TWI653810B - Control device and control method - Google Patents
Control device and control method Download PDFInfo
- Publication number
- TWI653810B TWI653810B TW106127513A TW106127513A TWI653810B TW I653810 B TWI653810 B TW I653810B TW 106127513 A TW106127513 A TW 106127513A TW 106127513 A TW106127513 A TW 106127513A TW I653810 B TWI653810 B TW I653810B
- Authority
- TW
- Taiwan
- Prior art keywords
- flyback converter
- auxiliary switch
- signal
- control
- control device
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
- H02M3/33592—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
本案是關於一種控制裝置及控制方法,應用於返馳變換器,該返馳變換器包含一輔助開關。該控制裝置包括:導通時間設定單元,用於根據激磁負電流基準值和返馳變換器的輸出電壓來設定一導通時間閾值;以及導通時間控制單元,用於輸出一控制信號以控制輔助開關的導通,在輔助開關的導通時間達到該導通時間閾值時關斷輔助開關。本案能夠實現返馳變換器的初級側開關管在不同輸出電壓下的零電壓開通。 The present invention relates to a control device and a control method, which are applied to a flyback converter. The flyback converter includes an auxiliary switch. The control device includes: an on-time setting unit for setting an on-time threshold according to a reference value of the excitation negative current and an output voltage of the flyback converter; and an on-time control unit for outputting a control signal to control the auxiliary switch Turn on, turn off the auxiliary switch when the on time of the auxiliary switch reaches the on time threshold. In this case, the primary-side switch of the flyback converter can be turned on at zero voltage under different output voltages.
Description
本案涉及電力電子技術領域,具體而言,涉及一種應用於返馳變換器的控制裝置及控制方法。 This case relates to the field of power electronics technology, and in particular, to a control device and a control method applied to a flyback converter.
目前,準諧振返馳變換器是應用於小功率開關電源的最流行的電路拓撲結構。準諧振返馳變換器在低壓輸入(Vbus<nVo,其中:Vbus為輸入電壓;n為變壓器初次級側線圈匝數比;Vo為輸出電壓)時可以實現初級側功率開關管的零電壓開通(ZVS),在高壓輸入(Vbus>nVo)時可以實現初級側功率開關管的谷底開通,因而可以顯著減小開關損耗。然而,隨著高頻化發展,儘管準諧振返馳變換器在高壓輸入時可以實現谷底開通,但開通損耗還是變得越來越大,嚴重影響變換器的效率。為了解決準諧振返馳變換器在高壓輸入時不能完全實現初級側功率開關管的零電壓開通(ZVS)這個問題,現有技術方案提出了次級側同步整流管延遲導通等新控制方法,以及有源鉗位返馳變換器等新電路拓撲結構。 At present, quasi-resonant flyback converters are the most popular circuit topology applied to small power switching power supplies. The quasi-resonant flyback converter can realize the primary-side power switch when the low-voltage input (V bus <nV o , where: V bus is the input voltage; n is the turns ratio of the primary winding of the transformer; V o is the output voltage) Zero voltage turn-on (ZVS), when the high-voltage input (V bus > nV o ), can achieve the valley turn-on of the primary-side power switch, so that the switching loss can be significantly reduced. However, with the development of high frequency, although the quasi-resonant flyback converter can achieve valley turn-on at high-voltage input, the turn-on loss has become larger and larger, which seriously affects the efficiency of the converter. In order to solve the problem that the quasi-resonant flyback converter cannot fully realize the zero-voltage turn-on (ZVS) of the primary-side power switch at the high-voltage input, the prior art scheme proposes new control methods such as delayed conduction of the secondary-side synchronous rectifier and New circuit topologies such as source clamp flyback converters.
然而,現有技術方案僅適用於輸出電壓恒定的情況,在變輸出電壓的應用情況下無法保證所有工作條件下均能實現初級側功率開關管的零電壓開通。 However, the prior art solution is only applicable to a case where the output voltage is constant, and in the case of a variable output voltage application, it cannot be guaranteed that the zero-voltage turn-on of the primary-side power switch can be achieved under all operating conditions.
需要說明的是,在上述背景技術部分公開的資訊僅用於加強對本案的背景的理解,因此可以包括不構成對本領域普通技術人員已知的現有技術的資訊。 It should be noted that the information disclosed in the background section above is only used to enhance the understanding of the background of the case, and therefore may include information that does not constitute the prior art known to those of ordinary skill in the art.
本案的目的在於提供一種控制裝置及控制方法。 The purpose of this case is to provide a control device and a control method.
根據本案的一個方面,提供了一種控制裝置,應用於返馳變換器,返馳變換器包含輔助開關,控制裝置包括:導通時間設定單元,用於根據激磁負電流基準值和返馳變換器的輸出電壓來設定導通時間閾值;以及導通時間控制單元,用於輸出控制信號以控制輔助開關的導通,在輔助開關的導通時間達到該導通時間閾值時關斷輔助開關。 According to an aspect of the present invention, a control device is provided, which is applied to a flyback converter, and the flyback converter includes an auxiliary switch. The control device includes: an on-time setting unit, which is configured to: Output voltage to set the on-time threshold; and an on-time control unit for outputting a control signal to control the conduction of the auxiliary switch, and turn off the auxiliary switch when the on-time of the auxiliary switch reaches the on-time threshold.
在本案的一種示例性實施例中,返馳變換器為RCD鉗位返馳變換器或有源鉗位返馳變換器。 In an exemplary embodiment of the present application, the flyback converter is an RCD clamped flyback converter or an active clamped flyback converter.
在本案的一種示例性實施例中,輔助開關為同步整流管、鉗位管、並聯在返馳變換器的次級側整流單元上的開關、或串聯於返馳變換器的輔助繞組的開關。 In an exemplary embodiment of the present application, the auxiliary switch is a synchronous rectifier tube, a clamp tube, a switch connected in parallel to the secondary-side rectifier unit of the flyback converter, or a switch connected in series to the auxiliary winding of the flyback converter.
在本案的一種示例性實施例中,導通時間控制單元用以根據計時起始信號輸出控制信號。 In an exemplary embodiment of the present application, the on-time control unit is configured to output a control signal according to a timing start signal.
在本案的一種示例性實施例中,返馳變換器的工作模式為斷續模式或臨界連續模式。 In an exemplary embodiment of the present invention, the operating mode of the flyback converter is a discontinuous mode or a critical continuous mode.
在本案的一種示例性實施例中,導通時間控制單元包括計時器和輔助開關控制器,計時器接收計時起始信號,並根據計時起始信號啟動計時器 進行計時,產生計時信號;輔助開關控制器接收計時信號,並根據計時信號產生控制信號。 In an exemplary embodiment of the present application, the on-time control unit includes a timer and an auxiliary switch controller. The timer receives a timing start signal and starts the timer according to the timing start signal. Perform timing and generate timing signals; the auxiliary switch controller receives timing signals and generates control signals according to the timing signals.
在本案的一種示例性實施例中,輔助開關控制器根據計時起始信號導通輔助開關。 In an exemplary embodiment of the present application, the auxiliary switch controller turns on the auxiliary switch according to the timing start signal.
在本案的一種示例性實施例中,於計時信號大於或等於導通時間閾值時,輔助開關控制器關斷輔助開關。 In an exemplary embodiment of the present application, when the timing signal is greater than or equal to the on-time threshold, the auxiliary switch controller turns off the auxiliary switch.
在本案的一種示例性實施例中,計時器還根據復位信號對計時器進行復位。 In an exemplary embodiment of the present application, the timer further resets the timer according to a reset signal.
在本案的一種示例性實施例中,在斷續模式下,通過檢測輔助開關的開通信號得到計時起始信號;在臨界連續模式下,通過檢測激磁負電流的過零點得到計時起始信號。 In an exemplary embodiment of the present application, in the discontinuous mode, a timing start signal is obtained by detecting an on signal of an auxiliary switch; in the critical continuous mode, a timing start signal is obtained by detecting a zero-crossing point of a negative excitation current.
在本案的一種示例性實施例中,通過電流互感器、取樣電阻或者該輔助開關的自身內阻來檢測激磁負電流的過零點。 In an exemplary embodiment of the present application, the zero crossing of the exciting negative current is detected by a current transformer, a sampling resistor or the internal resistance of the auxiliary switch.
在本案的一種示例性實施例中,通過檢測輔助開關的關斷信號得到復位信號。 In an exemplary embodiment of the present application, the reset signal is obtained by detecting an off signal of the auxiliary switch.
在本案的一種示例性實施例中,導通時間設定單元包括:激磁負電流設定單元,用於產生激磁負電流基準值;導通時間計算單元,用於根據激磁負電流基準值和返馳變換器的輸出電壓計算得到導通時間閾值。 In an exemplary embodiment of the present application, the on-time setting unit includes: a negative excitation current setting unit for generating a reference value of the negative excitation current; and an on-time calculation unit for calculating the reference value of the negative excitation current and the flyback converter. The output voltage is calculated to obtain the on-time threshold.
在本案的一種示例性實施例中,激磁負電流設定單元用於基於返馳變換器的輸入電壓設定激磁負電流基準值。 In an exemplary embodiment of the present application, the excitation negative current setting unit is configured to set a reference value of the excitation negative current based on the input voltage of the flyback converter.
在本案的一種示例性實施例中,激磁負電流設定單元用於基於返馳變換器的輸入電壓和輸出電壓設定激磁負電流基準值。 In an exemplary embodiment of the present application, the excitation negative current setting unit is configured to set a reference value of the excitation negative current based on the input voltage and the output voltage of the flyback converter.
在本案的一種示例性實施例中,返馳變換器的輸出電壓可變。 In an exemplary embodiment of the present application, the output voltage of the flyback converter is variable.
在本案的一種示例性實施例中,返馳變換器的輸出電壓為5V、9V、15V或20V。 In an exemplary embodiment of the present invention, the output voltage of the flyback converter is 5V, 9V, 15V, or 20V.
根據本案的一個方面,提供了一種開關電源,包括根據上述任意一項的控制裝置。 According to an aspect of the present invention, there is provided a switching power supply including a control device according to any one of the above.
根據本案的一個方面,提供一種控制方法,應用於返馳變換器,返馳變換器包含輔助開關,控制方法包括:(a)檢測返馳變換器的輸出電壓,並基於輸出電壓和激磁負電流基準值來設定導通時間閾值;(b)根據一控制信號以控制輔助開關的導通,在輔助開關的導通時間達到該導通時間閾值時關斷輔助開關。 According to an aspect of the present invention, a control method is provided, which is applied to a flyback converter. The flyback converter includes an auxiliary switch. The control method includes: (a) detecting an output voltage of the flyback converter, and based on the output voltage and a negative magnetizing current; The reference value sets the on-time threshold; (b) controls the conduction of the auxiliary switch according to a control signal, and turns off the auxiliary switch when the on-time of the auxiliary switch reaches the on-time threshold.
在本案的一種示例性實施例中,返馳變換器為RCD鉗位返馳變換器或有源鉗位返馳變換器。 In an exemplary embodiment of the present application, the flyback converter is an RCD clamped flyback converter or an active clamped flyback converter.
在本案的一種示例性實施例中,輔助開關為同步整流管、鉗位管、並聯在返馳變換器的次級側整流單元上的開關、或串聯於返馳變換器的輔助繞組的開關。 In an exemplary embodiment of the present application, the auxiliary switch is a synchronous rectifier tube, a clamp tube, a switch connected in parallel to the secondary-side rectifier unit of the flyback converter, or a switch connected in series to the auxiliary winding of the flyback converter.
在本案的一種示例性實施例中,步驟(b)包含:根據計時起始信號輸出該控制信號。 In an exemplary embodiment of the present invention, step (b) includes: outputting the control signal according to a timing start signal.
在本案的一種示例性實施例中,返馳變換器的工作模式為斷續模式或臨界連續模式。 In an exemplary embodiment of the present invention, the operating mode of the flyback converter is a discontinuous mode or a critical continuous mode.
在本案的一種示例性實施例中,步驟(b)包括:根據計時起始信號啟動計時器進行計時,產生計時信號;根據計時信號產生控制信號。 In an exemplary embodiment of the present invention, step (b) includes: starting a timer to perform timing according to a timing start signal to generate a timing signal; and generating a control signal according to the timing signal.
在本案的一種示例性實施例中,根據計時起始信號導通輔助開關。 In an exemplary embodiment of the present invention, the auxiliary switch is turned on according to the timing start signal.
在本案的一種示例性實施例中,於計時信號大於或等於導通時間閾值時,關斷輔助開關。 In an exemplary embodiment of the present application, when the timing signal is greater than or equal to the on-time threshold, the auxiliary switch is turned off.
在本案的一種示例性實施例中,步驟(b)還包含:根據復位信號對計時器進行復位。 In an exemplary embodiment of the present invention, step (b) further includes: resetting the timer according to a reset signal.
在本案的一種示例性實施例中,在斷續模式下,通過檢測輔助開關的開通信號得到計時起始信號;以及在臨界連續模式下,通過檢測激磁負電流的過零點得到計時起始信號。 In an exemplary embodiment of the present application, the timing start signal is obtained by detecting the on signal of the auxiliary switch in the discontinuous mode; and the timing start signal is obtained by detecting the zero crossing of the negative excitation current in the critical continuous mode.
在本案的一種示例性實施例中,通過電流互感器、取樣電阻或者該輔助開關的自身內阻來檢測激磁負電流的過零點。 In an exemplary embodiment of the present application, the zero crossing of the exciting negative current is detected by a current transformer, a sampling resistor or the internal resistance of the auxiliary switch.
在本案的一種示例性實施例中,通過檢測輔助開關的關斷信號得到復位信號。 In an exemplary embodiment of the present application, the reset signal is obtained by detecting an off signal of the auxiliary switch.
在本案的一種示例性實施例中,步驟(a)包括:通過除法運算,基於輸出電壓和激磁負電流基準值計算獲得導通時間閾值。 In an exemplary embodiment of the present application, step (a) includes: calculating the on-time threshold based on the output voltage and the reference value of the exciting negative current through a division operation.
在本案的一種示例性實施例中,控制方法還包含:(c)於輔助開關關斷後,通過返馳變換器中的激磁電感與寄生電容的諧振來實現返馳變換器的初級側功率開關管的零電壓開通。 In an exemplary embodiment of the present invention, the control method further includes: (c) after the auxiliary switch is turned off, the primary-side power switch of the flyback converter is realized by resonance of the excitation inductance and the parasitic capacitance in the flyback converter The zero voltage of the tube is turned on.
在本案的一種示例性實施例中,步驟(a)還包括:基於返馳變換器的輸入電壓設定激磁負電流基準值。 In an exemplary embodiment of the present application, step (a) further includes: setting a reference value of the exciting negative current based on the input voltage of the flyback converter.
在本案的一種示例性實施例中,步驟(a)還包括:基於返馳變換器的輸入電壓的最大值設定激磁負電流基準值。 In an exemplary embodiment of the present application, step (a) further includes: setting a reference value of the negative excitation current based on the maximum value of the input voltage of the flyback converter.
在本案的一種示例性實施例中,步驟(a)還包括:基於返馳變換器的輸入電壓和輸出電壓設定激磁負電流基準值。 In an exemplary embodiment of the present application, step (a) further includes: setting a reference value of the exciting negative current based on the input voltage and the output voltage of the flyback converter.
在本案的一種示例性實施例中,返馳變換器的輸出電壓可變。 In an exemplary embodiment of the present application, the output voltage of the flyback converter is variable.
在本案的一種示例性實施例中,返馳變換器的輸出電壓為5V、9V、15V或20V。 In an exemplary embodiment of the present invention, the output voltage of the flyback converter is 5V, 9V, 15V, or 20V.
根據本案的示例實施例的控制裝置及控制方法,根據激磁負電流基準值和返馳變換器的輸出電壓設定導通時間閾值,輸出控制信號以控制輔助開關的導通,在輔助開關的導通時間達到該導通時間閾值時關斷輔助開關。一方面,通過激磁負電流基準值和即時監測到的返馳變換器的輸出電壓,可以即時地設定不同電壓狀態下的導通時間閾值;另一方面,根據導通時間閾值即時調節輔助開關的控制信號,用以使輔助開關的導通時間跟隨該導通時間閾值,由此可實現返馳變換器中初級側功率開關管在不同輸出電壓下的零電壓開通。 According to the control device and control method of the exemplary embodiment of the present invention, the on-time threshold is set according to the reference value of the exciting negative current and the output voltage of the flyback converter, and a control signal is output to control the conduction of the auxiliary switch. The auxiliary switch is turned off at the on-time threshold. On the one hand, through the reference value of the exciting negative current and the output voltage of the flyback converter that is monitored in real time, the on-time thresholds under different voltage states can be set in real time; on the other hand, the control signal of the auxiliary switch is adjusted instantly according to the on-time threshold , Used to make the on-time of the auxiliary switch follow the on-time threshold, so that the zero-voltage turn-on of the primary-side power switch in the flyback converter at different output voltages can be achieved.
應當理解的是,以上的一般描述和後文的細節描述僅是示例性和解釋性的,並不能限制本案。 It should be understood that the above general description and the following detailed description are merely exemplary and explanatory, and should not limit the case.
S1‧‧‧初級側功率開關管 S 1 ‧‧‧Primary power switch
S2‧‧‧鉗位管 S 2 ‧‧‧Clamp
SR‧‧‧同步整流管 S R ‧‧‧Synchronous Rectifier
Is‧‧‧次級側電流 I s ‧‧‧ secondary current
t0-t5‧‧‧時刻 t0-t5‧‧‧time
Lm‧‧‧激磁電感 L m ‧‧‧ Excitation inductance
Vo‧‧‧輸出電壓 V o ‧‧‧ output voltage
CEQ‧‧‧寄生電容 C EQ ‧‧‧ Parasitic capacitance
Im_n(t)‧‧‧激磁負電流的幅值 I m_n (t) ‧‧‧ amplitude of negative excitation current
Saux‧‧‧並聯於二極體D1的開關 S aux ‧‧‧ Switch in parallel with diode D1
Waux‧‧‧輔助繞組 W aux ‧‧‧ auxiliary winding
Saux_VCC‧‧‧串聯於輔助繞組的開關 S aux_VCC ‧‧‧ Switch in series with auxiliary winding
600、1100、1200、1400、1500‧‧‧控制裝置 600, 1100, 1200, 1400, 1500‧‧‧ control devices
610、1110、1210、1410、1510‧‧‧返馳變換器 610, 1110, 1210, 1410, 1510‧‧‧Flyback converter
620‧‧‧導通時間設定單元 620‧‧‧on time setting unit
630、1130、1230、1430、1530‧‧‧導通時間控制單元 630, 1130, 1230, 1430, 1530‧‧‧ On time control unit
640、1140、1240、1440、1540‧‧‧激磁負電流設定單元 640, 1140, 1240, 1440, 1540‧‧‧ Excitation negative current setting unit
650、1150、1250、1450、1550‧‧‧導通時間計算單元 650, 1150, 1250, 1450, 1550‧‧‧ on-time calculation unit
1480、1580‧‧‧輸入電壓檢測單元 1480, 1580‧‧‧ input voltage detection unit
810‧‧‧計時器 810‧‧‧Timer
820‧‧‧輔助開關控制器 820‧‧‧Auxiliary switch controller
Im_N‧‧‧激磁負電流基準值 I m_N ‧‧‧ Reference value of negative excitation current
tset‧‧‧導通時間閾值 t set ‧‧‧on time threshold
T‧‧‧變壓器 T‧‧‧Transformer
Co‧‧‧輸出電容 C o ‧‧‧ output capacitor
Vbus‧‧‧輸入電壓 V bus ‧‧‧ input voltage
R1‧‧‧第一電阻 R 1 ‧‧‧first resistor
R2‧‧‧第二電阻 R 2 ‧‧‧Second resistor
(a)、(b)、(c)‧‧‧步驟 (a), (b), (c) ‧‧‧ steps
第1圖示意性示出了一種技術方案中的有源鉗位返馳變換器的電路圖。 FIG. 1 schematically illustrates a circuit diagram of an active clamp flyback converter in a technical solution.
第2圖示意性示出了一種技術方案中的有源鉗位返馳變換器的斷續模式控制波形圖。 FIG. 2 schematically illustrates a discontinuous mode control waveform diagram of an active clamp flyback converter in a technical solution.
第3圖示意性示出了一種技術方案中的RCD鉗位返馳變換器的電路圖。 FIG. 3 schematically shows a circuit diagram of an RCD clamp flyback converter in a technical solution.
第4圖示意性示出了一種技術方案中的RCD鉗位元返馳變換器的臨界連續模式控制波形圖。 FIG. 4 schematically illustrates a critical continuous mode control waveform diagram of an RCD clamp element flyback converter in a technical solution.
第5圖示意性示出了另一種技術方案中的RCD鉗位返馳變換器的電路圖。 FIG. 5 schematically shows a circuit diagram of an RCD clamp flyback converter in another technical solution.
第6圖示意性示出了根據本案一示例性實施例的控制裝置的控制原理框圖。 FIG. 6 schematically illustrates a control principle block diagram of a control device according to an exemplary embodiment of the present invention.
第7圖示意性示出了根據本案另一示例性實施例的控制裝置的控制原理框圖。 FIG. 7 schematically illustrates a control principle block diagram of a control device according to another exemplary embodiment of the present invention.
第8圖示意性示出了根據本案又一示例性實施例的導通時間控制單元的電路圖。 FIG. 8 schematically illustrates a circuit diagram of an on-time control unit according to still another exemplary embodiment of the present invention.
第9圖示意性示出了根據本案再一示例性實施例的RCD鉗位元返馳變換器的斷續模式控制波形圖。 FIG. 9 schematically illustrates a discontinuous mode control waveform diagram of an RCD clamp element flyback converter according to still another exemplary embodiment of the present invention.
第10圖示意性示出了根據本案又一示例性實施例的有源鉗位返馳變換器的臨界連續模式控制波形圖。 FIG. 10 schematically illustrates a critical continuous mode control waveform diagram of an active clamp flyback converter according to still another exemplary embodiment of the present invention.
第11圖示意性示出了根據本案又一示例性實施例的RCD鉗位返馳變換器的導通時間控制法的一個具體實施例。 FIG. 11 schematically illustrates a specific embodiment of an on-time control method of an RCD clamp flyback converter according to still another exemplary embodiment of the present invention.
第12圖示意性示出了根據本案又一示例性實施例的有源鉗位返馳變換器的導通時間控制法的一個具體實施例。 FIG. 12 schematically illustrates a specific embodiment of an on-time control method of an active clamp flyback converter according to another exemplary embodiment of the present invention.
第13圖示意性示出了根據本案又一示例性實施例的RCD鉗位返馳變換器的激磁負電流基準值隨輸入電壓變化的設定方法的一個具體實施例。 FIG. 13 schematically illustrates a specific embodiment of a method for setting a reference value of an exciting negative current of an RCD clamp flyback converter according to another exemplary embodiment of the present invention as a function of an input voltage.
第14圖示意性示出了根據本案又一示例性實施例的有源鉗位返馳變換器的激磁負電流基準值隨輸入電壓變化的設定方法的一個具體實施例。 FIG. 14 schematically illustrates a specific embodiment of a method for setting a reference value of an exciting negative current of an active clamp flyback converter according to an input voltage according to another exemplary embodiment of the present invention.
第15圖示意性示出了根據本案又一示例性實施例的控制方法的流程圖。 FIG. 15 schematically illustrates a flowchart of a control method according to still another exemplary embodiment of the present invention.
體現本案特徵與優點的一些典型實施例將在後段的說明中詳細敘述。應理解的是本案能夠在不同的態樣上具有各種的變化,其皆不脫離本案的範圍,且其中的說明及圖示在本質上當作說明之用,而非架構於限制本案。 Some typical embodiments embodying the features and advantages of this case will be described in detail in the description in the subsequent paragraphs. It should be understood that the present case can have various changes in different aspects, all of which do not depart from the scope of the present case, and that the descriptions and diagrams therein are essentially for the purpose of illustration, rather than limiting the case.
第1圖示出了一種技術方案中的有源鉗位返馳變換器的電路圖。有源鉗位返馳變換器可以實現初級側功率開關管S1的零電壓開通(ZVS),現有的控制方法為:控制鉗位管S2僅在初級側功率開關管S1導通前導通一設定時間,該設定時間如第2圖所示的控制波形圖中的t2-t3。 Figure 1 shows a circuit diagram of an active clamp flyback converter in a technical solution. The active clamp flyback converter can realize the zero-voltage turn-on (ZVS) of the primary-side power switch S 1. The existing control method is: control the clamp S 2 to be turned on only before the primary-side power switch S 1 is turned on. Set time, this set time is t2-t3 in the control waveform diagram shown in Figure 2.
第3圖示出了一種技術方案中的RCD鉗位返馳變換器的電路圖。RCD鉗位返馳變換器通過延遲導通準諧振返馳變換器的次級側同步整流管SR來實現初級側功率開關管S1的零電壓開通(ZVS),現有的次級側同步整流管SR的延遲導通控制方法為:控制同步整流管SR在次級側電流Is降到零之後繼續導通設定時間,該設定時間如第4圖所示的控制波形圖中的t1-t2。 FIG. 3 shows a circuit diagram of an RCD clamp flyback converter in a technical solution. RCD clamp flyback converter by delaying conduction quasi-resonant flyback converter secondary-side synchronous rectifier S R to achieve the primary side power switch S 1 of the zero-voltage (ZVS), secondary-side synchronous rectifier prior the method of controlling the conduction delay is S R: S R to control the synchronous rectifier continues to conduct after the set time of the secondary-side current I s to zero, t1-t2 waveform diagram for controlling the set time of 4 as shown in FIG.
以上兩種實現初級側功率開關管S1的零電壓開通(ZVS)的方法,都是通過控制同步整流管SR或鉗位管S2開通設定時間來實現的,這對於固定輸出電壓的應用情形是適用的。 The above two methods for achieving the zero voltage turn-on (ZVS) of the primary-side power switch S 1 are both achieved by controlling the set time of the synchronous rectifier S R or the clamp S 2 to be turned on. The situation is applicable.
然而,隨著電源適配器的發展,尤其是USB-PD Type-C的推廣和普及,變輸出電壓的應用變得越來越流行。對於變輸出電壓的應用情形,上述控制方式將不再適用,這是因為:無論是RCD鉗位返馳變換器,還是有源鉗位返馳變換器,其實現初級側功率開關管零電壓開通(ZVS)的基本原理如下:在初級側功率開關管S1開通之前,使得變壓器的激磁電感Lm上產生一激磁負電流Im_n,通過該激磁負電流Im_n的幫助以實現初級側功率開關管S1的零電壓開通(ZVS),且激磁負電流的大小由如下公式決定:
其中:Lm是變壓器的激磁電感值,n是變壓器的匝數比,V0是變換器的輸出電壓值,Im_n(t)是激磁負電流的幅值,t是輔助開關的導通時間(對於準諧振返馳變換器的同步整流管來說指的是次級側電流Is降到零之後的導通時間,對於有源鉗位返馳變換器的鉗位管來說指的是初級側功率開關管導通前的導通時間)。 Where: L m is the excitation inductance value of the transformer, n is the turns ratio of the transformer, V 0 is the output voltage value of the converter, I m_n (t) is the amplitude of the negative excitation current, and t is the on-time of the auxiliary switch ( For the synchronous rectifier of the quasi-resonant flyback converter, it refers to the on-time after the secondary side current I s drops to zero, and for the clamp of the active clamp flyback converter, it refers to the primary ON time before the power switch is turned on).
由上述公式可以看出,對於一個固定的設計,Lm和n是固定的。如果輸出電壓Vo是固定的,由公式(1)可知,固定的導通時間t意味著固定的激磁負電流幅值,因此,通過控制同步整流管SR或鉗位管S2開通一設定時間t,對於固定輸出電壓的應用情形是適用的。如果輸出電壓是可變的,固定的導通時間意味著激磁負電流幅值會隨輸出電壓Vo的變化而改變。以USB-PD Type-C的應用為例,其最小輸出電壓為5V,最大輸出電壓為20V,如果採用固定導通時間的控制方法,會造成以下兩個結果中的一個: It can be seen from the above formula that for a fixed design, L m and n are fixed. If the output voltage Vo is fixed, it can be known from the formula (1) that the fixed on-time t means a fixed magnitude of the negative excitation current. Therefore, by controlling the synchronous rectifier tube S R or the clamp tube S 2 to be turned on for a set time t It is suitable for the application of fixed output voltage. If the output voltage is variable, a fixed on-time means that the magnitude of the negative magnetizing current will change as the output voltage V o changes. Taking the application of USB-PD Type-C as an example, the minimum output voltage is 5V and the maximum output voltage is 20V. If a fixed on-time control method is used, it will cause one of the following two results:
A:如果設定的導通時間恰好可以滿足輸出電壓為5V時的初級側功率開關管零電壓開通(ZVS)的條件,那麼當輸出電壓為20V時,產生的激磁負電流幅值將是輸出電壓為5V時的激磁負電流幅值的4倍。過大的激磁負電流會引入額外損耗,影響變換器的效率。 A: If the set on-time exactly meets the condition of zero-voltage turn-on (ZVS) of the primary-side power switch when the output voltage is 5V, then when the output voltage is 20V, the amplitude of the negative excitation current generated will be the output voltage of 4 times the amplitude of the negative excitation current at 5V. Excessive negative excitation current will introduce additional losses and affect the efficiency of the converter.
B:如果設定的導通時間恰好可以滿足輸出電壓為20V時的初級側功率開關管零電壓開通(ZVS)的條件,那麼當輸出電壓為5V時,產生的激磁負電流幅值將只有輸出電壓為20V時的1/4,過小的激磁負電流幅值會造成初級側功率開關管不能實現零電壓開通。 B: If the set on-time exactly meets the condition of zero-voltage turn-on (ZVS) of the primary-side power switch when the output voltage is 20V, then when the output voltage is 5V, the amplitude of the negative excitation current generated will only be the output voltage of 1/4 at 20V, too small excitation negative current amplitude will cause the primary-side power switch to achieve zero voltage turn-on.
基於上述內容,在本示例實施例中,首先提供了一種控制裝置,控制裝置用於控制返馳變換器610,其中返馳變換器610包含一輔助開關。參照第6圖所示,該控制裝置600可以包括:導通時間設定單元620,以及導通時間控制單元630。其中:導通時間設定單元620用於根據激磁負電流基準值和輸出電壓Vo設定導通時間閾值tset;以及導通時間控制單元630用於輸出控制信號以控制輔助開關的導通, 在輔助開關的導通時間達到導通時間閾值tset時關斷輔助開關。例如,控制信號可根據計時起始信號和導通時間閾值tset而得到。 Based on the foregoing, in this exemplary embodiment, a control device is first provided. The control device is used to control a flyback converter 610, where the flyback converter 610 includes an auxiliary switch. Referring to FIG. 6, the control device 600 may include an on-time setting unit 620 and an on-time control unit 630. Wherein: the on-time setting unit 620 for setting a conduction time threshold value t set according to the exciting negative current reference value and the output voltage V o; and on-time control unit 630 is turned on to output a control signal to control the auxiliary switch, turned on of the auxiliary switch When the time reaches the on-time threshold tset , the auxiliary switch is turned off. For example, the control signal may be obtained in accordance with the timing t set start signal and on-time threshold.
根據本示例實施例的控制裝置,一方面,通過一激磁負電流基準值和即時監測到的返馳電路的輸出電壓,可以即時地設定不同電壓狀態下的導通時間閾值;另一方面,根據導通時間閾值即時調節輔助開關的導通時間,用以使輔助開關的導通時間跟隨導通時間閾值,由此可實現返馳變換器中初級側功率開關管在不同輸出電壓下的零電壓開通。 According to the control device of this exemplary embodiment, on the one hand, through an excitation negative current reference value and the output voltage of the flyback circuit monitored in real time, on-time time thresholds under different voltage states can be set in real time; on the other hand, according to the on-state The time threshold adjusts the on-time of the auxiliary switch in real time to make the on-time of the auxiliary switch follow the on-time threshold, so that the zero-voltage turn-on of the primary-side power switch in the flyback converter at different output voltages can be achieved.
在本示例實施例中,返馳變換器還包括初級側開關單元、次級側整流單元、變壓器和輸出電容,其中,初級側開關單元包含初級側功率開關管,次級側整流單元包括第一端與第二端,第一端和第二端分別與變壓器和輸出電容電氣連接。為適用變輸出電壓的應用情形,實現全輸入電壓範圍內(例如90~264Vac),不同輸出電壓下的全負載範圍內的初級側功率開關管的零電壓開通(ZVS),需要直接控制輔助開關的導通時間。根據以下公式(2):
由上述公式(2)可知,對於一個設定的激磁負電流基準Im_N,導通時間閾值tset和輸出電壓Vo呈反比關係。根據不同的輸出電壓來調整輔助開關的導通時間閾值,進而調整輔助開關的導通時間,即可達到控制激磁負電流的目的。因此,本案的基本原理在於:在初級側功率開關管開通之前,通過控制輔助開關的開通和關斷,使得返馳變換器中產生一激磁負電流。首先,控制輔助開關的導通,使得輔助開關的導通時間達到導通時間閾值tset。然後,控制輔助開關關斷,於輔助開關斷開後,以此時的激磁負電流為初始值,通過激磁電 感Lm與原邊線路的寄生電容CEQ的諧振來實現初級側功率開關管的零電壓開通(ZVS)。本案中通過合理設置輔助開關的導通時間閾值,可在全輸入電壓範圍、不同輸出電壓的全負載範圍內實現初級側功率開關管的零電壓開通(ZVS)。於本實施例中,寄生電容CEQ由初級側功率開關管S1的寄生電容和變壓器T的初級側線圈的寄生電容構成。 From the above formula (2), it can be known that, for a set excitation negative current reference I m_N , the on-time threshold t set and the output voltage Vo are inversely related. Adjusting the on-time threshold of the auxiliary switch according to different output voltages, and then adjusting the on-time of the auxiliary switch, can achieve the purpose of controlling the negative excitation current. Therefore, the basic principle of this case is that before the primary-side power switch is turned on, by controlling the on and off of the auxiliary switch, a negative excitation current is generated in the flyback converter. First, the conduction of the auxiliary switch is controlled so that the conduction time of the auxiliary switch reaches the conduction time threshold value t set . Then, the auxiliary switch is controlled to be turned off. After the auxiliary switch is turned off, the primary side power switch tube is realized by the resonance of the excitation inductance L m and the parasitic capacitance C EQ of the primary line by using the negative excitation current at this time as the initial value. Zero voltage turn-on (ZVS). In this case, by setting the on-time threshold of the auxiliary switch reasonably, the zero-voltage turn-on (ZVS) of the primary-side power switch tube can be achieved in the full input voltage range and the full load range of different output voltages. In this embodiment, the parasitic capacitance C EQ is composed of the parasitic capacitance of the primary-side power switch S1 and the parasitic capacitance of the primary-side coil of the transformer T.
需要說明的是,在本示例實施例中,返馳變換器的輸出電壓可變,例如返馳變換器的輸出電壓可以為5V、9V、15V或20V等,本案對此不進行特殊限定。 It should be noted that, in this exemplary embodiment, the output voltage of the flyback converter is variable. For example, the output voltage of the flyback converter may be 5V, 9V, 15V, or 20V, which is not specifically limited in this case.
此外,在本示例實施例中,返馳變換器610可以為如第1圖所示的有源鉗位返馳變換器或如第3圖和第5圖所示的RCD鉗位返馳變換器,但是本案的示例實施例中的返馳變換器不限於此。對應地,在本示例實施例中,返馳變換器610的輔助開關可以為如第1圖所示的鉗位管S2或如第3圖所示的同步整流管的SR,但是本案的示例實施例中的輔助開關不限於此。例如,第5圖所示的副邊為二極體整流的RCD鉗位返馳變換器,其輔助開關可以為並聯於二極體D1的開關Saux,或其輔助開關可以為串聯於輔助繞組Waux的開關Saux_VCC。 In addition, in the present exemplary embodiment, the flyback converter 610 may be an active clamp flyback converter as shown in FIG. 1 or an RCD clamp flyback converter as shown in FIGS. 3 and 5. , But the flyback converter in the example embodiment of the present case is not limited to this. Correspondingly, in this exemplary embodiment, the auxiliary switch of the flyback converter 610 may be the clamp tube S 2 shown in FIG. 1 or the synchronous rectifier tube S R shown in FIG. 3. The auxiliary switch in the exemplary embodiment is not limited thereto. For example, the secondary side shown in Figure 5 is a diode-rectified RCD clamp flyback converter. The auxiliary switch may be a switch S aux connected in parallel to the diode D1, or its auxiliary switch may be connected in series to the auxiliary winding. W aux switch S aux_VCC .
需要說明的是,在本示例實施例中,返馳變換器的工作模式可以為斷續模式或臨界連續模式,本案對此不進行特殊限定。 It should be noted that, in this exemplary embodiment, the working mode of the flyback converter may be a discontinuous mode or a critical continuous mode, which is not specifically limited in this case.
進一步地,如第7圖所示,在本示例實施例中,為了合理地設定激磁負電流基準值和導通時間閾值,導通時間設定單元620還可以包括:激磁負電流設定單元640以及導通時間計算單元650。激磁負電流設定單元640用於基於返馳變換器的輸入電壓或/和輸出電壓設定激磁負電流基準值Im_N。導通時間計算單元650用於根據激磁負電流基準值Im_N和返馳變換器的輸出電壓Vo來 設定導通時間閾值tset。 Further, as shown in FIG. 7, in this exemplary embodiment, in order to reasonably set the reference value of the negative excitation current and the threshold value of the on time, the on time setting unit 620 may further include: a negative excitation current setting unit 640 and on time calculation Unit 650. The excitation negative current setting unit 640 is configured to set the excitation negative current reference value I m_N based on an input voltage or / and an output voltage of the flyback converter. The on-time calculation unit 650 is configured to set the on-time threshold t set according to the negative excitation current reference value I m_N and the output voltage V o of the flyback converter.
於一實施例中,導通時間計算單元可包含乘法或除法電路,但不以此為限。乘法或除法電路接收激磁負電流基準值Im_N和返馳變換器的輸出電壓Vo,並根據電路本身的參數,如激磁電感值Lm以及變壓器的匝數比n,經過公式(2)的計算來設定導通時間閾值tset。 In an embodiment, the on-time calculation unit may include a multiplication or division circuit, but is not limited thereto. The multiplication or division circuit receives the reference value of the excitation negative current I m_N and the output voltage V o of the flyback converter, and according to the parameters of the circuit itself, such as the value of the excitation inductance L m and the turns ratio n of the transformer, after formula (2) Calculate to set the on-time threshold t set .
在本示例實施例中,導通時間控制單元630的實現可以有多種方式。第8圖示出了根據本案的導通時間控制單元630的一種實施例。如第8圖所示,導通時間控制單元包含計時器810和輔助開關控制器820,其中,計時器810用於根據計時起始信號開始計時,並產生計時信號。輔助開關控制器820用以根據計時信號產生控制信號。 In this exemplary embodiment, the on-time control unit 630 may be implemented in various ways. FIG. 8 illustrates an embodiment of the on-time control unit 630 according to the present case. As shown in FIG. 8, the on-time control unit includes a timer 810 and an auxiliary switch controller 820. The timer 810 is configured to start timing according to a timing start signal and generate a timing signal. The auxiliary switch controller 820 is configured to generate a control signal according to the timing signal.
在本示例實施例中,輔助開關控制器820根據計時起始信號以導通輔助開關;計時信號於計時器810開始計時後,逐漸增加,且於計時達到導通時間閾值tset時,輔助開關控制器820關斷輔助開關。 In this exemplary embodiment, the auxiliary switch controller 820 turns on the auxiliary switch according to the timing start signal; the timing signal gradually increases after the timer 810 starts counting, and when the timing reaches the on-time threshold t set , the auxiliary switch controller 820 turns off the auxiliary switch.
在本示例實施例中,對於斷續工作模式來說,計時器810的計時起始信號可以通過輔助開關的開通信號來獲得。如第2圖所示,在t2時刻S2驅動信號的上升沿跳變信號為輔助開關的開通信號;或者,如第9圖所示,在t2時刻的SR驅動信號的上升沿跳變信號為輔助開關的開通信號,可以通過檢測上升沿跳變信號來得到計時起始信號。需要說明的是,計時起始信號可以和這個上升沿跳變信號同步,也可以是由上升沿跳變信號做一定延遲得到。 In the present exemplary embodiment, for the intermittent operation mode, the timing start signal of the timer 810 may be obtained by an on signal of an auxiliary switch. As shown in FIG. 2 , the rising edge transition signal of the S 2 driving signal at time t2 is an on signal of the auxiliary switch; or, as shown in FIG. 9, the rising edge transition signal of the S R driving signal at time t 2 To turn on the auxiliary switch, you can get the timing start signal by detecting the rising edge transition signal. It should be noted that the timing start signal can be synchronized with this rising edge transition signal, or can be obtained by a certain delay from the rising edge transition signal.
進一步地,在本示例實施例中,對於臨界連續模式來說,計時器的計時起始信號可通過檢測激磁負電流的過零點(如第4圖之t1時刻)來獲得。具體而言,可以通過電流互感器,取樣電阻或者功率器件內阻如輔助開關的自 身內阻來實現激磁負電流過零點的檢測。 Further, in this exemplary embodiment, for the critical continuous mode, the timing start signal of the timer can be obtained by detecting the zero-crossing point of the negative excitation current (such as time t1 in FIG. 4). Specifically, the current transformer, sampling resistor or internal resistance of the power device such as the The internal resistance is used to detect the zero crossing of the exciting negative current.
於一實施例中,計時器810還根據復位信號來實現復位。進一步地,在本示例實施例中,計時器的復位信號可以通過輔助開關的關斷信號來獲得,舉例而言,計時器的復位信號可以和輔助開關的關斷信號同步,或者由關斷信號做一定延遲得到。如第2圖所示,t3時刻S2驅動信號的下降沿跳變信號為輔助開關的關斷信號;如第9圖所示,t3時刻的SR驅動信號的下降沿跳變信號為輔助開關的關斷信號;或如第10圖所示,t2時刻S2驅動信號的下降沿跳變信號為輔助開關的關斷信號,可以通過檢測下降沿跳變信號來得到復位信號。需要說明的是,復位信號可以和這個下降沿跳變信號同步,也可以是由下降沿跳變信號做一定延遲得到。 In one embodiment, the timer 810 is also reset according to a reset signal. Further, in this exemplary embodiment, the reset signal of the timer can be obtained by the off signal of the auxiliary switch. For example, the reset signal of the timer can be synchronized with the off signal of the auxiliary switch, or by the off signal Do get delayed. As shown in Figure 2 , the falling edge transition signal of the S 2 drive signal at t3 is the off signal of the auxiliary switch; as shown in Figure 9, the falling edge transition signal of the S R drive signal at t3 is the auxiliary switch. Or as shown in Figure 10, the falling edge transition signal of the S 2 driving signal at t2 is the off signal of the auxiliary switch, and the reset signal can be obtained by detecting the falling edge transition signal. It should be noted that the reset signal can be synchronized with the falling edge transition signal, or can be obtained by a certain delay from the falling edge transition signal.
在本示例實施例中,採用控制輔助開關的導通時間的方式來控制激磁負電流,對不同的返馳變換器有多種不同的方法,下面針對斷續模式下的RCD鉗位返馳變換器和斷續模式下的有源鉗位返馳變換器分別進行舉例說明。 In this example embodiment, the on-time of the auxiliary switch is controlled to control the negative excitation current. There are many different methods for different flyback converters. The following describes the RCD clamped flyback converter in discontinuous mode and The active-clamp flyback converters in discontinuous mode are illustrated separately.
第11圖示出了一種控制裝置的一個具體實施例。如第11圖所示,控制裝置1100用於控制返馳變換器1110,其中控制裝置1100包括:導通時間控制單元1130、激磁負電流設定單元1140和導通時間計算單元1150。返馳變換器1110為RCD鉗位返馳變換器,包含初級側開關單元、次級側整流單元、變壓器T和輸出電容Co,其中,初級側開關單元包含初級側功率開關管S1,次級側整流單元包含同步整流管SR,且次級側整流單元分別與變壓器T和輸出電容Co電氣連接。 Fig. 11 shows a specific embodiment of a control device. As shown in FIG. 11, the control device 1100 is used to control the flyback converter 1110. The control device 1100 includes an on-time control unit 1130, an excitation negative current setting unit 1140, and an on-time calculation unit 1150. The flyback converter 1110 is an RCD clamped flyback converter, which includes a primary-side switch unit, a secondary-side rectifier unit, a transformer T, and an output capacitor C o , wherein the primary-side switch unit includes a primary-side power switch S 1 . The stage-side rectifier unit includes a synchronous rectifier S R , and the secondary-side rectifier unit is electrically connected to the transformer T and the output capacitor C o respectively.
在該實施例中,導通時間計算單元1150根據即時監測的輸出電 壓信號Vo和激磁負電流設定單元1140輸出的激磁負電流基準值Im_N,得到導通時間閾值tset,並將導通時間閾值tset輸送到導通時間控制單元1130;控制裝置1100通過同步整流管SR的第二次導通開通信號(如第9圖中t2時刻的SR驅動信號)獲得計時起始信號;導通時間控制單元1130獲取導通時間閾值tset和計時起始信號,用於輸出控制信號以導通同步整流管SR,且於輔助開關的導通時間達到導通時間閾值tset時關斷同步整流管SR。同時,導通時間控制單元1130根據同步整流管SR的關斷信號產生的復位信號來實現復位。 In this embodiment, the on-time calculation unit 1150 obtains the on-time threshold t set according to the output voltage signal V o monitored in real time and the excitation negative current reference value I m_N output by the excitation negative current setting unit 1140, and sets the on-time threshold t set is sent to the on-time control unit 1130; the control device 1100 obtains the timing start signal through the second on-on signal of the synchronous rectifier tube S R (such as the S R driving signal at time t2 in FIG. 9); the on-time control unit 1130 An on-time threshold t set and a timing start signal are obtained, and are used to output a control signal to turn on the synchronous rectifier S R , and turn off the synchronous rectifier S R when the on-time of the auxiliary switch reaches the on-time threshold t set . At the same time, the on-time control unit 1130 implements a reset according to a reset signal generated by an off signal of the synchronous rectifier S R.
第12圖示出了一種控制裝置的另一個具體實施例。如第12圖所示,控制裝置1200用於控制返馳變換器1210,控制裝置1200包括:導通時間控制單元1230、激磁負電流設定單元1240和導通時間計算單元1250。返馳變換器1210為有源鉗位返馳變換器,包含初級側開關單元、次級側整流單元、變壓器T和輸出電容Co,其中,初級側開關單元包含初級側功率開關管S1和鉗位管S2,次級側整流單元包含同步整流管SR,且次級側整流單元分別與變壓器T和輸出電容Co電氣連接。 Fig. 12 shows another specific embodiment of a control device. As shown in FIG. 12, the control device 1200 is used to control the flyback converter 1210. The control device 1200 includes: an on-time control unit 1230, an excitation negative current setting unit 1240, and an on-time calculation unit 1250. The flyback converter 1210 is an active clamp flyback converter, which includes a primary-side switching unit, a secondary-side rectifying unit, a transformer T, and an output capacitor C o , wherein the primary-side switching unit includes a primary-side power switch S 1 and The clamp tube S 2 , the secondary-side rectifier unit includes a synchronous rectifier tube S R , and the secondary-side rectifier unit is electrically connected to the transformer T and the output capacitor C o respectively.
在實施例中,導通時間計算單元1250根據即時監測的輸出電壓信號Vo和激磁負電流設定單元1240輸出的激磁負電流基準值Im_N,得到導通時間閾值tset,並將導通時間閾值tset輸送到導通時間控制單元1230;控制裝置1200由鉗位管S2的開通信號來獲得計時起始信號。 In the embodiment, the on-time calculation unit 1250 obtains the on-time threshold t set according to the output voltage signal V o monitored in real time and the excitation negative current reference value I m_N output by the excitation negative current setting unit 1240, and sets the on-time threshold t set delivered to the on-time control unit 1230; 1200 by the control means opening the clamp transistor S 2 signal to obtain timing start signal.
導通時間控制單元1230獲取計時起始信號和導通時間閾值tset,用於輸出控制信號以導通鉗位管S2,且於輔助開關的導通時間達到導通時間閾值tset時關斷鉗位管S2。同時,導通時間控制單元1230根據鉗位管S2的關斷信號產生復位信號以實現復位。 The on-time control unit 1230 obtains a timing start signal and an on-time threshold t set for outputting a control signal to turn on the clamp S 2 , and turns off the clamp S when the on-time of the auxiliary switch reaches the on-time threshold t set . 2 . At the same time, the on-time control unit 1230 generates a reset signal according to the turn-off signal of the clamp tube S 2 to realize resetting.
此外,於本案的各示例實施例中,均包含激磁負電流設定單元,用於設定激磁負電流基準值Im_N。針對激磁負電流基準值的設定,經研究可知:在低壓輸入(Vbus<nVo)時,無需激磁負電流的幫助,即可實現初級側功率管的零電壓開通(ZVS);在高壓輸入(Vbus>nVo)時,為了實現初級側功率管的零電壓開通(ZVS),激磁負電流的最小幅值需滿足:
其中:Im_N為激磁負電流基準值,Vbus為輸入電壓,VO為輸出電壓,n為變壓器的匝數比;Lm為激磁電感感量;CEQ為寄生電容容值。 Among them: I m_N is the reference value of the negative excitation current, V bus is the input voltage, V O is the output voltage, and n is the turns ratio of the transformer; L m is the inductance of the magnetizing inductance; and C EQ is the parasitic capacitance value.
根據上述公式(3),對於一個特定電路設計來說,n、Lm以及CEQ是固定的,為了實現初級側功率管的零電壓開通(ZVS),激磁負電流的基準值與輸入電壓Vbus和輸出電壓VO有關。由此,激磁負電流設定單元可基於返馳變換器的輸入電壓和輸出電壓即時調整激磁負電流基準值。 According to the above formula (3), for a specific circuit design, n, L m, and C EQ are fixed. In order to achieve zero voltage turn-on (ZVS) of the primary-side power tube, the reference value of the excitation negative current and the input voltage V bus is related to the output voltage V O. Therefore, the excitation negative current setting unit can adjust the excitation negative current reference value in real time based on the input voltage and the output voltage of the flyback converter.
然而,採用上述方法,為了即時調整激磁負電流基準值Im_N,需要即時監控兩個變數:輸入電壓Vbus和輸出電壓VO,如此做法會增加控制的複雜性。進一步研究可知:返馳變換器於高壓輸入(Vbus>nVo)的情況下工作時,可忽略輸出電壓對於激磁負電流的基準值的影響,即激磁負電流的基準值僅僅與輸入電壓有關,從而大大簡化了激磁負電流基準值的設定。則,上述公式(3)可簡化為下述公式(4):
由此,激磁負電流設定單元可基於返馳變換器的輸入電壓設定激磁負電流基準值。 Thereby, the excitation negative current setting unit can set a reference value of the excitation negative current based on the input voltage of the flyback converter.
於本實施例中,對於激磁負電流基準值的設定,可以有如下兩種設定方法: In this embodiment, there are two methods for setting the reference value of the exciting negative current:
固定基準值設定法:為實現全輸入電壓範圍內初級側功率開關管的零電壓開通(ZVS),激磁負電流的基準值按最大輸入電壓進行設定,即:
其中:Vbus_max為輸入電壓最大值。 Where: V bus_max is the maximum input voltage.
對固定基準值設定法來說,當輸入電壓為最大值時,恰好可以滿足初級側功率開關管的零電壓開通(ZVS);但當輸入電壓為低電壓時,該控制方法所產生的激磁負電流幅值比為實現初級側功率管零電壓開通(ZVS)所需的激磁負電流的幅值大,由此會帶來額外的損耗,不利於效率優化。在對效率要求不是很高的應用場合可以採用固定基準值設定法。 For the fixed reference value setting method, when the input voltage is at the maximum value, it can just meet the zero voltage turn-on (ZVS) of the primary-side power switch; but when the input voltage is low, the negative excitation voltage generated by this control method The current amplitude is larger than the amplitude of the negative excitation current required to achieve zero voltage turn-on (ZVS) of the primary-side power tube, which will cause additional losses and is not conducive to efficiency optimization. In applications where efficiency requirements are not very high, a fixed reference value setting method can be used.
對效率要求比較高的應用場合,可以采基準值隨輸入電壓變化的設定方法來對變換器的效率進行優化。因此,可以將激磁負電流基準值設定為:
其中:Im_N(Vbus)為激磁負電流基準值。 Among them: I m_N (V bus ) is the reference value of the negative excitation current.
對於一個特定的電路設計,Lm和CEQ是固定的,由上述公式(6)可知,激磁負電流基準值與輸入電壓Vbus成正比,激磁負電流設定單元可根據輸入電壓檢測單元檢測出的輸入電壓值Vbus,直接計算出為激磁負電流基準值 Im_N。 For a specific circuit design, L m and C EQ are fixed. From the above formula (6), it can be known that the reference value of the excitation negative current is proportional to the input voltage V bus , and the excitation negative current setting unit can detect according to the input voltage detection unit. The input voltage value V bus is directly calculated as the reference value of the excitation negative current I m_N .
第13圖示出了一種控制裝置的再一個具體實施例。如第13圖與第11圖的結構類似,但第13圖更包含激磁負電流設定單元的一具體實例。於第13圖所示,控制裝置更包含輸入電壓檢測單元1480,於本實施例中,輸入電壓檢測單元1480包含第一電阻R1和第二電阻R2,並通過第一電阻R1和第二電阻R2分壓的方式來檢測輸入電壓Vbus。輸入電壓檢測單元1480將輸入電壓Vbus輸入到激磁負電流設定單元1440用以設定激磁負電流基準值Im_N,將激磁負電流基準值Im_N輸送到導通時間計算單元1450,導通時間計算單元1450根據激磁負電流基準值Im_N和即時監測的輸出電壓Vo來計算導通時間閾值tset,將導通時間閾值tset輸入到導通時間控制單元1430;通過同步整流管的二次導通開通信號(第9圖,t2時刻的SR驅動信號)獲得計時起始信號,以使能導通時間控制單元1430;導通時間控制單元1430獲取導通時間閾值tset和計時起始信號,用於輸出控制信號以導通同步整流管SR,且於輔助開關的導通時間達到導通時間閾值tset時關斷同步整流管SR。同時,導通時間控制單元1430根據同步整流管SR的關斷信號產生的復位信號來實現復位。 Fig. 13 shows still another specific embodiment of a control device. For example, FIG. 13 is similar to the structure in FIG. 11, but FIG. 13 further includes a specific example of the excitation negative current setting unit. Shown in FIG. 13, the control device further includes an input voltage detection unit 1480, in the present embodiment, the input voltage detection unit 1480 comprises a first resistor R 1 and a second resistor R 2, and first and second resistors R 1 through Two resistors R 2 divide the voltage to detect the input voltage V bus . The input voltage detection unit 1480 inputs the input voltage V bus to the excitation negative current setting unit 1440 to set the excitation negative current reference value I m_N , and sends the excitation negative current reference value I m_N to the on-time calculation unit 1450, and the on-time calculation unit 1450 Calculate the on-time threshold t set based on the reference value of the negative current I m_N and the output voltage V o of the real-time monitoring, and input the on-time threshold t set to the on-time control unit 1430; Fig. 9 ( SR driving signal at time t2) to obtain a timing start signal to enable the on-time control unit 1430; the on-time control unit 1430 obtains an on-time threshold t set and a timing start signal for outputting a control signal to turn on synchronous rectifier S R, and the auxiliary switch to the on-time to reach the on time threshold t synchronous rectifier off when the set S R. At the same time, the on-time control unit 1430 implements a reset according to a reset signal generated by an off signal of the synchronous rectifier S R.
第14圖示出了一種控制裝置的再一個具體實施例。第14圖與第12圖的結構類似,主要區別是在於,第14圖中的輔助開關為有源鉗位返馳變換器的初級側的鉗位管S2。 Fig. 14 shows a further specific embodiment of a control device. FIG. 14 is similar to the structure in FIG. 12. The main difference is that the auxiliary switch in FIG. 14 is the clamp tube S 2 on the primary side of the active clamp flyback converter.
此外,在本示例實施例中,還提供了一種控制方法,該控制方法可以應用於如第6圖-第14圖的返馳變換器,返馳變換器包含一輔助開關,參照第15圖所示,該控制方法可以包括以下步驟:步驟(a):檢測返馳變換器的輸出電壓,並基於輸出電壓和激磁負電流基準值來設定導通時間閾值;步驟 (b):根據控制信號以控制輔助開關的導通,在輔助開關的導通時間達到導通時間閾值時關斷輔助開關。 In addition, in this exemplary embodiment, a control method is also provided. The control method can be applied to the flyback converter as shown in FIG. 6 to FIG. 14. The flyback converter includes an auxiliary switch. As shown, the control method may include the following steps: step (a): detecting the output voltage of the flyback converter, and setting the on-time threshold based on the output voltage and the reference value of the exciting negative current; steps (b): Turn on the auxiliary switch according to the control signal, and turn off the auxiliary switch when the on-time of the auxiliary switch reaches the on-time threshold.
一方面,通過一激磁負電流基準值和即時監測到的返馳變換器的輸出電壓,可以即時地設定不同電壓狀態下的導通時間閾值;另一方面,根據導通時間閾值即時調節輔助開關的導通時間,用以使輔助開關的導通時間跟隨導通時間閾值,由此可實現返馳變換器中初級側功率開關管在不同輸出電壓下的零電壓開通。 On the one hand, the on-time time thresholds under different voltage states can be set in real time through a reference value of the exciting negative current and the output voltage of the flyback converter that is monitored in real time; on the other hand, the on-time of the auxiliary switch is adjusted according to the on-time threshold The time is used to make the on-time of the auxiliary switch follow the on-time threshold, so that the zero-voltage turn-on of the primary-side power switch in the flyback converter at different output voltages can be achieved.
進一步地,在本示例實施例中,輔助開關可以為同步整流管、鉗位管、並聯在返馳變換器的次級側整流單元上的開關、或串聯於返馳變換器的輔助繞組的開關。 Further, in this exemplary embodiment, the auxiliary switch may be a synchronous rectifier tube, a clamp tube, a switch connected in parallel on the secondary side rectifier unit of the flyback converter, or a switch connected in series with the auxiliary winding of the flyback converter. .
進一步地,在本示例實施例中,在斷續模式下,可以通過檢測輔助開關的開通信號得到計時起始信號;以及在臨界連續模式下,可以通過檢測激磁負電流的過零點得到計時起始信號。 Further, in this example embodiment, in the discontinuous mode, the timing start signal can be obtained by detecting the on signal of the auxiliary switch; and in the critical continuous mode, the timing start can be obtained by detecting the zero crossing of the negative excitation current. signal.
此外,在本示例中,步驟(a)還可以包括:通過除法運算,基於輸出電壓和激磁負電流基準值計算獲得導通時間閾值。 In addition, in this example, step (a) may further include: calculating the on-time threshold value based on the output voltage and the reference value of the exciting negative current through a division operation.
此外,在本示例實施例中,控制方法還可以包含:(c)於輔助開關關斷後,通過返馳變換器中的激磁電感與寄生電容的諧振來實現返馳變換器的初級側功率開關管的零電壓開通。 In addition, in this exemplary embodiment, the control method may further include: (c) after the auxiliary switch is turned off, the primary-side power switch of the flyback converter is realized by resonance of the excitation inductance and parasitic capacitance in the flyback converter The zero voltage of the tube is turned on.
由於本示例實施例中的控制方法中的各步驟與上述控制裝置的各單元或模組的功能一一對應,在此將不再贅述。 Since the steps in the control method in this exemplary embodiment correspond to the functions of the units or modules of the control device one by one, they will not be repeated here.
本案得由熟知此技術之人士施匠思而為諸般修飾,然皆不脫如附申請專利範圍所欲保護者。 This case can be modified in various ways by those skilled in the art, but none of them can be protected by the scope of the patent application.
Claims (35)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
??201710229467.7 | 2017-04-10 | ||
CN201710229467 | 2017-04-10 | ||
??201710524232.0 | 2017-06-30 | ||
CN201710524232.0A CN108696132A (en) | 2017-04-10 | 2017-06-30 | control device and control method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201838303A TW201838303A (en) | 2018-10-16 |
TWI653810B true TWI653810B (en) | 2019-03-11 |
Family
ID=63843935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106127513A TWI653810B (en) | 2017-04-10 | 2017-08-14 | Control device and control method |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN108696132A (en) |
TW (1) | TWI653810B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110896271B (en) * | 2019-11-08 | 2021-06-08 | 矽力杰半导体技术(杭州)有限公司 | Zero-voltage switching-on control circuit and method and switching power supply applying same |
CN113141118B (en) * | 2019-11-08 | 2023-04-28 | 矽力杰半导体技术(杭州)有限公司 | Control circuit and switching converter using same |
CN111262444B (en) * | 2020-02-20 | 2021-06-01 | 连云港杰瑞电子有限公司 | Synchronous rectification control system and control method for secondary side resonance active clamping flyback |
CN111525806B (en) * | 2020-04-07 | 2021-02-26 | 浙江大学 | AC-DC power conversion device |
CN111953185B (en) * | 2020-08-12 | 2021-07-13 | 安徽省东科半导体有限公司 | ZVS (zero voltage switching) control method for active clamp flyback topology self-adaptive dead time |
CN114400899B (en) * | 2020-11-16 | 2023-07-18 | 上海百功半导体有限公司 | Novel zero-voltage switching control circuit, method and voltage converter |
CN113054848B (en) * | 2021-03-16 | 2022-07-19 | 广州金升阳科技有限公司 | Control device and control method of flyback converter |
CN113131748B (en) * | 2021-03-16 | 2022-09-13 | 广州金升阳科技有限公司 | Control method and control device of flyback converter |
CN113809920A (en) * | 2021-08-19 | 2021-12-17 | 广州金升阳科技有限公司 | BUCK converter control method |
CN114301303A (en) * | 2021-12-29 | 2022-04-08 | 上海安世博能源科技有限公司 | Circuit control method and device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201203833A (en) * | 2010-01-28 | 2012-01-16 | Sanyo Electric Co | Driving control circuit for linear vibration motor |
CN102122890B (en) * | 2010-10-11 | 2014-01-22 | 南京航空航天大学 | Control method for auxiliary switching tube of active clamp flyback converter |
CN102723856B (en) * | 2012-07-02 | 2014-06-25 | 矽力杰半导体技术(杭州)有限公司 | Synchronous rectifier control circuit and switch power supply employing same |
CN104539163B (en) * | 2014-12-19 | 2018-01-19 | 广州金升阳科技有限公司 | The synchronous rectification control method and its control module of anti exciting converter |
US10116222B2 (en) * | 2015-02-06 | 2018-10-30 | Texas Instruments Incorporated | Soft switching flyback converter with primary control |
CN105226925B (en) * | 2015-11-02 | 2018-01-05 | 南京航空航天大学 | A kind of inverse-excitation type single-phase inverter and its control method |
-
2017
- 2017-06-30 CN CN201710524232.0A patent/CN108696132A/en active Pending
- 2017-06-30 CN CN202110747537.4A patent/CN113595398B/en active Active
- 2017-08-14 TW TW106127513A patent/TWI653810B/en active
Also Published As
Publication number | Publication date |
---|---|
CN108696132A (en) | 2018-10-23 |
CN113595398A (en) | 2021-11-02 |
TW201838303A (en) | 2018-10-16 |
CN113595398B (en) | 2024-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI653810B (en) | Control device and control method | |
US10333417B2 (en) | Device and method for controlling flyback converter | |
TWI628905B (en) | Control method and control device for flyback converter circuit | |
US10333418B2 (en) | Control device and control method | |
TWI664801B (en) | Switching power, control apparatus and control method | |
CN108736729B (en) | Active clamping flyback power supply conversion circuit and conversion control circuit therein | |
US10291136B2 (en) | Control device and control method | |
US8988901B2 (en) | Switching power supply device | |
CN102185466B (en) | Driving circuit and driving method applied to flyback-type converter and quasi-resonant soft-switching flyback-type converter applying same | |
US8625311B2 (en) | Switching power supply apparatus including a plurality of switching elements | |
CN110798075B (en) | Control circuit and switching converter using same | |
CN113726165B (en) | Flyback converter and control method thereof | |
JP2005278263A (en) | Switching power unit | |
JP2010124678A (en) | Switching power supply apparatus and switching power supply control circuit | |
WO2015065603A1 (en) | Reducing power consumption of synchronous rectifier controller | |
KR20050025777A (en) | Switching power supply apparatus and power supply method thereof | |
US11606039B2 (en) | Synchronous rectifier circuit, control circuit and control method thereof | |
US10014788B2 (en) | Method of control for synchronous rectifiers | |
US20220271676A1 (en) | Half-bridge flyback power converter and control method thereof | |
CN113726166A (en) | Flyback converter and control method thereof | |
TWI650925B (en) | Switching power supply, control device and control method | |
TW202023171A (en) | Quasi-resonant power controller | |
EP4346074A1 (en) | Asymmetric half-bridge converter with switching signal delay determination for zvs | |
WO2023020051A1 (en) | Resonant converter, control method for resonant converter, and power adapter | |
TWI741882B (en) | Active clamp flyback converter |