TW201914016A - High electron mobility transistor structure - Google Patents

High electron mobility transistor structure Download PDF

Info

Publication number
TW201914016A
TW201914016A TW106130276A TW106130276A TW201914016A TW 201914016 A TW201914016 A TW 201914016A TW 106130276 A TW106130276 A TW 106130276A TW 106130276 A TW106130276 A TW 106130276A TW 201914016 A TW201914016 A TW 201914016A
Authority
TW
Taiwan
Prior art keywords
electron mobility
high electron
mobility transistor
barrier layer
conductive fingers
Prior art date
Application number
TW106130276A
Other languages
Chinese (zh)
Other versions
TWI662701B (en
Inventor
周鈺傑
林信志
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW106130276A priority Critical patent/TWI662701B/en
Publication of TW201914016A publication Critical patent/TW201914016A/en
Application granted granted Critical
Publication of TWI662701B publication Critical patent/TWI662701B/en

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

A high electron mobility transistor (HEMT) structure including a substrate, a barrier layer, a buffer layer, a source and a drain, a multi-gate structure, and a multi-field plate structure is provided. The barrier layer is disposed over the substrate. The buffer layer is disposed between the substrate and the barrier layer and includes a channel region adjacent to an interface between the barrier layer and the buffer layer. The source and the drain are disposed on the barrier layer. The multi-gate structure is disposed between the source and the drain and includes first conductive finger portions spaced apart from each other. The multi-field plate structure is disposed between the multi-gate structure and the drain and includes second conductive finger portions spaced apart from each other. The first conductive finger portions and the second conductive finger portions are in an alternate and parallel arrangement.

Description

高電子遷移率電晶體結構  High electron mobility transistor structure  

本揭露係關於一種半導體裝置結構,且特別是關於一種可調變臨界電壓(threshold voltage)的高電子遷移率電晶體(high electron mobility transistor,HEMT)結構。 The present disclosure relates to a semiconductor device structure, and more particularly to a high electron mobility transistor (HEMT) structure with a variable threshold voltage.

在半導體工業中,高壓開關電晶體(諸如,高電子遷移率電晶體(HEMT)、接面場效電晶體(junction filed effect transistor,JFET)或是功率金氧半場效電晶體(power MOSFET))常用作高壓高功率裝置(例如,交換式電源供應器(switched mode power supply,SMPS))的半導體開關元件。在上述高壓開關電晶體中,高電子遷移率電晶體因具有高功率密度、高崩潰電壓、高輸出電壓及等優點,能夠於高壓下操作而不損害裝置。 In the semiconductor industry, high voltage switching transistors (such as high electron mobility transistor (HEMT), junction filed effect transistor (JFET) or power MOS field power MOSFET) A semiconductor switching element commonly used as a high voltage, high power device (eg, a switched mode power supply (SMPS)). Among the above high-voltage switch transistors, the high electron mobility transistor can operate under high pressure without damaging the device due to its high power density, high breakdown voltage, high output voltage, and the like.

高電子遷移率電晶體(HEMT)包括空乏型高電子遷移率電晶體(depletion mode HEMT,D-mode HEMT)與增強型高電子遷移率電晶體(enhancement mode HEMT,E-mode HEMT)。在D-mode HEMT中,閘極所產生的電場用於排空具有寬窄能隙(energy bandgap)半導體層之間的異結構界面附近的二維電子氣(two-dimensional electron gas,2DEG)通道。而對於E-mode HEMT,其並無通道及電流產生直至進行電晶體操作而施加偏壓。 High Electron Mobility Transistors (HEMTs) include depletion mode HEMTs (D-mode HEMTs) and enhanced high emissivity mode HEMTs (E-mode HEMTs). In the D-mode HEMT, the electric field generated by the gate is used to evacuate a two-dimensional electron gas (2DEG) channel near the heterostructure interface between the energy bandgap semiconductor layers. For the E-mode HEMT, there is no channel and current generation until the transistor is operated to apply a bias voltage.

D-mode HEMT在未施加閘極-源極電壓時,容許電流通過(也稱作常導通狀態(normally-on)電晶體)。而E-mode HEMT在未施加閘極-源極電壓時,阻止電流通過(也稱作常關閉狀態(normally-off)電晶體)。 The D-mode HEMT allows current to pass when no gate-source voltage is applied (also known as a normally-on transistor). The E-mode HEMT blocks current flow when it is not applied with a gate-source voltage (also known as a normally-off transistor).

雖然現有的D-mode HEMT及E-mode HEMT大致符合需求,但並非各方面皆令人滿意。例如,高電子移動率電晶體結構局限於單一臨界電壓而降低其應用彈性。再者,閘極下方常常包括高阻抗半導體材料而易引起閘極誤開關(switching error)及導通損失/熱損耗(condition loss)。 Although the existing D-mode HEMT and E-mode HEMT generally meet the requirements, they are not satisfactory in all aspects. For example, high electron mobility transistor structures are limited to a single threshold voltage and reduce their application flexibility. Moreover, the high-impedance semiconductor material is often included under the gate, which is liable to cause gate switching error and conduction loss/condition loss.

因此,有必要尋求一種高電子遷移率電晶體結構,其能夠解決或改善上述的問題。 Therefore, it is necessary to find a high electron mobility transistor structure that can solve or improve the above problems.

本揭露一實施例提供一種高電子遷移率電晶體結構,包括:一基底、一阻障層、一緩衝層、一源極及一汲極、一多重閘極結構以及一多重場板結構。阻障層設置於基底上,緩衝層設置於基底與阻障層之間,且具有一通道區鄰近於阻障層與緩衝層之間的一界面。源極及汲極設置於阻障層上,而多重閘極結構設置於源極與汲極之間,且包括彼此隔開的複數個第一導電指部。多重場板結構設置於多重閘極結構與汲極之間,且包括彼此隔開的複數個第二導電指部。第一導電指部與第二導電指部交替且平行排列於阻障層上。 An embodiment of the present disclosure provides a high electron mobility transistor structure, including: a substrate, a barrier layer, a buffer layer, a source and a drain, a multiple gate structure, and a multiple field plate structure. . The barrier layer is disposed on the substrate, and the buffer layer is disposed between the substrate and the barrier layer, and has a channel region adjacent to an interface between the barrier layer and the buffer layer. The source and the drain are disposed on the barrier layer, and the plurality of gate structures are disposed between the source and the drain, and include a plurality of first conductive fingers spaced apart from each other. The multiple field plate structure is disposed between the plurality of gate structures and the drain and includes a plurality of second conductive fingers spaced apart from each other. The first conductive fingers and the second conductive fingers are alternately and parallelly arranged on the barrier layer.

本揭露另一實施例提供一種高電子遷移率電晶體結構,包括:一基底、一阻障層、一緩衝層、一源極及一汲極、一多重閘極結構以及一電性連接結構。阻障層設置於基底上, 而緩衝層設置於基底與阻障層之間,且具有一通道區鄰近於阻障層與緩衝層之間的一界面。源極及汲極設置於阻障層上,而多重閘極結構設置於源極與汲極之間,且包括彼此隔開且平行排列於阻障層上的複數個第一導電指部。電性連接結構電性連接第一導電指部其中至少二者,使第一導電指部其中至少一者未與電性連接結構電性連接。 Another embodiment of the present disclosure provides a high electron mobility transistor structure, including: a substrate, a barrier layer, a buffer layer, a source and a drain, a multiple gate structure, and an electrical connection structure. . The barrier layer is disposed on the substrate, and the buffer layer is disposed between the substrate and the barrier layer, and has a channel region adjacent to an interface between the barrier layer and the buffer layer. The source and the drain are disposed on the barrier layer, and the plurality of gate structures are disposed between the source and the drain, and include a plurality of first conductive fingers spaced apart from each other and arranged in parallel on the barrier layer. The electrical connection structure electrically connects at least two of the first conductive fingers such that at least one of the first conductive fingers is not electrically connected to the electrical connection structure.

10a、10b、10c‧‧‧高電子遷移率電晶體結構 10a, 10b, 10c‧‧‧High electron mobility transistor structure

100‧‧‧基底 100‧‧‧Base

102‧‧‧緩衝層 102‧‧‧buffer layer

103‧‧‧通道區 103‧‧‧Channel area

110‧‧‧阻障層 110‧‧‧Barrier layer

112‧‧‧源極 112‧‧‧ source

114‧‧‧汲極 114‧‧‧汲polar

120a、120b、120c‧‧‧第一導電指部 120a, 120b, 120c‧‧‧ first conductive fingers

121‧‧‧多重閘極結構 121‧‧‧Multiple gate structure

130a、130b、130c‧‧‧第二導電指部 130a, 130b, 130c‧‧‧ second conductive fingers

130d‧‧‧連接部 130d‧‧‧Connecting Department

131‧‧‧多重場板結構 131‧‧‧Multiple plate structure

140a、140b、140c‧‧‧電線連接結構 140a, 140b, 140c‧‧‧ wire connection structure

第1圖係繪示出根據本揭露一些實施例之高電子遷移率電晶體結構的平面示意圖。 1 is a schematic plan view showing a high electron mobility transistor structure in accordance with some embodiments of the present disclosure.

第2圖係繪示出第1圖中沿2-2’線的剖面示意圖。 Fig. 2 is a schematic cross-sectional view taken along line 2-2' in Fig. 1.

第3圖係繪示出根據本揭露一些實施例之高電子遷移率電晶體結構的平面示意圖。 3 is a schematic plan view showing a high electron mobility transistor structure in accordance with some embodiments of the present disclosure.

第4圖係繪示出根據本揭露一些實施例之高電子遷移率電晶體結構的平面示意圖。 4 is a plan view showing a high electron mobility transistor structure in accordance with some embodiments of the present disclosure.

以下說明本揭露實施例之高電子遷移率電晶體結構。然而,可輕易了解本揭露所提供的實施例僅用於說明以特定方法製作及使用本發明,並非用以侷限本發明的範圍。 The high electron mobility transistor structure of the disclosed embodiment will be described below. However, the present invention is to be understood as being limited to the details of the invention and is not intended to limit the scope of the invention.

本揭露之實施例提供一種金氧半場效電晶體結構,例如高電子遷移率電晶體(HEMT)結構,其利用多重閘極以調變電晶體的臨界電壓,進而增加電晶體的應用彈性。再者,具有多重閘極的設計的高電子遷移率電晶體結構,相較於具有單一閘極的高電子遷移率電晶體結構,可縮短通道長度,進而降 低閘極下方的寄生電阻而避免引起閘極誤開關及降低導通損失/熱損耗。 Embodiments of the present disclosure provide a gold oxide half field effect transistor structure, such as a high electron mobility transistor (HEMT) structure, which utilizes multiple gates to modulate the threshold voltage of the transistor, thereby increasing the application flexibility of the transistor. Furthermore, a high electron mobility transistor structure with multiple gate designs can shorten the channel length and reduce the parasitic resistance under the gate to avoid causing the high electron mobility transistor structure with a single gate. The gate is incorrectly switched and reduces conduction loss/heat loss.

請參照第1及2圖,其中第1圖係繪示出根據本揭露一些實施例之高電子遷移率電晶體結構10a的平面示意圖,而第2圖係繪示出第1圖中沿2-2’線的剖面示意圖。如第2圖所示,本揭露實施例之高電子遷移率電晶體結構10a包括:一基底100、一緩衝層102、一阻障層110、一源極112及一汲極114、一多重閘極結構121以及一選擇性的多重場板結構131。 Please refer to FIGS. 1 and 2 , wherein FIG. 1 is a plan view showing a high electron mobility transistor structure 10 a according to some embodiments of the present disclosure, and FIG. 2 is a cross-sectional view of FIG. Schematic diagram of the 2' line. As shown in FIG. 2, the high electron mobility transistor structure 10a of the embodiment includes a substrate 100, a buffer layer 102, a barrier layer 110, a source 112, and a drain 114. The gate structure 121 and a selective multiple field plate structure 131.

在一些實施例中,阻障層110設置於基底100上,而緩衝層102設置於基底100與阻障層110之間。再者,源極112及汲極114設置於阻障層110上,而多重閘極結構121設置於源極112與汲極114之間的阻障層110上。再者,多重場板結構131設置於多重閘極結構121與汲極114之間的阻障層110上。上述高電子遷移率電晶體結構10a中的每一個特徵部件將在以下段落中作更詳細的討論。 In some embodiments, the barrier layer 110 is disposed on the substrate 100 and the buffer layer 102 is disposed between the substrate 100 and the barrier layer 110. Furthermore, the source 112 and the drain 114 are disposed on the barrier layer 110, and the multiple gate structure 121 is disposed on the barrier layer 110 between the source 112 and the drain 114. Furthermore, the multiple field plate structure 131 is disposed on the barrier layer 110 between the multiple gate structure 121 and the drain 114. Each of the above described high electron mobility transistor structures 10a will be discussed in greater detail in the following paragraphs.

如第1或2圖所示,本揭露實施例之高電子遷移率電晶體結構10a包括一基底100。在一些實施例中,基底100可包括:一矽基底、一碳化矽基底或一藍寶石基底。在其他實施例中,基底100也可包括一絕緣層上矽(silicon on insulator,SOI)基底。 As shown in FIG. 1 or 2, the high electron mobility transistor structure 10a of the disclosed embodiment includes a substrate 100. In some embodiments, the substrate 100 can include a germanium substrate, a tantalum carbide substrate, or a sapphire substrate. In other embodiments, the substrate 100 can also include a silicon on insulator (SOI) substrate.

在一些實施例中,本揭露實施例之高電子遷移率電晶體結構10a更包括一緩衝層102設置在基底100上方。緩衝層102可為一多層結構。舉例來說,緩衝層102包括一晶核層(nucleation layer)(未繪示)及位於其上的一III-V族半導體化合 物層(未繪示)。在一些實施例中,晶核層包括AlN、GaN或AlGaN,係用於降低基底100與晶核層上方的III-V族半導體化合物層之間因晶格不匹配所產生的應力。舉例來說,AlN晶核層與基底100之間的晶格差異與熱膨脹係數差異小,而使基底100與之後形成的III-V族半導體化合物層之間的應力得以緩和。 In some embodiments, the high electron mobility transistor structure 10a of the disclosed embodiment further includes a buffer layer 102 disposed over the substrate 100. The buffer layer 102 can be a multi-layered structure. For example, the buffer layer 102 includes a nucleation layer (not shown) and a III-V semiconductor compound layer (not shown) thereon. In some embodiments, the nucleation layer includes AlN, GaN, or AlGaN for reducing stress caused by lattice mismatch between the substrate 100 and the III-V semiconductor compound layer above the nucleation layer. For example, the difference in lattice lattice and the coefficient of thermal expansion between the AlN nucleation layer and the substrate 100 is small, and the stress between the substrate 100 and the III-V semiconductor compound layer formed later is alleviated.

在一些實施例中,位於晶核層上的III-V族半導體化合物層可作為高電子遷移率電晶體結構10a的一通道層。舉例來說,緩衝層102內包括一通道區103(如第2圖的虛線所示),例如二維電子氣(two-dimensional electron gas,2DEG)通道,其鄰近於緩衝層102的上表面(即,鄰近於緩衝層102與後續形成的阻障層之間的界面)。在一些實施例中,晶核層上的III-V族半導體化合物層可包括氮化銦鋁鎵(InAlGaN)、氮化鋁鎵(AlGaN)、氮化銦鎵(InGaN)、氮化鎵(GaN)、氮化鋁(AlN)或其組合。 In some embodiments, the III-V semiconductor compound layer on the nucleation layer can serve as a channel layer for the high electron mobility transistor structure 10a. For example, the buffer layer 102 includes a channel region 103 (shown by the dashed line in FIG. 2), such as a two-dimensional electron gas (2DEG) channel adjacent to the upper surface of the buffer layer 102 ( That is, adjacent to the interface between the buffer layer 102 and the subsequently formed barrier layer). In some embodiments, the III-V semiconductor compound layer on the nucleation layer may include InAlGaN, AlGaN, InGaN, and GaN. ), aluminum nitride (AlN) or a combination thereof.

在一些實施例中,可使用分子束磊晶法(molecular beam epitaxy,MBE)、有機金屬氣相沉積法(metal organic chemical vapor deposition,MOCVD)、氫化物氣相磊晶法(hydride vapor phase epitaxy,HVPE)或其他適當之沉積方法在基底100上形成緩衝層102。在一些實施例中,緩衝層102的厚度可約在0.2μm至10μm的範圍。 In some embodiments, molecular beam epitaxy (MBE), metal organic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (hydride vapor phase epitaxy) may be used. The buffer layer 102 is formed on the substrate 100 by HVPE) or other suitable deposition method. In some embodiments, the thickness of the buffer layer 102 can range from about 0.2 [mu]m to 10 [mu]m.

在一些實施例中,本揭露實施例之高電子遷移率電晶體結構10a更包括一阻障層110設置於緩衝層102上並與其直接接觸。在一些實施例中,阻障層110包括一III-V族半導體化合物層,例如氮化銦鋁鎵(InAlGaN)、氮化鋁鎵(AlGaN)、氮 化銦鎵(InGaN)、氮化鎵(GaN)或其組合。需注意的是阻障層110與緩衝層102中III-V族半導體化合物層的組成是不同的。舉例來說,阻障層110由氮化鋁鎵(AlGaN)所組成,而緩衝層102中III-V族半導體化合物層由氮化鎵(GaN)所組成,而使阻障層110與緩衝層102構成異結構。 In some embodiments, the high electron mobility transistor structure 10a of the disclosed embodiment further includes a barrier layer 110 disposed on the buffer layer 102 and in direct contact therewith. In some embodiments, the barrier layer 110 includes a III-V semiconductor compound layer, such as indium aluminum gallium nitride (InAlGaN), aluminum gallium nitride (AlGaN), indium gallium nitride (InGaN), gallium nitride ( GaN) or a combination thereof. It should be noted that the composition of the barrier layer 110 and the III-V semiconductor compound layer in the buffer layer 102 are different. For example, the barrier layer 110 is composed of aluminum gallium nitride (AlGaN), and the III-V semiconductor compound layer in the buffer layer 102 is composed of gallium nitride (GaN), and the barrier layer 110 and the buffer layer are formed. 102 constitutes a different structure.

在一些實施例中,可使用分子束磊晶法(MBE)、有機金屬氣相沉積法(MOCVD)、氫化物氣相磊晶法(HVPE)或其他適當之沉積方法在緩衝層102上形成緩衝層102。在一些實施例中,阻障層110的厚度可約在1nm至100nm的範圍。 In some embodiments, buffering can be formed on the buffer layer 102 using molecular beam epitaxy (MBE), organometallic vapor deposition (MOCVD), hydride vapor epitaxy (HVPE), or other suitable deposition methods. Layer 102. In some embodiments, the thickness of the barrier layer 110 can range from about 1 nm to 100 nm.

緩衝層102與阻障層110之間的能帶差異(band gap discontinuity)在緩衝層102內鄰近緩衝層102與阻障層110之間的界面產生具有高移動傳導電子的載子通道(標示為通道區103),其稱為二維電子氣(2DEG)通道。當施加閘極-源極電壓時,可開啟或關閉電晶體。 A band gap discontinuity between the buffer layer 102 and the barrier layer 110 creates a carrier channel with high mobile conduction electrons in the buffer layer 102 adjacent to the interface between the buffer layer 102 and the barrier layer 110 (labeled as Channel zone 103), which is referred to as a two-dimensional electron gas (2DEG) channel. The transistor can be turned on or off when a gate-source voltage is applied.

在一些實施例中,本揭露實施例之高電子遷移率電晶體結構10a更包括設置於阻障層110上並與其接觸的一源極112、一汲極114及一多重閘極結構121,其中多重閘極結構121設置於源極112與汲極114之間。在一些實施例中,源極112、汲極114及多重閘極結構121分別具有一部分延伸進入阻障層110內,如第2圖所示。如此一來,掘入(recessed)的多重閘極結構121可改變阻障層110的厚度,進而降低二維電子氣(2DEG)的密度。在一些實施例中,多重閘極結構121、源極112及汲極114設置於具有平坦表面的阻障層110上而未掘入於阻障層110內。 In some embodiments, the high electron mobility transistor structure 10a of the disclosed embodiment further includes a source 112, a drain 114, and a multiple gate structure 121 disposed on and in contact with the barrier layer 110. The multiple gate structure 121 is disposed between the source 112 and the drain 114. In some embodiments, source 112, drain 114, and multiple gate structures 121 each have a portion that extends into barrier layer 110, as shown in FIG. As a result, the multiple gate structure 121 that is recessed can change the thickness of the barrier layer 110, thereby reducing the density of the two-dimensional electron gas (2DEG). In some embodiments, the multiple gate structure 121, the source 112, and the drain 114 are disposed on the barrier layer 110 having a flat surface without being immersed in the barrier layer 110.

在一些實施例中,如第1及2圖所示,多重閘極結構121包括依一距離彼此隔開且平行排列的二個或二個以上的第一導電指部。此處為了簡化圖式及說明,僅繪示出三個第一導電指部120a、120b及120c。可理解的是多重閘極結構121中第一導電指部的數量取決於設計需求,而未局限於第1及2圖所示的實施例。 In some embodiments, as shown in Figures 1 and 2, the multiple gate structure 121 includes two or more first conductive fingers spaced apart from each other by a distance and arranged in parallel. Here, for simplicity of illustration and description, only three first conductive fingers 120a, 120b, and 120c are shown. It will be appreciated that the number of first conductive fingers in the multiple gate structure 121 depends on the design requirements and is not limited to the embodiments shown in Figures 1 and 2.

在一些實施例中,第一導電指部120a具有一寬度L1;第一導電指部120b具有一寬度L2;及第一導電指部120c具有一寬度L3。這些寬度L1、L2及L3定義出對應的通道長度。在一些實施例中,寬度L1、L2及L3彼此不同,使對應的通道長度彼此不同。如此一來,當分別施加電壓於第一導電指部120a、120b及120c時,可得到不同的臨界電壓。 In some embodiments, the first conductive finger 120a has a width L1; the first conductive finger 120b has a width L2; and the first conductive finger 120c has a width L3. These widths L1, L2 and L3 define the corresponding channel length. In some embodiments, the widths L1, L2, and L3 are different from each other such that the corresponding channel lengths are different from each other. As a result, different threshold voltages can be obtained when voltages are applied to the first conductive fingers 120a, 120b, and 120c, respectively.

再者,相較於具有單一閘極的傳統的高電子遷移率電晶體,寬度L1、L2及L3的總和可小於或等於上述單一閘極的寬度。由於第一導電指部120a、120b及120c的寬度L1、L2及L3分別小於上述單一閘極的寬度,因此高電子遷移率電晶體10a中閘極下方的寄生電阻小於傳統的高電子遷移率電晶體中閘極下方的寄生電阻。如此一來,可避免引起閘極誤開關及降低導通損失/熱損耗。 Furthermore, the sum of the widths L1, L2, and L3 can be less than or equal to the width of the single gate described above compared to a conventional high electron mobility transistor having a single gate. Since the widths L1, L2, and L3 of the first conductive fingers 120a, 120b, and 120c are respectively smaller than the width of the single gate, the parasitic resistance under the gate in the high electron mobility transistor 10a is smaller than that of the conventional high electron mobility. Parasitic resistance under the gate in the crystal. In this way, it is possible to avoid causing the gate to be erroneously switched and to reduce the conduction loss/heat loss.

在一些實施例中,寬度L1、L2及L3彼此相同,使對應的通道長度彼此相同。如此一來,當分別施加電壓於第一導電指部120a、120b及120c時,可得到相同的臨界電壓。在其他實施例中,寬度L1、L2及L3,且其中該等通道長度其中二者彼此相同。如此一來,當分別施加電壓於第一導電指部120a、 120b及120c時,可得到二個不同的臨界電壓。 In some embodiments, the widths L1, L2, and L3 are identical to each other such that the corresponding channel lengths are identical to each other. In this way, when voltages are applied to the first conductive fingers 120a, 120b, and 120c, respectively, the same threshold voltage can be obtained. In other embodiments, the widths L1, L2, and L3, and wherein the lengths of the channels are the same as each other. In this way, when voltages are applied to the first conductive fingers 120a, 120b, and 120c, respectively, two different threshold voltages can be obtained.

在一些實施例中,多重閘極結構121可包括導電材料,例如金屬(諸如,鈦(Ti)、鎳(Ni)、金(Au)或其合金),再者,源極112與汲極114可包括導電材料,例如金屬(諸如,鈦(Ti)、鋁(Al)、鎳(Ni)、鉬(Mo)、金(Au)或其合金)。多重閘極結構121、源極112與汲極114可藉由化學氣相沉積(CVD)、物理氣相沉積(physical vapor,PVD)、原子層沉積(atomic layer deposition,ALD)、濺鍍(sputtering)、或其他適合的製程形成。 In some embodiments, the multiple gate structure 121 can include a conductive material, such as a metal (such as titanium (Ti), nickel (Ni), gold (Au) or alloys thereof), and further, the source 112 and the drain 114 A conductive material such as a metal such as titanium (Ti), aluminum (Al), nickel (Ni), molybdenum (Mo), gold (Au), or an alloy thereof may be included. The multiple gate structure 121, the source 112 and the drain 114 may be subjected to chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), sputtering (sputtering). ), or other suitable process is formed.

在一些實施例中,本揭露實施例之高電子遷移率電晶體結構10a更包括一電性連接結構140a,其電性連接第一導電指部120a、120b及120c其中至少二者,使第一導電指部120a、120b及120c其中至少一者未與電性連接結構140a電性連接。舉例來說,電性連接結構140a電性連接第一導電指部120a與120b,如第1圖所示。在一些實施例中,電性連接結構140a可電性連接第一導電指部120a與120c。在其他一些實施例中,電性連接結構140a可電性連接第一導電指部120b與120c。 In some embodiments, the high electron mobility transistor structure 10a of the disclosed embodiment further includes an electrical connection structure 140a electrically connecting at least two of the first conductive fingers 120a, 120b, and 120c to make the first At least one of the conductive fingers 120a, 120b, and 120c is not electrically connected to the electrical connection structure 140a. For example, the electrical connection structure 140a is electrically connected to the first conductive fingers 120a and 120b, as shown in FIG. In some embodiments, the electrical connection structure 140a can electrically connect the first conductive fingers 120a and 120c. In some other embodiments, the electrical connection structure 140a can electrically connect the first conductive fingers 120b and 120c.

在一些實施例中,電性連接結構140a可包括由導電插塞及導電層所構成的內連線結構。在一些實施例中,電性連接結構140a可包括接線。如此一來,透過調整第一導電指部的數量及寬度及/或控制電性連接結構140a的連接方式,可使高電子遷移率電晶體結構10a具有調變臨界電壓的功能而在不同的產品應用中獲得所需的臨界電壓。 In some embodiments, the electrical connection structure 140a can include an interconnect structure composed of a conductive plug and a conductive layer. In some embodiments, the electrical connection structure 140a can include wiring. In this way, by adjusting the number and width of the first conductive fingers and/or controlling the connection manner of the electrical connection structure 140a, the high electron mobility transistor structure 10a can have the function of modulating the threshold voltage in different products. The desired threshold voltage is obtained in the application.

在一些實施例中,本揭露實施例之高電子遷移率電晶體結構10a更包括一多重場板結構131,其中多重場板結構 131設置於多重閘極結構121與汲極114之間。在一些實施例中,多重場板結構131設置於阻障層110上而未掘入於阻障層110內。 In some embodiments, the high electron mobility transistor structure 10a of the disclosed embodiment further includes a multiple field plate structure 131, wherein the multiple field plate structure 131 is disposed between the multiple gate structure 121 and the drain 114. In some embodiments, the multiple field plate structure 131 is disposed on the barrier layer 110 without being immersed in the barrier layer 110.

在一些實施例中,如第1及2圖所示,多重場板結構131包括依一距離彼此隔開且平行排列的二個或二個以上的第二導電指部。此處為了簡化圖式及說明,僅繪示出三個第一導電指部130a、130b及130c。在一些實施例中,第一導電指部120a、120b及120c與第二導電指部130a、130b及130c交替排列。可理解的是多重場板結構131中第二導電指部的數量取決於第一導電指部的數量,而未局限於第1及2圖所示的實施例。 In some embodiments, as shown in Figures 1 and 2, the multiple field plate structure 131 includes two or more second conductive fingers spaced apart from each other and arranged in parallel at a distance. Here, for simplicity of illustration and description, only three first conductive fingers 130a, 130b, and 130c are shown. In some embodiments, the first conductive fingers 120a, 120b, and 120c are alternately arranged with the second conductive fingers 130a, 130b, and 130c. It will be appreciated that the number of second conductive fingers in the multiple field plate structure 131 depends on the number of first conductive fingers and is not limited to the embodiments shown in Figures 1 and 2.

在一些實施例中,多重場板結構131更包括一連接部130d連接第二導電指部130a、130b及130c的一端,如第1圖所示。在一些實施例中,多重場板結構131可包括一導電材料,其可相同或相似於多重閘極結構121。例如,多重場板結構131可包括金屬(諸如,鈦(Ti)、鎳(Ni)、金(Au)或其合金),再者,多重場板結構131可藉由化學氣相沉積(CVD)、物理氣相沉積(PVD)、原子層沉積(ALD)、濺鍍、或其他適合的製程形成。多重閘極結構121可緩和多重閘極結構121下方的峰值電場(peak electric field),以增加電晶體的崩潰電壓及降低漏電流。 In some embodiments, the multiple field plate structure 131 further includes a connecting portion 130d connecting one ends of the second conductive fingers 130a, 130b, and 130c, as shown in FIG. In some embodiments, the multiple field plate structure 131 can include a conductive material that can be the same or similar to the multiple gate structure 121. For example, the multiple field plate structure 131 may include a metal such as titanium (Ti), nickel (Ni), gold (Au), or an alloy thereof, and further, the multiple field plate structure 131 may be formed by chemical vapor deposition (CVD). , physical vapor deposition (PVD), atomic layer deposition (ALD), sputtering, or other suitable process formation. The multiple gate structure 121 can alleviate the peak electric field under the multiple gate structure 121 to increase the breakdown voltage of the transistor and reduce the leakage current.

請參照第3圖,其係繪示出根據本揭露一些實施例之高電子遷移率電晶體結構10b的平面示意圖,其中相同於第1圖的部件係使用相同標號並省略其說明。如第3圖所示,高電子遷移率電晶體結構10b相似於第1圖的高電子遷移率電晶體 結構10a。不同於高電子遷移率電晶體結構10a,高電子遷移率電晶體結構10b包括一電性連接結構140b,以電性連接第一導電指部120a、120b及120c。在一些實施例中,電性連接結構140a可包括由導電插塞及導電層所構成的內連線結構及熔絲裝置。在一些實施例中,電性連接結構140a可包括接線及熔絲裝置。如此一來,透過熔絲裝置控制電性連接結構140b的連接方式及/或調整第一導電指部的數量及寬度,可使高電子遷移率電晶體結構10a具有調變臨界電壓的功能而在不同的產品應用中獲得所需的臨界電壓。 Referring to FIG. 3, there is shown a plan view of a high electron mobility transistor structure 10b according to some embodiments of the present disclosure, wherein components identical to those of FIG. 1 are given the same reference numerals and their description is omitted. As shown in Fig. 3, the high electron mobility transistor structure 10b is similar to the high electron mobility transistor structure 10a of Fig. 1. Unlike the high electron mobility transistor structure 10a, the high electron mobility transistor structure 10b includes an electrical connection structure 140b to electrically connect the first conductive fingers 120a, 120b, and 120c. In some embodiments, the electrical connection structure 140a can include an interconnect structure and a fuse device composed of a conductive plug and a conductive layer. In some embodiments, the electrical connection structure 140a can include wiring and fuse devices. In this way, by controlling the connection manner of the electrical connection structure 140b and/or adjusting the number and width of the first conductive fingers through the fuse device, the high electron mobility transistor structure 10a can have the function of modulating the threshold voltage. The required threshold voltage is obtained in different product applications.

請參照第4圖,其係繪示出根據本揭露一些實施例之高電子遷移率電晶體結構10c的平面示意圖,其中相同於第1圖的部件係使用相同標號並省略其說明。如第4圖所示,高電子遷移率電晶體結構10c相似於第1圖的高電子遷移率電晶體結構10a。不同於高電子遷移率電晶體結構10a,高電子遷移率電晶體結構10c包括一電性連接結構140c,以電性連接第二導電指部130a、130b及130c的一端。在一些實施例中,電性連接結構140c可選擇性電性連接第一導電指部120a、120b及120c其中至少一者(例如,第一導電指部120a)。在一些實施例中,電性連接結構140c可包括由導電插塞及導電層所構成的內連線結構。在一些實施例中,電性連接結構140c可包括接線。可理解的是高電子遷移率電晶體結構10c可具有如第3圖所示的電性連接結構140b,以取代電性連接結構140a。 Referring to FIG. 4, there is shown a plan view of a high electron mobility transistor structure 10c according to some embodiments of the present disclosure, wherein components identical to those of FIG. 1 are given the same reference numerals and their description is omitted. As shown in Fig. 4, the high electron mobility transistor structure 10c is similar to the high electron mobility transistor structure 10a of Fig. 1. Unlike the high electron mobility transistor structure 10a, the high electron mobility transistor structure 10c includes an electrical connection structure 140c to electrically connect one ends of the second conductive fingers 130a, 130b, and 130c. In some embodiments, the electrical connection structure 140c can selectively electrically connect at least one of the first conductive fingers 120a, 120b, and 120c (eg, the first conductive fingers 120a). In some embodiments, the electrical connection structure 140c can include an interconnect structure composed of a conductive plug and a conductive layer. In some embodiments, the electrical connection structure 140c can include wiring. It is to be understood that the high electron mobility transistor structure 10c may have an electrical connection structure 140b as shown in FIG. 3 instead of the electrical connection structure 140a.

根據上述實施例,由於高電子遷移率電晶體結構具有多重閘極,因此可透過調整第一導電指部的數量及寬度以 調變電晶體的臨界電壓。再者,根據上述實施例,由於高電子遷移率電晶體結構具有電性連接結構電性連接第一導電指部,因此可透過控制電性連接結構的連接以進一步調變電晶體的臨界電壓。如此一來。可增加電晶體的應用彈性。 According to the above embodiment, since the high electron mobility transistor structure has multiple gates, the threshold voltage of the transistor can be modulated by adjusting the number and width of the first conductive fingers. Moreover, according to the above embodiment, since the high electron mobility transistor structure has an electrical connection structure electrically connecting the first conductive fingers, the connection of the electrical connection structure can be controlled to further modulate the threshold voltage of the transistor. So come. It can increase the application flexibility of the transistor.

再者,相較於具有單一閘極的高電子遷移率電晶體結構,具有多重閘極的高電子遷移率電晶體結構,每一閘極的通道長度較短,因此可降低閘極下方的寄生電阻(即,降低導通電組)而避免引起閘極誤開關、降低導通損失/熱損耗以及提高功率轉換效率(power-conversion efficiency)。 Furthermore, compared to a high electron mobility transistor structure having a single gate, a high electron mobility transistor structure having multiple gates has a shorter channel length per gate, thereby reducing parasitic below the gate. Resistor (ie, lowering the conduction group) avoids causing gate erroneous switching, reducing conduction loss/heat loss, and improving power-conversion efficiency.

另外,根據上述實施例,由於高電子遷移率電晶體結構具有多重場板與多重閘極交替排列,因此可緩和多重閘極結構下方的峰值電場,以增加電晶體的崩潰電壓及降低漏電流。 In addition, according to the above embodiment, since the high electron mobility transistor structure has multiple field plates and multiple gates alternately arranged, the peak electric field under the multiple gate structure can be alleviated to increase the breakdown voltage of the transistor and reduce the leakage current.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can be modified and retouched without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

Claims (20)

一種高電子遷移率電晶體結構,包括:一基底;一阻障層,設置於該基底上;一緩衝層,設置於該基底與該阻障層之間,且具有一通道區鄰近於該阻障層與該緩衝層之間的一界面;一源極及一汲極,設置於該阻障層上;一多重閘極結構,設置於該源極與該汲極之間,且包括彼此隔開的複數個第一導電指部;以及一多重場板結構,設置於該多重閘極結構與該汲極之間,且包括彼此隔開的複數個第二導電指部,其中該等第一導電指部與該等第二導電指部交替且平行排列於該阻障層上。  A high electron mobility transistor structure includes: a substrate; a barrier layer disposed on the substrate; a buffer layer disposed between the substrate and the barrier layer and having a channel region adjacent to the resistor An interface between the barrier layer and the buffer layer; a source and a drain are disposed on the barrier layer; a plurality of gate structures are disposed between the source and the drain, and include each other a plurality of spaced apart first conductive fingers; and a plurality of field plate structures disposed between the plurality of gate structures and the drain and including a plurality of second conductive fingers spaced apart from each other, wherein The first conductive fingers and the second conductive fingers are alternately and parallelly arranged on the barrier layer.   如申請專利範圍第1項所述之高電子遷移率電晶體結構,其中該多重場板結構更包括一連接部連接該等第二導電指部的一端。  The high electron mobility transistor structure of claim 1, wherein the multiple field plate structure further comprises a connecting portion connecting one ends of the second conductive fingers.   如申請專利範圍第1項所述之高電子遷移率電晶體結構,更包括一電性連接結構,電性連接該等第二導電指部。  The high electron mobility transistor structure as described in claim 1 further includes an electrical connection structure electrically connected to the second conductive fingers.   如申請專利範圍第3項所述之高電子遷移率電晶體結構,其中該電性連接結構,電性連接該等第一導電指部其中至少一者。  The high electron mobility transistor structure of claim 3, wherein the electrical connection structure electrically connects at least one of the first conductive fingers.   如申請專利範圍第1項所述之高電子遷移率電晶體結構,更包括一電性連接結構,電性連接該等第一導電指部其中一者與該等第二導電指部。  The high electron mobility transistor structure of claim 1, further comprising an electrical connection structure electrically connecting one of the first conductive fingers and the second conductive fingers.   如申請專利範圍第1項所述之高電子遷移率電晶體結構,其 中該等第一導電指部各自具有一寬度,以定義對應的通道長度,且其中該等通道長度彼此不同。  The high electron mobility transistor structure of claim 1, wherein the first conductive fingers each have a width to define a corresponding channel length, and wherein the channel lengths are different from each other.   如申請專利範圍第1項所述之高電子遷移率電晶體結構,其中該等第一導電指部各自具有一寬度,以定義對應的通道長度,且其中該等通道長度彼此相同。  The high electron mobility transistor structure of claim 1, wherein the first conductive fingers each have a width to define a corresponding channel length, and wherein the channel lengths are identical to each other.   如申請專利範圍第1項所述之高電子遷移率電晶體結構,其中該等第一導電指部各自具有一寬度,以定義對應的通道長度,且其中該等通道長度其中一些彼此相同。  The high electron mobility transistor structure of claim 1, wherein the first conductive fingers each have a width to define a corresponding channel length, and wherein some of the channel lengths are identical to each other.   如申請專利範圍第1項所述之高電子遷移率電晶體結構,其中一部分的該多重閘極結構延伸進入於該阻障層內。  The high electron mobility transistor structure of claim 1, wherein a portion of the multiple gate structure extends into the barrier layer.   如申請專利範圍第1項所述之高電子遷移率電晶體結構,其中該多重閘極結構與該阻障層直接接觸。  The high electron mobility transistor structure of claim 1, wherein the multiple gate structure is in direct contact with the barrier layer.   如申請專利範圍第1項所述之高電子遷移率電晶體結構,其中該基底包括一矽基底、一碳化矽基底或一藍寶石基底。  The high electron mobility transistor structure of claim 1, wherein the substrate comprises a germanium substrate, a tantalum carbide substrate or a sapphire substrate.   如申請專利範圍第1項所述之高電子遷移率電晶體結構,其中該阻障層包括InAlGaN、AlGaN、InGaN、GaN或其組合。  The high electron mobility transistor structure of claim 1, wherein the barrier layer comprises InAlGaN, AlGaN, InGaN, GaN, or a combination thereof.   如申請專利範圍第1項所述之高電子遷移率電晶體結構,其中該緩衝層包括InAlGaN、AlGaN、InGaN、GaN、AlN或其組合。  The high electron mobility transistor structure of claim 1, wherein the buffer layer comprises InAlGaN, AlGaN, InGaN, GaN, AlN, or a combination thereof.   如申請專利範圍第1項所述之高電子遷移率電晶體結構,其中該源極及該汲極包括Ti、Al、Ni、Mo、Au或其合金。  The high electron mobility transistor structure according to claim 1, wherein the source and the drain include Ti, Al, Ni, Mo, Au or an alloy thereof.   如申請專利範圍第1項所述之高電子遷移率電晶體結構,其中該多重閘極結構或該多重場板結構包括Ti、Ni、Au或其合金。  The high electron mobility transistor structure of claim 1, wherein the multiple gate structure or the multiple field plate structure comprises Ti, Ni, Au or an alloy thereof.   一種高電子遷移率電晶體結構,包括:一基底;一阻障層,設置於該基底上;一緩衝層,設置於該基底與該阻障層之間,且具有一通道區鄰近於該阻障層與該緩衝層之間的一界面;一源極及一汲極,設置於該阻障層上;一多重閘極結構,設置於該源極與該汲極之間,且包括彼此隔開且平行排列於該阻障層上的複數個第一導電指部;以及一電性連接結構,電性連接該等第一導電指部其中至少二者,使該等第一導電指部其中至少一者未與該電性連接結構電性連接。  A high electron mobility transistor structure includes: a substrate; a barrier layer disposed on the substrate; a buffer layer disposed between the substrate and the barrier layer and having a channel region adjacent to the resistor An interface between the barrier layer and the buffer layer; a source and a drain are disposed on the barrier layer; a plurality of gate structures are disposed between the source and the drain, and include each other a plurality of first conductive fingers spaced apart from each other and disposed in parallel with the barrier layer; and an electrical connection structure electrically connecting at least two of the first conductive fingers to the first conductive fingers At least one of them is not electrically connected to the electrical connection structure.   如申請專利範圍第16項所述之高電子遷移率電晶體結構,更包括一多重場板結構,設置於該多重閘極結構與該汲極之間的該阻障層上,包括:複數個第二導電指部,其中該等第一導電指部與該等第二導電指部交替排列;以及一連接部連接該等第二導電指部的一端。  The high electron mobility transistor structure of claim 16, further comprising a multiple field plate structure disposed on the barrier layer between the multiple gate structure and the drain, including: plural And a second conductive finger, wherein the first conductive fingers are alternately arranged with the second conductive fingers; and a connecting portion connects one ends of the second conductive fingers.   如申請專利範圍第16項所述之高電子遷移率電晶體結構,其中該等第一導電指部各自具有一寬度,以定義對應的通道長度,且其中該等通道長度彼此不同。  The high electron mobility transistor structure of claim 16, wherein the first conductive fingers each have a width to define a corresponding channel length, and wherein the channel lengths are different from each other.   如申請專利範圍第16項所述之高電子遷移率電晶體結構,其中該等第一導電指部各自具有一寬度,以定義對應的通道長度,且其中該等通道長度彼此相同。  The high electron mobility transistor structure of claim 16, wherein the first conductive fingers each have a width to define a corresponding channel length, and wherein the channel lengths are identical to each other.   如申請專利範圍第16項所述之高電子遷移率電晶體結構,其中一部分的該多重閘極結構延伸進入於該阻障層內。  The high electron mobility transistor structure of claim 16, wherein a portion of the multiple gate structure extends into the barrier layer.  
TW106130276A 2017-09-05 2017-09-05 High electron mobility transistor structure TWI662701B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106130276A TWI662701B (en) 2017-09-05 2017-09-05 High electron mobility transistor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106130276A TWI662701B (en) 2017-09-05 2017-09-05 High electron mobility transistor structure

Publications (2)

Publication Number Publication Date
TW201914016A true TW201914016A (en) 2019-04-01
TWI662701B TWI662701B (en) 2019-06-11

Family

ID=66991545

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106130276A TWI662701B (en) 2017-09-05 2017-09-05 High electron mobility transistor structure

Country Status (1)

Country Link
TW (1) TWI662701B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI822586B (en) * 2023-02-10 2023-11-11 力晶積成電子製造股份有限公司 High electron mobility transistor device and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11791385B2 (en) * 2005-03-11 2023-10-17 Wolfspeed, Inc. Wide bandgap transistors with gate-source field plates
JP5656644B2 (en) * 2008-12-19 2015-01-21 株式会社アドバンテスト Semiconductor device, semiconductor device manufacturing method and switch circuit
US8987091B2 (en) * 2011-12-23 2015-03-24 Intel Corporation III-N material structure for gate-recessed transistors
JP2016139718A (en) * 2015-01-28 2016-08-04 株式会社東芝 Semiconductor device
TWI641133B (en) * 2015-03-31 2018-11-11 晶元光電股份有限公司 Semiconductor cell
US9941384B2 (en) * 2015-08-29 2018-04-10 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and method for fabricating the same
US9666683B2 (en) * 2015-10-09 2017-05-30 Taiwan Semiconductor Manufacturing Company, Ltd. Surface treatment and passivation for high electron mobility transistors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI822586B (en) * 2023-02-10 2023-11-11 力晶積成電子製造股份有限公司 High electron mobility transistor device and manufacturing method thereof

Also Published As

Publication number Publication date
TWI662701B (en) 2019-06-11

Similar Documents

Publication Publication Date Title
US11699751B2 (en) Semiconductor device
JP6228167B2 (en) Wide band gap HEMT with source connection field plate
US9818840B2 (en) Semiconductor device and manufacturing method of semiconductor device
CN105938799B (en) Method for manufacturing semiconductor device and semiconductor device
US10103239B1 (en) High electron mobility transistor structure
JP5105160B2 (en) Transistor
JP5503487B2 (en) III-V semiconductor device having strain buffering interlayer
US10242936B2 (en) Semiconductor device and method of fabricating the semiconductor device
US9590071B2 (en) Manufacturing method of semiconductor device and semiconductor device
WO2012017588A1 (en) Semiconductor device and method for manufacturing same
JP2013004967A (en) Enhancement type group iii-v high electron mobility transistor (hemt) and method for manufacturing the same
KR20100015747A (en) Cascode circuit employing a depletion-mode, gan-based fet
US11114539B2 (en) Gate stack for heterostructure device
US12074159B2 (en) Nitride-based semiconductor bidirectional switching device and method for manufacturing the same
TWI662701B (en) High electron mobility transistor structure
JP2016207890A (en) Hetero-junction semiconductor device
TWI701840B (en) Enhancement mode hemt device
WO2023176373A1 (en) Semiconductor device
JP7417070B2 (en) Semiconductor device, semiconductor device manufacturing method, and electronic device
WO2023220872A1 (en) Nitride-based semiconductor ic chip and method for manufacturing thereof
CN114078967A (en) Semiconductor device with a plurality of semiconductor chips
KR20240139592A (en) Nitride-based semiconductor device