TWI658700B - Integrated circuit, multi-channels transmission apparatus and signal transmission method thereof - Google Patents
Integrated circuit, multi-channels transmission apparatus and signal transmission method thereof Download PDFInfo
- Publication number
- TWI658700B TWI658700B TW107124463A TW107124463A TWI658700B TW I658700 B TWI658700 B TW I658700B TW 107124463 A TW107124463 A TW 107124463A TW 107124463 A TW107124463 A TW 107124463A TW I658700 B TWI658700 B TW I658700B
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- clock signal
- signals
- circuit
- clock
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 90
- 238000000034 method Methods 0.000 title claims abstract description 12
- 230000008054 signal transmission Effects 0.000 title claims abstract description 11
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 230000001960 triggered effect Effects 0.000 claims description 4
- 230000001360 synchronised effect Effects 0.000 claims description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical compound [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 12
- 238000010586 diagram Methods 0.000 description 10
- 101100368146 Arabidopsis thaliana SYNC2 gene Proteins 0.000 description 8
- 229910000086 alane Inorganic materials 0.000 description 6
- 101000821257 Homo sapiens Syncoilin Proteins 0.000 description 5
- 102100021919 Syncoilin Human genes 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 239000000872 buffer Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/0091—Transmitter details
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K21/00—Details of pulse counters or frequency dividers
- H03K21/38—Starting, stopping or resetting the counter
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K5/00—Manipulating of pulses not covered by one of the other main groups of this subclass
- H03K5/13—Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
- H03K5/135—Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals by the use of time reference signals, e.g. clock signals
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/099—Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/14—Channel dividing arrangements, i.e. in which a single bit stream is divided between several baseband channels and reassembled at the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/02—Speed or phase control by the received code signals, the signals containing no special synchronisation information
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Power Engineering (AREA)
- Synchronisation In Digital Transmission Systems (AREA)
- Dc Digital Transmission (AREA)
Abstract
一種積體電路、多通道傳輸裝置及其信號傳輸方法。多通道傳輸裝置包括前級電路、時脈信號產生器以及後級電路。前級電路接收多個第一時脈信號以及多個資料信號,選擇第一時脈信號的其中之一以作為基準時脈信號,依據基準時脈信號以傳送資料信號並分別產生多個中繼信號。時脈信號產生器依據第二時脈信號以產生第一時脈信號,其中,第二時脈信號的頻率高於第一時脈信號的頻率。後級電路依據第二時脈信號以傳送中繼信號以分別產生多個輸出信號。其中,前級電路為數位電路,後級電路為類比電路。An integrated circuit, a multi-channel transmission device, and a signal transmission method thereof. The multi-channel transmission device includes a pre-stage circuit, a clock signal generator, and a post-stage circuit. The pre-stage circuit receives a plurality of first clock signals and a plurality of data signals, selects one of the first clock signals as a reference clock signal, transmits a data signal according to the reference clock signal, and generates a plurality of relays respectively. signal. The clock signal generator generates a first clock signal according to the second clock signal, wherein the frequency of the second clock signal is higher than the frequency of the first clock signal. The subsequent circuit transmits the relay signal according to the second clock signal to generate a plurality of output signals, respectively. Among them, the pre-stage circuit is a digital circuit, and the post-stage circuit is an analog circuit.
Description
本發明是有關於一種積體電路、多通道傳輸裝置以及其信號傳輸方法,且特別是有關於一種降低資料傳輸偏移(skew)的積體電路、多通道傳輸裝置以及其信號傳輸方法。The invention relates to an integrated circuit, a multi-channel transmission device and a signal transmission method thereof, and in particular to an integrated circuit, a multi-channel transmission device and a signal transmission method thereof for reducing data transmission skew.
隨著電子科技的進步,電子設備成為人們生活中的重要工具。電子設備中的積體電路常藉由多通道傳輸裝置的設置,用以提供高頻寬的資料傳輸能力。With the advancement of electronic technology, electronic equipment has become an important tool in people's lives. Integrated circuits in electronic equipment are often provided with multi-channel transmission devices to provide high-frequency data transmission capabilities.
然而,在多通道傳輸裝置中,經常可能產生資料傳輸的偏移(skew)而造成資料傳輸的延遲。資料傳輸的偏移可能肇因於多通道間時脈信號傳輸導線的走線差異、多通道之間類比電路與高速(序列)時脈信號與除頻後慢速(並列)時脈信號的相位差異以及跨區的時脈信號(Clock Domain Crossing, CDC)的差異等因素。However, in a multi-channel transmission device, a skew in data transmission may often occur and cause a delay in data transmission. The skew of data transmission may be caused by the difference in the routing of clock signal transmission wires between multiple channels, the analog circuits between multiple channels and the phase of high-speed (serial) clock signals and slow (parallel) clock signals after frequency division And other factors such as Clock Domain Crossing (CDC).
特別是,當發生亞穩態(metastability)狀態時,多通道傳輸裝置可能產生的資料傳輸偏移會被擴大,造成更嚴重的資料傳輸延遲。In particular, when a metastability state occurs, a data transmission offset that may be generated by a multi-channel transmission device is enlarged, resulting in more serious data transmission delays.
本發明提供一種積體電路、多通道傳輸裝置以及其信號傳輸方法,可有效減低資料傳輸時所產生的傳輸延遲。The invention provides an integrated circuit, a multi-channel transmission device and a signal transmission method thereof, which can effectively reduce the transmission delay generated during data transmission.
本發明的多通道傳輸裝置包括前級電路、時脈信號產生器以及後級電路。前級電路接收多個第一時脈信號以及多個資料信號,選擇第一時脈信號的其中之一以作為基準時脈信號,依據基準時脈信號以傳送資料信號並分別產生多個中繼信號。時脈信號產生器接收第二時脈信號,依據第二時脈信號以產生一時脈信號,其中,第二時脈信號的頻率高於第一時脈信號的頻率。後級電路耦接前級電路以及時脈信號產生器,依據第二時脈信號以傳送中繼信號以分別產生多個輸出信號。其中,前級電路包括並列旗標信號同步電路。並列旗標信號同步電路接收旗標信號,並依據基準時脈信號同步旗標信號以產生第一同步旗標信號,其中,前級電路結合第一同步旗標信號至各中繼信號中,並傳送至後級電路。其中,前級電路為數位電路,後級電路為類比電路。The multi-channel transmission device of the present invention includes a pre-stage circuit, a clock signal generator, and a post-stage circuit. The pre-stage circuit receives a plurality of first clock signals and a plurality of data signals, selects one of the first clock signals as a reference clock signal, transmits a data signal according to the reference clock signal, and generates a plurality of relays respectively. signal. The clock signal generator receives the second clock signal and generates a clock signal according to the second clock signal, wherein the frequency of the second clock signal is higher than the frequency of the first clock signal. The post-stage circuit is coupled to the pre-stage circuit and the clock signal generator, and transmits a relay signal to generate a plurality of output signals respectively according to the second clock signal. The preceding circuit includes a parallel flag signal synchronization circuit. The parallel flag signal synchronization circuit receives the flag signal and synchronizes the flag signal according to the reference clock signal to generate a first synchronization flag signal. The preceding circuit combines the first synchronization flag signal into each relay signal, and Transfer to the subsequent circuit. Among them, the pre-stage circuit is a digital circuit, and the post-stage circuit is an analog circuit.
本發明的積體電路包括多通道傳輸裝置。多通道傳輸裝置包括如前所述的時脈信號產生器、至少一如前所述的前級電路以及至少一如前所述的後級電路。The integrated circuit of the present invention includes a multi-channel transmission device. The multi-channel transmission device includes the clock signal generator as described above, at least one preceding stage circuit as described above, and at least one subsequent stage circuit as described above.
本發明的多通道信號傳輸方法包括:提供前級電路以接收多個第一時脈信號以及多個資料信號,選擇第一時脈信號的其中之一以作為基準時脈信號,並依據基準時脈信號以傳送資料信號並分別產生多個中繼信號;提供時脈信號產生器以依據第二時脈信號以產生第一時脈信號,其中第二時脈信號的頻率高於第一時脈信號的頻率;提供後級電路以依據第二時脈信號以傳送中繼信號以分別產生多個輸出信號;以及,使前級電路接收旗標信號,並依據基準時脈信號同步旗標信號以產生第一同步旗標信號,其中,前級電路結合第一同步旗標信號至各中繼信號中,並傳送至後級電路。其中,該前級電路為數位電路,該後級電路為類比電路。The multi-channel signal transmission method of the present invention includes: providing a pre-stage circuit to receive a plurality of first clock signals and a plurality of data signals, selecting one of the first clock signals as a reference clock signal, and according to the reference clock A clock signal is used to transmit data signals and generate multiple relay signals respectively; a clock signal generator is provided to generate a first clock signal based on a second clock signal, wherein the frequency of the second clock signal is higher than the first clock signal The frequency of the signal; providing a post-stage circuit to transmit the relay signal to generate multiple output signals according to the second clock signal; and causing the pre-stage circuit to receive the flag signal and synchronizing the flag signal based on the reference clock signal to A first synchronization flag signal is generated, wherein the first-stage circuit combines the first synchronization flag signal into each relay signal and transmits it to the subsequent-stage circuit. The pre-stage circuit is a digital circuit, and the post-stage circuit is an analog circuit.
基於上述,本發明透過將多通道傳輸裝置區分為數位電路的前級電路以及類比電路的後級電路。並透過使為類比電路的後級電路基於相對高頻率的第二時脈信號來進行資料傳輸的動作。如此一來,即使發生亞穩態(metastability)狀態時,也可有效降低所可能產生的資料傳輸偏移(skew),並提升資料傳輸的速度。Based on the above, the present invention distinguishes a multi-channel transmission device into a pre-stage circuit of a digital circuit and a post-stage circuit of an analog circuit. The subsequent stage circuit, which is an analog circuit, performs data transmission based on a relatively high frequency second clock signal. In this way, even when metastability occurs, it can effectively reduce the possible data transmission skew and increase the speed of data transmission.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above features and advantages of the present invention more comprehensible, embodiments are hereinafter described in detail with reference to the accompanying drawings.
請參照圖1,圖1繪示本發明一實施例的多通道傳輸裝置的示意圖。多通道傳輸裝置100包括前級電路110、後級電路120以及時脈信號產生器130。前級電路110耦接至時脈信號產生器130。前級電路110接收一多通道時脈CKx(p)與一多通道資料DTx(p),其中多通道時脈CKx(p)包含多個第一時脈信號PMAD_CK0~PMAD_CKN,多通道資料DTx(p)包含多個並列的資料信號DT0~DTN。前級電路110選擇多通道時脈CKx(p)其中之一的第一時脈信號PMAD_CK0~PMAD_CKN作為基準時脈信號。前級電路110依據基準時脈信號用以接收多通道資料DTx(p)以及輸出一多通道中繼信號MSx(p),其中,多通道中繼信號MSx(p)包含多個並列的中繼信號MS0~MSN。Please refer to FIG. 1, which is a schematic diagram of a multi-channel transmission device according to an embodiment of the present invention. The multi-channel transmission device 100 includes a pre-stage circuit 110, a post-stage circuit 120, and a clock signal generator 130. The pre-stage circuit 110 is coupled to the clock signal generator 130. The pre-stage circuit 110 receives a multi-channel clock CKx (p) and a multi-channel data DTx (p). The multi-channel clock CKx (p) includes multiple first clock signals PMAD_CK0 ~ PMAD_CKN, and the multi-channel data DTx ( p) Contains multiple parallel data signals DT0 ~ DTN. The pre-stage circuit 110 selects the first clock signal PMAD_CK0 ~ PMAD_CKN as one of the multi-channel clocks CKx (p) as the reference clock signal. The pre-stage circuit 110 receives multi-channel data DTx (p) and outputs a multi-channel relay signal MSx (p) according to the reference clock signal. The multi-channel relay signal MSx (p) includes multiple parallel relays. Signals MS0 ~ MSN.
後級電路120耦接至前級電路110以及時脈信號產生器130。後級電路120依據第二時脈信號CK(s)用以接收多通道中繼信號MSx(p),以及輸出一多通道輸出信號TXPNx(s),其中多通道輸出信號TXPNx(s)包含多個序列的輸出信號TXPN0~TXPNN。而時脈信號產生器130用以接收第二時脈信號CK(s),並依據第二時脈信號CK(s)以產生多通道時脈CKx(p)。其中,多通道時脈CKx(p)的頻率皆低於第二時脈信號CK(s)的頻率。The post-stage circuit 120 is coupled to the pre-stage circuit 110 and the clock signal generator 130. The post-stage circuit 120 receives the multi-channel relay signal MSx (p) and outputs a multi-channel output signal TXPNx (s) according to the second clock signal CK (s). The multi-channel output signal TXPNx (s) includes multiple signals. The output signals TXPN0 ~ TXPNN of each sequence. The clock signal generator 130 is configured to receive the second clock signal CK (s) and generate a multi-channel clock CKx (p) according to the second clock signal CK (s). Among them, the frequency of the multi-channel clock CKx (p) is lower than the frequency of the second clock signal CK (s).
在本實施例中,時脈信號產生器130依據多個不同的除數對第二時脈信號CK(s)進行除頻動作,以產生多通道時脈CKx(p),其中,多通道時脈CKx(p)具有多個頻率相同且相位相異的第一時脈信號PMAD_CK0~PMAD_CKN。上述的除數可以是大於1的任意實數,沒有特別的限制。In this embodiment, the clock signal generator 130 performs a frequency division operation on the second clock signal CK (s) according to a plurality of different divisors to generate a multi-channel clock CKx (p). The pulse CKx (p) has a plurality of first clock signals PMAD_CK0 ~ PMAD_CKN with the same frequency and different phases. The above divisor may be any real number greater than 1, and is not particularly limited.
值得注意的,在本實施例中,前級電路110為數位電路,後級電路120則為類比電路。並且,前級電路110選擇多通道時脈CKx(p)其中之一的第一時脈信號PMAD_CK0~PMAD_CKN作為基準時脈信號,並依據具有相對低頻率的基準時脈信號來進行多通道資料DTx(p)的傳送動作。由於前級電路110為數位電路,因此,前級電路110所產生的資料偏移(skew)狀態可以透過靜態時序分析(Static Timing Analysis, STA)的技術來得到控制。It should be noted that in this embodiment, the pre-stage circuit 110 is a digital circuit, and the post-stage circuit 120 is an analog circuit. In addition, the pre-stage circuit 110 selects the first clock signal PMAD_CK0 ~ PMAD_CKN of one of the multi-channel clocks CKx (p) as the reference clock signal, and performs multi-channel data DTx according to the reference clock signal having a relatively low frequency. (p) The transmission action. Because the pre-stage circuit 110 is a digital circuit, the state of the data skew generated by the pre-stage circuit 110 can be controlled by using Static Timing Analysis (STA) technology.
另一方面,在後級電路120中,多通道中繼信號MSx(p)的傳輸動作則依據具有相對高頻率的第二時脈信號CK(s)來進行。如此一來,類比電路形式的後級電路120可以基於單一時脈信號來進行設計,可降低在設計上,為克服資料偏移(skew)狀態所產生的設計複雜度。並且,透過基於相對高頻率的第二時脈信號CK(s)來進行資料傳輸動作,即使在發生亞穩態(metastability)狀態的現象時,也可以使所產生的資料偏移的程度降至最低。On the other hand, in the post-stage circuit 120, the transmission operation of the multi-channel relay signal MSx (p) is performed according to the second clock signal CK (s) having a relatively high frequency. In this way, the post-stage circuit 120 in the form of an analog circuit can be designed based on a single clock signal, which can reduce the design complexity of the design to overcome the state of data skew. In addition, by performing a data transmission operation based on a relatively high-frequency second clock signal CK (s), even when a phenomenon of a metastability state occurs, the degree of data shift can be reduced to lowest.
以下請參照圖2,圖2繪示本發明另一實施例的多通道傳輸裝置的電路示意圖。多通道傳輸裝置200包括前級電路210、後級電路220以及時脈信號產生器230。前級電路210包括多個數位傳輸通道LANE[0]~LANE[3]、並列旗標信號同步電路SYNC1(p)以及選擇器SEL(p)。數位傳輸通道LANE[0]~LANE[3]分別接收並列的資料信號DT0~DT3,其中,各資料信號DT0~DT3為具有多個位元的並列信號。選擇器SEL(p)接收由時脈信號產生器230所產生的多通道時脈CKx(p),並選擇多通道時脈CKx(p)其中之一的時脈信號以產生基準時脈信號CK(p)。Please refer to FIG. 2 below, which illustrates a schematic circuit diagram of a multi-channel transmission device according to another embodiment of the present invention. The multi-channel transmission device 200 includes a pre-stage circuit 210, a post-stage circuit 220, and a clock signal generator 230. The pre-stage circuit 210 includes a plurality of digital transmission channels LANE [0] to LANE [3], a parallel flag signal synchronization circuit SYNC1 (p), and a selector SEL (p). The digital transmission channels LANE [0] ~ LANE [3] respectively receive parallel data signals DT0 ~ DT3, wherein each data signal DT0 ~ DT3 is a parallel signal having multiple bits. The selector SEL (p) receives the multi-channel clock CKx (p) generated by the clock signal generator 230, and selects one of the multi-channel clock CKx (p) to generate a reference clock signal CK (p).
數位傳輸通道LANE[0]~LANE[3]分別具有正反器組211~214,正反器組211~214的輸入端分別接收資料信號DT0~DT3。正反器組211~214的時脈端與選擇器SEL(p)之間可設置(或不設置)適當的傳輸延遲電路DE1~DE3以使正反器組211~214依據基準時脈信號CK(p)所產生的觸發動作的時間點實質上相同。The digital transmission channels LANE [0] ~ LANE [3] respectively have a flip-flop group 211-214, and the input ends of the flip-flop group 211-214 receive data signals DT0 ~ DT3, respectively. An appropriate transmission delay circuit DE1 to DE3 can be set (or not set) between the clock ends of the flip-flop groups 211 to 214 and the selector SEL (p) so that the flip-flop groups 211 to 214 are based on the reference clock signal CK. (p) The timings of the triggered actions are substantially the same.
正反器組211~214依據基準時脈信號CK(p)來進行資料信號DT0~DT3的資料傳輸動作,並分別在正反器組211~214的輸出端產生並列的中繼信號MS0~MS3。The flip-flop groups 211 to 214 perform data transmission operations of the data signals DT0 to DT3 according to the reference clock signal CK (p), and generate parallel relay signals MS0 to MS3 at the outputs of the flip-flop groups 211 to 214 respectively .
在另一方面,並列旗標信號同步電路SYNC1(p)接收一旗標信號TXFLAG(p),並依據基準時脈信號CK(p)進行旗標信號TXFLAG(p)的同步動作以產生同步旗標信號FLAG(p),前述中的旗標信號TXFLAG(p)來源可為重置信號或啟動信號。並且,前級電路210結合同步旗標信號FLAG(p)至各中繼信號MS0~MS3中,並將結合後的信號傳送至後級電路220。On the other hand, the parallel flag signal synchronization circuit SYNC1 (p) receives a flag signal TXFLAG (p), and performs a synchronization operation of the flag signal TXFLAG (p) according to the reference clock signal CK (p) to generate a synchronization flag. The flag signal FLAG (p), and the source of the flag signal TXFLAG (p) in the foregoing may be a reset signal or a start signal. In addition, the pre-stage circuit 210 combines the synchronization flag signal FLAG (p) into each of the relay signals MS0 ~ MS3, and transmits the combined signal to the post-stage circuit 220.
值得一提的,各正反器組211~214皆可具有多個正反器,其中各正反器組211~214中的正反器的數量可以與各資料信號DT0~DT3的位元數相符。It is worth mentioning that each of the flip-flop groups 211 to 214 can have multiple flip-flops. The number of flip-flops in each of the flip-flop groups 211-214 can be compared with the number of bits of each data signal DT0-DT3 Match.
後級電路220包括多個分別對應於數位傳輸通道LANE[0]~LANE[3]的類比傳輸通道ALANE[0]~ALANE[3]。類比傳輸通道ALANE[0]~ALANE[3]分別包括正反器組221~224、序列旗標信號同步電路SYNC2~SYNC5、並列序列信號轉換電路250~253以及輸出級正反器225~228。The post-stage circuit 220 includes a plurality of analog transmission channels ALANE [0] ~ ALANE [3] corresponding to the digital transmission channels LANE [0] ~ LANE [3], respectively. The analog transmission channels ALANE [0] ~ ALANE [3] include flip-flop groups 221 ~ 224, sequence flag signal synchronization circuits SYNC2 ~ SYNC5, parallel sequence signal conversion circuits 250 ~ 253, and output stage flip-flops 225 ~ 228, respectively.
正反器組221~224分別對應耦接於正反器組211~214與並列旗標信號同步電路SYNC1(p),並分別用以接收中繼信號MS0~MS3以及同步旗標信號FLAG(p)。正反器組221~224依據基準時脈信號CK(p)用以傳送中繼信號MS0~MS3以及同步旗標信號FLAG(p)至後級電路220的序列旗標信號同步電路SYNC2~SYNC5與並列序列信號轉換電路250~253。前述中,每一正反器組221~224中的正反器數量實質上大於每一正反器組211~214中的正反器數量。值得一提的,正反器組221~224的時脈端上可分別設置適當的傳輸延遲電路DE4~DE7,以調整正反器組221~224的被觸發時間點實質上相同。The flip-flop groups 221 to 224 are respectively coupled to the flip-flop groups 211 to 214 and the parallel flag signal synchronization circuit SYNC1 (p), and are respectively used to receive the relay signals MS0 to MS3 and the synchronization flag signal FLAG (p ). The flip-flop groups 221 to 224 transmit the relay signals MS0 to MS3 and the synchronization flag signal FLAG (p) to the sequence flag signal synchronization circuits SYNC2 to SYNC5 of the subsequent circuit 220 according to the reference clock signal CK (p) and Parallel sequence signal conversion circuits 250 ~ 253. In the foregoing, the number of flip-flops in each of the flip-flop groups 221 to 224 is substantially larger than the number of flip-flops in each of the flip-flop groups 211 to 214. It is worth mentioning that appropriate transmission delay circuits DE4 to DE7 can be respectively set on the clock ends of the flip-flop groups 221 to 224 to adjust the triggered time points of the flip-flop groups 221 to 224 to be substantially the same.
在本實施例中,正反器組221~224分別對應產生第一資料信號DP0~DP3以及旗標DP_FLAG0 ~ DP_FLAG3,其中,各第一資料信號DP0~DP3為具有多個位元的並列信號。第一資料信號DP0~DP3分別被傳送至並列序列信號轉換電路250~253,旗標DP_FLAG0~DP_FLAG3則分別被傳送至序列旗標信號同步電路SYNC2~SYNC5。序列旗標信號同步電路SYNC2~SYNC5依據第二時脈信號CK(s)以分別針對旗標DP_FLAG0~DP_FLAG3進行同步,並分別產生多個同步旗標信號FLAG(s)。在此請注意,序列旗標信號同步電路SYNC2~SYNC5接收第二時脈信號CK(s)的路徑間,可透過設置(或不設置)適當的傳輸延遲電路DEA8~DEA10來使序列旗標信號同步電路SYNC2~SYNC5的被觸發時間點實質上相同。其中,在本實施例中,傳輸延遲電路DEA8~DAE10所提供的時間延遲的長短可以全相同、全不相同或部分相同,並可由設計者依據電路的布局、製程參數以及運作狀態來設定,沒有特別的限制。In this embodiment, the flip-flop groups 221 to 224 generate the first data signals DP0 to DP3 and the flags DP_FLAG0 to DP_FLAG3 respectively, wherein each of the first data signals DP0 to DP3 is a parallel signal having multiple bits. The first data signals DP0 ~ DP3 are respectively transmitted to the parallel sequence signal conversion circuits 250 ~ 253, and the flags DP_FLAG0 ~ DP_FLAG3 are respectively transmitted to the sequence flag signal synchronization circuits SYNC2 ~ SYNC5. The sequence flag signal synchronization circuits SYNC2 to SYNC5 synchronize with the flags DP_FLAG0 to DP_FLAG3 respectively according to the second clock signal CK (s), and generate multiple synchronization flag signals FLAG (s) respectively. Please note here that between the paths of the sequence flag signal synchronization circuits SYNC2 ~ SYNC5 receiving the second clock signal CK (s), the sequence flag signals can be set (or not set) with appropriate transmission delay circuits DEA8 ~ DEA10. The triggered time points of the synchronization circuits SYNC2 to SYNC5 are substantially the same. Among them, in this embodiment, the length of the time delay provided by the transmission delay circuits DEA8 to DAE10 can be all the same, all different or partly the same, and can be set by the designer according to the circuit layout, process parameters and operating status. Special restrictions.
承續上述的說明,並列序列信號轉換電路250~253分別接收第一資料信號DP0~DP3、同步旗標信號FLAG(s)以及第二時脈信號CK(s)。各並列序列轉換電路250~253依據所接收的同步旗標信號FLAG(s)來設定轉換動作的起始時間點,並依據第二時脈信號CK(s)以分別依序傳輸各第一資料信號DP0~DP3的各個位元以分別產生第二資料信號DS0~DS3。其中,第二資料信號DS0~DS3為序列信號。Continuing the above description, the parallel sequence signal conversion circuits 250 to 253 receive the first data signals DP0 to DP3, the synchronization flag signal FLAG (s), and the second clock signal CK (s), respectively. Each of the parallel sequence conversion circuits 250 to 253 sets the start time of the conversion operation according to the received synchronization flag signal FLAG (s), and transmits each first data in sequence according to the second clock signal CK (s). The bits of the signals DP0 ~ DP3 are used to generate the second data signals DS0 ~ DS3 respectively. The second data signals DS0 to DS3 are sequence signals.
第二資料信號DS0~DS3分別被傳輸至輸出級正反器225~228。輸出級正反器225~228並依據第二時脈信號CK(s)來分別傳輸第二資料信號DS0~DS3以產生輸出信號TXPN0~TXPN3。值得一提的,輸出級正反器225~228的時脈端接收第二時脈信號CK(s)的路徑間,可配置(或不配置)適當的傳輸延遲電路(例如傳輸延遲電路DE11~DE13),以調整輸出級正反器225~228的被觸發時間點實質上相同。The second data signals DS0 ~ DS3 are transmitted to the output stage flip-flops 225 ~ 228, respectively. The output stage flip-flops 225 to 228 respectively transmit the second data signals DS0 to DS3 according to the second clock signal CK (s) to generate output signals TXPN0 to TXPN3. It is worth mentioning that between the paths where the clock ends of the output stage flip-flops 225 ~ 228 receive the second clock signal CK (s), an appropriate transmission delay circuit (such as the transmission delay circuit DE11 ~) can be configured (or not configured). DE13), to adjust the triggering time points of the output stage flip-flops 225 to 228 are substantially the same.
在另一方面,時脈信號產生器230可以由一個或多個除頻器來建構,其中時脈信號產生器230可以提供多個除數,以針對第二時脈信號CK(s)進行除頻並產生具有多個頻率相同且相位相異的第一時脈信號PMAD_CK0~PMAD_CKN的多通道時脈CKx(p)。關於除頻器的硬體架構,可依本領域具通常知識者所熟知的除頻器架構來實施,沒有特定的限制。In another aspect, the clock signal generator 230 may be constructed by one or more frequency dividers, where the clock signal generator 230 may provide multiple divisors to divide the second clock signal CK (s). It also generates a multi-channel clock CKx (p) with multiple first clock signals PMAD_CK0 ~ PMAD_CKN with the same frequency and different phases. Regarding the hardware architecture of the frequency divider, it can be implemented according to the frequency divider architecture well known to those having ordinary knowledge in the art, and there is no specific limitation.
值得一提的,本發明實施例中,前級電路210並非單純透過傳輸導線將同步旗標信號FLAG(p)傳送至後級電路220,而是應用正反器組221~224以依據基準時脈信號CK(p)來傳送至後級電路220。如此一來,後級電路220所獲得的旗標DP_FLAG0~DP_FLAG3其時間延遲可以獲得很好的控制,降低可能產生的資料偏移。It is worth mentioning that, in the embodiment of the present invention, the pre-stage circuit 210 does not simply transmit the synchronization flag signal FLAG (p) to the post-stage circuit 220 through a transmission wire, but applies the flip-flop groups 221 to 224 according to the reference time. The pulse signal CK (p) is transmitted to the subsequent circuit 220. In this way, the time delays of the flags DP_FLAG0 ~ DP_FLAG3 obtained by the post-stage circuit 220 can be well controlled to reduce the possible data offset.
請參照圖3繪示的時脈信號的波形示意圖。時脈信號產生器230接收相對高頻率的,並透過除頻產生相對低頻率的多通道時脈CKx(p)。在本實施例中,第二時脈信號CK(s)的頻率可以為多通道時脈CKx(p)的頻率的兩倍。當然,在本發明其他實施例中,第二時脈信號CK(s)的頻率可以為多通道時脈CKx(p)的頻率的A倍,A為大於1的任意實數。Please refer to the waveform diagram of the clock signal shown in FIG. 3. The clock signal generator 230 receives a relatively high frequency and generates a multi-channel clock CKx (p) of a relatively low frequency by dividing the frequency. In this embodiment, the frequency of the second clock signal CK (s) may be twice the frequency of the multi-channel clock CKx (p). Of course, in other embodiments of the present invention, the frequency of the second clock signal CK (s) may be A times the frequency of the multi-channel clock CKx (p), and A is any real number greater than 1.
另外,第二時脈信號CK(s)可以透過鎖相迴路電路來產生。其中,鎖相迴路電路可接收源時脈信號,並針對源時脈信號進行倍頻動作以產生第二時脈信號CK(s)。在此,本發明實施例中可應用本領域具通常知識者所熟知的鎖相迴路電路來實施,沒有特別的限制。In addition, the second clock signal CK (s) can be generated through a phase-locked loop circuit. The phase-locked loop circuit can receive the source clock signal and perform a frequency multiplication operation on the source clock signal to generate a second clock signal CK (s). Here, the embodiments of the present invention can be implemented by applying a phase-locked loop circuit well known to those skilled in the art, and there is no particular limitation.
請重新參照圖2,附帶一提的,關於上述本實施例中的傳輸延遲電路,可以透過一個或多個串接的緩衝器或反向器,或其他任意可提供時間延遲的半導體元件來實施,沒有特定的限制。此外,並列旗標信號同步電路SYNC1可以利用數位形式的正反器來建構,序列旗標信號同步電路SYNC2~SYNC4則可以利用類比形式的正反器來建構。Please refer to FIG. 2 again. Incidentally, the above-mentioned transmission delay circuit in this embodiment can be implemented through one or more serially connected buffers or inverters, or any other semiconductor device that can provide time delay. There are no specific restrictions. In addition, the parallel flag signal synchronization circuit SYNC1 can be constructed using digital flip-flops, and the serial flag signal synchronization circuits SYNC2 ~ SYNC4 can be constructed using analog flip-flops.
依據上述的說明可以得知,在本發明實施例中,前級電路210可透過靜態時序分析的方式,在溫度、電壓以及製程漂移的影響下,使其產生的資料偏移不大於500皮秒(picosecond)。更值得一提的,在後級電路220基於第二時脈信號CK(s)以進行資料傳輸的前提下,後級電路220所可能產生的資料偏移,可不大於兩倍的UI(Unit Interval),其中UI等於第二時脈信號CK(s)的週期。According to the above description, it can be known that, in the embodiment of the present invention, the pre-stage circuit 210 can make the data shift generated by the static timing analysis method under the influence of temperature, voltage, and process drift not greater than 500 picoseconds. (Picosecond). It is worth mentioning that on the premise that the post-stage circuit 220 performs data transmission based on the second clock signal CK (s), the data offset that the post-stage circuit 220 may generate may not be greater than twice the UI (Unit Interval ), Where UI is equal to the period of the second clock signal CK (s).
以下請參照圖4,圖4繪示本發明實施例的並列序列信號轉換電路的實施方式的示意圖。並列序列信號轉換電路400包括多個暫存器410、選擇器420以及移位計數器430。多個暫存器410分別接收第一資料信號DP0的多個位元。暫存器410的輸出端耦接至選擇器420。移位計數器430接收同步旗標FLAG(s)以及第二時脈信號CK(s)。移位計數器430依據同步旗標FLAG(s)以啟動計數動作,並依據第二時脈信號CK(s)執行計數動作以產生一計數結果。選擇器420依據移位計數器430的計數結果以依序選擇多個暫存器410的其中之一所儲存的資料以進行輸出,並藉以產生第二資料信號DS0。Please refer to FIG. 4 below, which illustrates a schematic diagram of an implementation manner of a parallel sequence signal conversion circuit according to an embodiment of the present invention. The parallel signal conversion circuit 400 includes a plurality of registers 410, a selector 420, and a shift counter 430. The plurality of registers 410 respectively receive a plurality of bits of the first data signal DP0. An output terminal of the register 410 is coupled to the selector 420. The shift counter 430 receives a synchronization flag FLAG (s) and a second clock signal CK (s). The shift counter 430 starts a counting operation according to the synchronization flag FLAG (s), and performs a counting operation according to the second clock signal CK (s) to generate a counting result. The selector 420 sequentially selects data stored in one of the plurality of registers 410 for output according to the counting result of the shift counter 430, and generates a second data signal DS0.
接著請參照圖5,圖5繪示本發明一實施例的積體電路的示意圖。積體電路500包括核心電路501以及多通道傳輸裝置510。多通道傳輸裝置510耦接至核心電路501,用以傳輸核心電路501中所產生的資料信號。多通道傳輸裝置510包括時脈信號產生器513、前級電路511、521以及後級電路512、522。前級電路511耦接至後級電路512,前級電路521耦接至後級電路522。其中,積體電路500中可設置的前級電路、後級電路的數量可以為一組或多組,沒有特別的限制。Please refer to FIG. 5, which illustrates a schematic diagram of an integrated circuit according to an embodiment of the present invention. The integrated circuit 500 includes a core circuit 501 and a multi-channel transmission device 510. The multi-channel transmission device 510 is coupled to the core circuit 501 for transmitting data signals generated in the core circuit 501. The multi-channel transmission device 510 includes a clock signal generator 513, front-stage circuits 511, 521, and post-stage circuits 512, 522. The pre-stage circuit 511 is coupled to the post-stage circuit 512, and the pre-stage circuit 521 is coupled to the post-stage circuit 522. The number of the pre-stage circuits and the post-stage circuits that can be provided in the integrated circuit 500 may be one or more groups, and there is no particular limitation.
關於時脈信號產生器513、前級電路511、521以及後級電路512、522的實施細節,在前述的實施例中已有詳盡的說明,在此恕不多贅述。The implementation details of the clock signal generator 513, the pre-stage circuits 511, 521, and the post-stage circuits 512, 522 have been described in detail in the foregoing embodiments, and will not be repeated here.
請參照圖6,圖6繪示本發明實施例的多通道信號傳輸方法的流程圖。步驟S610提供一前級電路以接收多個第一時脈信號以及多個資料信號,選擇第一時脈信號的其中之一以作為基準時脈信號,並依據基準時脈信號以傳送資料信號並分別產生多個中繼信號;步驟S620提供時脈信號產生器以依據第二時脈信號以產生第一時脈信號,其中,第二時脈信號的頻率高於第一時脈信號的頻率;步驟S630提供後級電路以依據第二時脈信號以傳送中繼信號以分別產生多個輸出信號;以及,步驟S640提供前級電路以接收一旗標信號,並依據基準時脈信號同步旗標信號以產生第一同步旗標信號。其中,前級電路結合第一同步旗標信號至各中繼信號中,並傳送至後級電路。在本實施例中,前級電路為數位電路,後級電路為類比電路。Please refer to FIG. 6, which is a flowchart of a multi-channel signal transmission method according to an embodiment of the present invention. Step S610 provides a pre-stage circuit to receive a plurality of first clock signals and a plurality of data signals, select one of the first clock signals as a reference clock signal, and transmit the data signal according to the reference clock signal and Generate multiple relay signals respectively; step S620 provides a clock signal generator to generate a first clock signal according to the second clock signal, wherein the frequency of the second clock signal is higher than the frequency of the first clock signal; Step S630 provides a post-stage circuit to transmit a relay signal according to the second clock signal to generate multiple output signals respectively; and step S640 provides a pre-stage circuit to receive a flag signal and synchronizes the flag according to the reference clock signal Signal to generate a first synchronization flag signal. The first-stage circuit combines the first synchronization flag signal into each relay signal and transmits it to the subsequent-stage circuit. In this embodiment, the previous-stage circuit is a digital circuit, and the subsequent-stage circuit is an analog circuit.
關於上述步驟的實施細節,在前述的實施例及實施方式已有詳細的說明,在此恕不多贅述。Regarding the implementation details of the above steps, the foregoing embodiments and implementation manners have been described in detail, and will not be repeated here.
綜上所述,本發明使多通道傳輸裝置中,類比電路形式的後級電路內部一致性的依據具有相對高頻率的第二時脈信號來進行資料信號傳輸的動作,可有效降低所可能發生的資料偏移的程度。並且,在發生亞穩態狀態的情況下,資料偏移的程度也可以有效的倍降低。To sum up, the present invention enables a multi-channel transmission device to perform data signal transmission based on the internal consistency of the post-stage circuit in the form of an analog circuit with a relatively high frequency second clock signal, which can effectively reduce the possibility of occurrence The extent of the data offset. In addition, in the case of a metastable state, the degree of data shift can also be effectively reduced.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed as above with the examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some modifications and retouching without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be determined by the scope of the attached patent application.
100、200‧‧‧多通道傳輸裝置100, 200‧‧‧ multi-channel transmission device
110、210‧‧‧前級電路110、210‧‧‧Previous circuit
120、220‧‧‧後級電路120, 220‧‧‧ after-stage circuit
130、230‧‧‧時脈信號產生器130, 230‧‧‧ clock signal generator
CKx(p)‧‧‧多通道時脈CKx (p) ‧‧‧Multi-channel clock
DTx(p)‧‧‧多通道資料DTx (p) ‧‧‧Multi-channel data
PMAD_CK0~PMAD_CKN‧‧‧第一時脈信號PMAD_CK0 ~ PMAD_CKN‧‧‧First clock signal
DT0~DTN‧‧‧資料信號DT0 ~ DTN‧‧‧Data signal
MSx(p)‧‧‧多通道中繼信號MSx (p) ‧‧‧Multi-channel relay signal
TXPNx(s)‧‧‧多通道輸出信號TXPNx (s) ‧‧‧Multi-channel output signal
MS0~MSN‧‧‧中繼信號MS0 ~ MSN‧‧‧Relay signal
CK(s)‧‧‧第二時脈信號CK (s) ‧‧‧Second clock signal
TXPN0~TXPNN‧‧‧輸出信號TXPN0 ~ TXPNN‧‧‧Output signal
LANE[0]~LANE[3]‧‧‧數位傳輸通道LANE [0] ~ LANE [3] ‧‧‧Digital transmission channel
SYNC(p)‧‧‧並列旗標同步電路SYNC (p) ‧‧‧parallel flag synchronization circuit
SYNC2~SYNC5‧‧‧序列旗標信號同步電SYNC2 ~ SYNC5‧‧‧Sequence flag signal synchronization
SEL(p)‧‧‧選擇器SEL (p) ‧‧‧Selector
CK(p)‧‧‧基準時脈信號CK (p) ‧‧‧reference clock signal
211~214、221~224‧‧‧正反器組211 ~ 214, 221 ~ 224‧‧‧‧Inverter unit
DE1~DE7、DEA8~DEA11、DEA1‧‧‧傳輸延遲電路DE1 ~ DE7, DEA8 ~ DEA11, DEA1‧‧‧ Transmission Delay Circuit
ALANE[0]~ALANE[3]‧‧‧類比傳輸通道ALANE [0] ~ ALANE [3] ‧‧‧Analog transmission channel
251~254、400‧‧‧並列序列信號轉換電路251 ~ 254, 400‧‧‧ Parallel Sequence Signal Conversion Circuit
225~228‧‧‧輸出級正反器225 ~ 228‧‧‧Output stage flip-flop
TXFLAG(p)‧‧‧旗標信號TXFLAG (p) ‧‧‧flag signal
DP_FLAG0 ~ DP_FLAG3‧‧‧旗標DP_FLAG0 ~ DP_FLAG3 ‧‧‧ flag
DS0~DS3‧‧‧第二資料信號DS0 ~ DS3‧‧‧Second data signal
410‧‧‧暫存器410‧‧‧Register
420‧‧‧選擇器420‧‧‧ selector
430‧‧‧移位計數器430‧‧‧Shift Counter
FLAG(s)、FLAG(p)‧‧‧同步旗標信號FLAG (s), FLAG (p) ‧‧‧Synchronous flag signals
500‧‧‧積體電路500‧‧‧Integrated Circuit
501‧‧‧核心電路501‧‧‧core circuit
510‧‧‧多通道傳輸裝置510‧‧‧Multi-channel transmission device
511、521‧‧‧前級電路511,521‧‧‧Previous circuit
512、522‧‧‧後級電路512, 522‧‧‧ post circuit
S610~S640‧‧‧多通道資料傳輸方法的步驟S610 ~ S640‧‧‧Multi-channel data transmission method steps
圖1繪示本發明一實施例的多通道傳輸裝置的示意圖。 圖2繪示本發明另一實施例的多通道傳輸裝置的電路示意圖。 圖3繪示時脈信號的波形示意圖。 圖4繪示本發明實施例的並列序列信號轉換電路的實施方式的示意圖。 圖5繪示本發明一實施例的積體電路的示意圖。 圖6繪示本發明實施例的多通道信號傳輸方法的流程圖。FIG. 1 is a schematic diagram of a multi-channel transmission device according to an embodiment of the present invention. FIG. 2 is a schematic circuit diagram of a multi-channel transmission device according to another embodiment of the present invention. FIG. 3 is a schematic waveform diagram of a clock signal. FIG. 4 is a schematic diagram of an implementation of a parallel sequence signal conversion circuit according to an embodiment of the present invention. FIG. 5 is a schematic diagram of an integrated circuit according to an embodiment of the present invention. FIG. 6 is a flowchart of a multi-channel signal transmission method according to an embodiment of the present invention.
Claims (21)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107124463A TWI658700B (en) | 2018-07-16 | 2018-07-16 | Integrated circuit, multi-channels transmission apparatus and signal transmission method thereof |
US16/184,944 US10389515B1 (en) | 2018-07-16 | 2018-11-08 | Integrated circuit, multi-channel transmission apparatus and signal transmission method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107124463A TWI658700B (en) | 2018-07-16 | 2018-07-16 | Integrated circuit, multi-channels transmission apparatus and signal transmission method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI658700B true TWI658700B (en) | 2019-05-01 |
TW202007082A TW202007082A (en) | 2020-02-01 |
Family
ID=67347921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107124463A TWI658700B (en) | 2018-07-16 | 2018-07-16 | Integrated circuit, multi-channels transmission apparatus and signal transmission method thereof |
Country Status (2)
Country | Link |
---|---|
US (1) | US10389515B1 (en) |
TW (1) | TWI658700B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11038602B1 (en) | 2020-02-05 | 2021-06-15 | Credo Technology Group Limited | On-chip jitter evaluation for SerDes |
US10992501B1 (en) | 2020-03-31 | 2021-04-27 | Credo Technology Group Limited | Eye monitor for parallelized digital equalizers |
US10892763B1 (en) * | 2020-05-14 | 2021-01-12 | Credo Technology Group Limited | Second-order clock recovery using three feedback paths |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160365969A1 (en) * | 2015-06-12 | 2016-12-15 | Infineon Technologies Ag | Electronic circuit and method for transferring data between clock domains |
US9614500B2 (en) * | 2014-08-18 | 2017-04-04 | Semiconductor Manufacturing International (Shanghai) Corporation | Electronic circuit, electronic apparatus, and method for eliminating metastability |
US20170310310A1 (en) * | 2016-04-26 | 2017-10-26 | Infineon Technologies Ag | Electronic circuit and method for transferring data |
Family Cites Families (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4710871A (en) * | 1982-11-01 | 1987-12-01 | Ncr Corporation | Data transmitting and receiving apparatus |
US6307868B1 (en) * | 1995-08-25 | 2001-10-23 | Terayon Communication Systems, Inc. | Apparatus and method for SCDMA digital data transmission using orthogonal codes and a head end modem with no tracking loops |
US6115422A (en) * | 1997-09-26 | 2000-09-05 | International Business Machines Corporation | Protocol and procedure for time base change in an MPEG-2 compliant datastream |
US6327259B1 (en) * | 1998-06-01 | 2001-12-04 | Advanced Micro Devices, Inc. | Flexible placement of serial data within a time divisioned multiplexed frame through programmable time slot start and stop bit positions |
JP2000021137A (en) * | 1998-06-30 | 2000-01-21 | Sony Corp | Editing apparatus |
US6771725B2 (en) * | 1998-11-09 | 2004-08-03 | Broadcom Corporation | Multi-pair gigabit ethernet transceiver |
US6288656B1 (en) * | 1999-12-21 | 2001-09-11 | Lsi Logic Corporation | Receive deserializer for regenerating parallel data serially transmitted over multiple channels |
IT1317614B1 (en) * | 2000-03-17 | 2003-07-15 | Cit Alcatel | METHOD AND APPARATUS TO TRANSMIT / RECEIVE STM-4 (SDH) OR STS-12 (SONET) DIGITAL SIGNALS ON TWO RF CARRIERS IN ONE SECTION |
US6693918B1 (en) * | 2000-04-28 | 2004-02-17 | Agilent Technologies, Inc. | Elastic buffers for serdes word alignment and rate matching between time domains |
WO2001084724A2 (en) * | 2000-04-28 | 2001-11-08 | Broadcom Corporation | Methods and systems for adaptive receiver equalization |
JP3636145B2 (en) * | 2001-06-15 | 2005-04-06 | ソニー株式会社 | Demodulation timing generation circuit and demodulation device |
US7167112B2 (en) * | 2003-03-21 | 2007-01-23 | D2Audio Corporation | Systems and methods for implementing a sample rate converter using hardware and software to maximize speed and flexibility |
US7606341B2 (en) * | 2003-06-26 | 2009-10-20 | International Business Machines Corporation | Circuit for bit alignment in high speed multichannel data transmission |
US7295644B1 (en) * | 2003-07-14 | 2007-11-13 | Marvell International Ltd. | Apparatus for clock data recovery |
US7349509B2 (en) * | 2004-04-21 | 2008-03-25 | Kawasaki Lsi U.S.A., Inc. | Multi rate clock data recovery based on multi sampling technique |
US7454537B1 (en) * | 2004-04-22 | 2008-11-18 | Altera Corporation | Synchronization and channel deskewing circuitry for multi-channel serial links |
US8050373B2 (en) * | 2004-06-28 | 2011-11-01 | Broadcom Corporation | Phase interpolator based transmission clock control |
TW200620938A (en) * | 2004-09-07 | 2006-06-16 | Nec Electronics Corp | Synchronization device and semiconductor device |
US7634694B2 (en) * | 2004-10-15 | 2009-12-15 | Standard Microsystems Corporation | Selective scrambler for use in a communication system and method to minimize bit error at the receiver |
US7558357B1 (en) * | 2004-10-26 | 2009-07-07 | Pmc-Sierra, Inc. | Systems and methods for reducing frequency-offset induced jitter |
US7599456B1 (en) * | 2004-12-13 | 2009-10-06 | Marvell International Ltd. | Input/output data rate synchronization using first in first out data buffers |
KR100674953B1 (en) * | 2005-02-05 | 2007-01-26 | 학교법인 포항공과대학교 | EQ receiver of semiconductor memory |
US7684534B2 (en) * | 2005-07-11 | 2010-03-23 | International Business Machines Corporation | Method and apparatus for handling of clock information in serial link ports |
US7437500B2 (en) * | 2005-08-05 | 2008-10-14 | Lsi Corporation | Configurable high-speed memory interface subsystem |
US7720108B2 (en) * | 2005-09-27 | 2010-05-18 | Rohde & Schwarz Gmbh & Co. Kg | Apparatus and method for inserting synchronization headers into serial data communication streams |
JP2008178017A (en) * | 2007-01-22 | 2008-07-31 | Nec Electronics Corp | Clock synchronizing system and semiconductor integrated circuit |
US8064535B2 (en) * | 2007-03-02 | 2011-11-22 | Qualcomm Incorporated | Three phase and polarity encoded serial interface |
US9231790B2 (en) * | 2007-03-02 | 2016-01-05 | Qualcomm Incorporated | N-phase phase and polarity encoded serial interface |
US7865756B2 (en) * | 2007-03-12 | 2011-01-04 | Mosaid Technologies Incorporated | Methods and apparatus for clock signal synchronization in a configuration of series-connected semiconductor devices |
US7975082B2 (en) * | 2007-07-12 | 2011-07-05 | Oracle America, Inc. | System and method to facilitate deterministic testing of data transfers between independent clock domains on a chip |
US8116415B2 (en) * | 2007-10-02 | 2012-02-14 | Panasonic Corporation | Semiconductor integrated circuit, communication apparatus, information playback apparatus, image display apparatus, electronic apparatus, electronic control apparatus and mobile apparatus |
WO2009107173A1 (en) * | 2008-02-25 | 2009-09-03 | パナソニック株式会社 | Phase control device and data communication system using it |
US8473638B2 (en) * | 2008-05-02 | 2013-06-25 | James Aweya | Method and apparatus for time and frequency transfer in communication networks |
US7969813B2 (en) * | 2009-04-01 | 2011-06-28 | Micron Technology, Inc. | Write command and write data timing circuit and methods for timing the same |
WO2011000082A1 (en) * | 2009-06-29 | 2011-01-06 | Mosaid Technologies Incorporated | A bridging device having a frequency configurable clock domain |
WO2011008356A2 (en) * | 2009-06-30 | 2011-01-20 | Rambus Inc. | Techniques for adjusting clock signals to compensate for noise |
US8385374B1 (en) * | 2009-07-15 | 2013-02-26 | Marvell Israel (M.I.S.L.) Ltd. | Multilane communication device |
US8930740B2 (en) * | 2010-02-23 | 2015-01-06 | Rambus Inc. | Regulation of memory IO timing using programmatic control over memory device IO timing |
US8428045B2 (en) * | 2010-03-16 | 2013-04-23 | Harman International Industries, Incorporated | Media clock recovery |
US9432298B1 (en) * | 2011-12-09 | 2016-08-30 | P4tents1, LLC | System, method, and computer program product for improving memory systems |
JP5850047B2 (en) * | 2011-04-21 | 2016-02-03 | 富士通株式会社 | Data receiving apparatus, marker information extracting method, and marker position detecting method |
US8838999B1 (en) * | 2011-05-17 | 2014-09-16 | Applied Micro Circuits Corporation | Cut-through packet stream encryption/decryption |
US8913632B2 (en) * | 2011-08-05 | 2014-12-16 | Khalifa University Of Science, Technology And Research | Method and system for frequency synchronization |
EP2772000B1 (en) * | 2011-10-28 | 2020-08-26 | Koninklijke Philips N.V. | Data communication with interventional instruments |
US8760325B2 (en) * | 2012-03-23 | 2014-06-24 | Analog Devices, Inc. | Scheme for balancing skew between lanes of high-speed serial digital interface |
US8836394B2 (en) * | 2012-03-26 | 2014-09-16 | Rambus Inc. | Method and apparatus for source-synchronous signaling |
US9329623B2 (en) * | 2012-08-22 | 2016-05-03 | Micron Technology, Inc. | Apparatuses, integrated circuits, and methods for synchronizing data signals with a command signal |
JP5776657B2 (en) * | 2012-09-18 | 2015-09-09 | 株式会社デンソー | Receiver circuit |
US9337934B1 (en) * | 2012-11-29 | 2016-05-10 | Clariphy Communications, Inc. | Coherent transceiver architecture |
US9032274B2 (en) * | 2013-02-14 | 2015-05-12 | Advanced Micro Devices, Inc. | Method and apparatus for clock and data recovery |
TWI543596B (en) * | 2013-12-26 | 2016-07-21 | 晨星半導體股份有限公司 | Multimedia interface receiving circuit |
TWI519119B (en) * | 2014-04-17 | 2016-01-21 | 創意電子股份有限公司 | Clock data recovery circuit and method |
TWI705666B (en) * | 2015-06-15 | 2020-09-21 | 日商新力股份有限公司 | Transmission device, receiving device, communication system |
JP6451859B2 (en) * | 2015-09-01 | 2019-01-16 | 日本電気株式会社 | ΔΣ modulator, transmitter and integrator |
US9474034B1 (en) * | 2015-11-30 | 2016-10-18 | International Business Machines Corporation | Power reduction in a parallel data communications interface using clock resynchronization |
US10038450B1 (en) * | 2015-12-10 | 2018-07-31 | Xilinx, Inc. | Circuits for and methods of transmitting data in an integrated circuit |
US10090883B2 (en) * | 2015-12-15 | 2018-10-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Radio frequency interconnect having a preamble generator |
US10205586B2 (en) * | 2016-02-02 | 2019-02-12 | Marvell World Trade Ltd. | Method and apparatus for network synchronization |
US9559880B1 (en) * | 2016-03-04 | 2017-01-31 | Inphi Corporation | Eye modulation for pulse-amplitude modulation communication systems |
US10033413B2 (en) * | 2016-05-19 | 2018-07-24 | Analog Devices Global | Mixed-mode digital predistortion |
US9935762B2 (en) * | 2016-07-19 | 2018-04-03 | Qualcomm Incorporated | Apparatus and method for centering clock signal in cumulative data eye of parallel data in clock forwarded links |
JP2018038017A (en) * | 2016-09-02 | 2018-03-08 | 富士通株式会社 | Transmission equipment and detection method |
US9742549B1 (en) * | 2016-09-29 | 2017-08-22 | Analog Devices Global | Apparatus and methods for asynchronous clock mapping |
US10142043B2 (en) * | 2016-10-11 | 2018-11-27 | Viavi Solutions Inc. | Time differential digital circuit |
US10104148B2 (en) * | 2017-01-03 | 2018-10-16 | Globalfoundries Inc. | Nanosecond accuracy under precision time protocol for ethernet by using high accuracy timestamp assist device |
US10212260B2 (en) * | 2017-07-19 | 2019-02-19 | Credo Technology Group Limited | SerDes architecture with a hidden backchannel protocol |
-
2018
- 2018-07-16 TW TW107124463A patent/TWI658700B/en active
- 2018-11-08 US US16/184,944 patent/US10389515B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9614500B2 (en) * | 2014-08-18 | 2017-04-04 | Semiconductor Manufacturing International (Shanghai) Corporation | Electronic circuit, electronic apparatus, and method for eliminating metastability |
US20160365969A1 (en) * | 2015-06-12 | 2016-12-15 | Infineon Technologies Ag | Electronic circuit and method for transferring data between clock domains |
US20170310310A1 (en) * | 2016-04-26 | 2017-10-26 | Infineon Technologies Ag | Electronic circuit and method for transferring data |
Also Published As
Publication number | Publication date |
---|---|
TW202007082A (en) | 2020-02-01 |
US10389515B1 (en) | 2019-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI658700B (en) | Integrated circuit, multi-channels transmission apparatus and signal transmission method thereof | |
CN100559356C (en) | Stride the method for data signal transfer of different clock-domains | |
US8837639B2 (en) | Parallel synchronizing cell with improved mean time between failures | |
US7936854B2 (en) | Method and system of cycle slip framing in a deserializer | |
US8471607B1 (en) | High-speed frequency divider architecture | |
TWI579706B (en) | Data synchronization across asynchronous boundaries using selectable synchronizers to minimize latency | |
JP2016061781A (en) | Test and measurement system, and method of synchronizing multiple oscilloscopes | |
US7135899B1 (en) | System and method for reducing skew in complementary signals that can be used to synchronously clock a double data rate output | |
WO2021129050A1 (en) | Glitch-free clock switching circuit | |
JP4192228B2 (en) | Data generator | |
KR20160058445A (en) | Serializer Using Clock Synchronization, and High Speed Serializing Apparatus Using That | |
US6960942B2 (en) | High speed phase selector | |
CN112130617A (en) | Clock dynamic switching circuit | |
CN104348465A (en) | Control method and control circuit | |
US7260166B2 (en) | Systems for synchronizing resets in multi-clock frequency applications | |
JP2014062972A (en) | Data reception circuit, data reception method and driver circuit | |
US8588341B2 (en) | Data transfer circuit and data transfer method for clock domain crossing | |
US6667638B1 (en) | Apparatus and method for a frequency divider with an asynchronous slip | |
CN110727618B (en) | Integrated circuit, multichannel transmission device and signal transmission method thereof | |
JPH11331137A (en) | Signal synchronizing device | |
CN113472347B (en) | Electronic device and sampling method | |
CN111313870B (en) | Phase compensation-based narrow pulse precision time delay synchronization method and device | |
JP5742456B2 (en) | DPLL circuit for serial data communication device | |
SU864521A1 (en) | Device for synchronizing pulse trains | |
CN117559972A (en) | Signal generating circuit |