TWI664397B - 感測裝置 - Google Patents

感測裝置 Download PDF

Info

Publication number
TWI664397B
TWI664397B TW107139142A TW107139142A TWI664397B TW I664397 B TWI664397 B TW I664397B TW 107139142 A TW107139142 A TW 107139142A TW 107139142 A TW107139142 A TW 107139142A TW I664397 B TWI664397 B TW I664397B
Authority
TW
Taiwan
Prior art keywords
thin film
metal thin
film layer
sensing device
light
Prior art date
Application number
TW107139142A
Other languages
English (en)
Other versions
TW202006324A (zh
Inventor
游騰健
Original Assignee
精準基因生物科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 精準基因生物科技股份有限公司 filed Critical 精準基因生物科技股份有限公司
Application granted granted Critical
Publication of TWI664397B publication Critical patent/TWI664397B/zh
Publication of TW202006324A publication Critical patent/TW202006324A/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/771Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising storage means other than floating diffusion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • G01N21/554Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/1124Devices with PN homojunction gate
    • H01L31/1126Devices with PN homojunction gate the device being a field-effect phototransistor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0075Arrangements for synchronising receiver with transmitter with photonic or optical means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/53Control of the integration time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/702SSIS architectures characterised by non-identical, non-equidistant or non-planar pixel layout
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • G01N2021/6471Special filters, filter wheel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/064Stray light conditioning

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一種感測裝置,用以檢測樣品。感測裝置包括光源、透光介質、金屬薄膜層以及多個感測器。光源用以提供光束。透光介質具有光學表面。金屬薄膜層設置於透光介質的光學表面上,且樣品適於放置在金屬薄膜層上,其中在光束自遠離光學表面的一側進入透光介質之後,光束適於在光學表面發生全內反射,使得在金屬薄膜層的表面產生表面電漿共振以激發樣品,且樣品被激發後適於發射訊號光束。多個感測器用以感測訊號光束,其中金屬薄膜層設置於多個感測器與透光介質之間。

Description

感測裝置
本發明是有關於一種感測裝置。
經由全內反射(total internal reflection)所產生的消逝波(evanescent wave)可用以激發帶有螢光標記的生物分子。目前,可藉由將帶有螢光標記的生物分子固定在波導層上,並將激發光束耦合至波導層中,使激發光束在波導層中不斷發生全內反射,以產生消逝波來激發帶有螢光標記的生物分子。然而,由於螢光訊號的光強度較低,一旦在波導層中發生全內反射的介面處具有缺陷,則可能產生雜散光,進而影響螢光信號的感測結果。
本發明提供一種具有高訊噪比(signal-noise ratio,SNR)的感測裝置。
本發明的實施例提供一種感測裝置,用以檢測樣品。感測裝置包括光源、透光介質、金屬薄膜層以及多個感測器。光源用以提供光束。透光介質具有光學表面。金屬薄膜層設置於透光介質的光學表面上,且樣品適於放置在金屬薄膜層上,其中在光束自遠離光學表面的一側進入透光介質之後,光束適於在光學表面發生全內反射,使得在金屬薄膜層的表面產生表面電漿共振以激發樣品,且樣品被激發後適於發射訊號光束。多個感測器用以感測訊號光束,其中金屬薄膜層設置於多個感測器與透光介質之間。
在本發明的一實施例中,上述的金屬薄膜層與透光介質實體接觸。
在本發明的一實施例中,上述的感測裝置更包括不透光層,不透光層設置於透光介質的光學表面上,不透光層具有多個孔洞,且金屬薄膜層至少對應於不透光層的多個孔洞設置。
在本發明的一實施例中,上述的金屬薄膜層包括彼此分離的多個金屬圖案,且多個金屬圖案分別設置於不透光層的多個孔洞中,且位於孔洞的底部部分。
在本發明的一實施例中,上述的金屬薄膜層設置於透光介質與不透光層之間,且多個孔洞暴露金屬薄膜層的部分。
在本發明的一實施例中,上述的多個感測器的位置分別對應於多個孔洞的位置。
在本發明的一實施例中,上述的樣品放置於多個孔洞中。
在本發明的一實施例中,上述的感測裝置更包括基板以及連接單元。基板多個感測器設置於基板上。連接單元連接於基板與透光介質之間,且連接單元環繞金屬薄膜層,其中基板、連接單元以及金屬薄膜層之間形成空間。
在本發明的一實施例中,上述的連接單元包括入口與出口,入口與出口連通空間,且入口與出口分別位於連接單元的兩側。
在本發明的一實施例中,上述的感測裝置更包括過濾層,過濾層設置於金屬薄膜層與多個感測器之間,且至少對應於多個感測器設置。
基於上述,在本發明的實施例的感測裝置中,由於金屬薄膜層設置於多個感測器與透光介質之間,也就是多個感測器是設置在光源的相對一側,因此多個感測器較不易受到來自光源的光束的影響。此外,透過金屬薄膜層的設置,除了可透過全內反射(total internal reflection)以在金屬薄膜層的表面處產生表面電漿共振(surface plasma resonance)來激發樣品之外,金屬薄膜層也可阻擋雜散光穿過而影響感測器的感測結果。因此,本發明的實施例中的感測裝置可具有較高的訊噪比。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
圖1為根據本發明的一實施例的感測裝置的剖面示意圖。圖2是圖1中的透光介質、金屬薄膜層、不透光層以及連接單元的上視示意圖。在本發明的實施例中,感測裝置100用以檢測樣品50。舉例來說,感測裝置100例如是用以測定基因定序(gene sequencing),也就是分析特定DNA(deoxyribonucleic acid)片段的鹼基的排列方式(亦即腺嘌呤(adenine,A)、胸腺嘧啶(thymine,T)、胞嘧啶(cytosine,C)與鳥嘌呤的(guanine,G)的排列方式)。樣品50例如是包括特定的單股DNA片段,並可透過帶有不同螢光標記的試劑(reagent)來與樣品50進行化合,以測定樣品50中的鹼基排列方式,但是本發明不限於此。在其他實施例中,樣品50也可以是其他帶有螢光標記的生物分子,例如蛋白質或細胞等。
先參照圖1,在本發明的實施例中,感測裝置100包括光源110、透光介質120、金屬薄膜層130以及多個感測器140。光源110用以提供光束L。光束L例如是橫向磁波(Transverse Magnetic Wave),用以產生表面電漿共振(surface plasma resonance)效應。透光介質120具有光學表面S。在本實施例中,相對光學表面S以外的介質(例如空間SP內的介質)而言,透光介質120具有較大的折射率,使光束L具有可在透光介質120內的光學表面S處發生全反射的條件,舉例來說,透光介質120例如是稜鏡(prism)。在其他實施例中,透光介質120也可以是載玻片,或是其他適當的光密介質。金屬薄膜層130設置於透光介質120的光學表面S上並與透光介質120實體接觸,且樣品50適於放置在金屬薄膜層130上。金屬薄膜層130的材料例如是金(Au)、銀(Ag)或其他適當的金屬材料。多個感測器140分別設置於樣品50的正上方,因此多個感測器140分別對應於金屬薄膜層130中設置有樣品50的部分。金屬薄膜層130設置於多個感測器140與透光介質120之間。
在本實施例中,在光束L自遠離光學表面S的一側進入透光介質120之後,光束L適於在光學表面S發生全內反射(total internal reflection),使得在金屬薄膜層130的表面產生表面電漿共振以激發樣品50,且樣品50被激發後適於發射訊號光束SL。
詳細來說,在本實施例中,當光束L自遠離光學表面S的一側進入透光介質120之後,由於光束L為偏極化的橫向磁波,當透過適當的角度調整以及適當的光束波長的條件下,可使光束L在光學表面S發生全內反射,並在透光介質120外且靠近金屬薄膜層130的一側伴隨著消逝波(evanescent wave)的產生,而此消逝波可與金屬薄膜層130的表面電漿子(surface plasmon)交互作用而發生表面電漿共振(surface plasma resonance),使位於金屬薄膜層130上的樣品50被此共振能量激發而發出訊號光束SL。
另一方面,感測裝置100的多個感測器140用以感測訊號光束SL,並透過感測裝置100的處理器(未圖示)來分析樣品50的資訊。在本實施例中,感測器140例如是包括電荷耦合元件(Charge Coupled Device,CCD)、互補金屬氧化物半導體(Complementary Metal Oxide Semiconductor,CMOS)感測器或其他適當的感測元件。
在本實施例中,由於金屬薄膜層130設置於多個感測器140與透光介質120之間,也就是說,多個感測器140是設置在感測裝置100中遠離光源110的相對一側,因此多個感測器140較不易受到來自光源110的光束L的影響。此外,藉由金屬薄膜層130的設置,除了可透過全內反射以在金屬薄膜層130的表面處產生表面電漿共振來激發樣品50之外,金屬薄膜層130也可阻擋雜散光穿過而影響感測器140的感測結果。因此,本發明的實施例中的感測裝置100可具有較高的訊噪比。
同時參照圖1與圖2,在本實施例中,感測裝置100更包括不透光層150,不透光層150設置於透光介質120的光學表面S上,不透光層150具有多個孔洞150a,且金屬薄膜層130至少對應於不透光層150的多個孔洞150a設置。在本實施例中,不透光層150的多個孔洞150a為貫穿不透光層150的多個穿孔。在本實施例中,不透光層150例如是不透光的金屬(例如鋁)、不透光的絕緣材料(例如黑色膠)或是其他適當的不透光材料。在本實施例中,不透光層150的多個孔洞150a例如是以陣列形式排列,且多個孔洞150a的上視形狀例如是呈圓形,然本發明不以此為限。在其他實施例中,多個孔洞150a也可以是隨機排列,或是多個孔洞150a的上視形狀也可以是矩形或其他形狀。
在本實施例中,孔洞150a的寬度D1(或直徑)例如是300奈米。不透光層150的厚度T1例如是大於等於350奈米。金屬薄膜層130的厚度T2例如是50奈米,然本發明不以此為限。
具體來說,本實施例的金屬薄膜層130包括彼此分離的多個金屬圖案132,且多個金屬圖案132分別設置於不透光層150的多個孔洞150a中,且位於孔洞150a的底部部分,而樣品50適於分別置放在孔洞150a中的多個金屬圖案132上。詳細來說,樣品50可包括多個單股的DNA片段,並將多個DNA片段分別固定至各別的孔洞150a中的金屬圖案132上。在一實施例中,樣品50例如是固定在承載物(例如,奈米珠(nano-bead))後直接放置於孔洞150a中。在另一實施例中,樣品50也可以是藉由聚合酶固定(polymerase immobilization)的方式而固定在金屬圖案132上,本發明不以此為限。
藉由將不透光層150設置在沒有放置樣品50的區域,可進一步阻絕雜散光通過,可改善感測裝置100的訊噪比。
此外,本實施例的多個感測器140的位置分別對應於多個孔洞150a的位置。換言之,多個感測器140的位置分別對應於置放在多個金屬圖案132上的樣品50的位置,以利於感測樣品50所發出的訊號光束SL。
在本實施例中,感測裝置100更包括基板SUB以及連接單元160。多個感測器140設置於基板SUB上。連接單元160連接於基板SUB與透光介質120之間,且連接單元160環繞金屬薄膜層130以及不透光層150,其中基板SUB、連接單元160、金屬薄膜層130以及不透光層150之間形成空間SP(標示於圖1)。在本實施例中,連接單元160例如是環形膠框。空間SP內例如是空氣或是液體(例如水),或是任何折射率小於透光介質120的物質,本發明不以此為限。
如圖1所示,在本實施例中,連接單元160包括入口160a與出口160b,入口160a與出口160b連通空間SP,且入口160a與出口160b分別位於連接單元160的兩側。具體來說,在本實施例中,用來反應的試劑可經由入口160a及出口160b而進出空間SP,以便與樣品50產生反應。
圖3為根據本發明的另一實施例的感測裝置的剖面示意圖。參照圖3,本實施例的感測裝置200與圖1的感測裝置100大致上相似。感測裝置200的構件以及相關敘述可以參考圖1的感測裝置100,在此便不再贅述,其主要差異在於本實施例的感測裝置200的金屬薄膜層230為整面未經圖案化的膜層,且金屬薄膜層230設置於透光介質120與不透光層150之間,且多個孔洞150a暴露金屬薄膜層230的部分,其中樣品50設置在孔洞150a內的金屬薄膜層230上。
圖4為根據本發明的另一實施例的感測裝置的剖面示意圖。參照圖4,本實施例的感測裝置300與圖1的感測裝置100大致上相似。感測裝置300的構件以及相關敘述可以參考圖1的感測裝置100,在此便不再贅述,其主要差異在於本實施例的感測裝置300更包括過濾層370,用以過濾(例如吸收)雜散光,以防止雜散光傳遞至多個感測器140而影響感測結果,可進一步改善感測裝置300的訊噪比。過濾層370設置於金屬薄膜層130與多個感測器140之間,且至少對應於多個感測器140設置。在本實施例中,過濾層370例如是整面覆蓋在基板SP中靠近多個感測器140的一側。在其他實施例中,過濾層370也可以是多個分離的過濾單元(未圖示),且分別對應於多個感測器140。
綜上所述,在本發明的實施例中的感測裝置中,由於金屬薄膜層設置於多個感測器與透光介質之間,也就是多個感測器是設置在光源的相對一側,因此多個感測器較不易受到來自光源的光束的影響。此外,透過金屬薄膜層的設置,除了可透過全內反射以在金屬薄膜層的表面處產生表面電漿共振來激發樣品之外,金屬薄膜層也可阻擋雜散光穿過而影響感測器的感測結果。因此,本發明的實施例中的感測裝置可具有較高的訊噪比。此外,藉由將不透光層設置在沒有放置樣品的區域,可進一步阻絕雜散光通過,可改善感測裝置的訊噪比。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
100、200、300‧‧‧感測裝置
110‧‧‧光源
120‧‧‧透光介質
130、230‧‧‧金屬薄膜層
132‧‧‧金屬圖案
140‧‧‧感測器
150‧‧‧不透光層
150a‧‧‧孔洞
160‧‧‧連接單元
160a‧‧‧入口
160b‧‧‧出口
370‧‧‧過濾層
50‧‧‧樣品
D1‧‧‧寬度
T1、T2‧‧‧厚度
L‧‧‧光束
S‧‧‧光學表面
SL‧‧‧訊號光束
SUB‧‧‧基板
SP‧‧‧空間
圖1為根據本發明的一實施例的感測裝置的剖面示意圖。 圖2是圖1中的透光介質、金屬薄膜層、不透光層以及連接單元的上視示意圖。 圖3為根據本發明的另一實施例的感測裝置的剖面示意圖。 圖4為根據本發明的另一實施例的感測裝置的剖面示意圖。

Claims (8)

  1. 一種感測裝置,用以檢測樣品,所述感測裝置包括:光源,用以提供光束;透光介質,具有光學表面;金屬薄膜層,設置於所述透光介質的所述光學表面上,且所述樣品適於放置在所述金屬薄膜層上,其中在所述光束自遠離所述光學表面的一側進入所述透光介質之後,所述光束適於在所述光學表面發生全內反射,使得在所述金屬薄膜層的表面產生表面電漿共振以激發所述樣品,且所述樣品被激發後適於發射訊號光束;多個感測器,用以感測所述訊號光束,其中所述金屬薄膜層設置於所述多個感測器與所述透光介質之間;以及不透光層,設置於所述透光介質的所述光學表面上,所述不透光層具有多個孔洞,且所述金屬薄膜層至少對應於所述不透光層的所述多個孔洞設置,其中所述多個感測器的位置分別對應於所述多個孔洞的位置。
  2. 如申請專利範圍第1項所述的感測裝置,其中所述金屬薄膜層與所述透光介質實體接觸。
  3. 如申請專利範圍第1項所述的感測裝置,其中所述金屬薄膜層包括彼此分離的多個金屬圖案,且所述多個金屬圖案分別設置於所述不透光層的所述多個孔洞中,且位於所述孔洞的底部部分。
  4. 如申請專利範圍第1項所述的感測裝置,其中所述金屬薄膜層設置於所述透光介質與所述不透光層之間,且所述多個孔洞暴露所述金屬薄膜層的部分。
  5. 如申請專利範圍第1項所述的感測裝置,其中所述樣品放置於所述多個孔洞中。
  6. 如申請專利範圍第1項所述的感測裝置,更包括:基板,所述多個感測器設置於所述基板上;以及連接單元,連接於所述基板與所述透光介質之間,且所述連接單元環繞所述金屬薄膜層,其中所述基板、所述連接單元以及所述金屬薄膜層之間形成空間。
  7. 如申請專利範圍第6項所述的感測裝置,其中所述連接單元包括入口與出口,所述入口與所述出口連通所述空間,且所述入口與所述出口分別位於所述連接單元的兩側。
  8. 如申請專利範圍第1項所述的感測裝置,更包括過濾層,所述過濾層設置於所述金屬薄膜層與所述多個感測器之間,且至少對應於所述多個感測器設置。
TW107139142A 2018-07-10 2018-11-05 感測裝置 TWI664397B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862696322P 2018-07-10 2018-07-10
US62/696,322 2018-07-10
US16/430,445 US10638076B2 (en) 2018-07-10 2019-06-04 Sensing apparatus

Publications (2)

Publication Number Publication Date
TWI664397B true TWI664397B (zh) 2019-07-01
TW202006324A TW202006324A (zh) 2020-02-01

Family

ID=71092014

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107139142A TWI664397B (zh) 2018-07-10 2018-11-05 感測裝置

Country Status (3)

Country Link
US (1) US10638076B2 (zh)
CN (1) CN110702646B (zh)
TW (1) TWI664397B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI676794B (zh) * 2018-07-10 2019-11-11 精準基因生物科技股份有限公司 感測元件

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130050813A1 (en) * 2010-02-25 2013-02-28 Industry-Academic Cooperation Foundation, Yonsei University Localized surface plasmon resonance based super resolved total internal reflection fluorescence imaging apparatus, and detection module therefor

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030205681A1 (en) * 1998-07-22 2003-11-06 Ljl Biosystems, Inc. Evanescent field illumination devices and methods
JP4173725B2 (ja) * 2001-12-25 2008-10-29 富士フイルム株式会社 エバネッセント波を利用したセンサー
US7420682B2 (en) * 2003-09-30 2008-09-02 Arizona Board Of Regents On Behalf Of The University Of Arizona Sensor device for interference and plasmon-waveguide/interference spectroscopy
WO2005078415A1 (ja) * 2004-02-13 2005-08-25 Omron Corporation 表面プラズモン共鳴センサー
US7906344B2 (en) * 2004-03-31 2011-03-15 Omron Corporation Localized plasmon resonance sensor and examining device
US7939333B2 (en) * 2005-06-17 2011-05-10 University Of Maryland, Baltimore County Metal enhanced fluorescence-based sensing methods
WO2007094817A2 (en) * 2005-08-02 2007-08-23 University Of Utah Research Foundation Biosensors including metallic nanocavities
KR20070081557A (ko) * 2006-02-13 2007-08-17 연세대학교 산학협력단 가변형 광학소자를 이용한 표면 플라즈몬 공명 생체 센서시스템
US7709808B2 (en) * 2006-05-16 2010-05-04 Applied Biosystems, Llc Systems, methods and apparatus for single molecule sequencing
JP2008203187A (ja) * 2007-02-22 2008-09-04 Fujifilm Corp 表面プラズモンセンサ、及びこれを用いたセンシング装置
US20140256593A1 (en) * 2011-11-22 2014-09-11 University Of Maryland, Baltimore Plasmonic substrates for metal-enhanced fluorescence based sensing, imaging and assays
ES2743703T3 (es) * 2014-12-16 2020-02-20 Univ Eindhoven Tech Biosensor basado en una partícula anclada
US9778191B2 (en) * 2016-02-05 2017-10-03 Personal Genomics, Inc. Optical sensing module

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130050813A1 (en) * 2010-02-25 2013-02-28 Industry-Academic Cooperation Foundation, Yonsei University Localized surface plasmon resonance based super resolved total internal reflection fluorescence imaging apparatus, and detection module therefor

Also Published As

Publication number Publication date
US20200018700A1 (en) 2020-01-16
US10638076B2 (en) 2020-04-28
CN110702646B (zh) 2022-06-21
CN110702646A (zh) 2020-01-17
TW202006324A (zh) 2020-02-01

Similar Documents

Publication Publication Date Title
AU2008233214B2 (en) Calibration and normalization method for biosensors
US11226290B2 (en) Photonic structures and integrated device for detecting and analyzing molecules
JP3824233B2 (ja) バイオセンサ及びバイオセンサの製造方法
US6710870B1 (en) Method and device for measuring luminescence
US20100252751A1 (en) Microelectronic opiacal evanescent field sensor
US8835185B2 (en) Target substance-detecting element
US8045141B2 (en) Detecting element, detecting device and detecting method
JP2007218900A (ja) 標的物質検出用の素子
JP2003270132A (ja) 化学センサ装置・媒体およびそれを用いた検査方法
WO2011062377A2 (en) Apparatus and method for quantifying binding and dissociation kinetics of molecular interactions
US9658164B2 (en) Optical sensing chip having three-dimensional nanostructure array
CN103328952A (zh) 感测装置
JP2001504219A (ja) 植物の病気を診断するためのバイオセンサーの使用
TWI664397B (zh) 感測裝置
TW201305549A (zh) 具金屬緩衝層之波導共振生物感測器
KR20210042913A (ko) 일회용 진단 멤브레인 및 영구 포토닉 감지 장치를 포함하는 광학 바이오센서
JP4921213B2 (ja) 検出素子、検出素子装置及び検出方法
JP2007101308A (ja) 標的物質検出素子、標的物質検出装置及び標的物質検出方法
Baldini et al. A new optical platform for biosensing based on fluorescence anisotropy
US20230341384A1 (en) Resonant nanophotonic biosensors
WO2009007888A1 (en) An opto-mechanical arrangement for providing optical access to a sample chamber
JP2005077396A (ja) 分析用光導波路
JP2003215029A (ja) 表面プラズモン共鳴測定装置並びに表面プラズモン共鳴及び光吸収スペクトル測定装置
JP5038030B2 (ja) センシング方法およびセンシング装置
JP2007263955A (ja) センサ素子用構造体、センサ素子用アレイ、センサ素子用アレイの製造方法及びセンシング装置