TWI660077B - A semiconductor device, the method of making the same and an electronic device - Google Patents

A semiconductor device, the method of making the same and an electronic device Download PDF

Info

Publication number
TWI660077B
TWI660077B TW106141268A TW106141268A TWI660077B TW I660077 B TWI660077 B TW I660077B TW 106141268 A TW106141268 A TW 106141268A TW 106141268 A TW106141268 A TW 106141268A TW I660077 B TWI660077 B TW I660077B
Authority
TW
Taiwan
Prior art keywords
silicon carbide
substrate
manufacturing
carbide layer
cubic phase
Prior art date
Application number
TW106141268A
Other languages
Chinese (zh)
Other versions
TW201908544A (en
Inventor
三重野文健
Original Assignee
大陸商上海新昇半導體科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商上海新昇半導體科技有限公司 filed Critical 大陸商上海新昇半導體科技有限公司
Publication of TW201908544A publication Critical patent/TW201908544A/en
Application granted granted Critical
Publication of TWI660077B publication Critical patent/TWI660077B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Recrystallisation Techniques (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

本發明提供了一種半導體元件及其製造方法、電子裝置。所述方法包括:提供第一基板;在所述第一基板上形成立方相碳化矽基底;對所述立方相碳化矽基底進行非晶處理,以在所述立方相碳化矽基底的頂部形成非晶碳化矽層;對所述非晶碳化矽層進行再結晶處理,以在所述非晶碳化矽層的頂層形成單晶碳化矽層。利用所述方法形成的所述SiC基基板的性能和良率得到極大的提高。The invention provides a semiconductor element, a manufacturing method thereof, and an electronic device. The method includes: providing a first substrate; forming a cubic phase silicon carbide substrate on the first substrate; and performing an amorphous treatment on the cubic phase silicon carbide substrate to form a non-crystalline silicon on the top of the cubic phase silicon carbide substrate. A crystalline silicon carbide layer; performing a recrystallization treatment on the amorphous silicon carbide layer to form a single crystalline silicon carbide layer on top of the amorphous silicon carbide layer. The performance and yield of the SiC-based substrate formed by the method are greatly improved.

Description

一種半導體元件及其製造方法、電子裝置Semiconductor element, manufacturing method thereof, and electronic device

本發明涉及半導體技術領域,具體而言涉及一種半導體元件及其製造方法、電子裝置。The present invention relates to the field of semiconductor technology, and in particular, to a semiconductor element, a manufacturing method thereof, and an electronic device.

隨著積體電路技術的持續發展,晶片上將集成更多元件,晶片也將採用更快的速度。在這些要求的推進下,元件的幾何尺寸將不斷縮小,在晶片的製造製程中不斷採用新材料、新技術和新的製造製程。目前半導體元件的製備已經發展到奈米級別,同時常規元件的製備製程逐漸成熟。With the continuous development of integrated circuit technology, more components will be integrated on the chip, and the chip will also use faster speeds. With the advancement of these requirements, the geometric size of components will continue to shrink, and new materials, new technologies and new manufacturing processes will continue to be used in the wafer manufacturing process. At present, the preparation of semiconductor devices has developed to the nanometer level, and the manufacturing processes of conventional devices have gradually matured.

在過去幾十年裡,基於矽基元件和電子元件的設計和製造方面取得的進步已經證明了矽基元件的擴展能力和電路複雜度非常卓越的水準。Over the past few decades, advances in the design and manufacture of silicon-based components and electronic components have proven that silicon-based components have exceptional levels of scalability and circuit complexity.

將矽基元件和SiC基元件集成在同一晶片上是非常值得期待的,以便提高高級應用程式的功能和設計靈活性。Integrating silicon-based and SiC-based components on the same chip is highly anticipated to improve the functionality and design flexibility of advanced applications.

SiC基材料因用於製備具有高亮度發光二極體(led)、電源切換裝置、調節裝置、電池保護器、面板顯示驅動器、通訊設備等設備具有吸引力。使用SiC基材料製備的元件通常形成於SiC基基板上。SiC-based materials are attractive because they are used to prepare high-brightness light-emitting diodes (LEDs), power switching devices, adjustment devices, battery protectors, panel display drivers, and communications equipment. A component prepared using a SiC-based material is usually formed on a SiC-based substrate.

因此,如何製備高性能的SiC基基板對於SiC基元件的製備是至關重要的。Therefore, how to prepare a high-performance SiC-based substrate is crucial for the preparation of SiC-based components.

在發明內容部分中引入了一系列簡化形式的概念,這將在具體實施方式部分中進一步詳細說明。本發明的發明內容部分並不意味著要試圖限定出所要求保護的技術方案的關鍵特徵和必要技術特徵,更不意味著試圖確定所要求保護的技術方案的保護範圍。A series of simplified forms of concepts are introduced in the summary section, which will be explained in further detail in the detailed description section. The summary of the present invention does not mean trying to define the key features and necessary technical features of the claimed technical solution, let alone trying to determine the protection scope of the claimed technical solution.

針對現有技術的不足,本發明提供了一種半導體元件的製造方法,所述方法包括: 提供第一基板; 在所述第一基板上形成立方相碳化矽基底; 對所述立方相碳化矽基底進行非晶處理,以在所述立方相碳化矽基底的頂部形成非晶碳化矽層; 對所述非晶碳化矽層進行再結晶處理,以在所述非晶碳化矽層的頂層形成單晶碳化矽層。In view of the shortcomings of the prior art, the present invention provides a method for manufacturing a semiconductor device, the method includes: providing a first substrate; forming a cubic phase silicon carbide substrate on the first substrate; and performing the cubic phase silicon carbide substrate Amorphous processing to form an amorphous silicon carbide layer on top of the cubic phase silicon carbide substrate; recrystallizing the amorphous silicon carbide layer to form a single crystal carbide on the top of the amorphous silicon carbide layer Silicon layer.

可選地,所述立方相碳化矽基底為3C-SiC層,所述單晶碳化矽層為6H-SiC層。Optionally, the cubic phase silicon carbide substrate is a 3C-SiC layer, and the single crystal silicon carbide layer is a 6H-SiC layer.

可選地,所述立方相碳化矽基底的沉積氣源包括SiHCl3 、C3 H8 和H2 ; 和/或所述立方相碳化矽基底的沉積壓力為0.1Torr -1Torr; 和/或所述立方相碳化矽基底的沉積溫度為950℃-1200℃; 和/或所述立方相碳化矽基底的厚度為0.1μm-1.0μm。Optionally, the deposition gas source of the cubic phase silicon carbide substrate includes SiHCl 3 , C 3 H 8 and H 2 ; and / or the deposition pressure of the cubic phase silicon carbide substrate is 0.1 Torr -1 Torr; and / or The deposition temperature of the cubic phase silicon carbide substrate is from 950 ° C to 1200 ° C; and / or the thickness of the cubic phase silicon carbide substrate is from 0.1 μm to 1.0 μm.

可選地,利用電子束輻射的方法進行所述非晶處理。Optionally, the amorphous treatment is performed by a method of electron beam irradiation.

可選地,所述電子束輻射的加速電壓在1MV以上,和/或所述電子束輻射的強度為1 × 1024 m-2 S-1 以上。Optionally, the acceleration voltage of the electron beam radiation is above 1 MV, and / or the intensity of the electron beam radiation is above 1 × 10 24 m -2 S -1 .

可選地,所述電子束輻射的溫度在170K以上,和/或所述電子束輻射的直徑為1μm -3μm。Optionally, the temperature of the electron beam radiation is above 170K, and / or the diameter of the electron beam radiation is 1 μm to 3 μm.

可選地,所述再結晶處理包括對所述非晶碳化矽層進行雷射退火,以使所述非晶碳化矽層頂部表面的溫度至1500℃以上。Optionally, the recrystallization process includes performing laser annealing on the amorphous silicon carbide layer, so that the temperature of the top surface of the amorphous silicon carbide layer is above 1500 ° C.

可選地,所述雷射退火使用脈衝雷射退火,脈衝為10ns -30ns,迴圈次數為5000-50000次。Optionally, the laser annealing uses pulsed laser annealing, the pulse is 10ns-30ns, and the number of loops is 5000-50000 times.

可選地,所述雷射退火使用波長為308nm的XeCl脈衝氣體雷射。Optionally, the laser annealing uses a XeCl pulsed gas laser with a wavelength of 308 nm.

可選地,所述方法還包括在所述單晶碳化矽層上和/或所述第一基板上形成有源元件和/或無源元件的步驟; 所述有源元件包括電晶體和二極體中的至少一種; 所述無源元件包括射頻、負載和電容器中的至少一種。Optionally, the method further includes a step of forming an active element and / or a passive element on the single crystal silicon carbide layer and / or on the first substrate; the active element includes a transistor and two At least one of a pole body; the passive element includes at least one of a radio frequency, a load, and a capacitor.

可選地,所述第一基板包括矽基板,所述立方相碳化矽基底位於部分所述矽基板上。Optionally, the first substrate includes a silicon substrate, and the cubic phase silicon carbide substrate is located on a part of the silicon substrate.

本發明還提供了一種半導體元件,所述半導體元件包括: 第一基板; 第二基板,其位於所述第一基板上,所述第二基板包括從第一基板的表面向上依次設置的立方相碳化矽基底、非晶碳化矽層和單晶碳化矽層。The present invention also provides a semiconductor element, the semiconductor element includes: a first substrate; a second substrate located on the first substrate, and the second substrate includes a cubic phase sequentially arranged from a surface of the first substrate upwardly Silicon carbide substrate, amorphous silicon carbide layer and single crystal silicon carbide layer.

可選地,所述立方相碳化矽基底為3C-SiC,所述單晶碳化矽層為6H-SiC。Optionally, the cubic silicon carbide substrate is 3C-SiC, and the single crystal silicon carbide layer is 6H-SiC.

可選地,所述立方相碳化矽基底的厚度為0.1μm -1.0μm。Optionally, the thickness of the cubic silicon carbide substrate is 0.1 μm to 1.0 μm.

可選地,在所述第一基板和/或所述第二基板上形成有源元件和/或無源元件; 所述有源元件包括電晶體和二極體中的至少一種; 所述無源元件包括射頻、負載和電容器中的至少一種。Optionally, an active element and / or a passive element is formed on the first substrate and / or the second substrate; the active element includes at least one of a transistor and a diode; the passive element The source element includes at least one of a radio frequency, a load, and a capacitor.

本發明還提供了一種電子裝置,所述電子裝置包括上述的半導體元件。The present invention also provides an electronic device including the above-mentioned semiconductor element.

根據本發明的製造方法,提供了一種SiC基基板的形成方法,在所述方法中首先形成立方相碳化矽基底;然後在所述立方相碳化矽基底的頂部形成非晶碳化矽層;最後在所述非晶碳化矽層的頂層形成單晶碳化矽層,以形成複合型的SiC基基板。利用所述方法形成的所述SiC基基板的性能和良率得到極大的提高。According to the manufacturing method of the present invention, a method for forming a SiC-based substrate is provided. In the method, a cubic phase silicon carbide substrate is first formed; then an amorphous silicon carbide layer is formed on top of the cubic phase silicon carbide substrate; A top layer of the amorphous silicon carbide layer forms a single crystal silicon carbide layer to form a composite SiC-based substrate. The performance and yield of the SiC-based substrate formed by the method are greatly improved.

在下文的描述中,給出了大量具體的細節以便提供對本發明更為徹底的理解。然而,對於本領域技術人員而言顯而易見的是,本發明可以無需一個或多個這些細節而得以實施。在其他的例子中,為了避免與本發明發生混淆,對於本領域公知的一些技術特徵未進行描述。In the following description, numerous specific details are given to provide a more thorough understanding of the present invention. However, it will be apparent to one skilled in the art that the present invention may be practiced without one or more of these details. In other examples, in order to avoid confusion with the present invention, some technical features known in the art are not described.

應當理解的是,本發明能夠以不同形式實施,而不應當解釋為局限於這裡提出的實施例。相反地,提供這些實施例將使公開徹底和完全,並且將本發明的範圍完全地傳遞給本領域技術人員。在附圖中,為了清楚,層和區的尺寸以及相對尺寸可能被誇大。自始至終相同附圖標記表示相同的元件。It should be understood that the present invention can be implemented in different forms and should not be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, the sizes and relative sizes of layers and regions may be exaggerated for clarity. The same reference numerals denote the same elements throughout.

應當明白,當元件或層被稱為“在...上”、“與...相鄰”、“連接到”或“耦合到”其它元件或層時,其可以直接地在其它元件或層上、與之相鄰、連接或耦合到其它元件或層,或者可以存在居間的元件或層。相反,當元件被稱為“直接在...上”、“與...直接相鄰”、“直接連接到”或“直接耦合到”其它元件或層時,則不存在居間的元件或層。應當明白,儘管可使用術語第一、 第二、第三等描述各種元件、部件、區、層和/或部分,這些元件、部件、區、層和/或部分不應當被這些術語限制。這些術語僅僅用來區分一個元件、部件、區、層或部分與另一個元件、部件、區、層或部分。因此,在不脫離本發明教導之下,下面討論的第一元件、部件、區、層或部分可表示為第二元件、部件、區、層或部分。It will be understood that when an element or layer is referred to as being "on", "adjacent", "connected to" or "coupled to" another element or layer, it can be directly on the other element or layer. Layers, adjacent, connected, or coupled to other elements or layers, or intervening elements or layers may be present. In contrast, when an element is referred to as being "directly on," "directly adjacent to," "directly connected to," or "directly coupled to" another element or layer, there are no intervening elements or Floor. It should be understood that, although the terms first, second, third, etc. may be used to describe various elements, components, regions, layers and / or sections, these elements, components, regions, layers and / or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, a first element, component, region, layer or section discussed below can be represented as a second element, component, region, layer or section without departing from the teachings of the present invention.

空間關係術語例如“在...下”、“在...下面”、“下面的”、“在...之下”、“在...之上”、“上面的”等,在這裡可為了方便描述而被使用從而描述圖中所示的一個元件或特徵與其它元件或特徵的關係。應當明白,除了圖中所示的取向以外,空間關係術語意圖還包括使用和操作中的元件的不同取向。例如,如果附圖中的元件翻轉,然後,描述為“在其它元件下面”或“在其之下”或“在其下”元件或特徵將取向為在其它元件或特徵“上”。因此,示例性術語“在...下面”和“在...下”可包括上和下兩個取向。元件可以另外地取向(旋轉90度或其它取向)並且在此使用的空間描述語相應地被解釋。Spatial relation terms such as "below", "below", "below", "below", "above", "above", etc., in It may be used here for convenience of description to describe the relationship between one element or feature and other elements or features shown in the figure. It should be understood that in addition to the orientation shown in the figures, the spatial relationship terminology is intended to include different orientations of the elements in use and operation. For example, if an element in the drawing is turned over, then an element or feature described as "below" or "beneath" other elements or features would then be oriented "above" the other element or feature. Thus, the exemplary terms "below" and "below" can include both an orientation of above and below. The elements may be otherwise oriented (rotated 90 degrees or other orientations) and the spatial descriptors used herein are interpreted accordingly.

在此使用的術語的目的僅在於描述具體實施例並且不作為本發明的限制。在此使用時,單數形式的“一”、“一個”和“所述/該”也意圖包括複數形式,除非上下文清楚指出另外的方式。還應明白術語“組成”和/或“包括”,當在該說明書中使用時,確定所述特徵、整數、步驟、操作、元件和/或部件的存在,但不排除一個或更多其它的特徵、整數、步驟、操作、元件、部件和/或組的存在或添加。在此使用時,術語“和/或”包括相關所列專案的任何及所有組合。The terminology used herein is for the purpose of describing particular embodiments only and is not intended as a limitation of the invention. As used herein, the singular forms "a", "an" and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. It should also be understood that the terms "comprising" and / or "including", when used in this specification, determine the presence of stated features, integers, steps, operations, elements and / or components, but do not exclude one or more other The presence or addition of features, integers, steps, operations, elements, parts, and / or groups. As used herein, the term "and / or" includes any and all combinations of the associated listed items.

這裡參考作為本發明的理想實施例(和中間結構)的示意圖的橫截面圖來描述發明的實施例。這樣,可以預期由於例如製造技術和/或容差導致的從所示形狀的變化。因此,本發明的實施例不應當局限於在此所示的區的特定形狀,而是包括由於例如製造導致的形狀偏差。例如,顯示為矩形的注入區在其邊緣通常具有圓的或彎曲特徵和/或注入濃度梯度,而不是從注入區到非注入區的二元改變。同樣,利用注入形成的埋藏區可導致該埋藏區和注入進行時所經過的表面之間的區中的一些注入。因此,圖中顯示的區實質上是示意性的,它們的形狀並不意圖顯示元件的區的實際形狀且並不意圖限定本發明的範圍。Embodiments of the invention are described herein with reference to cross-sectional views that are schematic diagrams of ideal embodiments (and intermediate structures) of the invention. As such, variations from the shapes shown can be expected due to, for example, manufacturing techniques and / or tolerances. Therefore, embodiments of the present invention should not be limited to the specific shape of the region shown here, but include shape deviations due to, for example, manufacturing. For example, an implanted region shown as a rectangle generally has round or curved features and / or implanted concentration gradients at its edges, rather than a binary change from the implanted region to the non-implanted region. Similarly, a buried area formed using implantation may result in some implantation in the area between the buried area and the surface through which the implantation proceeds. Thus, the regions shown in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of an element and are not intended to limit the scope of the invention.

為了徹底理解本發明,將在下列的描述中提出詳細的步驟,以便闡釋本發明提出的技術方案。本發明的較佳實施例詳細描述如下,然而除了這些詳細描述外,本發明還可以具有其他實施方式。實施例一 In order to thoroughly understand the present invention, detailed steps will be provided in the following description in order to explain the technical solution proposed by the present invention. The preferred embodiments of the present invention are described in detail below. However, in addition to these detailed descriptions, the present invention may have other embodiments. Example one

為了解決前述的技術問題,提高元件的性能,本發明實施例中提供一種半導體元件的製造方法,如第2圖所述,所述方法主要包括: 步驟S1:提供第一基板; 步驟S2:在所述第一基板上形成立方相碳化矽基底; 步驟S3:對所述立方相碳化矽基底進行非晶處理,以在所述立方相碳化矽基底的頂部形成非晶碳化矽層; 步驟S4:對所述非晶碳化矽層進行再結晶處理,以在所述非晶碳化矽層的頂層形成單晶碳化矽層。In order to solve the foregoing technical problems and improve the performance of the device, an embodiment of the present invention provides a method for manufacturing a semiconductor device. As shown in FIG. 2, the method mainly includes: Step S1: providing a first substrate; Step S2: A cubic phase silicon carbide substrate is formed on the first substrate; step S3: performing an amorphous treatment on the cubic phase silicon carbide substrate to form an amorphous silicon carbide layer on top of the cubic phase silicon carbide substrate; step S4: Performing a recrystallization treatment on the amorphous silicon carbide layer to form a single crystal silicon carbide layer on a top layer of the amorphous silicon carbide layer.

根據本發明的製造方法,提供了一種SiC基基板的形成方法,在所述方法中首先形成立方相碳化矽基底;然後在所述立方相碳化矽基底的頂部形成非晶碳化矽層;最後在所述非晶碳化矽層的頂層形成單晶碳化矽層,以形成複合型的SiC基基板。利用所述方法形成的所述SiC基基板的性能和良率得到極大的提高。According to the manufacturing method of the present invention, a method for forming a SiC-based substrate is provided. In the method, a cubic phase silicon carbide substrate is first formed; then an amorphous silicon carbide layer is formed on top of the cubic phase silicon carbide substrate; A top layer of the amorphous silicon carbide layer forms a single crystal silicon carbide layer to form a composite SiC-based substrate. The performance and yield of the SiC-based substrate formed by the method are greatly improved.

具體地,下面參考第1a-1d圖對本發明的半導體元件的製造方法做詳細描述,其中,第1a-1d圖示出了本發明一個實施方式的半導體元件的製造方法的相關步驟所獲得的元件的結構示意圖。Specifically, the method for manufacturing a semiconductor element of the present invention is described in detail below with reference to FIGS. 1a to 1d, wherein FIGS. 1a to 1d illustrate elements obtained by relevant steps of the method for manufacturing a semiconductor element according to an embodiment of the present invention Schematic diagram of the structure.

在本發明中所述半導體元件可以包括記憶體件、有源元件、無源元件(被動元件)以及MEMS元件等,並不局限於某一種,在本發明也不做進一步的限定。The semiconductor element in the present invention may include a memory element, an active element, a passive element (passive element), a MEMS element, and the like, and is not limited to any one, and is not further limited in the present invention.

在本發明中不再對所述半導體元件的整個形成過程做進一步的贅述,而僅僅對SiC基基板的形成做詳細的說明。In the present invention, the entire formation process of the semiconductor element will not be further described, and only the formation of the SiC-based substrate will be described in detail.

需要說明的是所述SiC基基板的形成方法可以應用於各種半導體元件的製備之中。It should be noted that the method for forming the SiC-based substrate can be applied to the preparation of various semiconductor elements.

首先,執行步驟一,提供第一基板201。First, step one is performed to provide a first substrate 201.

具體地,如第1a圖所示,在本申請中所述第一基板201可以是以下所提到的材料中的至少一種:矽、絕緣體上矽(SOI)、絕緣體上層疊矽(SSOI)、絕緣體上層疊鍺化矽(S-SiGeOI)、絕緣體上鍺化矽(SiGeOI)以及絕緣體上鍺(GeOI)等。Specifically, as shown in FIG. 1a, the first substrate 201 in the present application may be at least one of the following materials: silicon, silicon on insulator (SOI), silicon on insulator (SSOI), Silicon germanium (S-SiGeOI), silicon germanium (SiGeOI) on insulator and germanium on insulator (GeOI) are laminated on the insulator.

可選地,在本發明中所述基板為矽或多晶矽基板,其厚度並不局限於某一數值範圍。Optionally, the substrate in the present invention is a silicon or polycrystalline silicon substrate, and its thickness is not limited to a certain numerical range.

其中,在本發明的一具體實施方式中所述多晶矽基板的磊晶方法為:將氫(H2 )氣攜帶四氯化矽(SiCl4 )或三氯氫矽(SiHCl3 )、矽烷(SiH4 )或二氯氫矽(SiH2 Cl2 )等進入置有矽基板的反應室,在反應室進行高溫化學反應,使含矽反應氣體還原或熱分解,所產生的矽原子在基板矽表面上磊晶生長。在該步驟中可以選用98.5%的高稀釋比,反應的溫度為1500-1800℃,並控制氣壓為1pa左右,即可在溫度為200℃的基板上磊晶生長得到200nm或以上的矽薄膜,在該步驟中還可以調節溫度、時間對矽薄膜進行控制。The epitaxial method of the polycrystalline silicon substrate described in a specific embodiment of the present invention is: carrying hydrogen (H 2 ) gas with silicon tetrachloride (SiCl 4 ) or silicon trichlorohydrogen (SiHCl 3 ), and silane (SiH 4 ) or silicon dichlorohydrogen (SiH 2 Cl 2 ) and the like enter the reaction chamber on which the silicon substrate is placed, and perform a high-temperature chemical reaction in the reaction chamber to reduce or thermally decompose the silicon-containing reaction gas, and the generated silicon atoms are on the silicon surface of the substrate. On epitaxial growth. In this step, a high dilution ratio of 98.5% can be selected, the reaction temperature is 1500-1800 ° C, and the air pressure is controlled to about 1pa, and the silicon film can be epitaxially grown on a substrate at 200 ° C to obtain a silicon film of 200nm or more In this step, the temperature and time can also be adjusted to control the silicon film.

在形成的所述第一基板201上可以劃分為SiC基元件區域和Si基元件區域,以分別形成SiC基元件和Si基元件。The formed first substrate 201 may be divided into a SiC-based element region and a Si-based element region to form a SiC-based element and a Si-based element, respectively.

其中,所述SiC基元件和Si基元件包括有源元件和/或無源元件; 所述有源元件包括電晶體和二極體中的至少一種; 所述無源元件包括射頻、負載和電容器中的至少一種。Wherein, the SiC-based element and Si-based element include an active element and / or a passive element; the active element includes at least one of a transistor and a diode; the passive element includes a radio frequency, a load, and a capacitor At least one of.

執行步驟二,在所述基板上形成立方相碳化矽基底203。 可選地,所述立方相碳化矽基底為3C-SiC。碳化矽是一種Ⅳ-Ⅳ族化合物半導體材料,具有多種同素異構類型。其典型結構可分為兩類,一類是閃鋅礦結構的立方碳化矽晶型,稱為3C-SiC或β-SiC,這裡3指的是週期性次序中面的數目。Step two is performed to form a cubic silicon carbide substrate 203 on the substrate. Optionally, the cubic silicon carbide substrate is 3C-SiC. Silicon carbide is a group IV-IV compound semiconductor material with many isomeric types. Its typical structure can be divided into two types. One is the cubic silicon carbide crystal form of the sphalerite structure, which is called 3C-SiC or β-SiC, where 3 refers to the number of midplanes in the periodic sequence.

基本的SiC的晶體是四顆碳原子和一顆矽原子交替以sp3所鍵結而成的四角型晶體,碳原子和碳原子之間的鍵結距離為3.08埃,碳原子和矽原子之間的鍵結距離為1.89埃。依各種不同原子堆疊方式,會有不同的SiC晶體型態,目前已知的型態就高達170種晶體型態。不同晶體型態的碳化矽其性質也有所不同,如前述的3C、6H、4H、15R,C表示立方體(cubic)結構,H表示六角型(hexagonal)結構,R表示菱形六面體(rhombohedron),數字表示堆疊的週期排列個數。3C是以ABC的順序堆疊而成,4H-SiC和6H-SiC則分別以ABCB和ABCACB的不同順序堆疊而成。The basic SiC crystal is a tetragonal crystal in which four carbon atoms and one silicon atom are alternately bonded by sp3. The bonding distance between the carbon atom and the carbon atom is 3.08 angstroms. The bond distance is 1.89 Angstroms. There are different types of SiC crystals according to different atomic stacking methods, and currently up to 170 crystal types are known. Different crystal types of silicon carbide have different properties, such as the aforementioned 3C, 6H, 4H, 15R, C represents a cubic structure, H represents a hexagonal structure, and R represents a rhombohedron. The number indicates the number of periodic arrangements of the stack. 3C is stacked in the order of ABC, and 4H-SiC and 6H-SiC are stacked in different orders of ABCB and ABCACB, respectively.

碳化矽/矽結構生長最主要生長方法為化學氣相沉積(Chemial Vapor Deposition,CVD)為主,大都為非晶、多晶α-SiC薄膜或者3C-SiC薄膜為主。The main growth method of silicon carbide / silicon structure growth is chemical vapor deposition (CVD), and most of them are amorphous, polycrystalline α-SiC films or 3C-SiC films.

具體地,所述立方相碳化矽基底的沉積氣源包括SiHCl3 、C3 H8 和H2Specifically, the deposition gas source of the cubic phase silicon carbide substrate includes SiHCl 3 , C 3 H 8, and H 2 .

可選地,所述立方相碳化矽基底的沉積壓力為0.1-1Torr,例如所述立方相碳化矽基底的沉積壓力為0.1Torr、0.2 Torr、0.4 Torr、0.5 Torr、0.8 Torr或1 Torr。Optionally, the deposition pressure of the cubic phase silicon carbide substrate is 0.1-1 Torr, for example, the deposition pressure of the cubic phase silicon carbide substrate is 0.1 Torr, 0.2 Torr, 0.4 Torr, 0.5 Torr, 0.8 Torr, or 1 Torr.

可選地,所述立方相碳化矽基底的沉積溫度為950-1200℃,例如所述立方相碳化矽基底的沉積溫度為950℃、1000℃、1050℃、1100℃或1150℃。Optionally, the deposition temperature of the cubic phase silicon carbide substrate is 950-1200 ° C. For example, the deposition temperature of the cubic phase silicon carbide substrate is 950 ° C, 1000 ° C, 1050 ° C, 1100 ° C, or 1150 ° C.

可選地,所述立方相碳化矽基底的厚度為0.1-1.0μm,例如所述立方相碳化矽基底的厚度為0.1μm、0.2μm、0.4μm、0.5μm、0.7μm、0.9μm或1μm。Optionally, the thickness of the cubic phase silicon carbide substrate is 0.1-1.0 μm, for example, the thickness of the cubic phase silicon carbide substrate is 0.1 μm, 0.2 μm, 0.4 μm, 0.5 μm, 0.7 μm, 0.9 μm, or 1 μm.

具體地,在該步驟中在所述第一基板201的部分區域表面形成所述立方相碳化矽基底203。Specifically, in this step, the cubic silicon carbide substrate 203 is formed on a surface of a partial region of the first substrate 201.

可選地,在所述SiC基元件區域中形成所述立方相碳化矽基底203。Optionally, the cubic silicon carbide substrate 203 is formed in the SiC-based element region.

具體地,在Si基元件區域上形成罩幕層202,然後在沒有被罩幕層202覆蓋的所述SiC基元件區域上形成所述立方相碳化矽基底203,如第1b圖所示。Specifically, a mask layer 202 is formed on the Si-based element region, and then the cubic phase silicon carbide substrate 203 is formed on the SiC-based element region not covered by the mask layer 202, as shown in FIG. 1b.

其中,在所述SiC基元件區域上形成所述立方相碳化矽基底203至所述罩幕層的頂部,但立方相碳化矽基底203的厚度並不局限於所述示例。Wherein, the cubic silicon carbide substrate 203 is formed on the SiC-based element region to the top of the mask layer, but the thickness of the cubic silicon carbide substrate 203 is not limited to the example.

執行步驟三,對所述立方相碳化矽基底進行非晶處理,以在所述立方相碳化矽基底的頂部形成非晶碳化矽層204。Step 3 is performed to perform an amorphous treatment on the cubic phase silicon carbide substrate to form an amorphous silicon carbide layer 204 on top of the cubic phase silicon carbide substrate.

具體地,如第1c圖所示,對所述立方相碳化矽基底進行非晶處理,以在從所述立方相碳化矽基底表面向下至接近一半的厚度中形成非晶碳化矽層204。Specifically, as shown in FIG. 1c, the cubic silicon carbide substrate is subjected to an amorphous treatment to form an amorphous silicon carbide layer 204 in a thickness from the surface of the cubic phase silicon carbide substrate down to nearly half the thickness.

在該步驟中所述非晶碳化矽層204的厚度為立方相碳化矽基底厚度的一半。In this step, the thickness of the amorphous silicon carbide layer 204 is half of the thickness of the cubic silicon carbide substrate.

其中,利用電子束輻射的方法進行所述非晶處理。The amorphous treatment is performed by a method of electron beam radiation.

可選地,所述電子束輻射的加速電壓在1MV以上,例如所述電子束輻射的加速電壓為1MV、1.5 MV、5 MV、10 MV或者20 MV等。Optionally, the acceleration voltage of the electron beam radiation is above 1MV, for example, the acceleration voltage of the electron beam radiation is 1MV, 1.5 MV, 5 MV, 10 MV, or 20 MV.

可選地,所述電子束輻射的強度為1 × 1024 m-2 S-1 以上,例如所述電子束輻射的強度為1 × 1024 m-2 S-1 、2 × 1024 m-2 S-1 、5 × 1024 m-2 S-1 、8 × 1024 m-2 S-1 、1 × 1025 m-2 S-1 等。Alternatively, the intensity of electron beam radiation of 1 × 10 24 m -2 S -1 or more, for example, the intensity of electron beam radiation of 1 × 10 24 m -2 S -1 , 2 × 10 24 m - 2 S -1 , 5 × 10 24 m -2 S -1 , 8 × 10 24 m -2 S -1 , 1 × 10 25 m -2 S -1, and so on.

可選地,所述電子束輻射的溫度在170K以上,例如所述電子束輻射的溫度為170K、190K、220K、370K或500K。Optionally, the temperature of the electron beam radiation is above 170K, for example, the temperature of the electron beam radiation is 170K, 190K, 220K, 370K, or 500K.

可選地,所述電子束輻射的輻射直徑為1-3μm,例如所述電子束輻射的輻射直徑為1μm、1.5μm、2μm或3μm。Optionally, the radiation diameter of the electron beam radiation is 1-3 μm, for example, the radiation diameter of the electron beam radiation is 1 μm, 1.5 μm, 2 μm, or 3 μm.

執行步驟四,對所述非晶碳化矽層進行再結晶處理,以在所述非晶碳化矽層的頂層形成單晶碳化矽層205。Step 4 is performed to recrystallize the amorphous silicon carbide layer to form a single crystal silicon carbide layer 205 on the top of the amorphous silicon carbide layer.

具體地,如第1d圖所示,在該步驟中所述再結晶處理包括對所述非晶碳化矽層進行雷射退火至1500℃以上。Specifically, as shown in FIG. 1d, the recrystallization process in this step includes performing laser annealing on the amorphous silicon carbide layer to 1500 ° C or higher.

例如對所述非晶碳化矽層進行雷射退火至1500℃、1600℃、1800℃、1900℃或2000℃。For example, the amorphous silicon carbide layer is subjected to laser annealing to 1500 ° C, 1600 ° C, 1800 ° C, 1900 ° C, or 2000 ° C.

其中,所述雷射退火使用脈衝雷射退火,脈衝為10-30ns,迴圈次數為5000-50000次。Wherein, the laser annealing uses pulsed laser annealing, the pulse is 10-30ns, and the number of loops is 5000-50000 times.

其中,所述雷射輻射的深度為0.3μm左右,例如所述雷射輻射的深度為0.25-035μm。The depth of the laser radiation is about 0.3 μm, for example, the depth of the laser radiation is 0.25-035 μm.

執行步驟五,在所述單晶碳化矽層上和/或所述第一基板上形成有源元件和/或無源元件。Step 5 is performed to form an active element and / or a passive element on the single crystal silicon carbide layer and / or on the first substrate.

首先去除所述罩幕層,露出所述第一基板,然後在所述單晶碳化矽層上和/或所述第一基板上形成有源元件和/或無源元件。First, the cover layer is removed to expose the first substrate, and then active elements and / or passive elements are formed on the single crystal silicon carbide layer and / or on the first substrate.

其中,所述有源元件包括電晶體和二極體中的至少一種; 所述無源元件包括射頻、負載和電容器中的至少一種。Wherein, the active element includes at least one of a transistor and a diode; and the passive element includes at least one of a radio frequency, a load, and a capacitor.

形成所述有源元件和/或無源元件的方法可以選用本領域常用的方法,並不局限於某種。The method for forming the active element and / or the passive element may be selected from methods commonly used in the art, and is not limited to a certain method.

至此完成了對本發明的半導體元件的製造方法的詳細描述,對於完整的元件的製作還可能需要其他的製程步驟,在此不做贅述。So far, the detailed description of the manufacturing method of the semiconductor element of the present invention has been completed, and other process steps may be required for the fabrication of the complete element, which will not be repeated here.

根據本發明的製造方法,提供了一種SiC基基板的形成方法,在所述方法中首先形成立方相碳化矽基底;然後在所述立方相碳化矽基底的頂部形成非晶碳化矽層;最後在所述非晶碳化矽層的頂層形成單晶碳化矽層,以形成複合型的SiC基基板。利用所述方法形成的所述SiC基基板的性能和良率得到極大的提高。實施例二 According to the manufacturing method of the present invention, a method for forming a SiC-based substrate is provided. In the method, a cubic phase silicon carbide substrate is first formed; then an amorphous silicon carbide layer is formed on top of the cubic phase silicon carbide substrate; A top layer of the amorphous silicon carbide layer forms a single crystal silicon carbide layer to form a composite SiC-based substrate. The performance and yield of the SiC-based substrate formed by the method are greatly improved. Example two

本發明還提供了一種半導體元件,所述半導體元件利用實施例一所述的方法製備得到。The invention also provides a semiconductor element, which is prepared by using the method described in the first embodiment.

其中,所述半導體元件包括: 第一基板; 第二基板位於所述第一基板上,所述第二基板包括從第一基板的表面向上依次設置的立方相碳化矽基底、非晶碳化矽層和單晶碳化矽層。Wherein, the semiconductor element includes: a first substrate; a second substrate is located on the first substrate, and the second substrate includes a cubic phase silicon carbide substrate and an amorphous silicon carbide layer arranged in order from the surface of the first substrate upwards; And single crystal silicon carbide layer.

具體地,如第1d圖所示,在本申請中所述第一基板201可以是以下所提到的材料中的至少一種:矽、絕緣體上矽(SOI)、絕緣體上層疊矽(SSOI)、絕緣體上層疊鍺化矽(S-SiGeOI)、絕緣體上鍺化矽(SiGeOI)以及絕緣體上鍺(GeOI)等。Specifically, as shown in FIG. 1d, the first substrate 201 in the present application may be at least one of the following materials: silicon, silicon on insulator (SOI), silicon on insulator (SSOI), Silicon germanium (S-SiGeOI), silicon germanium (SiGeOI) on insulator and germanium on insulator (GeOI) are laminated on the insulator.

可選地,在本發明中所述基板為矽或多晶矽基板,其厚度並不局限於某一數值範圍。Optionally, the substrate in the present invention is a silicon or polycrystalline silicon substrate, and its thickness is not limited to a certain numerical range.

在形成的所述第一基板201上可以劃分為SiC基元件區域和Si基元件區域,以分別形成SiC基元件和Si基元件。The formed first substrate 201 may be divided into a SiC-based element region and a Si-based element region to form a SiC-based element and a Si-based element, respectively.

其中,所述SiC基元件和Si基元件包括有源元件和/或無源元件; 所述有源元件包括電晶體和二極體中的至少一種; 所述無源元件包括射頻、負載和電容器中的至少一種。Wherein, the SiC-based element and Si-based element include an active element and / or a passive element; the active element includes at least one of a transistor and a diode; the passive element includes a radio frequency, a load, and a capacitor At least one of.

所述第二基板包括從第一基板的表面向上依次設置的立方相碳化矽基底203、非晶碳化矽層204和單晶碳化矽層205。The second substrate includes a cubic phase silicon carbide substrate 203, an amorphous silicon carbide layer 204, and a single crystal silicon carbide layer 205, which are sequentially arranged from the surface of the first substrate upward.

可選地,所述立方相碳化矽基底為3C-SiC。碳化矽是一種Ⅳ-Ⅳ族化合物半導體材料,具有多種同素異構類型。其典型結構可分為兩類,一類是閃鋅礦結構的立方碳化矽晶型,稱為3C-SiC或β-SiC,這裡3指的是週期性性次序中面的數目。Optionally, the cubic silicon carbide substrate is 3C-SiC. Silicon carbide is a group IV-IV compound semiconductor material with many isomeric types. Its typical structure can be divided into two types, one is the cubic silicon carbide crystal form of the sphalerite structure, called 3C-SiC or β-SiC, where 3 refers to the number of faces in the periodic order.

基本的SiC的晶體是四顆碳原子和一顆矽原子交替以sp3所鍵結而成的四角型晶體,碳原子和碳原子之間的鍵結距離為3.08埃,碳原子和矽原子之間的鍵結距離為1.89埃。依各種不同原子堆疊方式,會有不同的SiC晶體型態,目前已知的型態就高達170種晶體型態。不同晶體型態的碳化矽其性質也有所不同,如前述的3C、6H、4H、15R,C表示立方體(cubic)結構,H表示六角型(hexagonal)結構,R表示菱形六面體(rhombohedron),數字表示堆疊的週期排列個數。3C是以ABC的順序堆疊而成,4H-SiC和6H-SiC則分別以ABCB和ABCACB的不同順序堆疊而成。The basic SiC crystal is a tetragonal crystal in which four carbon atoms and one silicon atom are alternately bonded by sp3. The bonding distance between the carbon atom and the carbon atom is 3.08 angstroms. The bond distance is 1.89 Angstroms. There are different types of SiC crystals according to different atomic stacking methods, and currently up to 170 crystal types are known. Different crystal types of silicon carbide have different properties, such as the aforementioned 3C, 6H, 4H, 15R, C represents a cubic structure, H represents a hexagonal structure, and R represents a rhombohedron. The number indicates the number of periodic arrangements of the stack. 3C is stacked in the order of ABC, and 4H-SiC and 6H-SiC are stacked in different orders of ABCB and ABCACB, respectively.

碳化矽/矽結構生長最主要生長方法為化學氣相沉積(Chemial Vapor Deposition,CVD)為主,大都為非晶、多晶α-SiC薄膜或者3C-SiC薄膜為主。The main growth method of silicon carbide / silicon structure growth is chemical vapor deposition (CVD), and most of them are amorphous, polycrystalline α-SiC films or 3C-SiC films.

可選地,所述立方相碳化矽基底的厚度為0.1-1.0μm,例如所述立方相碳化矽基底的厚度為0.1μm、0.2μm、0.4μm、0.5μm、0.7μm、0.9μm或1μm。Optionally, the thickness of the cubic phase silicon carbide substrate is 0.1-1.0 μm, for example, the thickness of the cubic phase silicon carbide substrate is 0.1 μm, 0.2 μm, 0.4 μm, 0.5 μm, 0.7 μm, 0.9 μm, or 1 μm.

具體地,在該步驟中在所述第一基板201的部分區域表面形成所述立方相碳化矽基底203。Specifically, in this step, the cubic silicon carbide substrate 203 is formed on a surface of a partial region of the first substrate 201.

可選地,在所述SiC基元件區域中形成所述立方相碳化矽基底203。Optionally, the cubic silicon carbide substrate 203 is formed in the SiC-based element region.

在所述單晶碳化矽層上和/或所述第一基板上形成有源元件和/或無源元件。Active elements and / or passive elements are formed on the single crystal silicon carbide layer and / or on the first substrate.

首先去除所述罩幕層,例如所述第一基板,然後在所述單晶碳化矽層上和/或所述第一基板上形成有源元件和/或無源元件。First, the mask layer, such as the first substrate, is removed, and then an active element and / or a passive element is formed on the single crystal silicon carbide layer and / or the first substrate.

其中,所述有源元件包括電晶體和二極體中的至少一種; 所述無源元件包括射頻、負載和電容器中的至少一種。Wherein, the active element includes at least one of a transistor and a diode; and the passive element includes at least one of a radio frequency, a load, and a capacitor.

形成所述有源元件和/或無源元件的方法可以選用本領域常用的方法,並不局限於某種。The method for forming the active element and / or the passive element may be selected from methods commonly used in the art, and is not limited to a certain method.

本發明的所述SiC基基板的性能和良率得到極大的提高。 實施例三The performance and yield of the SiC-based substrate of the present invention are greatly improved. Example three

本發明的另一個實施例提供一種電子裝置,其包括半導體元件,該半導體元件為前述實施例二中的半導體元件,或根據實施例一所述的半導體元件的製備方法所制得的半導體元件。Another embodiment of the present invention provides an electronic device including a semiconductor element, which is the semiconductor element in the foregoing second embodiment, or a semiconductor element obtained by the method for manufacturing a semiconductor element according to the first embodiment.

該電子裝置,可以是手機、平板電腦、筆記型電腦、上網本、遊戲機、電視機、VCD、DVD、導航儀、照相機、攝像機、錄音筆、MP3、MP4、PSP等任何電子產品或設備,也可以是具有上述半導體的中間產品,例如:具有該積體電路的手機主機板等。The electronic device can be any electronic product or device such as a mobile phone, tablet computer, notebook computer, netbook, game console, television, VCD, DVD, navigator, camera, video camera, voice recorder, MP3, MP4, PSP, etc. It may be an intermediate product having the above semiconductor, for example, a mobile phone motherboard having the integrated circuit.

其中,第3圖示出行動電話手機的示例。行動電話手機300 被設置有包括在外殼301中的顯示部分302、操作按鈕303、外部連接埠304、揚聲器305、話筒306 等。FIG. 3 shows an example of a mobile phone. The mobile phone 300 is provided with a display portion 302, an operation button 303, an external port 304, a speaker 305, a microphone 306, and the like included in the housing 301.

其中所述行動電話手機包括前述的半導體元件,所述半導體元件包括:第一基板;第二基板位於所述第一基板上,所述第二基板包括從第一基板的表面向上依次設置的立方相碳化矽基底、非晶碳化矽層和單晶碳化矽層。所述電子裝置具有上述半導體元件的所有優點。Wherein, the mobile phone handset includes the aforementioned semiconductor element, the semiconductor element includes: a first substrate; a second substrate is located on the first substrate; and the second substrate includes cubes arranged in order from the surface of the first substrate upward. Phase silicon carbide substrate, amorphous silicon carbide layer and single crystal silicon carbide layer. The electronic device has all the advantages of the semiconductor element described above.

本發明已經利用上述實施例進行了說明,但應當理解的是,上述實施例只是用於舉例和說明的目的,而非意在將本發明限制於所描述的實施例範圍內。此外本領域技術人員可以理解的是,本發明並不局限於上述實施例,根據本發明的教導還可以做出更多種的變型和修改,這些變型和修改均落在本發明所要求保護的範圍以內。本發明的保護範圍由附屬的權利要求書及其等效範圍所界定。The present invention has been described using the above embodiments, but it should be understood that the above embodiments are only for the purpose of illustration and description, and are not intended to limit the present invention to the scope of the described embodiments. In addition, those skilled in the art can understand that the present invention is not limited to the above-mentioned embodiments. According to the teachings of the present invention, more variations and modifications can be made, and these variations and modifications all fall within the scope of protection of the present invention. Within range. The scope of protection of the present invention is defined by the appended claims and their equivalents.

201‧‧‧第一基板201‧‧‧First substrate

202‧‧‧罩幕層202‧‧‧Cover layer

203‧‧‧立方相碳化矽基底203‧‧‧ Cubic Phase Silicon Carbide Substrate

204‧‧‧非晶碳化矽層204‧‧‧Amorphous silicon carbide layer

205‧‧‧單晶碳化矽層205‧‧‧Single crystal silicon carbide layer

300‧‧‧行動電話手機300‧‧‧ mobile phone

301‧‧‧外殼301‧‧‧shell

302‧‧‧顯示部分302‧‧‧Display section

303‧‧‧操作按鈕303‧‧‧Operation buttons

304‧‧‧外部連接埠304‧‧‧External port

305‧‧‧揚聲器305‧‧‧Speaker

306‧‧‧話筒306‧‧‧microphone

本發明的下列附圖在此作為本發明的一部分用於理解本發明。附圖中示出了本發明的實施例及其描述,用來解釋本發明的原理。 附圖中:The following drawings of the present invention are used herein as a part of the present invention to understand the present invention. The drawings illustrate embodiments of the invention and their descriptions to explain the principles of the invention. In the drawings:

第1a圖至第1d圖示出了本發明一個實施方式的半導體元件的製造方法的相關步驟所獲得的元件的結構示意圖;FIG. 1a to FIG. 1d are schematic diagrams showing the structure of an element obtained by the relevant steps of the method for manufacturing a semiconductor element according to an embodiment of the present invention;

第2圖示出了本發明一個實施方式的半導體元件的製造方法的製程流程圖;FIG. 2 shows a process flow chart of a method for manufacturing a semiconductor device according to an embodiment of the present invention;

第3圖示出了本發明一實施例中的電子裝置的示意圖。FIG. 3 is a schematic diagram of an electronic device according to an embodiment of the invention.

Claims (16)

一種半導體元件的製造方法,包括:提供第一基板;在所述第一基板上形成立方相碳化矽基底;對所述立方相碳化矽基底進行非晶處理,以在所述立方相碳化矽基底的頂部形成非晶碳化矽層;對所述非晶碳化矽層進行再結晶處理,以在所述非晶碳化矽層的頂層形成單晶碳化矽層。A method for manufacturing a semiconductor element includes: providing a first substrate; forming a cubic phase silicon carbide substrate on the first substrate; and performing an amorphous treatment on the cubic phase silicon carbide substrate to form the cubic phase silicon carbide substrate An amorphous silicon carbide layer is formed on top of the amorphous silicon carbide layer; the amorphous silicon carbide layer is recrystallized to form a single crystal silicon carbide layer on top of the amorphous silicon carbide layer. 根據權利要求1所述的製造方法,其中所述立方相碳化矽基底為3C-SiC層,所述單晶碳化矽層為6H-SiC層。The manufacturing method according to claim 1, wherein the cubic phase silicon carbide substrate is a 3C-SiC layer, and the single crystal silicon carbide layer is a 6H-SiC layer. 根據權利要求1所述的製造方法,其中所述立方相碳化矽基底的沉積氣源包括SiHCl3、C3H8和H2;和所述立方相碳化矽基底的沉積壓力為0.1Torr-1Torr;和所述立方相碳化矽基底的沉積溫度為950℃-1200℃;和所述立方相碳化矽基底的厚度為0.1μm-1.0μm。The manufacturing method according to claim 1, wherein the cubic silicon carbide substrate comprises a deposition gas source SiHCl 3, C 3 H 8 and H 2; and the deposition pressure phase cubic silicon carbide substrate is 0.1Torr-1Torr ; And the deposition temperature of the cubic phase silicon carbide substrate is 950 ° C. to 1200 ° C .; and the thickness of the cubic phase silicon carbide substrate is 0.1 μm to 1.0 μm. 根據權利要求1所述的製造方法,其中所述非晶處理係利用電子束輻射的方法進行。The manufacturing method according to claim 1, wherein said amorphous processing is performed by a method of electron beam irradiation. 根據權利要求4所述的製造方法,其中所述電子束輻射的加速電壓在1MV以上,和所述電子束輻射的強度為1×1024m-2 S-1以上。The manufacturing method according to claim 4, wherein an acceleration voltage of the electron beam radiation is 1 MV or more, and an intensity of the electron beam radiation is 1 × 10 24 m -2 S -1 or more. 根據權利要求4所述的製造方法,其中所述電子束輻射的溫度在170K以上,和所述電子束輻射的直徑為1μm-3μm。The manufacturing method according to claim 4, wherein a temperature of the electron beam radiation is 170K or more, and a diameter of the electron beam radiation is 1 m to 3 m. 根據權利要求1所述的製造方法,其中所述再結晶處理包括對所述非晶碳化矽層進行雷射退火,以使所述非晶碳化矽層頂部表面的溫度至1500℃以上。The manufacturing method according to claim 1, wherein the recrystallization treatment includes laser annealing the amorphous silicon carbide layer so that a temperature of a top surface of the amorphous silicon carbide layer becomes 1500 ° C. or more. 根據權利要求7所述的製造方法,其中所述雷射退火使用脈衝雷射退火,脈衝為10ns-30ns,迴圈次數為5000-50000次。The manufacturing method according to claim 7, wherein the laser annealing uses pulsed laser annealing, the pulse is 10ns-30ns, and the number of loops is 5000-50000 times. 根據權利要求7所述的製造方法,其中所述雷射退火使用波長為308nm的XeCl脈衝氣體雷射。The manufacturing method according to claim 7, wherein the laser annealing uses a XeCl pulsed gas laser having a wavelength of 308 nm. 根據權利要求1所述的製造方法,其中所述方法還包括在所述單晶碳化矽層上和所述第一基板上形成有源元件和無源元件的步驟;所述有源元件包括電晶體和二極體中的至少一種;所述無源元件包括射頻、負載和電容器中的至少一種。The manufacturing method according to claim 1, wherein the method further comprises a step of forming an active element and a passive element on the single-crystal silicon carbide layer and on the first substrate; the active element includes electricity At least one of a crystal and a diode; the passive element includes at least one of a radio frequency, a load, and a capacitor. 根據權利要求1所述的製造方法,其中所述第一基板包括矽基板,所述立方相碳化矽基底位於部分所述矽基板上。The manufacturing method according to claim 1, wherein the first substrate comprises a silicon substrate, and the cubic silicon carbide substrate is located on a part of the silicon substrate. 一種半導體元件,包括:第一基板;第二基板,其位於所述第一基板上,所述第二基板包括從第一基板的表面向上依次設置的立方相碳化矽基底、非晶碳化矽層和單晶碳化矽層。A semiconductor element includes a first substrate and a second substrate located on the first substrate. The second substrate includes a cubic phase silicon carbide substrate and an amorphous silicon carbide layer sequentially arranged from the surface of the first substrate upward. And single crystal silicon carbide layer. 根據權利要求12所述的半導體元件,其中所述立方相碳化矽基底為3C-SiC,所述單晶碳化矽層為6H-SiC。The semiconductor element according to claim 12, wherein the cubic phase silicon carbide substrate is 3C-SiC, and the single crystal silicon carbide layer is 6H-SiC. 根據權利要求12所述的半導體元件,其中所述立方相碳化矽基底的厚度為0.1μm-1.0μm。The semiconductor element according to claim 12, wherein a thickness of the cubic phase silicon carbide substrate is 0.1 μm to 1.0 μm. 根據權利要求12所述的半導體元件,其中在所述第一基板和所述第二基板上形成有源元件和無源元件;所述有源元件包括電晶體和二極體中的至少一種;所述無源元件包括射頻、負載和電容器中的至少一種。The semiconductor element according to claim 12, wherein an active element and a passive element are formed on the first substrate and the second substrate; the active element includes at least one of a transistor and a diode; The passive element includes at least one of a radio frequency, a load, and a capacitor. 一種電子裝置,其中所述電子裝置包括權利要求12至15之一所述的半導體元件。An electronic device, wherein the electronic device includes the semiconductor element according to any one of claims 12 to 15.
TW106141268A 2017-07-18 2017-11-28 A semiconductor device, the method of making the same and an electronic device TWI660077B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
??201710587405.3 2017-07-18
CN201710587405.3A CN109273405B (en) 2017-07-18 2017-07-18 Semiconductor device, manufacturing method thereof and electronic device

Publications (2)

Publication Number Publication Date
TW201908544A TW201908544A (en) 2019-03-01
TWI660077B true TWI660077B (en) 2019-05-21

Family

ID=65152644

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106141268A TWI660077B (en) 2017-07-18 2017-11-28 A semiconductor device, the method of making the same and an electronic device

Country Status (2)

Country Link
CN (1) CN109273405B (en)
TW (1) TWI660077B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5880491A (en) * 1997-01-31 1999-03-09 The United States Of America As Represented By The Secretary Of The Air Force SiC/111-V-nitride heterostructures on SiC/SiO2 /Si for optoelectronic devices

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4897244B2 (en) * 2005-06-14 2012-03-14 昭和電工株式会社 Silicon carbide layer manufacturing method, gallium nitride based semiconductor device, and silicon substrate
JP5155536B2 (en) * 2006-07-28 2013-03-06 一般財団法人電力中央研究所 Method for improving the quality of SiC crystal and method for manufacturing SiC semiconductor device
JP5360639B2 (en) * 2008-02-05 2013-12-04 学校法人関西学院 Surface modified single crystal SiC substrate, single crystal SiC substrate with epitaxial growth layer, semiconductor chip, seed substrate for single crystal SiC growth, and method for producing polycrystalline SiC substrate with single crystal growth layer
US8389348B2 (en) * 2010-09-14 2013-03-05 Taiwan Semiconductor Manufacturing Company, Ltd. Mechanism of forming SiC crystalline on Si substrates to allow integration of GaN and Si electronics
CN102651310B (en) * 2012-04-09 2014-07-16 中国电子科技集团公司第五十五研究所 Wide bandgap monocrystal film prepared from multiple buffer layers and method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5880491A (en) * 1997-01-31 1999-03-09 The United States Of America As Represented By The Secretary Of The Air Force SiC/111-V-nitride heterostructures on SiC/SiO2 /Si for optoelectronic devices

Also Published As

Publication number Publication date
CN109273405B (en) 2021-06-08
TW201908544A (en) 2019-03-01
CN109273405A (en) 2019-01-25

Similar Documents

Publication Publication Date Title
JP7321189B2 (en) Gallium oxide semiconductor structure and preparation method thereof
JP4844330B2 (en) Silicon carbide semiconductor device manufacturing method and silicon carbide semiconductor device
TWI280662B (en) Heterojunction field effect transistors using silicon-germanium and silicon-carbon alloys
US20150206743A1 (en) Silicon carbide epitaxy
US9576793B2 (en) Semiconductor wafer and method for manufacturing the same
US20140117382A1 (en) Epitaxial Wafer, Method for Fabricating the Wafer, and Semiconductor Device Including the Wafer
US8097499B2 (en) Semiconductor device and methods thereof
CN107634099B (en) Two-dimensional crystal material field effect transistor and preparation method thereof
JP2014045183A (en) Semiconductor structure, semiconductor device, and method for producing semiconductor structure
GB2484506A (en) Heterogrowth
JP5997258B2 (en) Stacked substrate of silicon single crystal and group III nitride single crystal having off-angle, and method for manufacturing the same
TWI660077B (en) A semiconductor device, the method of making the same and an electronic device
US20200123677A1 (en) Three-dimensionally stretchable single crystalline semiconductor membrane
KR20220167795A (en) A seed layer, a heterostructure including the seed layer, and a method of forming a material layer using the seed layer
CN107546299B (en) Modified Ge material of direct band gap based on GeSiC selective epitaxy and preparation method thereof
KR102681366B1 (en) Silicon carbide epi wafer
CN109273525A (en) A kind of GaN device and its manufacturing method, electronic device
JP4107564B2 (en) Method for producing single crystal silicon carbide
CN108987463A (en) Semiconductor devices including graphene and the method for manufacturing the semiconductor devices
TWI849265B (en) Composite structure targeting rf applications, handle substrate for use therein, and process for forming the same
GB2514268A (en) Silicon carbide epitaxy
KR102156349B1 (en) Methods of fabricating surface-stress released crystalline SiC thin film structure
US11417519B2 (en) High mobility silicon on flexible substrates
WO2024048764A1 (en) Crystal, layered structure, element, electronic device, electronic apparatus, and system
TW202040750A (en) Method of forming an rf silicon on insulator device