TWI659363B - 修改之二維碼及用於產生此等碼之雷射系統及方法 - Google Patents

修改之二維碼及用於產生此等碼之雷射系統及方法 Download PDF

Info

Publication number
TWI659363B
TWI659363B TW104106252A TW104106252A TWI659363B TW I659363 B TWI659363 B TW I659363B TW 104106252 A TW104106252 A TW 104106252A TW 104106252 A TW104106252 A TW 104106252A TW I659363 B TWI659363 B TW I659363B
Authority
TW
Taiwan
Prior art keywords
points
substrate
laser
scope
patent application
Prior art date
Application number
TW104106252A
Other languages
English (en)
Other versions
TW201602918A (zh
Inventor
賈斯汀D 雷德
Original Assignee
美商伊雷克托科學工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商伊雷克托科學工業股份有限公司 filed Critical 美商伊雷克托科學工業股份有限公司
Publication of TW201602918A publication Critical patent/TW201602918A/zh
Application granted granted Critical
Publication of TWI659363B publication Critical patent/TWI659363B/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/06009Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
    • G06K19/06037Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking multi-dimensional coding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/44Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using single radiation source per colour, e.g. lighting beams or shutter arrangements
    • B41J2/442Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using single radiation source per colour, e.g. lighting beams or shutter arrangements using lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/01Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for special character, e.g. for Chinese characters or barcodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/14Security printing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/06009Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
    • G06K19/06046Constructional details
    • G06K19/06084Constructional details the marking being based on nanoparticles or microbeads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/06009Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
    • G06K19/06046Constructional details
    • G06K19/06178Constructional details the marking having a feature size being smaller than can be seen by the unaided human eye

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Laser Beam Processing (AREA)

Abstract

一二維碼內之各資料點可由一點散佈表示。可使各點足夠小以對人眼不可見,使得該二維碼在透明或非透明材料上或內可能不可見。該等點可以一較大距離間隔以增加一光碼讀取器之信雜比。一雷射可用於產生該等點。

Description

修改之二維碼及用於產生此等碼之雷射系統及方法 【著作權聲明】
©2015 Electro Scientific Industries公司。本專利文件之揭示內容之一部分包含受著作權保護之材料。著作權所有人並不反對任何人對如出现於專利及商標局之專利檔案或記錄中之專利文件或專利揭示內容之複製再現,但除此之外任何情況下保留所有著作權。37 CFR § 1.71(d)。
本申請案係關於二維碼,且特定言之,係關於用於產生此等碼之雷射系統及方法。
二維識別(2DID)碼(諸如快速回應(QR)碼及GS1 DataMatrix(DM)碼)係廣泛地用於產品追蹤及提供各種資訊之一矩陣條碼之類型。QR碼包含在一淺色背景下配置於一方格內之填充之深色正方形(黑色正方形)且適於藉由一成像裝置(諸如一相機)之高速擷取。在此等碼中,各正方形表示一資料點。典型方格圖案在從每列或每行11個正方形至177個正方形之範圍中。獲取影像之水平及垂直分量中之圖案可顯露或啟動(諸如)用於商業追踪、娛樂及交通票務、產品標示、產品營銷、行動電話標籤、優惠券、顯示文字、添加電子卡聯繫人資訊、打開一URL或URI或撰 寫電子郵件或文字訊息之寫碼資訊。QR碼由一ISO標準涵蓋,且其使用係免授權。QR碼產生網站及應用程式廣泛地可用,因而使用者可產生及列印其等自身QR碼以供其他者掃描。(參閱http://en.wikipedia.org/wiki/QR_code。)一例示性QR碼展示於圖1中。
GS1 DataMatrix碼亦由若干ISO及IEC標準(15424及15459)涵蓋且對於許多應用程式係免授權。參閱http://en.wikipedia.org/wiki/Data_Matrix。GS1 DataMatrix碼產生資源亦廣泛地可用。使用http://datamatrix.kaywa.com產生之一例示性GS1 DataMatrix碼展示於圖2中。
存在用於在多種材料上及以許多不同大小標記此等DM或2DID碼之方法。例如,一些2DID碼可使用傳統列印技術列印於標示上,刻印於金屬中及雕刻於墓碑石中。
提供本發明內容以按簡化形式引入例示性實施例之詳細描述中進一步描述之概念之選擇。本發明內容並非易欲識別主張之標的之關鍵或本質發明概念,或並非易欲限制或決定主張之標的之概念。
在一些實施例中,一二維碼由具有一對比背景之一基板上或內之一點散佈表示,其中該點散佈包括多個群組之點,該等群組之點包含第一及第二群組之點,其中該等第一及第二群組之點之各者代表一幾何形狀,使得該點散佈形成一陣列之多列及多行幾何區域,其中該等幾何區域之一些包含一群組之點且該等幾何區域之一些缺少點。
在一些替代、額外或累積實施例中,一種用於利用一二維識 別碼標記一基板之方法包括產生雷射脈衝且在該基板處導向該等雷射脈衝以在該基板上或內形成一點散佈,其中該點散佈表示該二維碼且包括多個群組之點,該等群組之點包含第一及第二群組之點,其中該等第一及第二群組之點之各者代表一幾何形狀,使得該點散佈形成一陣列之多列及多行幾何區域,其中該等幾何區域之一些包含一群組之點且該等幾何區域之一些缺少點。
在一些替代、額外或累積實施例中,一種用於在一工件之一 基板上或內利用一二維識別碼標記一基板之雷射微加工系統,其中該二維碼包含一陣列之幾何形狀區域,其中指定該等幾何形狀區域之一些且未指定該等幾何形狀區域之一些,該雷射微加工系統包括:一雷射,其用於沿著一束軸產生雷射脈衝;一工件支撐系統,其用於移動該工件;一束定位系統,其用於朝著該工件導向該束軸,使得一雷射脈衝可操作以在該基板上標記一點;及一控制器,其用於協調該工件支撐系統及該束定位系統之相對移動,且用於針對表示該等指定幾何形狀區域之該等群組之點實施該二維碼之指定幾何形狀區域至該基板上之相對位置之轉換。
在一些替代、額外或累積實施例中,該代表性幾何形狀係一 矩形幾何形狀,且該等第一及第二群組之點經定位以表示該矩形幾何形狀之隅角。
在一些替代、額外或累積實施例中,該等第一及第二群組之 點各包含一偶數數量之點。
在一些替代、額外或累積實施例中,該等第一及第二群組之 點各包含一奇數數量之點。
在一些替代、額外或累積實施例中,表示該二維碼之該點散佈在離一人眼之大於或等於25mm之一距離下對該人眼不可見。
在一些替代、額外或累積實施例中,該陣列具有大於50微米之一陣列維數。
在一些替代、額外或累積實施例中,該陣列具有大於500微米之一陣列維數。
在一些替代、額外或累積實施例中,該陣列具有小於或等於500微米之一陣列維數。
在一些替代、額外或累積實施例中,該陣列具有小於或等於50微米之一陣列維數。
在一些替代、額外或累積實施例中,該陣列具有小於或等於1mm之一陣列維數。
在一些替代、額外或累積實施例中,該等群組之點在離該人眼之大於或等於25mm之一距離下對該人眼不可見。
在一些替代、額外或累積實施例中,各點在離該人眼之大於或等於25mm之一距離下對該人眼不可見。
在一些替代、額外或累積實施例中,各點具有小於35微米之一主空間軸之一維數。
在一些替代、額外或累積實施例中,各點具有一主空間軸之一點維數,且其中大於或等於該主空間軸之該點維數之四倍的一距離使該等點分離。
在一些替代、額外或累積實施例中,該等幾何區域表示一 QR碼中之正方形。
在一些替代、額外或累積實施例中,該等幾何區域表示一Data Matrix碼中之正方形。
在一些替代、額外或累積實施例中,各點由一雷射脈衝或由一群組之雷射脈衝形成。
在一些替代、額外或累積實施例中,各點由一雷射脈衝或群組之雷射脈衝形成,各雷射脈衝具有短於或等於50ps之一脈衝寬度。
在一些替代、額外或累積實施例中,該等點係黑色且該基板係淺色。
在一些替代、額外或累積實施例中,該等點製成淺色標記且該基板係黑色。
在一些替代、額外或累積實施例中,該等點係黑色且其中該基板大體上對可見光透明。
在一些替代、額外或累積實施例中,該基板對可見光不透明。
在一些替代、額外或累積實施例中,該基板包括一結晶材料。
在一些替代、額外或累積實施例中,該基板包括藍寶石。
在一些替代、額外或累積實施例中,該基板包括一非結晶材料。
在一些替代、額外或累積實施例中,該基板包括玻璃。
在一些替代、額外或累積實施例中,該基板包括一塑膠。
在一些替代、額外或累積實施例中,該基板包括鋁。
在一些替代、額外或累積實施例中,該等雷射脈衝經導向以 在形成一第二群組之點之前循序形成一第一群組之點。
在一些替代、額外或累積實施例中,該等雷射脈衝經導向以 在形成該第一群組中之一第二點之前形成第一及第二群組之各者中之一第一點。
在一些替代、額外或累積實施例中,一束定位系統及一工件 支撐系統協作以相對於該基板上之位置定位該等雷射脈衝之該等點,且其中該等點至位置之定位準確性比10微米更差。
在一些替代、額外或累積實施例中,其中一束定位系統及一 基板支撐系統協作以相對於該基板上之位置定位該等雷射束之該等點,且其中該等點至位置之定位準確性比5微米更差。
在一些替代、額外或累積實施例中,一束定位系統及一基板 支撐系統協作以相對於該基板上之位置定位該等雷射脈衝之該等點,且該等點至位置之定位準確性比1微米更差。
在一些替代、額外或累積實施例中,該群組之點提供大於或 等於5之一信雜比。
在一些替代、額外或累積實施例中,群組之點之間之間距或 外部分離可表示信號振幅,且協調之束定位及工件支撐系統之不確定性或最大不準確性可表示雜訊。
在一些替代、額外或累積實施例中,增加該等群組之點之間 之該間距或外部分離以增加該信雜比。
在一些替代、額外或累積實施例中,採用一控制器以針對該 等群組之點將該二維碼之黑色正方形轉換為該基板上之各自位置。
在一些替代、額外或累積實施例中,採用一控制器以針對該等群組之點將該二維碼之黑色正方形轉換為該基板上之各自位置。
在一些替代、額外或累積實施例中,該陣列在一列或一行中包括至少50個幾何區域。
在一些替代、額外或累積實施例中,該二維識別碼易欲為機器可讀。
額外態樣及優點將從參考附圖進行之較佳實施例之以下詳細描述了解。
10‧‧‧方格圖案
12‧‧‧縮小標記/標記
14‧‧‧放大標記/標記
16‧‧‧邊緣
18‧‧‧未對準標記/標記
30‧‧‧群組
32‧‧‧點
40‧‧‧雷射微加工系統
42‧‧‧表面
44‧‧‧基板
46‧‧‧工件
50‧‧‧雷射
52‧‧‧雷射脈衝
54‧‧‧控制器
60‧‧‧光學路徑
62‧‧‧雷射光學器件
64‧‧‧摺疊鏡
66‧‧‧衰減器或脈衝拾取器
68‧‧‧回饋感測器
70‧‧‧雷射束定位系統
72‧‧‧束軸
80‧‧‧焦點
82‧‧‧雷射台
84‧‧‧迅速定位器台/迅速定位器Z台
86‧‧‧工件台
88‧‧‧空間能量散佈
90‧‧‧腰部
92‧‧‧主軸
94‧‧‧主軸
96‧‧‧距離
98‧‧‧距離
100‧‧‧晶圓
104‧‧‧表面
106‧‧‧表面
130‧‧‧塗層材料
140‧‧‧平坦表面
142‧‧‧平坦表面
150‧‧‧外罩
圖1係一習知QR碼之一實例。
圖2係一習知GS1 DataMatrix碼之一實例。
圖3展示一方格上疊加之一2DID碼之一部分之雷射製成之較小「黑色正方形」。
圖4係用於替換一2DID碼之一填充之深色正方形之雷射點之一例示性圖案之一放大表示。
圖5係圖2之一修改版之Data Matrix碼,其中用圖4之點之圖案替換各填充之深色正方形。
圖5A係有利於內部分離距離、外部分離距離與間距之間之區別的圖5之一放大部分。
圖6係適於產生一修改之2DID碼之點之一例示性雷射微加工系統之一些組件之簡化及部分示意性透視圖。
圖7展示一雷射脈衝焦點及其束腰部之一圖。
圖8係具有由一塗層材料及一外罩覆蓋之一粗糙表面之一 藍寶石晶圓之一截面側視圖。
下文參考附圖描述實例實施例。在不偏離於本揭示內容之精神及教示下許多不同形式及實施例係可行的且因而本揭示內容不應視為限於本文提出之實例實施例。相反,提供此等實例實施例,使得本揭示內容將為徹底及完整的且將本揭示內容之範疇傳遞給熟悉此項技術者。在圖中,為了清楚起見可擴大組件之大小及相對大小。本文中使用之術語僅為了描述特定實例實施例之目的且並不意欲限制。如本文所使用,除非上下文另有清楚指示,否則單數形式「一」、「一個」及「該」亦意欲包含複數形式。將進一步理解,當在本說明書中使用時,術語「包括(comprises及/或comprising)」指定所陳述之特徵、整體、步驟、操作、元件及/或組件之存在,但是並不排除一個或多個其他特徵、整體、步驟、操作、元件、組件及/或其等群組之存在或添加。除非另有指定,否則陳述時之一範圍之值包含範圍之上限及下限兩者以及介於其中之任何子範圍。
已(諸如)藉由使用TRACKinside®技術(參閱http://www.totalbrandsecurity.com/?page_id=209#&panel1-1)在玻璃內部標記一些2DID碼。裝備有在多種參數組合下操作之適當雷射,由美國俄勒岡州波特蘭之Electro Scientific Industries公司製造之許多雷射微加工系統(諸如型號MM5330及MM5900)亦適於在各種材料(諸如陶瓷、玻璃、金屬或其等組合)上或內製成2DID碼。
隨著在較小部件上標記已為所期望,2DID碼之大小已變得 更小。而且,「不可見」2DID碼之可用性對於一些應用(諸如對於用作無阻擋之視角為所期望而通過之螢幕之透明材料,或諸如對於可用於各種目的(諸如偵測真品與偽品)之專屬資訊或隱秘製造商標示)有用。
用於使一2DID碼不可見之一方法係縮小碼之大小直至黑色 正方形之整個陣列太小而不可用人眼看見。人眼之理論最大角解析度係對應於1.0米之一距離下之d=0.35mm(350微米)及2.0米之一距離下之d=0.7mm之一點大小之1.2弧分。為了方便起見,此最大角解析度可表達為:d 0.35x mm,其中d係以毫米為單位之點大小且x係以米為單位之從眼睛至點之距離。
但是,在較近距離(諸如用於閱讀一行動電話螢幕之一典型 距離(大約25cm))下,2DID碼將必須更小以不可見(大約87.5微米),且個別正方形必須甚至更小。即使可採用一雷射以使個別正方形足夠小,但黑色正方形將最有可能經大小調整以在一單個雷射脈衝下等於點大小。 例如,一習知較小雷射點大小(諸如大約5微米)將限制此不可見2DID碼以在一列或一行上包含至多17個正方形。雷射點大小之微小之實際限制一般接受為大約採用雷射之波長之兩倍,因而小於大約1微米或2微米之點大小可能採用起來較困難及昂貴。因此,對於更明顯之2DID碼縮小,存在大量成本及技術限制。
圖3展示疊加於一方格圖案10上之一2DID碼之一部分之 模擬之雷射製成之「黑色正方形」。實際雷射及材料可引起呈模糊、扭曲之形狀之雷射標記,該等形狀並非適當地對準且並非完全黑色,而是灰色陰影。所有此等因素(模糊、形狀扭曲、未對準及低對比度陰影)導致關於 一特定正方形應分類為「黑色」還是「白色」之較少確定性。此等因素之一些可源自不可預測之雷射腔效應、光學組件之瞬態或長期未對準或束定位組件及雷射時序之瞬態或長期不協調。此等不確定性統稱為「雜訊」。
圖3中所示之此等雷射製成之黑色正方形及網格圖案顯露 此等問題可如何隨著一2DID碼之縮小而增加雜訊。特定言之,圖3展示一縮小標記12、一放大標記14及由系統雜訊引起之非均勻邊緣16。圖3亦展示可由束定位或基板定位系統中之位置不準確性或坐標不準確性或關於此等系統及雷射脈衝產生之時序不準確性引起之一未對準標記18。此等扭曲標記(特定言之,標記14及18)可甚至在最精密光學器件及誤差校正軟體下對光碼讀取器解釋產生困難。
標記之2DID碼之信雜比(SNR)決定碼是否將足夠不扭曲 之似然度以最小化讀取2DID碼之誤差。2DID碼中之個別正方形之大小與信號強度成比例,但個別正方形之形狀及大小之扭曲與雜訊成比例。而且,信號振幅可由表示各正方形之點之圖案之間之空間分離決定且雜訊振幅可由用於標記點之系統之準確性決定。因此,隨著個別正方形之大小變得更小,信號強度較低且碼更易受可在不盡完美之標記機器中發生之扭曲(諸如模糊或線扭曲)影響。
然而,俄勒岡州波特蘭之Electro Scientific Industries公司使 一雷射微加工系統藉由精確地控制系統組件之對準、時序及坐標且藉由限制雷射系統參數之處理窗以將小於10微米之雷射點精確地傳遞至一工件46(圖6)上之所期望位置來成功地克服許多此等問題。在一特定實施例中,製成一126×126微米陣列之正方形之一顯微2DID碼,其中各指定黑色正 方形由一4至5微米點表示。而且,用於製成此2DID碼之雷射微加工系統非常大且採用非常昂貴之組件。
為了利用一雷射降低用於產生不可見2DID碼之系統成本, 申請者追求一完全不同之範例。申請者決定2DID碼可由包含使人眼對2DID碼之各黑色正方形不可見之一群組之點的一修改之2DID碼表示,而非對付與將一整個2DID碼縮小至足夠小而對人眼不可見關聯之成本及問題。
圖4係用於替換一習知2DID碼之一填充之深色正方形之雷 射標記或點32之一例示性圖案或群組30之一放大表示。如前所述,為了方便起見,人眼之最大角解析度可表達為d 0.35x mm,其中d係以毫米為單位之雷射點之一主軸且x係以米為單位之從眼睛至點之距離。因而,對於大約125cm之一典型最小閱讀距離,2DID碼中之各點將必須具有擁有一點維數之一主軸,該點維數短於或等於大約44微米以對人眼不可見(放大時(諸如在顯微觀看下)仍可見)。
在用分組圖案實驗期間,申請者指出當不可見小點32緊密 地分組在一起時,其等可看似一較大大小之一單個點,因此使得點32之群組30變為可見。但是,當點32之中心至中心分離s如圖4中所示大於直徑之四倍(即,s 4d)時,基於實驗之經驗資料證實具有一直徑d之圓形形狀點32看似個別點(相對於看似一單個點之點之一叢集)。
簡單軟體可用於將一習知2DID碼轉換為一修改形式,其中 各黑色正方形(或各資料點)由小點32(子資料點)之一圖案表示,其中各個別點32經選擇以具有足夠小以對人眼不可見之一主空間軸d且任何兩個點32之間之中心至中心間距或距離大於個別點32之最大截面維數(例 如,主空間軸d)之四倍。因此,可選擇各點32之形狀以及點32之大小。 圓形點32通常最容易產生,但是例如,亦可採用正方形或橢圓形點32。類似地,形成各點32之空間能量分佈不需要為均勻。
一般而言,各點32之主空間軸d介於大約0.5微米與大約 90微米之間。(小於大約87.5微米之一主空間軸d在25cm之一距離下對人眼不可見。)在一些實施例中,點32之主空間軸d介於大約1微米與大約75微米之間,或點32之主空間軸d短於75微米。在一些實施例中,點32之主空間軸d介於大約1微米與大約50微米之間,或點32之主空間軸d短於50微米。(小於大約43.75微米之一主空間軸d在12.5cm之一距離下對人眼不可見。)在一些實施例中,點32之主空間軸d介於大約1微米與大約25微米之間,或點32之主空間軸d短於25微米。(小於大約22微米之一主空間軸d在6.25cm之一距離下對人眼不可見。一般而言,大約30微米或更小之一點大小在任何距離下對大多數人眼不可見,此歸因於人眼之解剖侷限及習知眼鏡之光學侷限。)在一些實施例中,點32之主空間軸d介於大約1微米與大約10微米之間,或點32之主空間軸d短於10微米。 在一些實施例中,點32之主空間軸d介於大約1.5微米與大約5微米之間,或點32之主空間軸d短於5微米。
一般而言,有利的是在不明顯增加雷射微加工系統之成本或 明顯增加光碼讀取器之成本下使點32之主空間軸d實際儘可能小(且至少足夠小,以便不會不利地影響待標記之基板)。將明白點32之主空間軸d製成得越小,最小點分離距離s在不會使點32之群組30可見下可製成得越小(且總體2DID碼之大小可製成得越小)。但是,亦將明白可存在使點32 以分離距離間隔之優點,該等分離距離明顯大於最小分離距離s以甚至在最小化點32之主空間軸d時增加信雜比。
為了簡單起見,各點32可在形狀及大小上類似,且形成有 一類似空間能量分佈;但是,若期望,對於特定點32,可刻意改變此等特性。而且,因為有利之信雜比,不同點32之間之特性上之非刻意差異並不引起光學讀取誤差。
在一些實施例中,基於大約1微米之一點大小及申請者之經 驗資料,最小分離距離s大於或等於4微米。在將以1mm×1mm場標記之一177×177 2DID碼之一例示性陣列中,1微米點32之間之分離距離s可大至大約5.6微米。當然,修改之2DID碼之場不需要如此小,因而最大分離距離s可由基板之大小除以2DID碼之一列或行中之幾何區域之數量決定。 例如,一177×177 2DID碼之一10cm×10cm場可在1微米點32之間提供大至一565微米分離距離s;一57×57 2DID碼之一20cm×20cm場可在1微米點32之間提提供大至3500微米分離距離s;或一21×21 2DID碼之一1mm×1mm場可在25微米點32之間提供大至大約40微米分離距離s。如前所述,較大分離距離s提供較大信雜比。而且,雷射微加工系統之性質可影響點32之間之分離距離s之選擇。例如,若一雷射微加工系統具有大約+/- 20微米之一點位置定位準確性,則40微米之一分離距離s可為有利。
一群組面積可由形成群組30中之點之散佈之周界之點32界 定。群組30中之各點32具有如先前討論之一點大小或點面積。一累積點面積可表示一群組30內之點32之點面積之和。在一些實施例中,累積點面積小於或等於少於群組面積之10%。在一些實施例中,累積點面積小於或等 於少於群組面積之5%。在一些實施例中,累積點面積小於或等於少於群組面積之1%。在一些實施例中,累積點面積小於或等於少於群組面積之0.5%。在一些實施例中,累積點面積小於或等於少於群組面積之0.1%。
圖5係圖2之一修改版之Data Matrix碼,其中用圖4之點 32之圖案替換陣列中之各黑色(指定)正方形。點32之群組30展示為具有配置成一圖案之四個點32,使得各點32定位成接近於一指定正方形或定位於一指定正方形之一隅角處。
修改之2DID碼陣列之場大小僅受待標記之工件46(圖6) 上之基板44之大小限制。在許多實施例中,場將小於20cm×20cm且大於50微米×50微米。在一些實施例中,場將小於或等於500微米×500微米(且大於1微米×1微米)。
在一些實施例中,場將小於或等於250微米×250微米(且 大於1微米×1微米)。在一些實施例中,場將小於或等於100微米×100微米(且大於1微米×1微米)。在一些實施例中,修改之2DID碼之大小將大於或等於600微米×600微米。在一些實施例中,修改之2DID碼之大小將小於或等於1mm×1mm。在一些實施例中,修改之2DID碼之大小將大於或等於1mm×1mm且小於或等於10mm×10mm。在一些實施例中,修改之2DID碼之大小將大於或等於1cm×1cm且小於或等於10cm×10cm。如先前提及,所選雷射微加工之性質可影響點大小且限制定位場。因為可存在用於最大化一些材料中之分離距離s之結構完整性或優點,所以基板之性質亦可影響陣列之場大小。此外,光碼讀取器之大小及成本與其等能力及碼偵測之處理能力亦可為決定2DID碼陣列之一適當場大小之因素。 最後,修改之2DIDI碼之目的可影響為其陣列所選之場大小。
將明白,陣列中之幾何區域不需要為正方形。例如,其等可 為三角形或六角形。而且,點32之數量及表示各幾何區域之一群組30中之點32之圖案可在某種程度上為任意或可經特定選擇。例如,五個點可表示各指定幾何區域(諸如一正方形),其中四個點32定位於隅角且一點32定位於中間。因此,各指定幾何區域可由一偶數數量之點或由一奇數數量之點表示。在此實施例中,點32之四者與中間點32分離達所選距離s,此係因為該距離s係群組30中之任何兩個點32之間之最短距離。因此,隅角(或周界)點分離達大於s之一距離。因此,一群組30中之點32(或最近鄰近點32)可分離達不等距離。
如先前提及,陣列中之指定幾何區域不需要由類似於幾何區 域之一幾何圖案表示。例如,一指定正方形幾何區域可由其他幾何圖案表示,該等幾何圖案包含(但不限於)矩形圖案、圓形圖案、六角形圖案、八角形圖案或三角形圖案。為了方便及簡單起見,各指定幾何區域可提供有點32之相同幾何圖案。但是,所選指定幾何區域可用一不同數量之點32、點32之圖案之一不同大小或點之一不同圖案標示。例如,一QR碼之位置正方形及/或對準正方形可由不同圖案或由不同大小之圖案表示。
參考圖3,相鄰標記之正方形之間不存在刻意分離,且標記 之正方形之間之間距具有相同於標記之正方形之側之維數。因此,在圖3中所示之實施例中,雜訊可相當於信號。但是,再次參考圖5,在許多實施例中,點32之鄰近群組30可分離達一外部分離距離e(從不同群組之相鄰點之間之最小分離距離)及一間距p(相鄰幾何區域或其等代表性群組之間 之中心至中心間隔)。圖5A係有利於內部分離距離s、外部分離距離e與間距p之間之區別的圖5之一放大部分。
在許多實施例中,間距p將不同於及大於外部分離距離e, 且間距p及外部分離距離e兩者將不同於且一般大於一群組30中之點32之間之所選最小分離距離s
而且,在一些實施例中,陣列中之列或行之間之外部分離距 離e可大於或等於1s以維持一所期望信雜比。將明白列之間之外部分離距離e可不同於行之間之外部分離距離e。亦將明白,對於列出點大小、場大小及一列或行中之群組30之數量之早先實例,列與行之間之外部分離距離e可使分離s減少了大於一半。
類似地,在一些實施例中,陣列中之列或行之間之間距p 可大於或等於1s以維持一所期望信雜比。吾亦將明白列之間之間距p可不同於行之間之間距p。亦將明白,對於列出點大小、場大小及一列或行中之群組30之數量之早先實例,列與行之間之間距p可使分離距離s減少了大於一半。
因此,亦可藉由使得幾何區域(諸如正方形)之整體大小比 由點32之圖案(若圖案分組於幾何區域之中心附近)界定之周界大得多來改進信雜比。
在一些實施例中,信號振幅可由外部分離距離e或間距p表 示。雜訊振幅可由點位置相對於基板上之一特定位置之不確定性或不準確性表示。例如,若標記點之雷射微加工系統具有+/- 20微米之一標記不準確性,則此不準確性將表示雜訊。所以,信雜比將為外部分離距離e或間 距p對標記不準確性之比率。若一雷射系統中固有之標記不準確性允許為較大或隨著時間推移變差,則可增加外部分離距離e或間距p以維持一適當信雜比。或者,若知道不準確性為一固定數字,則信雜比可藉由增加外部分離距離e或間距p而增加至一任意較大數字。
鑑於上述,信雜比可易於建立為大於5,該值根據羅斯準則 為能夠在100%確定下區分影像特征之最小信雜比。但是,應明白,可採用小於5之信雜比值。而且,本文描述之修改之二維碼可提供任意較大信雜比值,諸如大於或等於10,大於或等於100或大於或等於1000。
在一些替代實施例中,不使用陣列中之列或行之間之間隔, 使得相鄰指定幾何區域中之圖案可共用點32。例如,鄰近指定正方形幾何區域之兩個隅角圖案可沿著兩個正方形幾何區域之邊界共用兩個點32。光碼讀取器將必須經調適以辨識(例如)三對均勻間隔之點32表示兩個指定正方形。
無論陣列之大小,點32之間之分離距離s,外部分離距離e (若有的話)或列之間及行之間之間距距離p,群組30之所選圖案及幾何區域之大小及形狀如何,點32可轉換回指定幾何區域(諸如黑色正方形)。
如先前提及,如本文描述般修改2DID碼之優點包含用於使2DID碼在各種基板材料(透明材料或不透明材料)中對人眼不可見之方法。例示性材料包含陶瓷、玻璃、塑膠及金屬或其等組合。例示性材料可為結晶或非結晶。例示性材料可為天然或合成。例如,雷射微加工系統可在半導體晶圓材料(此氧化鋁或藍寶石)上或內製成適當大小之標記。雷射微加工系統亦可在玻璃、強化玻璃及Corning Gorilla GlassTM上或內製成適當大 小之標記。雷射微加工系統亦可在聚碳酸酯及丙烯酸酯上或內製成適當大小之標記。雷射微加工系統亦可在鋁、鋼及鈦上或內製成適當大小之標記。
修改之2DID碼之不可見標記不僅提供在不使透明材料模糊 下放置碼之一方法,而且提供將專屬資訊隱藏於修改之碼內之一方法。例如,多個圖案可提供於一修改之2DID碼內,其中僅圖案之一些包含專屬資訊。此外,小型及展開點32可經配置以在基板材料中看似不完整,因而使一競爭者或潛在複製者甚至難以知道存在修改之2DID碼。最後,可使修改之2DID碼比標準2DID碼更複雜,因而修改之2DID碼可更難以藉由一偽造者識別及複製。
無論是否使2DID碼不可見,修改之2DID碼藉由一任意較 大區域上之修改之碼之擴展實現較於習知2DID碼之信雜比(SNR)方面之較大改進。而且,無論點32是否不可見,修改之2DID碼減少誤差且減少誤差校正之成本及時間(處理能力)。
在一較大區域上擴展2DID碼之另一優點實現較便宜及較低 精確度雷射標記系統之使用,同時維持不可見性(若期望)。
如先前提及,點32可標記於工件46(圖6)之基板材料上 或內。對於許多應用,內部標記點32可為有利。不可見點32非常小且更可能使一些材料磨損或易於被磨耗。但是,內部標記不那麼容易正常磨損或磨耗。內部標記亦容許表面相對於灰塵或流體保持其等不透性且較不可能折衷結構完整性或促進表面裂縫伸展或其他表面缺陷。
一般而言,內部標記可包含一基板之表面之間之核心材料之 裂解、密度修改、孔洞產生、應力場或再結晶之一者或多者。
可經選擇以改進基板之雷射標記之可靠性及可重複性之例 示性雷射脈衝參數包含雷射類型、波長、脈衝持續時間、脈衝重複速率、脈衝之數量、脈衝能量、脈衝時間形狀、脈衝空間形狀及焦點大小及形狀。 額外雷射脈衝參數包含指定焦點相對於物件之表面之位置且相對於物件導向雷射脈衝之相對運動。
圖6係適於產生一修改之2DID碼之點之一例示性雷射微加 工系統40之一些組件之簡化及部分示意性透視圖。參考圖6,可操作用於在一工件46之基板44之一表面42上或下面標記點32之一些例示性雷射處理系統係ESI MM5330微加工系統、ESI ML5900微加工系統及ESI 5955微加工系統,上述所有者由俄勒岡州波特蘭97229之Electro Scientific Industries公司製造。
此等系統通常採用一固態二極體泵送之雷射,其可經組態以 在多達5MHz之脈衝重複速率下發射從大約266nm(UV)至大約1320nm(IR)之波長。但是,此等系統可由適當雷射、雷射光學器件、部件處置設備及控制軟體之代替或添加調適以如先前所描述般在基板44上或內可靠地及可重複地產生所選點32。此等修改允許雷射處理系統在所期望速率及雷射點或脈衝之間之間距下將具有適當雷射參數之雷射脈衝導向至一適當定位及保持之工件46上之所期望位置以產生具有所期望色彩、對比度及/或光學密度之所期望點32。
在一些實施例中,雷射微加工系統40採用在1064nm波長 下操作之一二極體泵送之Nd:YVO4固態雷射50,諸如由德國凱澤斯勞滕之Lumera Laser GmbH製造之一型號Rapid。可視情況使用一固態諧波頻率產生 器使此雷射頻率加倍以將波長減少至532nm,藉此產生可見(綠色)雷射脈衝,或頻率增至三倍至大約355nm或頻率增至四倍至大約266nm,藉此產生紫外線(UV)雷射脈衝。此雷射50為額定以產生6瓦特之連續功率且具有1000KHz之一最大脈衝重複速率。此雷射50在與控制器54協作下產生具有1微微秒至1,000奈秒之持續時間之雷射脈衝52(圖7)。
在一些實施例中,雷射微加工系統40採用具有大約1030nm 至1550nm之範圍內之一基波長之一二極體泵送之摻鉺光纖雷射。可視情況使用一固態諧波頻率產生器使此等雷射頻率加倍以將波長減少至大約515nm,藉此產生可見(綠色)雷射脈衝或減少至大約775nm,藉此產生(例如)可見(深紅色)雷射脈衝或頻率增至三倍至大約343nm或大約517nm或頻率增至四倍至大約257nm或大約387.5nm,藉此產生紫外線(UV)雷射脈衝。
此等雷射脈衝52可為高斯函數或由雷射光學器件62特別塑 形或定製,該雷射光學器件62通常包括沿著一光學路徑60定位以允許點32之所期望特性之一個或多個光學組件。例如,可使用一「頂帽」空間分佈,其傳遞在整個點32上具有撞擊基板44之一均勻劑量之輻射之一雷射脈衝12。可使用繞射光學元件或其他光束塑形組件產生諸如此類之特別塑形之空間分佈。可在Corey Dunsky等人之美國專利案第6,433,301號中發現修改雷射點32之空間輻照分佈之一詳細描述,該案受讓給本申請案之受讓人且以引用的方式併入本文中。
雷射脈衝52沿著一光學路徑60傳播,該光學路徑60亦可 包含摺疊鏡64、衰減器或脈衝拾取器(諸如聲光或電光裝置)66及回饋感 測器(諸如用於能量、時序或位置)68。
沿著光學路徑60之雷射光學器件62及其他組件與由控制器 54導向之一雷射束定位系統70協作來導向沿著光學路徑60傳播之雷射脈衝52之一束軸72以在一雷射點位置於接近於基板44之表面42處形成一雷射焦點80。雷射束定位系統70可包含:一雷射台82,其可操作以沿著一行進軸(諸如X軸)移動雷射50;及一迅速定位器台84,其沿著一行進軸(諸如Z軸)移動一迅速定位器(未展示)。一典型迅速定位器採用一對電流計受控鏡,其等能夠在基板44上之一較大場上快速改變束軸72之方向。此場如稍後所描述般通常小於由工件台86提供之移動場。一聲光裝置或一可變形鏡亦可用作迅速定位器,即使此等裝置趨向於比電流計鏡更小之束偏轉範圍。或者,一聲光裝置或一可變形鏡可用作除了電流計鏡之外之一高速定位裝置。
此外,工件46可由一工件台86支撐,該工件台86具有可 操作以相對於束軸72定位基板44之運動控制元件。工件台86可操作以沿著一單個軸(諸如Y軸)行進或工件台86可操作以沿著橫向軸(諸如X軸及Y軸)行進。或者,工件台86可操作以(諸如)圍繞一Z軸使工件46旋轉(單獨或以及沿著X軸及Y軸移動工件46)。
控制器54可協調雷射束定位系統70及工件台86之操作以 提供復合束定位能力,其有利於在基板42上或內標記點32,同時工件46可相對於束軸72呈連續相對運動。此能力並非為在基板42上標記點32所必需,但此能力可為增加之處理能力所期望。在Donald R.Cutler等人之美國專利案第5,751,585號中描述此能力,該案受讓給本申請案之受讓人且以 引用的方式併入本文中。可採用束定位之額外或替代方法。在Spencer Barrett等人之美國專利案第6,706,999號及Jay Johnson之第7,019,891號中描述束定位之一些額外或替代方法,該等案兩者受讓給本申請案之受讓人且以引用的方式併入本文中。
本文描述之多種束定位系統可經控制以在基板44上之一點 32之所期望位置之若干微米內提供雷射點位置之束定位準確性。但是,應注意,可利用較高成本組件、較大回饋控制及較慢系統處理能力實施高準確性。一般而言,歸因於由本文描述之修改之2DID碼供應之明顯增加之信雜比,束定位誤差可大至分離距離之一半。對於非常大之場,此可容許誤差可相當大,諸如1mm。但是,即使非常低成本之雷射微加工系統可達成較大準確性。申請者已決定針對許多實施例,甚至對於較小場,雷射點位置之誤差可大至基板44上之一點32之所期望位置之+/- 20微米。針對具有非常小之場之許多實施例,雷射點位置之誤差可大至基板44上之一點32之所期望位置之+/- 10微米。但是,對於最小化之場大小,雷射點位置之誤差可大至基板44上之一點32之所期望位置之+/- 1微米。
用於產生一126×126微米示範之+/- 0.5微米準確性雷射微 加工系統之成本可大大超過一百萬美元。用於+/- 20微米準確性雷射微加工系統之成本可為大約更準確機器之成本之十分之一(即,大約$100,000)。 而且,其他更準確機器大得多且要求一嚴格受控之溫度環境(及受控振動),但是+/- 20微米準確性機器明顯更小且可在不具有特殊侷限之一典型工廠環境中工作。
圖7展示焦點80及其束腰部90之一圖。參考圖7,雷射脈 衝52之焦點80將具有大部分由雷射光學器件62決定之一束腰部90(截面)及雷射能量散佈。點32之主空間軸d通常係束腰部之主軸之一函數且兩者可為相同或類似。但是,點32之主空間軸d可大於或小於束腰部之主軸。
雷射光學器件62可用於控制束腰部之焦深及因此基板44內 之點32之深度。藉由控制焦深,控制器54可導向雷射光學器件62及迅速定位器Z台84以在高精確度下在基板44之表面處或附近可重複地定位點32。藉由在基板44之表面42上方或下方定位焦點製成標記容許雷射束散焦一指定量且藉此增加由雷射脈衝照亮之區域且減少表面42處之雷射通量(減少至小於表面處之材料之損壞臨限值之一量)。因為知道束腰部之幾何,所以在基板之實際表面42上方或下方或內精確地定位焦點80將對主空間軸d及通量提供額外精確度控制。
在(諸如)用於標記透明材料(諸如藍寶石)之一些實施例 中,可藉由從基板44之表面42上調整雷射點之位置以位於基板44內之一精確距離而在基板44之核心處精確地控制雷射通量。參考圖7,束腰部90表示為由FWHM方法量測之沿著束軸72之一雷射脈衝52之一空間能量散佈88。若雷射微加工系統40在表面42上方之一距離96處使雷射脈衝52聚焦,則主軸92表示表面42上之雷射脈衝點大小。若雷射處理系統在表面下方之一距離98處使雷射脈衝聚焦,則主軸94表示表面42上之雷射脈衝點大小。針對點32之內部標記為所期望之大多數實施例,焦點80經導向以定位於基板44內,而非其表面42上方或下方。可在除了焦點80之外以低於基板材料之燒蝕臨限值之一量採用通量或輻照,在該焦點80處通量或輻照集中於超過基板材料之燒蝕臨限值。
在一些實施例中,可採用雷射脈衝之群組以產生一單個點 32。特定言之,雷射參數可經選擇以使得各雷射脈衝影響小於用於一點32之所期望大小之一區域。在此等案例中,複數個雷射脈衝可導向於一單個位置直至點32達到一所期望大小(該大小仍可能未能由人眼偵測)。雷射脈衝之群組可在相對運動中或在大體上相對靜止位置中傳遞。
可針對一些實施例有利地採用之雷射參數包含使用具有在 從IR至UV,或更特定言之,從大約10.6微米下至大約266nm之範圍中之波長之雷射50。雷射50可在1W至100W,或更佳地,1W至12W之範圍中之2W下操作。脈衝持續時間在從1微微秒至1000ns,或更佳地從大約1微微秒至200ns之範圍中。雷射重複速率可在從1KHz至100MHz,或更佳地,從10KHz至1MHz之一範圍中。雷射通量可在從大約0.1×10-6J/cm2至100.0J/cm2,或更特定言之,從1.0×10-2J/cm2至10.0J/cm2之範圍中。 束軸72相對於正被標記之基板44移動之速度在從1mm/s至10m/s,或更佳地,從100mm/s至1m/s之範圍中。基板44上之相鄰列之點32之間之間距或間隔可在從1微米至1000微米,或更佳地,從10微米至100微米之範圍中。基板44之表面42處量測之雷射脈衝52之主空間軸d可在從10微米至1000微米或從50微米至500微米之範圍中。當然,若點32易欲為不可見,則主空間軸d較佳地小於大約50微米。雷射脈衝52之焦點80相對於基板44之表面42之升高可在從-10mm至+10mm或從-5mm至+5mm之範圍中。在用於表面標記之許多實施例中,焦點80定位於基板44之表面42處。針對內部標記之許多實施例,焦點80定位於基板44之表面42下面(基板之表面之間)。針對內部標記之一些實施例,焦點80定位於基板44 之表面42下面之至少10微米處。針對內部標記之一些實施例,焦點80定位於基板44之表面42下面之至少50微米處。針對內部標記之一些實施例,焦點80定位於基板44之表面42下面之至少100微米處。
申請者發現一次表面焦點80之使用與產生在從1微微秒至 1,000微微秒之範圍中之雷射脈衝寬度之微微秒雷射之使用可提供在一些透明半導體基板(諸如藍寶石)內可靠地及可重複地產生標記之一較好方法。在一些實施例中,可採用在從1ps至100ps之範圍中之脈衝寬度。在一些實施例中,可採用在從5ps至75ps之範圍中之脈衝寬度。在一些實施例中,可採用在從10ps至50ps之範圍中之脈衝寬度。可推測產生10毫微微秒至1000毫微微秒範圍中之波長之毫微微秒雷射可替代地提供較好結果。但是,使用微微秒雷射之一優點在於其等便宜得多,要求少得多之維護且通常具有比現有毫微微秒雷射長得多之操作壽命。
雖然可如先前討論在各種波長下完成標記,但申請者發現在 微微秒範圍中操作之IR雷射特定提供可重複之較好結果。在1064nm下或1064nm附近之波長特別有利。一例示性雷射50係一Lumera 6W雷射。將明白可採用光纖雷射或其他類型之雷射。
類似參數亦可用於在金屬或塗覆金屬(諸如陽極化鋁)中製 成不可見次表面標記。為陽極化鋁基板44定製標記詳細描述於美國專利案第8,379,679號中及美國專利公開案第2013-0208074號中,該等案兩者為Haibin Zhang等人所有且該等案兩者受讓給本申請案之受讓人且該等案兩者以引用的方式併入本文中。
如先前討論,可藉由在基板材料處選擇性導向雷射輸出來內 部標記透明半導體基板材料。基板44之內部標記保持表面42之完整性,諸如其防水及防塵。內部標記亦減少由表面標記產生之裂縫伸展及其他不利效果。
參考圖8,申請者亦已指出從單晶塊切割之晶圓100或其他 半導體基板材料趨向於具有擁有粗糙表面紋理之表面104及106。在其等自然態中之此等表面104及106之表面紋理可不利地影響基板100處導向之雷射脈衝52之光學性質。
申請者亦決定具有擁有粗糙紋理之一粗糙表面104或106 (諸如一未拋光表面)之基板100可能難以在不會對表面104或106引起損壞下內部標記。
可藉由採用有效地提供一平坦表面140或142以接收雷射輸 出110之一塗層材料130來減輕粗糙表面之不利光學效果。平坦表面140表示塗層材料130之上表面。平坦表面142係用於塗層材料130之一外罩150之平坦表面。塗層材料130具有與基板折射率光學相容之一塗層折射率。
塗層折射率可在基板折射率之折射率之2內(諸如在攝氏 25度下)。塗層折射率可在基板折射率之折射率之1內。塗層折射率可在基板折射率之折射率之0.5內。塗層折射率可在基板折射率之折射率之0.2內。 塗層折射率可在1.2與2.5之間。塗層折射率可在1.5與2.2之間。塗層折射率可在1.7與2.0之間。塗層折射率可在1.75與1.85之間。外罩亦可具有此等範圍中之匹配折射率。
塗層材料130可包括流體、膠體或油。塗層材料130可具有 大於攝氏180度之一沸點(諸如在760mm Hg下)。塗層材料可具有2g/cc 與5g/cc之間之一密度(諸如在攝氏25度下)。塗層材料可具有2.5g/cc與4g/cc之間之一密度。塗層材料130可具有3g/cc與3.5g/cc之間之一密度。
在一些實施例中,塗層材料可包括二碘甲烷。塗層材料可包 括一寶石折射計液體。塗層材料可在雷射處理期間維持流體性質。塗層材料可包括一水準測量組合物。較佳的是,在雷射處理之後塗層材料130易於從粗糙表面移除。可藉由丙酮、四氯化碳、乙醚、二氯甲烷、甲苯、二甲苯或其等組合從粗糙表面清洗塗層材料130,或可藉由水從粗糙表面清洗塗層材料130,或可藉由乙醇從粗糙表面清洗塗層材料130。
外罩150可對雷射波長透明。外罩150可包括基板材料。外 罩150可包括在該波長下不具反射性之一光滑外罩表面。外罩150可包括一玻璃。外罩150可包括一藍寶石、金剛石、矽或塑膠。
此等粗糙表面減輕技術描述於Haibin Zhang等人之美國臨時 專利申請案第61/912,192號中,該案以引用的方式併入本文中。
雖然在本文中已藉由實例對2DID碼進行以上描述,但熟練 人員可明白藉由利用深度控制以用於標記透明基板44,可建構採用點32之3D碼。
上述繪示本發明之實施例且並非解釋為限制本發明。雖然已 描述若干特定實例實施例,但是熟悉此項技術者將易於明白在不實質上脫離於本發明之新穎教示及優點下對揭示之例示性實施例以及其他實施例之許多修改係可行的。
因此,所有此等修改易欲包含於如申請專利範圍中定義之本 發明之範疇內。例如,熟練人員將明白,任何句子或段落之標的可與其他 句子或段落之一些或所有之標的組合,除非此等組合互斥。
對於熟悉此項技術者顯而易見的是可在不脫離於本發明之基本原理下對上文描述之實施例之細節作出許多改變。因此,本發明之範疇應由以下申請專利範圍決定,其中申請專利範圍之等效例將包含於其中。

Claims (20)

  1. 一種用於利用一二維識別碼標記一基板之方法,其中該二維識別碼係藉由一陣列之指定幾何區域和未指定幾何區域所呈現,其包括:產生雷射脈衝;及在該基板處導向該等雷射脈衝以在該基板上或內形成一點散佈,其中該點散佈表示該二維碼且包括多個群組之點,該等群組之點包含第一及第二群組之點,其中該等第一及第二群組之點各自包括多個間隔開的點,其中該等第一及第二群組之點之各者代表一指定幾何形狀,使得該點散佈形成一陣列之多列及多行幾何區域,其中該等幾何區域之一些包含一群組之點且該等幾何區域之一些缺少點,使得缺乏點的該等幾何區域代表該等未指定幾何區域。
  2. 如申請專利範圍第1項之方法,其中該指定幾何形狀係一矩形幾何形狀,且其中該等第一及第二群組之點經定位以表示該矩形幾何形狀之隅角。
  3. 如申請專利範圍第1項之方法,其中該等第一及第二群組之點各包含一奇數數量之點。
  4. 如申請專利範圍第1項之方法,其中表示該二維碼之該點散佈在離一人眼之大於或等於25mm之一距離下對該人眼不可見。
  5. 如申請專利範圍第1項之方法,其中該陣列具有大於50微米之一陣列維數。
  6. 如申請專利範圍第1項之方法,其中該等點各具有一主空間軸之一維數,且其中該等點分離達大於或等於該主空間軸之該維數之四倍的一距離。
  7. 如申請專利範圍第1項之方法,其中一束定位系統及一基板支撐系統協作以相對於該基板上之位置定位該等雷射脈衝之該等點,且其中一些點至位置之定位準確性比5微米更差。
  8. 如申請專利範圍第1項之方法,其中該點散佈提供大於或等於5之一信雜比。
  9. 如申請專利範圍第1項之方法,其中採用一控制器以針對該等群組之點將該二維碼之黑色正方形轉換為該基板上之各自位置。
  10. 一種用於在一工件之一基板上或內利用一二維識別碼標記一基板之雷射微加工系統,其中該二維碼包含一陣列之幾何形狀區域,其中指定該等幾何形狀區域之一些且未指定該等幾何形狀區域之一些,該雷射微加工系統包括:一雷射,其用於沿著一束軸產生雷射脈衝;一工件支撐系統,其用於移動該工件;一束定位系統,其用於朝著該工件導向該束軸,使得一或多個雷射脈衝可操作以在該基板上標記一點;及一控制器,其用於協調該工件支撐系統及該束定位系統之相對移動,且用於實施藉由雷射脈衝該二維碼之各個指定幾何形狀區域至該基板上之預期位置之轉換,以形成表示該指定幾何形狀區域之多個間隔開的點之圖案。
  11. 一種二維識別碼,其包括:一點散佈,其在具有一對比背景之一基板上或內,其中該點散佈包括多個群組之點,該等群組之點包含第一及第二群組之點,其中該等第一及第二群組之點各自包括多個間隔開的點,其中該等第一及第二群組之點之各者代表一指定幾何形狀,使得該點散佈形成一陣列之多列及多行幾何區域,其中該等幾何區域之一些包含一群組之點且該等幾何區域之一些缺少點,使得缺乏點的該等幾何區域代表未指定幾何區域。
  12. 如申請專利範圍第11項之二維識別碼,其中該代表性幾何形狀係一矩形幾何形狀,且其中該等第一及第二群組之點經定位以表示該矩形幾何形狀之隅角。
  13. 如申請專利範圍第11項之二維識別碼,其中該等第一及第二群組之點各包含一奇數數量之點。
  14. 如申請專利範圍第11項至申請專利範圍第13項中任何一項之二維識別碼,其中該二維識別碼在離一人眼之大於或等於25mm之一距離下對該人眼不可見。
  15. 如申請專利範圍第11項至申請專利範圍第14項中任何一項之二維識別碼,其中該等第一及第二群組之該等點各具有擁有小於35微米之一維數之一主空間軸。
  16. 如申請專利範圍第11項至申請專利範圍第15項中任何一項之二維識別碼,其中該等點各具有一主空間軸之一維數,且其中該等點分離達大於或等於該主空間軸之該維數之四倍的一距離。
  17. 如申請專利範圍第11項至申請專利範圍第16項中任何一項之二維識別碼,其中該等幾何區域表示一QR碼中之正方形。
  18. 如申請專利範圍第11項至申請專利範圍第17項中任何一項之二維識別碼,其中該等點係黑色且其中該基板大體上對可見光透明。
  19. 如申請專利範圍第11項至申請專利範圍第18項中任何一項之二維識別碼,其中該基板包括一塑膠。
  20. 如申請專利範圍第11項至申請專利範圍第18項中任何一項之二維識別碼,其中該基板包括鋁。
TW104106252A 2014-02-28 2015-02-26 修改之二維碼及用於產生此等碼之雷射系統及方法 TWI659363B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/194,455 2014-02-28
US14/194,455 US9269035B2 (en) 2014-02-28 2014-02-28 Modified two-dimensional codes, and laser systems and methods for producing such codes

Publications (2)

Publication Number Publication Date
TW201602918A TW201602918A (zh) 2016-01-16
TWI659363B true TWI659363B (zh) 2019-05-11

Family

ID=54006934

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104106252A TWI659363B (zh) 2014-02-28 2015-02-26 修改之二維碼及用於產生此等碼之雷射系統及方法

Country Status (5)

Country Link
US (1) US9269035B2 (zh)
KR (1) KR20160126977A (zh)
CN (1) CN106030617B (zh)
TW (1) TWI659363B (zh)
WO (1) WO2015130698A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9594937B2 (en) * 2014-02-28 2017-03-14 Electro Scientific Industries, Inc. Optical mark reader
EP3120293B1 (en) * 2014-03-17 2019-08-14 Agfa Nv A decoder and encoder for a digital fingerprint code
US9710680B2 (en) 2014-12-17 2017-07-18 International Business Machines Corporation Creating mechanical stamps to produce machine-readable optical labels
JP7350720B2 (ja) * 2017-09-11 2023-09-26 トレレボリ シーリング ソリューションズ ジャーマニー ゲー・エム・ベー・ハー シール検出システム及び方法
CN112601632A (zh) 2018-05-25 2021-04-02 拉瑟拉克斯公司 具有抗喷丸处理的标识符的金属工件、用于激光标记这样的标识符的方法和系统
CN110626086B (zh) * 2018-06-25 2022-03-29 武汉华工激光工程有限责任公司 一种玻璃激光内雕微型二维码的方法
EP3712717A1 (fr) * 2019-03-19 2020-09-23 Comadur S.A. Methode pour marquer une glace de montre en saphir

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200634638A (en) * 2005-01-11 2006-10-01 Seiko Epson Corp Identification code drawing method, substrate, display module, and electronic apparatus
US20070038464A1 (en) * 2003-08-11 2007-02-15 Kazuo Sato 2-Dimensional code formation method and formation device
US20120211566A1 (en) * 2009-09-17 2012-08-23 Uwe Hensel High-density barcodes for medical consumables
US20130208074A1 (en) * 2010-02-11 2013-08-15 Electro Scientific, Industries, Inc. Method and apparatus for reliably laser marking articles
US20130341400A1 (en) * 2012-06-20 2013-12-26 Apple Inc. Compression and Obfuscation of Three-Dimensional Coding

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5737122A (en) 1992-05-01 1998-04-07 Electro Scientific Industries, Inc. Illumination system for OCR of indicia on a substrate
GB2281129B (en) 1993-08-19 1997-04-09 United Distillers Plc Method of marking a body of glass
US5726435A (en) 1994-03-14 1998-03-10 Nippondenso Co., Ltd. Optically readable two-dimensional code and method and apparatus using the same
US5751585A (en) 1995-03-20 1998-05-12 Electro Scientific Industries, Inc. High speed, high accuracy multi-stage tool positioning system
US5894530A (en) 1996-09-05 1999-04-13 Electro Scientific Industries, Inc. Optical viewing system for simultaneously viewing indicia located on top and bottom surfaces of a substrate
TW482705B (en) 1999-05-28 2002-04-11 Electro Scient Ind Inc Beam shaping and projection imaging with solid state UV Gaussian beam to form blind vias
TWI253315B (en) 2002-06-28 2006-04-11 Fih Co Ltd Forming pattern on the anodized surface of an object and a portable electronic device cover with the pattern
JP3923866B2 (ja) 2002-07-19 2007-06-06 株式会社キーエンス 二次元コード読取装置設定方法、二次元コード読取設定装置、二次元コード読取装置設定プログラムおよびコンピュータ読取可能な記録媒体
US6706999B1 (en) 2003-02-24 2004-03-16 Electro Scientific Industries, Inc. Laser beam tertiary positioner apparatus and method
US7133182B2 (en) 2004-06-07 2006-11-07 Electro Scientific Industries, Inc. AOM frequency and amplitude modulation techniques for facilitating full beam extinction in laser systems
US20060213994A1 (en) 2005-03-22 2006-09-28 Faiz Tariq N Barcode reading apparatus and method therefor
US7589869B2 (en) 2006-04-28 2009-09-15 Electro Scientific Industries, Inc. Adjusting image quality using multi-wavelength light
JP4958489B2 (ja) 2006-06-30 2012-06-20 株式会社キーエンス レーザ加工装置、レーザ加工条件設定装置、レーザ加工条件設定方法、レーザ加工条件設定プログラム
US9168696B2 (en) 2012-06-04 2015-10-27 Sabic Global Technologies B.V. Marked thermoplastic compositions, methods of making and articles comprising the same, and uses thereof
KR100941415B1 (ko) 2007-10-23 2010-02-10 삼성전자주식회사 액체 바코드 및 액체 바코드 판독 장치
US8678287B2 (en) 2008-02-12 2014-03-25 Datalogic ADC, Inc. Two-plane optical code reader for acquisition of multiple views of an object
CN101615258B (zh) * 2008-06-27 2013-03-13 银河联动信息技术(北京)有限公司 部分覆盖的二维码防伪标签及其形成方法
FR2936336A1 (fr) 2008-09-23 2010-03-26 Advanced Track Trace Procede et dispositif d'authentification de codes geometriques
US8322621B2 (en) 2008-12-26 2012-12-04 Datalogic ADC, Inc. Image-based code reader for acquisition of multiple views of an object and methods for employing same
US20110089039A1 (en) 2009-10-16 2011-04-21 Michael Nashner Sub-Surface Marking of Product Housings
US8379679B2 (en) 2010-02-11 2013-02-19 Electro Scientific Industries, Inc. Method and apparatus for reliably laser marking articles
CN102163291B (zh) * 2010-02-22 2013-04-24 上海镭立激光科技有限公司 激光标刻多重加密二维码指纹防伪认证方法和系统
WO2012035552A2 (en) 2010-09-14 2012-03-22 Nitin Jindal Generating a code system using haar wavelets
US20120327214A1 (en) * 2011-06-21 2012-12-27 HNJ Solutions, Inc. System and method for image calibration
US8860227B2 (en) * 2011-06-22 2014-10-14 Panasonic Corporation Semiconductor substrate having dot marks and method of manufacturing the same
KR101144083B1 (ko) 2011-09-21 2012-05-15 박병호 Qr코드 표시물, 이를 이용한 qr코드 판매방법 및 정보제공방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070038464A1 (en) * 2003-08-11 2007-02-15 Kazuo Sato 2-Dimensional code formation method and formation device
TW200634638A (en) * 2005-01-11 2006-10-01 Seiko Epson Corp Identification code drawing method, substrate, display module, and electronic apparatus
US20120211566A1 (en) * 2009-09-17 2012-08-23 Uwe Hensel High-density barcodes for medical consumables
US20130208074A1 (en) * 2010-02-11 2013-08-15 Electro Scientific, Industries, Inc. Method and apparatus for reliably laser marking articles
US20130341400A1 (en) * 2012-06-20 2013-12-26 Apple Inc. Compression and Obfuscation of Three-Dimensional Coding

Also Published As

Publication number Publication date
US20150248602A1 (en) 2015-09-03
TW201602918A (zh) 2016-01-16
KR20160126977A (ko) 2016-11-02
WO2015130698A1 (en) 2015-09-03
US9269035B2 (en) 2016-02-23
CN106030617B (zh) 2020-01-14
CN106030617A (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
TWI659363B (zh) 修改之二維碼及用於產生此等碼之雷射系統及方法
US9594937B2 (en) Optical mark reader
TWI829703B (zh) 雷射加工設備、其操作方法以及使用其加工工件的方法
KR101278433B1 (ko) 목표 표면재를 가공하기 위한 레이저 기반의 방법 및시스템 그리고 그에 따라 생산된 물품
JP5774277B2 (ja) 超短レーザ微細テクスチャ印刷
US20150158116A1 (en) Method and apparatus for internally marking a substrate having a rough surface
JP6474810B2 (ja) 薄層の内部にマーキングするためのレーザシステム並びに方法及びこれにより作製される対象物
CN107111293B (zh) 经由具有对准特征的独立侧部测量的适应性零件轮廓建立
JP2010120844A (ja) ガラスに表面下マークを付ける方法
JP6412156B2 (ja) 管理情報を設けた製品
TW201733728A (zh) 在雷射加工系統中的像平面之定位
TWI651654B (zh) 光學標記讀取器
GB2552406A (en) Laser processing
CN107925217A (zh) 用于处理透明材料的方法及设备
Heath et al. Ultrafast multi-layer subtractive patterning
CN103407301A (zh) 一种能用于透明材料包装的商品防伪的激光内部刻写的方法
KR101369588B1 (ko) 유리기판 인사이드 마킹 장치
Nakazumi et al. Laser marking on soda-lime glass by laser-induced backside wet etching with two-beam interference
US20080165406A1 (en) Subsurface Reticle
Zhang et al. Laser marking micro ID for wafer identification
Wlodarczyk et al. Shaping the surface of Borofloat 33 glass with ultrashort laser pulses and a spatial light modulator

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees