the ground terminal; a seventh transistor including: a first terminal; a control terminal for receiving a fourth control signal; and a second terminal, coupled Connected to the ground terminal; a second resistor including: a first terminal coupled to the second terminal of the fifth transistor; and a second terminal coupled to the first transistor of the seventh transistor A second acceleration circuit, coupled to the first terminal of the second resistor, the second terminal of the second resistor, and the first terminal of the sixth transistor; and an eighth transistor, including : A first terminal coupled to the first terminal of the second resistor; a control terminal coupled to the first terminal of the sixth transistor; and a Two terminals are coupled to the second terminal of the fourth transistor; a capacitor includes: a first terminal coupled to the second terminal of the eighth transistor to output a voltage; and a first Two terminals are coupled to the ground terminal; and a load is coupled to the first terminal of the capacitor to receive the voltage; wherein the first control signal, the second control signal, the third control signal and The fourth control signal is used to control the voltage to be switched from the first voltage to the second voltage, or from the second voltage to the first voltage. 如請求項1所述之電源切換系統,其中該第一電晶體、該第四電晶體、該第五電晶體及該第八電晶體係為P型金屬氧化物半導體場效電晶體(P-Type Metal-Oxide-Semiconductor),且該第二電晶體、該第三電晶體、該第六電晶體及該第七電晶體係為N型金屬氧化物半導體場效電晶體(N-Type Metal-Oxide-Semiconductor)。The power switching system according to claim 1, wherein the first transistor, the fourth transistor, the fifth transistor, and the eighth transistor system are P-type metal oxide semiconductor field effect transistors (P- Type Metal-Oxide-Semiconductor), and the second transistor, the third transistor, the sixth transistor, and the seventh transistor system are N-type metal-oxide semiconductor field effect transistors (N-Type Metal- Oxide-Semiconductor). 如請求項1所述之電源切換系統,其中該第一加速電路包含:一第九電晶體,包含:一第一端,耦接於該第一電阻之該第一端;一控制端,耦接於該第一電阻之該第二端;及一第二端;及一第三電阻,包含:一第一端,耦接於該第九電晶體之該第二端;及一第二端,耦接於該第二電晶體之該第一端。The power switching system according to claim 1, wherein the first acceleration circuit includes: a ninth transistor, including: a first terminal coupled to the first terminal of the first resistor; a control terminal, coupled Connected to the second terminal of the first resistor; and a second terminal; and a third resistor including: a first terminal coupled to the second terminal of the ninth transistor; and a second terminal Is coupled to the first terminal of the second transistor. 如請求項3所述之電源切換系統,其中該第九電晶體係為P型金屬氧化物半導體場效電晶體(P-Type Metal-Oxide-Semiconductor),且該第三電阻的電阻值小於該第一電阻的電阻值。The power switching system according to claim 3, wherein the ninth transistor system is a P-type metal-oxide semiconductor field effect transistor (P-Type Metal-Oxide-Semiconductor), and the resistance value of the third resistor is less than the The resistance value of the first resistor. 如請求項1所述之電源切換系統,其中該第二加速電路包含:一第十電晶體,包含:一第一端,耦接於該第二電阻之該第一端;一控制端,耦接於該第二電阻之該第二端;及一第二端;及一第四電阻,包含:一第一端,耦接於該第十電晶體之該第二端;及一第二端,耦接於該第六電晶體之該第一端。The power switching system according to claim 1, wherein the second acceleration circuit includes: a tenth transistor, including: a first terminal coupled to the first terminal of the second resistor; a control terminal, coupled Connected to the second terminal of the second resistor; and a second terminal; and a fourth resistor including: a first terminal coupled to the second terminal of the tenth transistor; and a second terminal Is coupled to the first terminal of the sixth transistor. 如請求項5所述之電源切換系統,其中該第十電晶體係為P型金屬氧化物半導體場效電晶體(P-Type Metal-Oxide-Semiconductor),且該第四電阻的電阻值小於該第二電阻的電阻值。The power switching system according to claim 5, wherein the tenth transistor system is a P-type metal-oxide semiconductor field effect transistor (P-Type Metal-Oxide-Semiconductor), and the resistance value of the fourth resistor is less than the The resistance value of the second resistor. 如請求項1所述之電源切換系統,其中該第一電晶體,該第一電阻及該第三電晶體組成一第一低自放電路徑,且當該第一電阻的電阻值很大時,該第一電源供應器透過該第一低自放電路徑所洩漏的功率降低。The power switching system according to claim 1, wherein the first transistor, the first resistor, and the third transistor form a first low self-discharge path, and when the resistance value of the first resistor is large, The power leaked by the first power supply through the first low self-discharge path is reduced. 如請求項1所述之電源切換系統,其中該第五電晶體,該第二電阻及該第七電晶體組成一第二低自放電路徑,且當該第二電阻的電阻值很大時,該第二電源供應器透過該第二低自放電路徑所洩漏的功率降低。The power switching system according to claim 1, wherein the fifth transistor, the second resistor, and the seventh transistor form a second low self-discharge path, and when the resistance value of the second resistor is large, The power leaked by the second power supply through the second low self-discharge path is reduced. 如請求項1所述之電源切換系統,其中該第一控制訊號與該第二控制訊號互為反向,該第三控制訊號與該第四控制訊號互為反向。The power switching system according to claim 1, wherein the first control signal and the second control signal are opposite to each other, and the third control signal and the fourth control signal are opposite to each other. 如請求項9所述之電源切換系統,其中當該第一控制訊號係為一高電壓,該第二控制訊號係為一低電壓,該第三控制訊號係為該低電壓且該第四控制訊號係為該高電壓時,該電容所輸出之該電壓係為該第一電壓。The power switching system according to claim 9, wherein when the first control signal is a high voltage, the second control signal is a low voltage, the third control signal is the low voltage and the fourth control When the signal is the high voltage, the voltage output by the capacitor is the first voltage. 如請求項9所述之電源切換系統,其中當該第一控制訊號係為一低電壓,該第二控制訊號係為一高電壓,該第三控制訊號係為該高電壓且該第四控制訊號係為該低電壓時,該電容所輸出之該電壓係為該第二電壓。The power switching system according to claim 9, wherein when the first control signal is a low voltage, the second control signal is a high voltage, the third control signal is the high voltage and the fourth control When the signal is the low voltage, the voltage output by the capacitor is the second voltage. 如請求項9所述之電源切換系統,其中當該第一控制訊號係為一低電壓,該第二控制訊號係為一高電壓,該第三控制訊號係為該低電壓且該第四控制訊號係為該高電壓時,該第一電源供應器或該第二電源供應器停止對該電容充電。The power switching system according to claim 9, wherein when the first control signal is a low voltage, the second control signal is a high voltage, the third control signal is the low voltage and the fourth control When the signal is the high voltage, the first power supply or the second power supply stops charging the capacitor.
TW107141170A 2018-11-20 2018-11-20 Power switch system TWI665847B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW107141170A TWI665847B (en) 2018-11-20 2018-11-20 Power switch system
CN201910207264.7A CN111200313B (en) 2018-11-20 2019-03-19 Power supply switching system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107141170A TWI665847B (en) 2018-11-20 2018-11-20 Power switch system

Publications (2)

Publication Number Publication Date
TWI665847B true TWI665847B (en) 2019-07-11
TW202021231A TW202021231A (en) 2020-06-01

Family

ID=68049577

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107141170A TWI665847B (en) 2018-11-20 2018-11-20 Power switch system

Country Status (2)

Country Link
CN (1) CN111200313B (en)
TW (1) TWI665847B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201001375A (en) * 2008-05-01 2010-01-01 Sony Corp Display apparatus and display-apparatus driving method
US20130222043A1 (en) * 2011-12-13 2013-08-29 Kabushiki Kaisha Toshiba Semiconductor integrated circuit device
TW201501102A (en) * 2013-06-21 2015-01-01 三星顯示器有限公司 Stage circuit and organic light emitting display including the same
TW201604739A (en) * 2014-04-23 2016-02-01 半導體能源研究所股份有限公司 Input/output device and method for driving input/output device
US20160314851A1 (en) * 2010-03-02 2016-10-27 Semiconductor Energy Laboratory Co., Ltd. Pulse signal output circuit and shift register
TW201812780A (en) * 2015-09-10 2018-04-01 力旺電子股份有限公司 Power supply voltage switching circuit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1298802A1 (en) * 2001-09-28 2003-04-02 ABB Schweiz AG Method for controlling a power semiconductor
DE10305366A1 (en) * 2003-02-10 2004-08-26 Infineon Technologies Ag Circuit arrangement and method for accelerated switching of an amplifier
KR20080067833A (en) * 2007-01-17 2008-07-22 주식회사썬코리아전자 Uninterruptible power supply system
JP5112846B2 (en) * 2007-12-27 2013-01-09 セイコーインスツル株式会社 Power switching circuit
TWI462080B (en) * 2012-08-14 2014-11-21 Au Optronics Corp Active matrix organic light emitting diode circuit and operating method of the same
CN105119365B (en) * 2015-08-18 2017-04-19 深圳市安瑞科科技有限公司 Dual-channel DC power supply automatic switching device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201001375A (en) * 2008-05-01 2010-01-01 Sony Corp Display apparatus and display-apparatus driving method
US20160314851A1 (en) * 2010-03-02 2016-10-27 Semiconductor Energy Laboratory Co., Ltd. Pulse signal output circuit and shift register
US20130222043A1 (en) * 2011-12-13 2013-08-29 Kabushiki Kaisha Toshiba Semiconductor integrated circuit device
TW201501102A (en) * 2013-06-21 2015-01-01 三星顯示器有限公司 Stage circuit and organic light emitting display including the same
TW201604739A (en) * 2014-04-23 2016-02-01 半導體能源研究所股份有限公司 Input/output device and method for driving input/output device
TW201812780A (en) * 2015-09-10 2018-04-01 力旺電子股份有限公司 Power supply voltage switching circuit

Also Published As

Publication number Publication date
TW202021231A (en) 2020-06-01
CN111200313A (en) 2020-05-26
CN111200313B (en) 2021-08-17

Similar Documents

Publication Publication Date Title
CN105471410B (en) Flip-flop with low clock power
US9246489B1 (en) Integrated clock gating cell using a low area and a low power latch
CN111342541B (en) Power supply switching circuit
US20080074151A1 (en) Dual-edge-triggered, clock-gated logic circuit and method
US20090066385A1 (en) Latch device having low-power data retention
US7109758B2 (en) System and method for reducing short circuit current in a buffer
CN111934657B (en) Low-power-consumption power-on reset and power-off reset circuit
US9941885B2 (en) Low power general purpose input/output level shifting driver
US8008959B2 (en) Flip-flop circuit that latches inputted data
US9281804B2 (en) Semiconductor device with amplification circuit and output buffer circuit coupled to terminal
TWI665847B (en) Power switch system
US8736311B2 (en) Semiconductor integrated circuit
EP2530842B1 (en) High voltage tolerant bus holder circuit and method of operating the circuit
JP2004077474A (en) Clocked scan flip flop for mtcmos
US10613617B2 (en) Semiconductor apparatus
US7795917B2 (en) High-speed buffer circuit, system and method
CN111381524B (en) Power supply control circuit
TW201830863A (en) Power-on control circuit and input/output control circuit
KR100466540B1 (en) Input and output port circuit
US6930540B2 (en) Integrated circuit with voltage divider and buffered capacitor
JP2010200083A (en) Mos transistor circuit and cmos transistor circuit using double gate field effect transistor
KR102296454B1 (en) Current memory device
JP2024093764A (en) Semiconductor Device
JP3535811B2 (en) Pulse width control circuit
US20190229731A1 (en) Power gating circuit for holding data in logic block