TWI662701B - High electron mobility transistor structure - Google Patents

High electron mobility transistor structure Download PDF

Info

Publication number
TWI662701B
TWI662701B TW106130276A TW106130276A TWI662701B TW I662701 B TWI662701 B TW I662701B TW 106130276 A TW106130276 A TW 106130276A TW 106130276 A TW106130276 A TW 106130276A TW I662701 B TWI662701 B TW I662701B
Authority
TW
Taiwan
Prior art keywords
mobility transistor
electron mobility
high electron
barrier layer
transistor structure
Prior art date
Application number
TW106130276A
Other languages
Chinese (zh)
Other versions
TW201914016A (en
Inventor
周鈺傑
林信志
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW106130276A priority Critical patent/TWI662701B/en
Publication of TW201914016A publication Critical patent/TW201914016A/en
Application granted granted Critical
Publication of TWI662701B publication Critical patent/TWI662701B/en

Links

Abstract

本揭露提供一種高電子遷移率電晶體結構,包括:一基底、一阻障層、一緩衝層、一源極及一汲極、一多重閘極結構以及一多重場板結構。阻障層設置於基底上,緩衝層設置於基底與阻障層之間,且具有一通道區鄰近於阻障層與緩衝層之間的一界面。源極及汲極設置於阻障層上,而多重閘極結構,設置於源極與汲極之間,且包括彼此隔開的複數個第一導電指部。多重場板結構設置於多重閘極結構與汲極之間,且包括彼此隔開的複數個第二導電指部。第一導電指部與第二導電指部交替且平行排列於阻障層上。 The disclosure provides a high electron mobility transistor structure including a substrate, a barrier layer, a buffer layer, a source and a drain, a multiple gate structure, and a multiple field plate structure. The barrier layer is disposed on the substrate, the buffer layer is disposed between the substrate and the barrier layer, and has a channel region adjacent to an interface between the barrier layer and the buffer layer. The source and the drain are disposed on the barrier layer, and the multiple gate structure is disposed between the source and the drain, and includes a plurality of first conductive fingers spaced apart from each other. The multiple field plate structure is disposed between the multiple gate structure and the drain electrode, and includes a plurality of second conductive fingers spaced apart from each other. The first conductive fingers and the second conductive fingers are alternately and parallelly arranged on the barrier layer.

Description

高電子遷移率電晶體結構 High electron mobility transistor structure

本揭露係關於一種半導體裝置結構,且特別是關於一種可調變臨界電壓(threshold voltage)的高電子遷移率電晶體(high electron mobility transistor,HEMT)結構。 The present disclosure relates to a semiconductor device structure, and more particularly to a high electron mobility transistor (HEMT) structure with adjustable threshold voltage.

在半導體工業中,高壓開關電晶體(諸如,高電子遷移率電晶體(HEMT)、接面場效電晶體(junction filed effect transistor,JFET)或是功率金氧半場效電晶體(power MOSFET))常用作高壓高功率裝置(例如,交換式電源供應器(switched mode power supply,SMPS))的半導體開關元件。在上述高壓開關電晶體中,高電子遷移率電晶體因具有高功率密度、高崩潰電壓、高輸出電壓及等優點,能夠於高壓下操作而不損害裝置。 In the semiconductor industry, high-voltage switching transistors (such as high electron mobility transistors (HEMTs), junction filed effect transistors (JFETs), or power MOSFETs (power MOSFETs)) It is often used as a semiconductor switching element of a high-voltage high-power device (for example, a switched mode power supply (SMPS)). Among the above-mentioned high-voltage switching transistors, the high electron mobility transistor has advantages such as high power density, high breakdown voltage, high output voltage, and the like, and can operate at high voltage without damaging the device.

高電子遷移率電晶體(HEMT)包括空乏型高電子遷移率電晶體(depletion mode HEMT,D-mode HEMT)與增強型高電子遷移率電晶體(enhancement mode HEMT,E-mode HEMT)。在D-mode HEMT中,閘極所產生的電場用於排空具有寬窄能隙(energy bandgap)半導體層之間的異結構界面附近的二維電子氣(two-dimensional electron gas,2DEG)通道。而對於E-mode HEMT,其並無通道及電流產生直至進行電晶體操作而施加偏壓。 The high electron mobility transistor (HEMT) includes a depletion type high electron mobility transistor (depletion mode HEMT, D-mode HEMT) and an enhanced high electron mobility transistor (enhancement mode HEMT, E-mode HEMT). In the D-mode HEMT, the electric field generated by the gate is used to evacuate a two-dimensional electron gas (2DEG) channel near a heterostructure interface between semiconductor layers having a wide and narrow energy bandgap. For E-mode HEMT, there is no channel and current generation until the bias voltage is applied to the transistor operation.

D-mode HEMT在未施加閘極-源極電壓時,容許電流通過(也稱作常導通狀態(normally-on)電晶體)。而E-mode HEMT在未施加閘極-源極電壓時,阻止電流通過(也稱作常關閉狀態(normally-off)電晶體)。 The D-mode HEMT allows current to pass through when no gate-source voltage is applied (also referred to as a normally-on transistor). The E-mode HEMT prevents current from passing through when no gate-source voltage is applied (also known as a normally-off transistor).

雖然現有的D-mode HEMT及E-mode HEMT大致符合需求,但並非各方面皆令人滿意。例如,高電子移動率電晶體結構局限於單一臨界電壓而降低其應用彈性。再者,閘極下方常常包括高阻抗半導體材料而易引起閘極誤開關(switching error)及導通損失/熱損耗(condition loss)。 Although the existing D-mode HEMT and E-mode HEMT generally meet the requirements, they are not satisfactory in all aspects. For example, the high electron mobility transistor structure is limited to a single threshold voltage and reduces its application elasticity. Furthermore, high-impedance semiconductor materials are often included under the gate, which can easily cause gate switching errors and conduction loss / condition loss.

因此,有必要尋求一種高電子遷移率電晶體結構,其能夠解決或改善上述的問題。 Therefore, it is necessary to find a high electron mobility transistor structure which can solve or improve the above problems.

本揭露一實施例提供一種高電子遷移率電晶體結構,包括:一基底、一阻障層、一緩衝層、一源極及一汲極、一多重閘極結構以及一多重場板結構。阻障層設置於基底上,緩衝層設置於基底與阻障層之間,且具有一通道區鄰近於阻障層與緩衝層之間的一界面。源極及汲極設置於阻障層上,而多重閘極結構設置於源極與汲極之間,且包括彼此隔開的複數個第一導電指部。多重場板結構設置於多重閘極結構與汲極之間,且包括彼此隔開的複數個第二導電指部。第一導電指部與第二導電指部交替且平行排列於阻障層上。 An embodiment of the present disclosure provides a high electron mobility transistor structure including: a substrate, a barrier layer, a buffer layer, a source and a drain, a multiple gate structure, and a multiple field plate structure. . The barrier layer is disposed on the substrate, the buffer layer is disposed between the substrate and the barrier layer, and has a channel region adjacent to an interface between the barrier layer and the buffer layer. The source and the drain are disposed on the barrier layer, and the multiple gate structure is disposed between the source and the drain, and includes a plurality of first conductive fingers spaced apart from each other. The multiple field plate structure is disposed between the multiple gate structure and the drain electrode, and includes a plurality of second conductive fingers spaced apart from each other. The first conductive fingers and the second conductive fingers are alternately and parallelly arranged on the barrier layer.

本揭露另一實施例提供一種高電子遷移率電晶體結構,包括:一基底、一阻障層、一緩衝層、一源極及一汲極、一多重閘極結構以及一電性連接結構。阻障層設置於基底上, 而緩衝層設置於基底與阻障層之間,且具有一通道區鄰近於阻障層與緩衝層之間的一界面。源極及汲極設置於阻障層上,而多重閘極結構設置於源極與汲極之間,且包括彼此隔開且平行排列於阻障層上的複數個第一導電指部。電性連接結構電性連接第一導電指部其中至少二者,使第一導電指部其中至少一者未與電性連接結構電性連接。 Another embodiment of the present disclosure provides a high electron mobility transistor structure including: a substrate, a barrier layer, a buffer layer, a source and a drain, a multiple gate structure, and an electrical connection structure. . The barrier layer is disposed on the substrate, The buffer layer is disposed between the substrate and the barrier layer, and has a channel region adjacent to an interface between the barrier layer and the buffer layer. The source electrode and the drain electrode are disposed on the barrier layer, and the multiple gate structure is disposed between the source electrode and the drain electrode, and includes a plurality of first conductive fingers spaced apart from each other and arranged in parallel on the barrier layer. The electrical connection structure is electrically connected to at least two of the first conductive finger portions, so that at least one of the first conductive finger portions is not electrically connected to the electrical connection structure.

10a、10b、10c‧‧‧高電子遷移率電晶體結構 10a, 10b, 10c‧‧‧‧High electron mobility transistor structure

100‧‧‧基底 100‧‧‧ substrate

102‧‧‧緩衝層 102‧‧‧ buffer layer

103‧‧‧通道區 103‧‧‧Channel area

110‧‧‧阻障層 110‧‧‧Barrier layer

112‧‧‧源極 112‧‧‧Source

114‧‧‧汲極 114‧‧‧ Drain

120a、120b、120c‧‧‧第一導電指部 120a, 120b, 120c ‧‧‧ the first conductive finger

121‧‧‧多重閘極結構 121‧‧‧Multi-gate structure

130a、130b、130c‧‧‧第二導電指部 130a, 130b, 130c‧‧‧Second conductive finger

130d‧‧‧連接部 130d‧‧‧Connection Department

131‧‧‧多重場板結構 131‧‧‧Multi-field plate structure

140a、140b、140c‧‧‧電線連接結構 140a, 140b, 140c‧‧‧Wire connection structure

第1圖係繪示出根據本揭露一些實施例之高電子遷移率電晶體結構的平面示意圖。 FIG. 1 is a schematic plan view illustrating a high electron mobility transistor structure according to some embodiments of the present disclosure.

第2圖係繪示出第1圖中沿2-2’線的剖面示意圖。 Fig. 2 is a schematic cross-sectional view taken along line 2-2 'in Fig. 1.

第3圖係繪示出根據本揭露一些實施例之高電子遷移率電晶體結構的平面示意圖。 FIG. 3 is a schematic plan view illustrating a high electron mobility transistor structure according to some embodiments of the present disclosure.

第4圖係繪示出根據本揭露一些實施例之高電子遷移率電晶體結構的平面示意圖。 FIG. 4 is a schematic plan view illustrating a high electron mobility transistor structure according to some embodiments of the present disclosure.

以下說明本揭露實施例之高電子遷移率電晶體結構。然而,可輕易了解本揭露所提供的實施例僅用於說明以特定方法製作及使用本發明,並非用以侷限本發明的範圍。 The high electron mobility transistor structure of the embodiment of the present disclosure is described below. However, it can be easily understood that the embodiments provided in this disclosure are only used to illustrate that the present invention is made and used in a specific method, and not intended to limit the scope of the present invention.

本揭露之實施例提供一種金氧半場效電晶體結構,例如高電子遷移率電晶體(HEMT)結構,其利用多重閘極以調變電晶體的臨界電壓,進而增加電晶體的應用彈性。再者,具有多重閘極的設計的高電子遷移率電晶體結構,相較於具有單一閘極的高電子遷移率電晶體結構,可縮短通道長度,進而降 低閘極下方的寄生電阻而避免引起閘極誤開關及降低導通損失/熱損耗。 Embodiments of the present disclosure provide a metal-oxide half-field-effect transistor structure, such as a high electron mobility transistor (HEMT) structure, which uses multiple gates to adjust the threshold voltage of the transistor, thereby increasing the application flexibility of the transistor. Furthermore, the high-electron-mobility transistor structure with a multi-gate design can shorten the channel length compared to a high-electron-mobility transistor structure with a single gate, which in turn reduces Low parasitic resistance under the gate to avoid false gate switching and reduce conduction loss / heat loss.

請參照第1及2圖,其中第1圖係繪示出根據本揭露一些實施例之高電子遷移率電晶體結構10a的平面示意圖,而第2圖係繪示出第1圖中沿2-2’線的剖面示意圖。如第2圖所示,本揭露實施例之高電子遷移率電晶體結構10a包括:一基底100、一緩衝層102、一阻障層110、一源極112及一汲極114、一多重閘極結構121以及一選擇性的多重場板結構131。 Please refer to FIGS. 1 and 2, wherein FIG. 1 is a schematic plan view showing a high electron mobility transistor structure 10 a according to some embodiments of the present disclosure, and FIG. Schematic cross-section of the 2 'line. As shown in FIG. 2, the high electron mobility transistor structure 10 a of the present disclosure includes a substrate 100, a buffer layer 102, a barrier layer 110, a source 112 and a drain 114, and a multiple The gate structure 121 and a selective multiple field plate structure 131.

在一些實施例中,阻障層110設置於基底100上,而緩衝層102設置於基底100與阻障層110之間。再者,源極112及汲極114設置於阻障層110上,而多重閘極結構121設置於源極112與汲極114之間的阻障層110上。再者,多重場板結構131設置於多重閘極結構121與汲極114之間的阻障層110上。上述高電子遷移率電晶體結構10a中的每一個特徵部件將在以下段落中作更詳細的討論。 In some embodiments, the barrier layer 110 is disposed on the substrate 100, and the buffer layer 102 is disposed between the substrate 100 and the barrier layer 110. Furthermore, the source 112 and the drain 114 are disposed on the barrier layer 110, and the multiple gate structure 121 is disposed on the barrier layer 110 between the source 112 and the drain 114. Furthermore, the multiple field plate structure 131 is disposed on the barrier layer 110 between the multiple gate structure 121 and the drain 114. Each feature of the above-mentioned high electron mobility transistor structure 10a will be discussed in more detail in the following paragraphs.

如第1或2圖所示,本揭露實施例之高電子遷移率電晶體結構10a包括一基底100。在一些實施例中,基底100可包括:一矽基底、一碳化矽基底或一藍寶石基底。在其他實施例中,基底100也可包括一絕緣層上矽(silicon on insulator,SOI)基底。 As shown in FIG. 1 or FIG. 2, the high electron mobility transistor structure 10 a of the embodiment of the present disclosure includes a substrate 100. In some embodiments, the substrate 100 may include a silicon substrate, a silicon carbide substrate, or a sapphire substrate. In other embodiments, the substrate 100 may also include a silicon on insulator (SOI) substrate.

在一些實施例中,本揭露實施例之高電子遷移率電晶體結構10a更包括一緩衝層102設置在基底100上方。緩衝層102可為一多層結構。舉例來說,緩衝層102包括一晶核層(nucleation layer)(未繪示)及位於其上的一III-V族半導體化合 物層(未繪示)。在一些實施例中,晶核層包括AlN、GaN或AlGaN,係用於降低基底100與晶核層上方的III-V族半導體化合物層之間因晶格不匹配所產生的應力。舉例來說,AlN晶核層與基底100之間的晶格差異與熱膨脹係數差異小,而使基底100與之後形成的III-V族半導體化合物層之間的應力得以緩和。 In some embodiments, the high electron mobility transistor structure 10 a of the present disclosure further includes a buffer layer 102 disposed above the substrate 100. The buffer layer 102 may have a multilayer structure. For example, the buffer layer 102 includes a nucleation layer (not shown) and a III-V semiconductor compound thereon. Object layer (not shown). In some embodiments, the nucleus layer includes AlN, GaN, or AlGaN, and is used to reduce the stress caused by lattice mismatch between the substrate 100 and the III-V semiconductor compound layer above the nucleus layer. For example, the difference in lattice and thermal expansion coefficient between the AlN nucleus layer and the substrate 100 is small, so that the stress between the substrate 100 and the III-V semiconductor compound layer formed later can be relaxed.

在一些實施例中,位於晶核層上的III-V族半導體化合物層可作為高電子遷移率電晶體結構10a的一通道層。舉例來說,緩衝層102內包括一通道區103(如第2圖的虛線所示),例如二維電子氣(two-dimensional electron gas,2DEG)通道,其鄰近於緩衝層102的上表面(即,鄰近於緩衝層102與後續形成的阻障層之間的界面)。在一些實施例中,晶核層上的III-V族半導體化合物層可包括氮化銦鋁鎵(InAlGaN)、氮化鋁鎵(AlGaN)、氮化銦鎵(InGaN)、氮化鎵(GaN)、氮化鋁(AlN)或其組合。 In some embodiments, the III-V semiconductor compound layer on the nucleus layer can be used as a channel layer of the high electron mobility transistor structure 10a. For example, the buffer layer 102 includes a channel region 103 (shown as a dashed line in FIG. 2), such as a two-dimensional electron gas (2DEG) channel, which is adjacent to the upper surface of the buffer layer 102 ( That is, it is adjacent to the interface between the buffer layer 102 and a barrier layer to be formed later). In some embodiments, the III-V semiconductor compound layer on the core layer may include indium aluminum gallium nitride (InAlGaN), aluminum gallium nitride (AlGaN), indium gallium nitride (InGaN), gallium nitride (GaN ), Aluminum nitride (AlN), or a combination thereof.

在一些實施例中,可使用分子束磊晶法(molecular beam epitaxy,MBE)、有機金屬氣相沉積法(metal organic chemical vapor deposition,MOCVD)、氫化物氣相磊晶法(hydride vapor phase epitaxy,HVPE)或其他適當之沉積方法在基底100上形成緩衝層102。在一些實施例中,緩衝層102的厚度可約在0.2μm至10μm的範圍。 In some embodiments, molecular beam epitaxy (MBE), metal organic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy, (HVPE) or other suitable deposition methods to form a buffer layer 102 on the substrate 100. In some embodiments, the thickness of the buffer layer 102 may be in a range of about 0.2 μm to 10 μm.

在一些實施例中,本揭露實施例之高電子遷移率電晶體結構10a更包括一阻障層110設置於緩衝層102上並與其直接接觸。在一些實施例中,阻障層110包括一III-V族半導體化合物層,例如氮化銦鋁鎵(InAlGaN)、氮化鋁鎵(AlGaN)、氮 化銦鎵(InGaN)、氮化鎵(GaN)或其組合。需注意的是阻障層110與緩衝層102中III-V族半導體化合物層的組成是不同的。舉例來說,阻障層110由氮化鋁鎵(AlGaN)所組成,而緩衝層102中III-V族半導體化合物層由氮化鎵(GaN)所組成,而使阻障層110與緩衝層102構成異結構。 In some embodiments, the high electron mobility transistor structure 10a of the present disclosure further includes a barrier layer 110 disposed on the buffer layer 102 and in direct contact therewith. In some embodiments, the barrier layer 110 includes a III-V semiconductor compound layer, such as indium aluminum gallium nitride (InAlGaN), aluminum gallium nitride (AlGaN), nitrogen Indium gallium (InGaN), gallium nitride (GaN), or a combination thereof. It should be noted that the composition of the III-V semiconductor compound layer in the barrier layer 110 and the buffer layer 102 are different. For example, the barrier layer 110 is composed of aluminum gallium nitride (AlGaN), and the III-V semiconductor compound layer in the buffer layer 102 is composed of gallium nitride (GaN), so that the barrier layer 110 and the buffer layer 102 constitutes a different structure.

在一些實施例中,可使用分子束磊晶法(MBE)、有機金屬氣相沉積法(MOCVD)、氫化物氣相磊晶法(HVPE)或其他適當之沉積方法在緩衝層102上形成緩衝層102。在一些實施例中,阻障層110的厚度可約在1nm至100nm的範圍。 In some embodiments, a buffer can be formed on the buffer layer 102 using molecular beam epitaxy (MBE), organic metal vapor deposition (MOCVD), hydride vapor epitaxy (HVPE), or other suitable deposition methods. Layer 102. In some embodiments, the thickness of the barrier layer 110 may be in a range of about 1 nm to 100 nm.

緩衝層102與阻障層110之間的能帶差異(band gap discontinuity)在緩衝層102內鄰近緩衝層102與阻障層110之間的界面產生具有高移動傳導電子的載子通道(標示為通道區103),其稱為二維電子氣(2DEG)通道。當施加閘極-源極電壓時,可開啟或關閉電晶體。 The band gap discontinuity between the buffer layer 102 and the barrier layer 110 generates a carrier channel with high mobile conduction electrons (labeled as Channel region 103), which is called a two-dimensional electron gas (2DEG) channel. When a gate-source voltage is applied, the transistor can be turned on or off.

在一些實施例中,本揭露實施例之高電子遷移率電晶體結構10a更包括設置於阻障層110上並與其接觸的一源極112、一汲極114及一多重閘極結構121,其中多重閘極結構121設置於源極112與汲極114之間。在一些實施例中,源極112、汲極114及多重閘極結構121分別具有一部分延伸進入阻障層110內,如第2圖所示。如此一來,掘入(recessed)的多重閘極結構121可改變阻障層110的厚度,進而降低二維電子氣(2DEG)的密度。在一些實施例中,多重閘極結構121、源極112及汲極114設置於具有平坦表面的阻障層110上而未掘入於阻障層110內。 In some embodiments, the high electron mobility transistor structure 10a of the present disclosure further includes a source electrode 112, a drain electrode 114, and a multiple gate structure 121 disposed on and in contact with the barrier layer 110. The multiple gate structure 121 is disposed between the source 112 and the drain 114. In some embodiments, the source 112, the drain 114, and the multiple gate structure 121 each have a portion extending into the barrier layer 110, as shown in FIG. In this way, the recessed multiple gate structure 121 can change the thickness of the barrier layer 110, thereby reducing the density of the two-dimensional electron gas (2DEG). In some embodiments, the multiple gate structure 121, the source 112, and the drain 114 are disposed on the barrier layer 110 having a flat surface and are not dug into the barrier layer 110.

在一些實施例中,如第1及2圖所示,多重閘極結構121包括依一距離彼此隔開且平行排列的二個或二個以上的第一導電指部。此處為了簡化圖式及說明,僅繪示出三個第一導電指部120a、120b及120c。可理解的是多重閘極結構121中第一導電指部的數量取決於設計需求,而未局限於第1及2圖所示的實施例。 In some embodiments, as shown in FIGS. 1 and 2, the multiple gate structure 121 includes two or more first conductive finger portions spaced apart from each other and arranged in parallel. In order to simplify the figure and description here, only three first conductive fingers 120a, 120b, and 120c are shown. It can be understood that the number of the first conductive fingers in the multiple gate structure 121 depends on design requirements, and is not limited to the embodiments shown in FIGS. 1 and 2.

在一些實施例中,第一導電指部120a具有一寬度L1;第一導電指部120b具有一寬度L2;及第一導電指部120c具有一寬度L3。這些寬度L1、L2及L3定義出對應的通道長度。在一些實施例中,寬度L1、L2及L3彼此不同,使對應的通道長度彼此不同。如此一來,當分別施加電壓於第一導電指部120a、120b及120c時,可得到不同的臨界電壓。 In some embodiments, the first conductive finger portion 120a has a width L1; the first conductive finger portion 120b has a width L2; and the first conductive finger portion 120c has a width L3. These widths L1, L2 and L3 define the corresponding channel length. In some embodiments, the widths L1, L2, and L3 are different from each other, so that the corresponding channel lengths are different from each other. In this way, when a voltage is applied to the first conductive fingers 120a, 120b, and 120c, different threshold voltages can be obtained.

再者,相較於具有單一閘極的傳統的高電子遷移率電晶體,寬度L1、L2及L3的總和可小於或等於上述單一閘極的寬度。由於第一導電指部120a、120b及120c的寬度L1、L2及L3分別小於上述單一閘極的寬度,因此高電子遷移率電晶體10a中閘極下方的寄生電阻小於傳統的高電子遷移率電晶體中閘極下方的寄生電阻。如此一來,可避免引起閘極誤開關及降低導通損失/熱損耗。 Furthermore, compared to a conventional high electron mobility transistor having a single gate, the sum of the widths L1, L2, and L3 may be less than or equal to the width of the single gate. Since the widths L1, L2, and L3 of the first conductive fingers 120a, 120b, and 120c are smaller than the width of the single gate, respectively, the parasitic resistance under the gate in the high electron mobility transistor 10a is smaller than that of the conventional high electron mobility transistor. Parasitic resistance under the gate in the crystal. In this way, it can avoid causing the gate to switch erroneously and reduce the conduction loss / heat loss.

在一些實施例中,寬度L1、L2及L3彼此相同,使對應的通道長度彼此相同。如此一來,當分別施加電壓於第一導電指部120a、120b及120c時,可得到相同的臨界電壓。在其他實施例中,寬度L1、L2及L3,且其中該等通道長度其中二者彼此相同。如此一來,當分別施加電壓於第一導電指部120a、 120b及120c時,可得到二個不同的臨界電壓。 In some embodiments, the widths L1, L2, and L3 are the same as each other, so that the corresponding channel lengths are the same as each other. In this way, when a voltage is applied to the first conductive fingers 120a, 120b, and 120c, the same threshold voltage can be obtained. In other embodiments, the widths L1, L2, and L3, and wherein the channel lengths are the same as each other. In this way, when a voltage is applied to the first conductive fingers 120a, For 120b and 120c, two different threshold voltages can be obtained.

在一些實施例中,多重閘極結構121可包括導電材料,例如金屬(諸如,鈦(Ti)、鎳(Ni)、金(Au)或其合金),再者,源極112與汲極114可包括導電材料,例如金屬(諸如,鈦(Ti)、鋁(Al)、鎳(Ni)、鉬(Mo)、金(Au)或其合金)。多重閘極結構121、源極112與汲極114可藉由化學氣相沉積(CVD)、物理氣相沉積(physical vapor,PVD)、原子層沉積(atomic layer deposition,ALD)、濺鍍(sputtering)、或其他適合的製程形成。 In some embodiments, the multiple gate structure 121 may include a conductive material, such as a metal (such as titanium (Ti), nickel (Ni), gold (Au), or an alloy thereof), and further, the source 112 and the drain 114 A conductive material such as a metal (such as titanium (Ti), aluminum (Al), nickel (Ni), molybdenum (Mo), gold (Au), or an alloy thereof) may be included. Multiple gate structures 121, source 112, and drain 114 can be formed by chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), and sputtering ), Or other suitable processes.

在一些實施例中,本揭露實施例之高電子遷移率電晶體結構10a更包括一電性連接結構140a,其電性連接第一導電指部120a、120b及120c其中至少二者,使第一導電指部120a、120b及120c其中至少一者未與電性連接結構140a電性連接。舉例來說,電性連接結構140a電性連接第一導電指部120a與120b,如第1圖所示。在一些實施例中,電性連接結構140a可電性連接第一導電指部120a與120c。在其他一些實施例中,電性連接結構140a可電性連接第一導電指部120b與120c。 In some embodiments, the high electron mobility transistor structure 10a of the present disclosure further includes an electrical connection structure 140a, which is electrically connected to at least two of the first conductive fingers 120a, 120b, and 120c, so that the first At least one of the conductive fingers 120a, 120b, and 120c is not electrically connected to the electrical connection structure 140a. For example, the electrical connection structure 140a is electrically connected to the first conductive fingers 120a and 120b, as shown in FIG. In some embodiments, the electrical connection structure 140a can be electrically connected to the first conductive fingers 120a and 120c. In other embodiments, the electrical connection structure 140a may be electrically connected to the first conductive fingers 120b and 120c.

在一些實施例中,電性連接結構140a可包括由導電插塞及導電層所構成的內連線結構。在一些實施例中,電性連接結構140a可包括接線。如此一來,透過調整第一導電指部的數量及寬度及/或控制電性連接結構140a的連接方式,可使高電子遷移率電晶體結構10a具有調變臨界電壓的功能而在不同的產品應用中獲得所需的臨界電壓。 In some embodiments, the electrical connection structure 140a may include an interconnect structure composed of a conductive plug and a conductive layer. In some embodiments, the electrical connection structure 140a may include wiring. In this way, by adjusting the number and width of the first conductive fingers and / or controlling the connection manner of the electrical connection structure 140a, the high electron mobility transistor structure 10a can have a function of adjusting the threshold voltage and can be used in different products. Get the required threshold voltage in your application.

在一些實施例中,本揭露實施例之高電子遷移率電晶體結構10a更包括一多重場板結構131,其中多重場板結構 131設置於多重閘極結構121與汲極114之間。在一些實施例中,多重場板結構131設置於阻障層110上而未掘入於阻障層110內。 In some embodiments, the high electron mobility transistor structure 10a of the present disclosure further includes a multiple field plate structure 131, wherein the multiple field plate structure 131 is disposed between the multiple gate structure 121 and the drain 114. In some embodiments, the multiple field plate structure 131 is disposed on the barrier layer 110 without being digged into the barrier layer 110.

在一些實施例中,如第1及2圖所示,多重場板結構131包括依一距離彼此隔開且平行排列的二個或二個以上的第二導電指部。此處為了簡化圖式及說明,僅繪示出三個第一導電指部130a、130b及130c。在一些實施例中,第一導電指部120a、120b及120c與第二導電指部130a、130b及130c交替排列。可理解的是多重場板結構131中第二導電指部的數量取決於第一導電指部的數量,而未局限於第1及2圖所示的實施例。 In some embodiments, as shown in FIGS. 1 and 2, the multiple field plate structure 131 includes two or more second conductive finger portions spaced apart from each other and arranged in parallel. Here, in order to simplify the drawings and description, only three first conductive fingers 130a, 130b, and 130c are shown. In some embodiments, the first conductive fingers 120a, 120b, and 120c are alternately arranged with the second conductive fingers 130a, 130b, and 130c. It can be understood that the number of the second conductive finger portions in the multiple field plate structure 131 depends on the number of the first conductive finger portions, and is not limited to the embodiments shown in FIGS. 1 and 2.

在一些實施例中,多重場板結構131更包括一連接部130d連接第二導電指部130a、130b及130c的一端,如第1圖所示。在一些實施例中,多重場板結構131可包括一導電材料,其可相同或相似於多重閘極結構121。例如,多重場板結構131可包括金屬(諸如,鈦(Ti)、鎳(Ni)、金(Au)或其合金),再者,多重場板結構131可藉由化學氣相沉積(CVD)、物理氣相沉積(PVD)、原子層沉積(ALD)、濺鍍、或其他適合的製程形成。多重閘極結構121可緩和多重閘極結構121下方的峰值電場(peak electric field),以增加電晶體的崩潰電壓及降低漏電流。 In some embodiments, the multiple field plate structure 131 further includes a connecting portion 130d connected to one end of the second conductive finger portions 130a, 130b, and 130c, as shown in FIG. 1. In some embodiments, the multiple field plate structure 131 may include a conductive material, which may be the same as or similar to the multiple gate structure 121. For example, the multiple field plate structure 131 may include a metal such as titanium (Ti), nickel (Ni), gold (Au), or an alloy thereof. Furthermore, the multiple field plate structure 131 may be formed by chemical vapor deposition (CVD). , Physical vapor deposition (PVD), atomic layer deposition (ALD), sputtering, or other suitable processes. The multiple gate structure 121 can alleviate the peak electric field under the multiple gate structure 121 to increase the breakdown voltage of the transistor and reduce the leakage current.

請參照第3圖,其係繪示出根據本揭露一些實施例之高電子遷移率電晶體結構10b的平面示意圖,其中相同於第1圖的部件係使用相同標號並省略其說明。如第3圖所示,高電子遷移率電晶體結構10b相似於第1圖的高電子遷移率電晶體 結構10a。不同於高電子遷移率電晶體結構10a,高電子遷移率電晶體結構10b包括一電性連接結構140b,以電性連接第一導電指部120a、120b及120c。在一些實施例中,電性連接結構140a可包括由導電插塞及導電層所構成的內連線結構及熔絲裝置。在一些實施例中,電性連接結構140a可包括接線及熔絲裝置。如此一來,透過熔絲裝置控制電性連接結構140b的連接方式及/或調整第一導電指部的數量及寬度,可使高電子遷移率電晶體結構10a具有調變臨界電壓的功能而在不同的產品應用中獲得所需的臨界電壓。 Please refer to FIG. 3, which is a schematic plan view illustrating a high electron mobility transistor structure 10 b according to some embodiments of the present disclosure. The same components as those in FIG. 1 are denoted by the same reference numerals and descriptions thereof are omitted. As shown in Fig. 3, the high electron mobility transistor structure 10b is similar to the high electron mobility transistor of Fig. 1 Structure 10a. Different from the high electron mobility transistor structure 10a, the high electron mobility transistor structure 10b includes an electrical connection structure 140b for electrically connecting the first conductive fingers 120a, 120b, and 120c. In some embodiments, the electrical connection structure 140a may include an interconnect structure and a fuse device composed of a conductive plug and a conductive layer. In some embodiments, the electrical connection structure 140a may include a wiring and a fuse device. In this way, by controlling the connection mode of the electrical connection structure 140b and / or adjusting the number and width of the first conductive fingers through the fuse device, the high electron mobility transistor structure 10a can have a function of adjusting the threshold voltage and The required threshold voltage is obtained in different product applications.

請參照第4圖,其係繪示出根據本揭露一些實施例之高電子遷移率電晶體結構10c的平面示意圖,其中相同於第1圖的部件係使用相同標號並省略其說明。如第4圖所示,高電子遷移率電晶體結構10c相似於第1圖的高電子遷移率電晶體結構10a。不同於高電子遷移率電晶體結構10a,高電子遷移率電晶體結構10c包括一電性連接結構140c,以電性連接第二導電指部130a、130b及130c的一端。在一些實施例中,電性連接結構140c可選擇性電性連接第一導電指部120a、120b及120c其中至少一者(例如,第一導電指部120a)。在一些實施例中,電性連接結構140c可包括由導電插塞及導電層所構成的內連線結構。在一些實施例中,電性連接結構140c可包括接線。可理解的是高電子遷移率電晶體結構10c可具有如第3圖所示的電性連接結構140b,以取代電性連接結構140a。 Please refer to FIG. 4, which is a schematic plan view illustrating a high electron mobility transistor structure 10 c according to some embodiments of the present disclosure. The same components as those in FIG. 1 are denoted by the same reference numerals and descriptions thereof are omitted. As shown in FIG. 4, the high electron mobility transistor structure 10 c is similar to the high electron mobility transistor structure 10 a of FIG. 1. Different from the high electron mobility transistor structure 10a, the high electron mobility transistor structure 10c includes an electrical connection structure 140c for electrically connecting one end of the second conductive fingers 130a, 130b, and 130c. In some embodiments, the electrical connection structure 140c can selectively electrically connect at least one of the first conductive finger portions 120a, 120b, and 120c (for example, the first conductive finger portion 120a). In some embodiments, the electrical connection structure 140c may include an interconnect structure composed of a conductive plug and a conductive layer. In some embodiments, the electrical connection structure 140c may include wiring. It can be understood that the high electron mobility transistor structure 10c may have an electrical connection structure 140b as shown in FIG. 3 instead of the electrical connection structure 140a.

根據上述實施例,由於高電子遷移率電晶體結構具有多重閘極,因此可透過調整第一導電指部的數量及寬度以 調變電晶體的臨界電壓。再者,根據上述實施例,由於高電子遷移率電晶體結構具有電性連接結構電性連接第一導電指部,因此可透過控制電性連接結構的連接以進一步調變電晶體的臨界電壓。如此一來。可增加電晶體的應用彈性。 According to the above embodiment, since the high electron mobility transistor structure has multiple gates, the number and width of the first conductive fingers can be adjusted by adjusting the number and width of the first conductive fingers. Modulate the critical voltage of the transistor. Furthermore, according to the above embodiment, since the high electron mobility transistor structure has an electrical connection structure to electrically connect the first conductive finger, the threshold voltage of the transistor can be further adjusted by controlling the connection of the electrical connection structure. That's it. Can increase the application flexibility of the transistor.

再者,相較於具有單一閘極的高電子遷移率電晶體結構,具有多重閘極的高電子遷移率電晶體結構,每一閘極的通道長度較短,因此可降低閘極下方的寄生電阻(即,降低導通電組)而避免引起閘極誤開關、降低導通損失/熱損耗以及提高功率轉換效率(power-conversion efficiency)。 In addition, compared with a high-electron mobility transistor structure with a single gate, a high-electron mobility transistor structure with multiple gates has a shorter channel length per gate, thereby reducing parasitics below the gate. Resistance (ie, reducing the conduction group) to avoid causing gate mis-switching, reducing conduction loss / thermal loss, and improving power-conversion efficiency.

另外,根據上述實施例,由於高電子遷移率電晶體結構具有多重場板與多重閘極交替排列,因此可緩和多重閘極結構下方的峰值電場,以增加電晶體的崩潰電壓及降低漏電流。 In addition, according to the above embodiment, since the high electron mobility transistor structure has multiple field plates and multiple gates arranged alternately, the peak electric field under the multiple gate structure can be relaxed to increase the breakdown voltage of the transistor and reduce the leakage current.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed as above with the preferred embodiments, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make changes and decorations without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be determined by the scope of the attached patent application.

Claims (20)

一種高電子遷移率電晶體結構,包括:一基底;一阻障層,設置於該基底上;一緩衝層,設置於該基底與該阻障層之間,且具有一通道區鄰近於該阻障層與該緩衝層之間的一界面;一源極及一汲極,設置於該阻障層上;一多重閘極結構,設置於該源極與該汲極之間,且包括彼此隔開的複數個第一導電指部;以及一多重場板結構,設置於該多重閘極結構與該汲極之間,且包括彼此隔開的複數個第二導電指部,其中該等第一導電指部與該等第二導電指部交替且平行排列於該阻障層上。A high electron mobility transistor structure includes: a substrate; a barrier layer disposed on the substrate; a buffer layer disposed between the substrate and the barrier layer, and having a channel region adjacent to the barrier An interface between the barrier layer and the buffer layer; a source electrode and a drain electrode disposed on the barrier layer; a multiple gate structure disposed between the source electrode and the drain electrode and including each other A plurality of spaced apart first conductive fingers; and a multiple field plate structure disposed between the multiple gate structure and the drain, and including a plurality of spaced apart second conductive fingers, wherein The first conductive fingers and the second conductive fingers are alternately and parallelly arranged on the barrier layer. 如申請專利範圍第1項所述之高電子遷移率電晶體結構,其中該多重場板結構更包括一連接部連接該等第二導電指部的一端。The high electron mobility transistor structure described in item 1 of the patent application scope, wherein the multiple field plate structure further includes a connecting portion connected to one end of the second conductive fingers. 如申請專利範圍第1項所述之高電子遷移率電晶體結構,更包括一電性連接結構,電性連接該等第二導電指部。The high-electron-mobility transistor structure described in item 1 of the patent application scope further includes an electrical connection structure electrically connected to the second conductive fingers. 如申請專利範圍第3項所述之高電子遷移率電晶體結構,其中該電性連接結構,電性連接該等第一導電指部其中至少一者。The high electron mobility transistor structure according to item 3 of the scope of the patent application, wherein the electrical connection structure is electrically connected to at least one of the first conductive fingers. 如申請專利範圍第1項所述之高電子遷移率電晶體結構,更包括一電性連接結構,電性連接該等第一導電指部其中一者與該等第二導電指部。The high electron mobility transistor structure described in item 1 of the patent application scope further includes an electrical connection structure that electrically connects one of the first conductive fingers and the second conductive finger. 如申請專利範圍第1項所述之高電子遷移率電晶體結構,其中該等第一導電指部各自具有一寬度,以定義對應的通道長度,且其中該等通道長度彼此不同。The high electron mobility transistor structure described in item 1 of the patent application scope, wherein the first conductive fingers each have a width to define a corresponding channel length, and wherein the channel lengths are different from each other. 如申請專利範圍第1項所述之高電子遷移率電晶體結構,其中該等第一導電指部各自具有一寬度,以定義對應的通道長度,且其中該等通道長度彼此相同。The high electron mobility transistor structure described in item 1 of the patent application scope, wherein each of the first conductive fingers has a width to define a corresponding channel length, and wherein the channel lengths are the same as each other. 如申請專利範圍第1項所述之高電子遷移率電晶體結構,其中該等第一導電指部各自具有一寬度,以定義對應的通道長度,且其中該等通道長度其中一些彼此相同。The high electron mobility transistor structure described in item 1 of the patent application range, wherein the first conductive fingers each have a width to define a corresponding channel length, and some of the channel lengths are the same as each other. 如申請專利範圍第1項所述之高電子遷移率電晶體結構,其中一部分的該多重閘極結構延伸進入於該阻障層內。According to the high electron mobility transistor structure described in item 1 of the scope of the patent application, a part of the multiple gate structure extends into the barrier layer. 如申請專利範圍第1項所述之高電子遷移率電晶體結構,其中該多重閘極結構與該阻障層直接接觸。The high electron mobility transistor structure described in item 1 of the patent application scope, wherein the multiple gate structure is in direct contact with the barrier layer. 如申請專利範圍第1項所述之高電子遷移率電晶體結構,其中該基底包括一矽基底、一碳化矽基底或一藍寶石基底。The high electron mobility transistor structure described in item 1 of the patent application scope, wherein the substrate includes a silicon substrate, a silicon carbide substrate, or a sapphire substrate. 如申請專利範圍第1項所述之高電子遷移率電晶體結構,其中該阻障層包括InAlGaN、AlGaN、InGaN、GaN或其組合。The high electron mobility transistor structure described in item 1 of the patent application scope, wherein the barrier layer includes InAlGaN, AlGaN, InGaN, GaN, or a combination thereof. 如申請專利範圍第1項所述之高電子遷移率電晶體結構,其中該緩衝層包括InAlGaN、AlGaN、InGaN、GaN、AlN或其組合。The high electron mobility transistor structure described in item 1 of the patent application scope, wherein the buffer layer includes InAlGaN, AlGaN, InGaN, GaN, AlN, or a combination thereof. 如申請專利範圍第1項所述之高電子遷移率電晶體結構,其中該源極及該汲極包括Ti、Al、Ni、Mo、Au或其合金。The high electron mobility transistor structure described in item 1 of the patent application scope, wherein the source electrode and the drain electrode include Ti, Al, Ni, Mo, Au, or an alloy thereof. 如申請專利範圍第1項所述之高電子遷移率電晶體結構,其中該多重閘極結構或該多重場板結構包括Ti、Ni、Au或其合金。The high electron mobility transistor structure described in item 1 of the scope of the patent application, wherein the multiple gate structure or the multiple field plate structure includes Ti, Ni, Au, or an alloy thereof. 一種高電子遷移率電晶體結構,包括:一基底;一阻障層,設置於該基底上;一緩衝層,設置於該基底與該阻障層之間,且具有一通道區鄰近於該阻障層與該緩衝層之間的一界面;一源極及一汲極,設置於該阻障層上;一多重閘極結構,設置於該源極與該汲極之間,且包括彼此隔開且平行排列於該阻障層上的複數個第一導電指部;以及一電性連接結構,電性連接該等第一導電指部其中至少二者,使該等第一導電指部其中至少一者未與該電性連接結構電性連接。A high electron mobility transistor structure includes: a substrate; a barrier layer disposed on the substrate; a buffer layer disposed between the substrate and the barrier layer, and having a channel region adjacent to the barrier An interface between the barrier layer and the buffer layer; a source electrode and a drain electrode disposed on the barrier layer; a multiple gate structure disposed between the source electrode and the drain electrode and including each other A plurality of first conductive fingers that are spaced apart and arranged in parallel on the barrier layer; and an electrical connection structure that electrically connects at least two of the first conductive fingers so that the first conductive fingers At least one of them is not electrically connected to the electrical connection structure. 如申請專利範圍第16項所述之高電子遷移率電晶體結構,更包括一多重場板結構,設置於該多重閘極結構與該汲極之間的該阻障層上,包括:複數個第二導電指部,其中該等第一導電指部與該等第二導電指部交替排列;以及一連接部連接該等第二導電指部的一端。The high-electron-mobility transistor structure described in item 16 of the patent application scope further includes a multiple field plate structure disposed on the barrier layer between the multiple gate structure and the drain, including: a plurality of A second conductive finger portion, wherein the first conductive finger portions and the second conductive finger portions are alternately arranged; and a connecting portion is connected to one end of the second conductive finger portions. 如申請專利範圍第16項所述之高電子遷移率電晶體結構,其中該等第一導電指部各自具有一寬度,以定義對應的通道長度,且其中該等通道長度彼此不同。The high electron mobility transistor structure described in item 16 of the scope of patent application, wherein the first conductive fingers each have a width to define a corresponding channel length, and wherein the channel lengths are different from each other. 如申請專利範圍第16項所述之高電子遷移率電晶體結構,其中該等第一導電指部各自具有一寬度,以定義對應的通道長度,且其中該等通道長度彼此相同。The high electron mobility transistor structure described in item 16 of the scope of the patent application, wherein the first conductive fingers each have a width to define a corresponding channel length, and wherein the channel lengths are the same as each other. 如申請專利範圍第16項所述之高電子遷移率電晶體結構,其中一部分的該多重閘極結構延伸進入於該阻障層內。According to the high electron mobility transistor structure described in item 16 of the scope of the patent application, a part of the multiple gate structure extends into the barrier layer.
TW106130276A 2017-09-05 2017-09-05 High electron mobility transistor structure TWI662701B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106130276A TWI662701B (en) 2017-09-05 2017-09-05 High electron mobility transistor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106130276A TWI662701B (en) 2017-09-05 2017-09-05 High electron mobility transistor structure

Publications (2)

Publication Number Publication Date
TW201914016A TW201914016A (en) 2019-04-01
TWI662701B true TWI662701B (en) 2019-06-11

Family

ID=66991545

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106130276A TWI662701B (en) 2017-09-05 2017-09-05 High electron mobility transistor structure

Country Status (1)

Country Link
TW (1) TWI662701B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI822586B (en) * 2023-02-10 2023-11-11 力晶積成電子製造股份有限公司 High electron mobility transistor device and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120074577A1 (en) * 2008-12-19 2012-03-29 Advantest Corporation Semiconductor device, method for manufacturing of semiconductor device, and switching circuit
TW201320333A (en) * 2005-03-11 2013-05-16 Cree Inc Wide bandgap transistors with gate-source field plates
US20160218189A1 (en) * 2015-01-28 2016-07-28 Kabushiki Kaisha Toshiba Semiconductor device
TW201709512A (en) * 2015-03-31 2017-03-01 晶元光電股份有限公司 Semiconductor cell
TW201709419A (en) * 2015-08-29 2017-03-01 台灣積體電路製造股份有限公司 Semiconductor device and method for fabricating the same
TW201714307A (en) * 2015-10-09 2017-04-16 台灣積體電路製造股份有限公司 High electron mobility transistors and method for forming the same
TW201724269A (en) * 2011-12-23 2017-07-01 英特爾公司 III-N material structure for gate-recessed transistors

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201320333A (en) * 2005-03-11 2013-05-16 Cree Inc Wide bandgap transistors with gate-source field plates
US20120074577A1 (en) * 2008-12-19 2012-03-29 Advantest Corporation Semiconductor device, method for manufacturing of semiconductor device, and switching circuit
TW201724269A (en) * 2011-12-23 2017-07-01 英特爾公司 III-N material structure for gate-recessed transistors
US20160218189A1 (en) * 2015-01-28 2016-07-28 Kabushiki Kaisha Toshiba Semiconductor device
TW201709512A (en) * 2015-03-31 2017-03-01 晶元光電股份有限公司 Semiconductor cell
TW201709419A (en) * 2015-08-29 2017-03-01 台灣積體電路製造股份有限公司 Semiconductor device and method for fabricating the same
TW201714307A (en) * 2015-10-09 2017-04-16 台灣積體電路製造股份有限公司 High electron mobility transistors and method for forming the same

Also Published As

Publication number Publication date
TW201914016A (en) 2019-04-01

Similar Documents

Publication Publication Date Title
US11699751B2 (en) Semiconductor device
US9818840B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP6228167B2 (en) Wide band gap HEMT with source connection field plate
US10103239B1 (en) High electron mobility transistor structure
US10242936B2 (en) Semiconductor device and method of fabricating the semiconductor device
WO2012017588A1 (en) Semiconductor device and method for manufacturing same
JP5503487B2 (en) III-V semiconductor device having strain buffering interlayer
US9590071B2 (en) Manufacturing method of semiconductor device and semiconductor device
JP5712516B2 (en) Semiconductor device
KR20080108486A (en) High efficiency and/or high power density wide bandgap transistors
JP2014078710A (en) High electron mobility transistor and method for driving the same
US11114539B2 (en) Gate stack for heterostructure device
KR20150065005A (en) Normally off high electron mobility transistor
JP5553997B2 (en) Transistor and manufacturing method thereof
US20230369479A1 (en) Nitride-based semiconductor bidirectional switching device and method for manufacturing the same
TWI662701B (en) High electron mobility transistor structure
TWM508782U (en) Semiconductor device
JP5514231B2 (en) Heterojunction field effect transistor
US20240120385A1 (en) Semiconductor device and manufacturing method thereof
WO2023176373A1 (en) Semiconductor device
TWI701840B (en) Enhancement mode hemt device
JP7417070B2 (en) Semiconductor device, semiconductor device manufacturing method, and electronic device
JP2012049169A (en) Nitride semiconductor device and method of manufacturing the same