TWI741882B - Active clamp flyback converter - Google Patents
Active clamp flyback converter Download PDFInfo
- Publication number
- TWI741882B TWI741882B TW109140946A TW109140946A TWI741882B TW I741882 B TWI741882 B TW I741882B TW 109140946 A TW109140946 A TW 109140946A TW 109140946 A TW109140946 A TW 109140946A TW I741882 B TWI741882 B TW I741882B
- Authority
- TW
- Taiwan
- Prior art keywords
- terminal
- voltage
- current
- switch
- coupled
- Prior art date
Links
Images
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
本發明關於電源供應,特別是一種主動箝位返馳式轉換器。 The present invention relates to power supply, in particular to an active clamp flyback converter.
返馳式轉換器(flyback converter)是輸入輸出互相隔離的電壓轉換器,適用於各種電源供應器。大致上,返馳式轉換器由電力開關控制能量的儲存及轉移。當電力開關導通時,返馳式轉換器中之一次電路會儲存能量,二次電路會被設置於逆向偏壓狀態而不會充電。當電力開關斷路時,返馳式轉換器中之一次電路會將能量轉移至二次電路,二次電路會被設置於順向偏壓狀態而進行充電。 A flyback converter is a voltage converter whose input and output are isolated from each other, and is suitable for various power supplies. In general, the flyback converter is controlled by a power switch to store and transfer energy. When the power switch is turned on, the primary circuit in the flyback converter will store energy, and the secondary circuit will be set in a reverse bias state without charging. When the power switch is open, the primary circuit in the flyback converter will transfer energy to the secondary circuit, and the secondary circuit will be set in a forward bias state for charging.
返馳式轉換器可配備箝位裝置及箝位開關以減低電力開關之兩端的壓差,進而減少箝位損失。然而當電力開關及箝位開關被開啟或關閉時,仍會造成開關損失。 The flyback converter can be equipped with a clamping device and a clamping switch to reduce the voltage difference between the two ends of the power switch, thereby reducing the clamping loss. However, when the power switch and the clamp switch are turned on or off, the switching loss will still be caused.
本發明實施例提供一種主動箝位返馳式轉換器,用以提供輸出電壓至負載,包含變壓器、主開關、箝位開關、箝位電容及控制器。變壓器包含一次電路及二次線圈。一次電路包含一次線圈,包含第一端,用以接收輸入電壓,及第二端。二次線圈包含第一端,用以輸出輸出電壓,及第二端。主開關包含控制端,第一端,耦接於一次線圈之第二端,及第二端。箝位開關包含控制端, 第一端,及第二端,耦接於一次線圈之第二端。箝位電容包含第一端,耦接於一次線圈之第一端,及第二端,耦接於箝位開關之第一端。開關電流指示電路耦接於變壓器,用以依據一次電路之開關電壓產生開關電流指示訊號。控制器耦接於分壓器、主開關之控制端及箝位開關之控制端,包含參數產生電路及延遲控制電路。參數產生電路用以在諧振期間中箝位開關被施加致能脈衝後,測得開關電流指示訊號之一諧振極值,及在主開關由截止被轉換為導通狀態過程中,產生主開關於截止狀態下最後量測所得的開關電流指示訊號之切換電流值。延遲控制電路用以依據切換電流值及諧振極值調整延遲時間訊號,在箝位開關被施加另一致能脈衝後,依據延遲時間訊號導通主開關。 The embodiment of the present invention provides an active clamp flyback converter for providing output voltage to a load, including a transformer, a main switch, a clamp switch, a clamp capacitor, and a controller. The transformer includes a primary circuit and a secondary coil. The primary circuit includes a primary coil, including a first terminal for receiving an input voltage, and a second terminal. The secondary coil includes a first terminal for outputting an output voltage, and a second terminal. The main switch includes a control terminal, a first terminal, a second terminal coupled to the primary coil, and a second terminal. The clamp switch contains the control terminal, The first end and the second end are coupled to the second end of the primary coil. The clamp capacitor includes a first terminal, which is coupled to the first terminal of the primary coil, and a second terminal, which is coupled to the first terminal of the clamp switch. The switching current indicating circuit is coupled to the transformer and used for generating a switching current indicating signal according to the switching voltage of the primary circuit. The controller is coupled to the voltage divider, the control terminal of the main switch and the control terminal of the clamp switch, and includes a parameter generation circuit and a delay control circuit. The parameter generation circuit is used to measure one of the resonant extremes of the switch current indicator signal after the clamp switch is applied with the enabling pulse during the resonance period, and to generate the main switch when the main switch is turned off from the off state to the on state. The last measured switching current in the state indicates the switching current value of the signal. The delay control circuit is used for adjusting the delay time signal according to the switching current value and the resonance extreme value. After another enabling pulse is applied to the clamp switch, the main switch is turned on according to the delay time signal.
本發明實施例提供另一種主動箝位返馳式轉換器,用以提供輸出電壓至負載,包含變壓器、主開關、箝位開關、箝位電容及控制器。變壓器包含一次電路及二次線圈。一次電路包含一次線圈,包含第一端,用以接收輸入電壓,及第二端。二次線圈包含第一端,用以輸出輸出電壓,及第二端。主開關包含控制端,第一端,耦接於一次線圈之第二端,及第二端。箝位開關包含控制端,第一端,及第二端,耦接於一次線圈之第二端。箝位電容包含第一端,耦接於一次線圈之第一端,及第二端,耦接於箝位開關之第一端。開關電流指示電路耦接於變壓器,用以依據一次電路之開關電壓產生開關電流指示訊號。控制器耦接於分壓器、主開關之控制端及箝位開關之控制端,包含參數產生電路及導通時間控制電路。參數產生電路用以在主開關被導通時測得開關電流指示訊號之目標電流值,及在諧振期間中箝位開關被施加致能脈衝後,測得開關電流指示訊號之諧振極值。導通時間控制電路用以依據目標電流值及諧振極值調整另一致能脈衝之一脈寬,及在下一諧振期間中對箝位開關施加另一致能脈衝。 The embodiment of the present invention provides another active clamp flyback converter for providing output voltage to the load, including a transformer, a main switch, a clamp switch, a clamp capacitor, and a controller. The transformer includes a primary circuit and a secondary coil. The primary circuit includes a primary coil, including a first terminal for receiving an input voltage, and a second terminal. The secondary coil includes a first terminal for outputting an output voltage, and a second terminal. The main switch includes a control terminal, a first terminal, a second terminal coupled to the primary coil, and a second terminal. The clamp switch includes a control terminal, a first terminal, and a second terminal, which is coupled to the second terminal of the primary coil. The clamp capacitor includes a first terminal, which is coupled to the first terminal of the primary coil, and a second terminal, which is coupled to the first terminal of the clamp switch. The switching current indicating circuit is coupled to the transformer and used for generating a switching current indicating signal according to the switching voltage of the primary circuit. The controller is coupled to the voltage divider, the control terminal of the main switch and the control terminal of the clamp switch, and includes a parameter generation circuit and an on-time control circuit. The parameter generation circuit is used to measure the target current value of the switch current indicator signal when the main switch is turned on, and to measure the resonance extreme value of the switch current indicator signal after the enable pulse is applied to the clamp switch during the resonance period. The on-time control circuit is used for adjusting a pulse width of another enabling pulse according to the target current value and the resonance extreme value, and applying another enabling pulse to the clamp switch in the next resonance period.
本發明實施例提供另一種主動箝位返馳式轉換器,用以提供輸出電壓至負載,包含變壓器、主開關、箝位開關、箝位電容及控制器。變壓器包含一次電路及二次線圈。一次電路包含一次線圈,包含第一端,用以接收輸入電壓,及第二端。二次線圈包含第一端,用以輸出輸出電壓,及第二端。主開關包含控制端,第一端,耦接於一次線圈之第二端,及第二端。箝位開關包含控制端,第一端,及第二端,耦接於一次線圈之第二端。箝位電容包含第一端,耦接於一次線圈之第一端,及第二端,耦接於箝位開關之第一端。開關電流指示電路耦接於變壓器,用以依據一次電路之開關電壓產生開關電流指示訊號。控制器耦接於分壓器、主開關之控制端及箝位開關之控制端,包含參數產生電路、延遲控制電路及導通時間控制電路。參數產生電路用以在主開關被導通時測得開關電流指示訊號之目標電流值,在諧振期間中箝位開關被施加致能脈衝後,測得開關電流指示訊號之諧振極值,並且用以在主開關由截止被轉換為導通狀態過程中,產生主開關於截止狀態下最後量測所得的開關電流指示訊號之切換電流值。延遲控制電路用以依據切換電流值及諧振極值調整延遲時間訊號,在箝位開關被施加另一致能脈衝後,依據延遲時間訊號導通主開關。導通時間控制電路用以依據目標電流值及諧振極值調整另一致能脈衝之一脈寬,及在下一諧振期間中對箝位開關施加另一致能脈衝。 The embodiment of the present invention provides another active clamp flyback converter for providing output voltage to the load, including a transformer, a main switch, a clamp switch, a clamp capacitor, and a controller. The transformer includes a primary circuit and a secondary coil. The primary circuit includes a primary coil, including a first terminal for receiving an input voltage, and a second terminal. The secondary coil includes a first terminal for outputting an output voltage, and a second terminal. The main switch includes a control terminal, a first terminal, a second terminal coupled to the primary coil, and a second terminal. The clamp switch includes a control terminal, a first terminal, and a second terminal, which is coupled to the second terminal of the primary coil. The clamp capacitor includes a first terminal, which is coupled to the first terminal of the primary coil, and a second terminal, which is coupled to the first terminal of the clamp switch. The switching current indicating circuit is coupled to the transformer and used for generating a switching current indicating signal according to the switching voltage of the primary circuit. The controller is coupled to the voltage divider, the control terminal of the main switch, and the control terminal of the clamp switch, and includes a parameter generation circuit, a delay control circuit, and an on-time control circuit. The parameter generating circuit is used to measure the target current value of the switch current indicator signal when the main switch is turned on. After the enable pulse is applied to the clamp switch during the resonance period, the resonance extreme value of the switch current indicator signal is measured and used In the process that the main switch is switched from off to on state, the switching current value of the switch current indicating signal that is finally measured when the main switch is in the off state is generated. The delay control circuit is used for adjusting the delay time signal according to the switching current value and the resonance extreme value. After another enabling pulse is applied to the clamp switch, the main switch is turned on according to the delay time signal. The on-time control circuit is used for adjusting a pulse width of another enabling pulse according to the target current value and the resonance extreme value, and applying another enabling pulse to the clamp switch in the next resonance period.
1:主動箝位返馳式轉換器 1: Active clamp flyback converter
10:變壓器 10: Transformer
11:電壓源 11: Voltage source
12:控制器 12: Controller
120:參數產生電路 120: Parameter generation circuit
122:導通時間控制電路 122: On-time control circuit
124:延遲控制電路 124: Delay control circuit
13:整流器 13: Rectifier
14,16:接地端 14,16: Ground terminal
18:開關電流指示電路 18: Switch current indicating circuit
40,50:比較電壓電路 40, 50: Comparison voltage circuit
400,406,420,500,506,520:電流產生器 400,406,420,500,506,520: current generator
402,404,422,424,502,504,522,524:開關 402, 404, 422, 424, 502, 504, 522, 524: switch
42,52:延遲電壓電路 42,52: Delay voltage circuit
44,54:箝位器 44, 54: clamp
46:致能脈衝電路 46: Enabling pulse circuit
56:延遲時間電路 56: Delay time circuit
Cc:箝位電容 Cc: Clamping capacitance
Cin1,Cin2,Cout,C1,C2,CA,CR:電容 Cin1, Cin2, Cout, C1, C2, CA, CR: capacitance
GH,GL,GSR:控制訊號 GH, GL, GSR: control signal
GH2S:脈衝開始訊號 GH2S: Pulse start signal
GH2R,Vcp:比較訊號 GH2R, Vcp: comparison signal
Im:磁化電流 Im: Magnetizing current
I1:第一電流 I1: first current
I2:第二電流 I2: second current
I3,Isct,ITD:預定電流 I3, Isct, ITD: predetermined current
IVS:開關電流指示訊號 IVS: Switch current indication signal
IVS_GL:目標電流值 IVS_GL: target current value
IVS_GLR:切換電流值 IVS_GLR: Switch current value
IVSP:諧振極值 IVSP: resonance extreme value
L:負載 L: load
Lp1:一次互感 Lp1: a mutual inductance
Ls:二次互感 Ls: secondary mutual inductance
Mc:箝位開關 Mc: clamp switch
Mm:主開關 Mm: main switch
Msr:同步整流器 Msr: Synchronous rectifier
Pm11至Pm41,Pc11,Pc12,Pc21,Pc22,Pc31,Pc32:脈衝 Pm11 to Pm41, Pc11, Pc12, Pc21, Pc22, Pc31, Pc32: pulse
Ps:短脈衝訊號 Ps: short pulse signal
R1,R2,Rs:電阻 R1, R2, Rs: resistance
Sdly:延遲時間訊號 Sdly: Delay time signal
SGH2:致能脈衝 SGH2: enabling pulse
SGH2B:反向致能脈衝 SGH2B: Reverse enabling pulse
TD,TD1至TD3:延遲時間 TD, TD1 to TD3: delay time
TGH1,TGH2,TGH12至TGH32:脈寬 TGH1, TGH2, TGH12 to TGH32: pulse width
Tdis1至Tdis3:放電期間 Tdis1 to Tdis3: during discharge
Tglon1至Tglon3:充電期間 Tglon1 to Tglon3: during charging
Tres1至Tres3:諧振期間 Tres1 to Tres3: during resonance
t1至t24:時間點 t1 to t24: time point
VA:輔助線圈電壓 VA: auxiliary coil voltage
VA’:分壓 VA’: Partial Pressure
Vc1,VCR:比較電壓 Vc1, VCR: compare voltage
Vc1’,VRTD:箝位電壓 Vc1’,VRTD: Clamping voltage
Vc2,VCA:延遲電壓 Vc2, VCA: Delay voltage
VD:開關電壓 VD: Switching voltage
VIN:輸入電壓 VIN: input voltage
Vsrc:電壓 Vsrc: voltage
VH1,VH:上限 VH1, VH: upper limit
VL1,VL:下限 VL1, VL: lower limit
VOUT:輸出電壓 VOUT: output voltage
WP:一次線圈 WP: Primary coil
WS:二次線圈 WS: Secondary coil
WA:輔助線圈 WA: auxiliary coil
第1圖係為本發明實施例中一種主動箝位返馳式轉換器之電路示意圖。 Figure 1 is a circuit diagram of an active clamp flyback converter in an embodiment of the invention.
第2圖係為第1圖中主動箝位返馳式轉換器之一種運作設置的訊號波形圖。 Figure 2 is a signal waveform diagram of an operating setup of the active clamp flyback converter in Figure 1.
第3圖係為第1圖中主動箝位返馳式轉換器之另一種運作設置的訊號波形圖。 Figure 3 is a signal waveform diagram of another operating setup of the active clamp flyback converter in Figure 1.
第4圖係為第1圖中導通時間控制電路之電路示意圖。 Figure 4 is a circuit diagram of the on-time control circuit in Figure 1.
第5圖係為第1圖中延遲控制電路之電路示意圖。 Figure 5 is a circuit diagram of the delay control circuit in Figure 1.
第1圖係為本發明實施例中一種主動箝位返馳式轉換器1之電路示意圖。主動箝位返馳式轉換器1可從電壓源11接收電壓Vsrc以進行降壓或升壓轉換而產生輸出電壓VOUT,及將輸出電壓VOUT提供至負載L。電壓Vsrc為交流電壓。輸出電壓VOUT可為直流電壓。
FIG. 1 is a circuit diagram of an active
主動箝位返馳式轉換器1包含電容Cin1、電容Cin2、整流器13、變壓器10、主開關Mm、箝位開關Mc、箝位電容Cc、控制器12、電阻Rs、同步整流器Msr、電容Cout、接地端14及16、及開關電流指示電路18。控制器12可控制主開關Mm及箝位開關Mc之切換。當主開關Mm在導通與截止兩狀態間切換,且每次主開關Mm切換係開啟導通一固定時段長度時,可自返馳式轉換器1的一次側傳遞實質相同的電能到轉換器1的二次側;在負載L為輕載抽取較少電能時,控制器12可控制主開關Mm以較低切換頻率,即較長的切換週期,單位時間內主開關Mm開啟導通次數較少方式運作;在負載L為重載抽取較多電能時,控制器12可控制主開關Mm以較高切換頻率,即以較短的切換週期,單位時間內主開關Mm開啟導通次數較多方式運作。控制器12可判定箝位開關Mc之導通時間及主開關Mm之導通時間,藉以達成主開關Mm之零電壓切換(zero voltage switching)以減少開關損失。
The active
變壓器10包含一次線圈WP,包含第一端N1,用以接收輸入電壓VIN,及第二端N2;輔助線圈WA,包含第一端,及第二端;及二次線圈WS,包含第一
端,用以將輸出電壓VOUT進行輸出,及第二端。一次線圈WP及輔助線圈WA屬於一次電路,二次線圈WS屬於二次電路。主開關Mm包含第一控制端,第一端,耦接於一次線圈WP之第二端N2,及第二端。電阻Rs耦接於主開關Mm之第二端及接地端14之間。主開關Mm之第一端具有開關電壓VD,輔助線圈WA之第一端具有輔助線圈電壓VA。開關電壓VD可為600~700V。箝位開關Mc包含第二控制端,第一端,及第二端,耦接於一次線圈WP之第二端N2。箝位電容Cc耦接於一次線圈WP之第一端N1及箝位開關Mc之第一端之間。開關電流指示電路18包含第一端,耦接於輔助線圈WA之第一端,第二端,用以輸出開關電流指示訊號IVS,及第三端,耦接於接地端14。控制器12耦接於主開關Mm之第一控制端、開關電流指示電路18之第二端及箝位開關Mc之第二控制端。電容Cin1耦接於接地端14。整流器13包含第一端,耦接於電容Cin1,及第二端,耦接於接地端14。電容Cin2耦接於整流器13及接地端14之間。同步整流器Msr包含第三控制端,第一端,耦接於二次線圈WS之第二端,及第二端,耦接於接地端16。電容Cout耦接於二次線圈WS之第一端及接地端16之間。接地端14及16可不互相耦接,用以維持一次側及二次側之間的隔絕。
The
電容Cin1可濾除電壓Vsrc中之高頻雜訊,整流器13可對電壓Vsrc進行整流,電容Cin2可使整流後之電壓Vsrc平緩以產生輸入電壓VIN。一次線圈WP及二次線圈WS之匝數比可為P:1,P係為正數。在一些實施例中,P可大於1,且變壓器10可為下轉換(step-down)變壓器10。一次線圈WP之極性及二次線圈WS之極性可相反。一次線圈WP及輔助線圈WA之匝數比可為Q:1,Q係為大於1之正數。一次線圈WP具有一次互感Lp1及漏感,二次線圈WS具有二次互感Ls,輔助線圈WA具有輔助互感Lp2。因為一次線圈WP及輔助線圈WA存在匝數比關係,當開關電壓VD變化時,輔助線圈WA上可依據匝數比Q:1對應產生輔助線圈電壓VA。輔
助線圈電壓VA及開關電壓VD之極性可相反,且輔助線圈電壓VA可與開關電壓VD的絕對值依據1/Q的比例成正相關(VA=-VD/Q)。
The capacitor Cin1 can filter high frequency noise in the voltage Vsrc, the
開關電流指示電路18可依據輔助線圈電壓VA建立分壓VA’,及依據分壓VA’提供開關電流指示訊號IVS至控制器12。開關電流指示電路18可為分壓器,包含電阻R1及R2。電阻R1可耦接於開關電流指示電路18。電阻R2可耦接於電阻R1及接地端14之間。
The switching current indicating
控制器12可依據電流指示訊號IVS來控制主開關Mm及箝位開關Mc。以下段落中使用電流指示訊號IVS控制主開關Mm及箝位開關Mc來說明主動箝位返馳式轉換器1的運作。和直接使用開關電壓VD產生電流指示訊號IVS相比,由於輔助線圈電壓VA之最大絕對值小於開關電壓VD之最大絕對值,控制器12可使用耐壓較小之半導體元件(device)來接收電流指示訊號IVS來進行開關控制,進而節省電路面積。
The
主開關Mm及箝位開關Mc可由N型金屬氧化物半導體場效電晶體(metal-oxide-semiconductor field-effect transistor,MOSFET)實現。同步整流器Msr可由N型MOSFET、NPN型雙極性電晶體(bipolar junction transistor,BJT)、絕緣閘雙極晶體管(insulated-gate bipolar transistor,IGBT)或其他種類之開關元件實現。在一些實施例中,同步整流器Msr可由二極體替代。 The main switch Mm and the clamp switch Mc can be realized by an N-type metal-oxide-semiconductor field-effect transistor (MOSFET). The synchronous rectifier Msr can be realized by N-type MOSFET, NPN-type bipolar junction transistor (BJT), insulated-gate bipolar transistor (IGBT) or other types of switching elements. In some embodiments, the synchronous rectifier Msr can be replaced by a diode.
主開關Mm可控制能量的儲存及轉移。箝位開關Mc可控制回收漏感儲存的能量及產生負向磁化電流(magnetizing current)Im(由一次互感Lp1的第二端N2流向一次互感Lp1的第一端N1)。 The main switch Mm can control the storage and transfer of energy. The clamp switch Mc can control the recovery of energy stored in the leakage inductance and generate a negative magnetizing current Im (from the second end N2 of the primary mutual inductance Lp1 to the first end N1 of the primary mutual inductance Lp1).
(1)充電期間:當控制器12藉由控制訊號GL導通主開關Mm一段預定時段以產生主開關脈波時,變壓器10之一次側的電流及磁通增加,能量儲存在變壓器電感中;亦即通過一次互感Lp1之正向磁化電流Im(由一次互感Lp1的第一端N1流向一次互感Lp1的第二端N2)增加;同時控制器12截止變壓器10之二次側的同步整流器Msr,因此二次互感Ls不會產生有二次感應電流,而是由電容Cout提供輸出電壓VOUT至負載L。如此對變壓器10進行能量儲存之期間可稱為充電期間。於充電期間,控制器12可藉由控制訊號GH截止箝位開關Mc。
(1) Charging period: When the
(2)放電期間:當正向磁化電流Im已到達預定值、或主開關Mm導通時間已到達預定時段,則控制器12可藉由控制訊號GL截止主開關Mm,使得變壓器10之一次側的電流及磁通減少,一次線圈WP及二次線圈WS之極性會被反向;且二次側控制器(未圖示)導通同步整流器Msr,於二次側產生二次感應電流。如此可使儲存於變壓器10之一次線圈WP中之能量被轉移至二次側,二次感應電流對電容Cout充電並提供輸出電壓VOUT至負載L。如此自變壓器10釋出能量進行能量轉移之期間亦可稱為放電期間。同步整流器Msr可由控制訊號GSR控制,控制訊號GSR可依據二次線圈WS之第二端之電壓產生。
(2) Discharge period: When the forward magnetizing current Im has reached a predetermined value, or the main switch Mm conduction time has reached a predetermined period of time, the
(3)諧振期間:在放電期間之後,當儲存於變壓器10之一次線圈WP中之能量被釋放完畢時,開關電壓VD會以輸入電壓VIN為中心上下震盪而產生複數個波峰,如此可稱為諧振期間。
(3) Resonance period: After the discharge period, when the energy stored in the primary coil WP of the
一旦主開關Mm截止後,主動箝位返馳式轉換器1進入放電期間,開關電壓VD會先增加,稍後可能以一電壓準位為中心值而經歷複數個諧波震盪,
當開關電壓VD到達電壓準位(VIN+Vclamp)時,正向磁化電流Im會流經漏感、一次互感Lp1、箝位開關Mc之內接二極體(body diode)、箝位電容Cc而將儲存於漏感之能量轉移至箝位電容Cc,進而將箝位電容Cc充電至電壓準位(VIN+N*VOUT),電壓Vclamp係為箝位電壓。在複數個諧波震盪結束後,開關電壓VD會維持於實質上固定之電壓準位(VIN+N*VOUT)。例如在第2圖中,於主開關脈衝Pm11結束(時間點t2)後,開關電壓VD會先增加,稍後再以電壓準位(VIN+N*VOUT)為中心值而經歷複數個諧波震盪。在複數個諧波震盪結束(時間點t3)後,開關電壓VD會維持於實質上固定之電壓準位(VIN+N*VOUT)。
Once the main switch Mm is turned off, the active
於放電期間,控制器12可在控制訊號GH中插入能量回收脈波,用以導通箝位開關Mc以將儲存於漏感之能量轉移至箝位電容Cc。控制器12可於偵測到開關電壓VD達到穩態時或於放電期間內的固定時間點插入能量回收脈波。能量回收脈波可具有實質上固定之脈寬。固定時間點可為主開關Mm被截止後之預定時間。
During the discharge period, the
於諧振期間,當輔助線圈電壓VA接近波峰時,控制器12可對箝位開關Mc施加致能脈衝,用以導通箝位開關Mc以產生負向磁化電流Im,利用此負向磁化電流Im以拉低開關電壓VD,及於當開關電壓VD趨近於0V時,控制器12可對主開關Mm施加主開關脈衝,使主開關Mm在後續充電期間開始時達成零電壓切換。於放電期間及諧振期間,控制器12可藉由控制訊號GL截止主開關Mm。控制器12可調整致能脈衝之脈寬以控制負向磁化電流Im之大小。當致能脈衝之脈寬過小時,負向磁化電流Im會過小而無法將開關電壓VD拉低至0V,使主開關Mm無法達成零電壓切換,增加開關損失。當致能脈衝之脈寬過大時,負向磁化電流Im會過早將開關電壓VD拉低至0V並持續產生能量消耗,增加能量損失。控制
器12可調整致能脈衝之脈寬以產生合適之負向磁化電流Im,使主開關Mm達成零電壓切換時不過早將開關電壓VD拉低至0V,大幅減少切換主開關Mm及負向磁化電流Im造成之能量損失。在致能脈衝結束後,控制器12可延遲主開關脈衝一段延遲時間以於開關電壓VD實質上等於0V或趨近於0V時導通主開關Mm,達成零電壓切換及減少開關損失。
During the resonance period, when the auxiliary coil voltage VA is close to the peak, the
第2圖係為主動箝位返馳式轉換器1之一種設置情況下之訊號波形圖,依序顯示第一充電期間Tglon1、放電期間Tdis1、諧振期間Tres1及第二充電期間Tglon2。第一充電期間Tglon1、放電期間Tdis1及諧振期間Tres1構成第1個轉換週期,第二充電期間Tglon2屬於後續之第2個轉換週期。針對第1個轉換週期,控制器12於時間點t1至t2在控制訊號GL中插入主開關脈衝Pm11,於時間點t3至t4在控制訊號GH中插入能量回收脈波Pc11,及於時間點t6至t7在控制訊號GH中插入致能脈衝Pc12。針對第2個轉換週期,控制器12於時間點t9至t10在控制訊號GL中插入主開關脈衝Pm21,及稍後在控制訊號GH中插入能量回收脈波與致能脈衝(未圖示)。控制器12可調整:(1)致能脈衝Pc12之脈寬TGH2,及(2)介於致能脈衝Pc12結束與主開關脈衝Pm21之間的一段延遲時間TD。藉由調整該段延遲時間TD,可以確保當開關電壓VD趨近於0V時(時間點t9)再次導通主開關Mm。致能脈衝Pc12之脈寬TGH2、能量回收脈波Pc11之脈寬TGH1,及主開關脈衝Pm11,Pm21之脈寬彼此之間並沒有一定大小關係;第2圖僅為一例示關係:致能脈衝Pc12之脈寬TGH2可大於能量回收脈波Pc11之脈寬TGH1,及可小於主開關脈衝Pm11,Pm21之脈寬,但不以此為限。
Fig. 2 is a signal waveform diagram of the active
控制器12可包含參數產生電路120、導通時間控制電路122及延遲控制電路124。參數產生電路120可依據開關電流指示訊號IVS產生開關電流指示訊
號IVS之目標電流值、諧振極值及切換電流值。具體而言,參數產生電路120可在主開關Mm被導通時測得開關電流指示訊號IVS之目標電流值,在諧振期間中箝位開關Mc被施加致能脈衝後,測得開關電流指示訊號IVS之諧振極值,並且可在主開關Mm由截止被轉換為導通狀態過程中,產生主開關Mm於截止狀態下最後量測所得的開關電流指示訊號IVS之切換電流值。
The
參考第2圖說明三項參數電流值: Refer to Figure 2 to explain the current values of the three parameters:
(1)目標電流值IVS_GL:例如可為於第一充電期間Tglon1或第二充電期間Tglon2內,主開關Mm開啟導通而使開關電壓VD下降至一最低電壓時,所測得之開關電流指示訊號IVS的電流值。 (1) Target current value IVS_GL: For example, it can be the switch current indication signal measured when the main switch Mm is turned on and the switch voltage VD drops to a minimum voltage during the first charging period Tglon1 or the second charging period Tglon2 The current value of IVS.
(2)諧振極值IVSP:例如可為於諧振期間Tres1中箝位開關Mc被施加具有脈寬TGH2的致能脈衝Pc12後,所測得開關電流指示訊號IVS之最大值,如圖示時間點t8之波形最大值,亦即諧振極值IVSP代表對應開關電壓VD所能達到之最小電壓值Vmin。當調整致能脈衝Pc12的脈寬TGH2時,諧振極值IVSP也會隨之改變。當諧振極值IVSP等於該目標電流值IVS_GL時,表示致能脈衝Pc12具有足夠的脈寬TGH2,足以使開關電壓VD下拉至該最低電位。 (2) Resonance extreme value IVSP: For example, it can be the maximum value of the switch current indicator signal IVS measured after the clamp switch Mc is applied with the enable pulse Pc12 with the pulse width TGH2 in the resonance period Tres1, as shown in the time point shown in the figure. The maximum value of the waveform of t8, that is, the resonance extreme value IVSP, represents the minimum voltage value Vmin that the corresponding switching voltage VD can reach. When the pulse width TGH2 of the enabling pulse Pc12 is adjusted, the resonance extreme value IVSP will also change accordingly. When the resonance extreme value IVSP is equal to the target current value IVS_GL, it means that the enabling pulse Pc12 has a sufficient pulse width TGH2 to pull the switching voltage VD down to the lowest potential.
(3)切換電流值IVS_GLR:例如可為於時間點t9主開關Mm被主開關脈衝Pm21開啟導通之前(immediately before),主開關Mm於截止狀態下最後量測所得的開關電流指示訊號IVS。搭配(1)(2)條件--諧振極值IVSP會接近目標電流值IVS_GL,當切換電流值IVS_GLR接近該目標電流值IVS_GL時,也代表主開關Mm開啟導通時間點(對應切換電流值IVS_GLR)接近該諧振極值IVSP發生時間點。如此可避免自諧振極值IVSP發生時間點延遲較久時間,等到開關電流指示訊號IVS較大幅度衰減後才開啟導通主開關Mm。 (3) Switching current value IVS_GLR: For example, it can be the switching current indication signal IVS that is finally measured when the main switch Mm is turned off immediately before the main switch Mm is turned on by the main switch pulse Pm21 at the time point t9. With (1) (2) conditions-the resonance extreme value IVSP will be close to the target current value IVS_GL, when the switching current value IVS_GLR is close to the target current value IVS_GL, it also represents the time point when the main switch Mm is turned on (corresponding to the switching current value IVS_GLR) It is close to the point in time when the resonance extreme value IVSP occurs. In this way, the time point of the self-resonance extreme value IVSP can be prevented from being delayed for a long time, and the main switch Mm is turned on after the switch current indicating signal IVS is greatly attenuated.
導通時間控制電路122可依據目標電流值IVS_GL及諧振極值IVSP調整另一致能脈衝之脈寬,及在稍後轉換週期的下一諧振期間中對箝位開關Mc施加此調整後的另一致能脈衝。導通時間控制電路122可調整另一致能脈衝之脈寬以使諧振極值IVSP實質上等於目標電流值IVS_GL,進而使負向磁化電流Im足以將開關電壓VD拉低至0V及達成主開關Mm之零電壓切換。
The on-
延遲控制電路124可依據切換電流值IVS_GLR及諧振極值IVSP調整延遲時間訊號,在稍後轉換週期中,箝位開關Mc被施加另一致能脈衝後,依據此調整後的延遲時間訊號導通主開關Mm。延遲時間訊號可用於判定延遲時間TD。延遲控制電路124可調整延遲時間訊號以使切換電流值IVS_GLR實質上等於諧振極值IVSP,進而減小主開關Mm之開關損失。
The
第3圖係為主動箝位返馳式轉換器1之另一種設置情況下之訊號波形圖,包含3轉換週期,第1個轉換週期係介於時間點t1至t9之間,第2個轉換週期係介於時間點t9至t17之間,第3個轉換週期係介於時間點t17至t24之間。
Figure 3 is the signal waveform diagram of the active
在第1個轉換週期中,控制器12依據預設設定於時間點t1至t2之間對主開關Mm施加主開關脈衝Pm11,於時間點t3至t4之間對箝位開關Mc施加能量回收脈波Pc11及於時間點t6至t7之間對箝位開關Mc施加致能脈衝Pc12;參數產生電路120於時間點t1至t2之間測得目標電流值IVS_GL,於時間點t8測得諧振極值IVSP,及於時間點t9之前測得切換電流值IVS_GLR。諧振極值IVSP顯著小於目標電流值IVS_GL,切換電流值IVS_GLR顯著小於諧振極值IVSP。
In the first conversion cycle, the
在第2個轉換週期中,控制器12於時間點t9至t10之間對主開關Mm施
加主開關脈衝Pm21及於時間點t11至t12之間對箝位開關Mc施加能量回收脈波Pc21;由於第1個轉換週期中的時間點t8量測所得之諧振極值IVSP小於目標電流值IVS_GL,導通時間控制電路122會增加對箝位開關Mc施加之致能脈衝Pc22的脈寬TGH22,使脈寬TGH22大於脈寬TGH12。同時由於第1個轉換週期中的時間點t9量測所得之切換電流值IVS_GLR小於諧振極值IVSP,延遲控制電路124會縮短延遲時間訊號之脈寬,使延遲時間TD2小於延遲時間TD1,在施加致能脈衝Pc22後經過延遲時間TD2時即對主開關Mm施加主開關脈衝Pm31,如此縮減主開關Mm導通時間點(時間點t17)與諧振極值IVSP時間點(時間點t16)兩者的時間間隔。參數產生電路120於第2個轉換週期中的時間點t9至t10之間再次測得目標電流值IVS_GL,於時間點t16再次測得諧振極值IVSP,及於時間點t17之前再次測得切換電流值IVS_GLR。判定第2個轉換週期中的諧振極值IVSP小於目標電流值IVS_GL,切換電流值IVS_GLR小於諧振極值IVSP,因此於第3個轉換週期需要進一步增加致能脈衝Pc32的脈寬TGH32,並縮短延遲時間TD3。
In the second conversion cycle, the
在第3個轉換週期中,控制器12於時間點t17至t18之間對主開關Mm施加主開關脈衝Pm31及於時間點t19至t20之間對箝位開關Mc施加能量回收脈波Pc31;由於第2個轉換週期中之諧振極值IVSP小於目標電流值IVS_GL,導通時間控制電路122會於時間點t22至t23增加對箝位開關Mc施加之致能脈衝Pc32之脈寬TGH32,使脈寬TGH32大於脈寬TGH22;由於第2個轉換週期中之切換電流值IVS_GLR小於諧振極值IVSP,延遲控制電路124會縮短延遲時間訊號之脈寬,使延遲時間TD3小於延遲時間TD2,在施加致能脈衝Pc32後經過延遲時間TD3時即對主開關Mm施加主開關脈衝Pm41,如此進一步縮減主開關Mm導通時間點與諧振極值IVSP時間點兩者的時間間隔,使兩者幾乎都位在時間點t24;參數產生電路120於第3個轉換週期中的時間點t17至t18之間再次測得目標電流值IVS_GL,於時間
點t24再次測得諧振極值IVSP,及於時間點t24之前再次測得切換電流值IVS_GLR。判定第3個轉換週期中的諧振極值IVSP實質上等於目標電流值IVS_GL,切換電流值IVS_GLR實質上等於諧振極值IVSP,亦即依據目前的致能脈衝脈寬與延遲時間設定下,負向磁化電流Im足以將開關電壓VD拉低至0V且主開關Mm可進行零電壓切換。因此在稍後的轉換週期中,導通時間控制電路122可實質上維持目前設定的致能脈衝之脈寬,延遲控制電路124可實質上維持目前設定的延遲時間訊號之脈寬。
In the third conversion cycle, the
第4圖係為第1圖中導通時間控制電路122之電路示意圖。導通時間控制電路122包含比較電壓電路40、延遲電壓電路42、箝位器44及致能脈衝電路46。比較電壓電路40耦接於箝位器44,箝位器44及延遲電壓電路42耦接於致能脈衝電路46。導通時間控制電路122可依據致能脈衝啟始訊號GH2S觸發而產生致能脈衝SGH2(如第3圖之致能脈衝Pc12、Pc22、Pc32),及依據目標電流值IVS_GL及諧振極值IVSP判定致能脈衝SGH2之結束時間點。導通時間控制電路122可調整致能脈衝SGH2之結束時間點,進而調整致能脈衝SGH2之脈寬,以使諧振極值IVSP實質上等於目標電流值IVS_GL。
FIG. 4 is a circuit diagram of the on-
比較電壓電路40可依據目標電流值IVS_GL及諧振極值IVSP建立比較電壓Vc1。具體而言,比較電壓電路40可將目標電流值IVS_GL乘以N以產生偏移目標電流值(IVS_GL*N),及持續調整比較電壓Vc1直到諧振極值IVSP實質上等於偏移目標電流值(IVS_GL*N)為止,N係為小於或等於1之正數,偏移目標電流值(IVS_GL*N)為目標電流值IVS_GL之等比縮小值或相等值,例如可選擇N為介於0.97~0.98範圍區間數值,如此持續保留和目標電流值IVS_GL之間存在有2%~3%差值,也確保諧振極值IVSP不會超過目標電流值IVS_GL。當諧振極值IVSP小於偏
移目標電流值(IVS_GL*N)時,比較電壓電路40會增加比較電壓Vc1;當諧振極值IVSP大於偏移目標電流值(IVS_GL*N)時,比較電壓電路40會降低比較電壓Vc1;當諧振極值IVSP實質上等於偏移目標電流值(IVS_GL*N)時,比較電壓電路40會維持比較電壓Vc1。當比較電壓電路40係使用偏移目標電流值(IVS_GL*N)產生比較電壓Vc1,且N為介於0.97~0.98範圍區間數值時,則當致能脈衝SGH2之脈寬逐漸增加到使諧振極值IVSP達到目標電流值IVS_GL*0.99時,比較電壓電路40就會開始調整縮小致能脈衝SGH2之脈寬,如此可確保存在回調縮小致能脈衝SGH2脈寬的電壓區間。
The
比較電壓電路40可包含電流產生器400及406、開關402及404及電容C1。電流產生器400耦接於供電端41,電流產生器406耦接於接地端14,供電端41可提供第一電流I1。開關402包含第一端,耦接於電流產生器400,及第二端。開關404包含第一端,及第二端,耦接於電流產生器406。電容C1包含第一端,耦接於開關402之第二端及開關404之第一端,及第二端,耦接於接地端14。電流產生器400及406可為電流控制電流源。電流產生器400可依據偏移目標電流值(IVS_GL*N)及第一電流I1產生第一差值電流。電流產生器406可依據諧振極值IVSP及第二電流I2產生第二差值電流。開關402及404可依據短脈衝訊號Ps而被導通或截止。當開關402及404被導通時,電流產生器400可產生偏移目標電流值(IVS_GL*N)及第一電流之間之第一差值電流,電流產生器406可產生諧振極值IVSP及第二電流I2之間之第二差值電流,第一差值電流可對電容C1充電及第二差值電流可使電容C1放電以於電容C1建立比較電壓Vc1。若第一電流I1實質上等於第二電流I2,則比較電壓Vc1可與偏移目標電流值(IVS_GL*N)及諧振極值IVSP之間之差值成正相關。當開關402及404被截止時,電容C1可維持比較電壓Vc1。使用短脈衝訊號Ps控制開關402及404可降低電容C1所需之電容值,逐漸將比較電壓Vc1調
整至穩定值而不至於一次調整太多。在一些實施例中,可將開關402及404由比較電壓電路40中移除,電容C1之第一端耦接於電流產生器400及電流產生器406。箝位器44耦接於電容C1之第一端,可將比較電壓Vc1限制於箝位範圍之內以產生箝位電壓Vc1’。箝位範圍可為電壓上限VH1及電壓下限VL1之間的範圍,用以界定致能脈衝SGH2之脈寬的範圍。在一些實施例中,箝位器44亦可由導通時間控制電路122中省略而使電容C1之第一端耦接於致能脈衝電路46。
The
延遲電壓電路42可建立延遲電壓Vc2,延遲電壓Vc2自致能脈衝SGH2之開始時間點開始遞增,直到延遲電壓Vc2實質上等於箝位電壓Vc1’為止。延遲電壓電路42包含電流產生器420、開關422及424及電容C2。開關422包含第一端,耦接於電流產生器420,及第二端。開關424包含第一端,耦接於開關422之第二端,及第二端,耦接於接地端14。電容C2包含第一端,耦接於開關422之第二端,及第二端,耦接於接地端。
The
電流產生器420可產生預定電流I3,預定電流I3可與第一電流I1相同或不同。開關422可依據致能脈衝SGH2而被導通或截止,開關424可依據反向致能脈衝SGH2B而被導通或截止,致能脈衝SGH2及反向致能脈衝SGH2B可互為反相。當開關422被致能脈衝SGH2導通且開關424被反向致能脈衝SGH2B截止時,預定電流I3可對電容C2充電,藉以建立比較電壓Vc2;當開關422被致能脈衝SGH2截止且開關424被反向致能脈衝SGH2B導通時,電容C2經由開關424而放電。由於C2* Vc2=I3*t,C2為電容C2之電容值,Vc2為比較電壓,I3為電容C2之充電電流,電容C2之充電時間t可與比較電壓Vc2成正相關。比較電壓Vc2越大,充電時間t越長。
The
致能脈衝電路46可依據箝位電壓Vc1’及延遲電壓Vc2決定致能脈衝SGH2之結束時間點。致能脈衝電路46包含比較器460及正反器462。比較器460包含第一輸入端,耦接於延遲電壓電路42,第二輸入端,耦接於比較電壓電路40,及輸出端,用以輸出比較訊號GH2R。正反器462包含輸入端S,可接收脈衝開始訊號GH2S,重置端R耦接於比較器460之輸出端,用以依據比較訊號GH2R重置正反器462,及輸出端,耦接於開關422之控制端,用以輸出致能脈衝SGH2。脈衝開始訊號GH2S之開始時間可依據負載L所消耗之消耗能量或負載阻抗決定。在一些實施例中,脈衝開始訊號GH2S之開始時間可依據負載L所消耗之消耗能量決定,當負載L所消耗之能量減少時,脈衝開始訊號GH2S之開始時間也隨之延後;當負載所消耗之能量增加時,脈衝開始訊號GH2S之開始時間也隨之提前。在另一些實施例中,脈衝開始訊號GH2S之開始時間可依據負載L之負載阻抗決定,當輸出電壓VOUT為實質上固定的值時,若負載阻抗較大時,負載L所抽取的電流較小,脈衝開始訊號GH2S之開始時間也隨之延後;當負載阻抗較小時,負載L所抽取的電流較大,脈衝開始訊號GH2S之開始時間也隨之提前。比較器460可依據延遲電壓Vc2及箝位電壓Vc1’產生比較訊號GH2R。正反器462可由致能脈衝啟始訊號GH2S觸發產生致能脈衝SGH2,及由比較訊號GH2R重置致能脈衝SGH2。於收到致能脈衝啟始訊號GH2S之後,正反器462可產生致能脈衝SGH2直到被比較訊號GH2R重置為止。
The enabling
當偏移目標電流值(IVS_GL*N)小於諧振極值IVSP時,第一差值電流會小於第二差值電流,比較電壓Vc1會下降,比較訊號GH2R較早發生,進而使致能脈衝SGH2之脈寬縮短;當偏移目標電流值(IVS_GL*N)大於諧振極值IVSP時,第一差值電流會大於第二差值電流,比較電壓Vc1會上升,比較訊號GH2R較晚發生,進而使致能脈衝SGH2之脈寬加長;當偏移目標電流值(IVS_GL*N)等於諧振極值 IVSP時,第一差值電流會等於第二差值電流,比較電壓Vc1會維持實質穩定,進而使致能脈衝SGH2之脈寬維持不變。 When the offset target current value (IVS_GL*N) is less than the resonance extreme value IVSP, the first difference current will be smaller than the second difference current, the comparison voltage Vc1 will decrease, the comparison signal GH2R will occur earlier, and the enable pulse SGH2 will be enabled. The pulse width is shortened; when the offset target current value (IVS_GL*N) is greater than the resonance extreme value IVSP, the first difference current will be greater than the second difference current, the comparison voltage Vc1 will rise, and the comparison signal GH2R will occur later, and then Increase the pulse width of the enable pulse SGH2; when the offset target current value (IVS_GL*N) is equal to the resonance extreme value In IVSP, the first difference current will be equal to the second difference current, and the comparison voltage Vc1 will remain substantially stable, so that the pulse width of the enabling pulse SGH2 remains unchanged.
第5圖係為第1圖中延遲控制電路124之電路示意圖。延遲控制電路124包含比較電壓電路50、延遲電壓電路52、箝位器54及延遲時間電路56。延遲控制電路124可依據反向致能脈衝SGH2B觸發而產生延遲時間訊號Sdly,及依據諧振極值IVSP及切換電流值IVS_GLR判定延遲時間訊號Sdly之結束時間點。延遲控制電路124可調整延遲時間訊號Sdly之結束時間點以使切換電流值IVS_GLR實質上等於諧振極值IVSP。
FIG. 5 is a circuit diagram of the
比較電壓電路50包含電流產生器500、開關502、開關504、電流產生器506及電容CR。電流產生器500耦接於供電端41,電流產生器506耦接於接地端14。開關502包含第一端,耦接於電流產生器500,及第二端。開關504包含第一端,耦接於開關502之第二端,及第二端,耦接於電流產生器506。電容CR包含第一端,耦接於開關502之第二端及開關504之第一端,及第二端,耦接於接地端14。電流產生器500可產生預定電流Iset。電流產生器506可為電流控制電流源,及可依據諧振極值IVSP及切換電流值IVS_GLR產生差值電流(IVSP-IVS_GLR)。開關502及504可依據短脈衝訊號Ps而被導通或截止。當開關502及504被導通時,電流產生器500可產生預定電流Iset,電流產生器506可產生諧振極值IVSP及切換電流值IVS_GLR之間之差值電流(IVSP-IVS_GLR),預定電流Iset可對電容CR充電及差值電流(IVSP-IVS_GLR)可使電容CR放電以於電容CR建立比較電壓VCR。當開關502及504被截止時,電容CR可維持比較電壓VCR。使用短脈衝訊號Ps控制開關502及504可降低電容CR所需之電容值,逐漸將比較電壓VCR調整至穩定值而不至於一次調整太多。在一些實施例中,可將開關502及504由比較電壓電路50中移
除,電容CR之第一端耦接於電流產生器500及電流產生器506。箝位器54耦接於電容CR之第一端,可將比較電壓VCR限制於箝位範圍之內以產生箝位電壓VRTD。箝位範圍可為電壓上限VH及電壓下限VL之間的範圍,用以界定延遲時間訊號Sdly之脈寬的範圍。在一些實施例中,箝位器54亦可由延遲控制電路124中省略而使電容CR之第一端耦接於延遲時間電路56。
The
延遲電壓電路52可建立延遲電壓VCA,延遲電壓VCA自致能脈衝SGH2之結束時間點(反向致能脈衝SGH2之開始時間點)開始遞增,直到延遲電壓VCA實質上等於箝位電壓VRTD為止。延遲電壓電路52包含電流產生器520、開關522、開關524及電容CA。電流產生器520可產生預定電流ITD。開關522包含第一端,耦接於電流產生器520,第二端,及控制端。開關524包含第一端,耦接於開關522之第二端,及第二端,耦接於接地端14。電容CA可依據預定電流ITD建立延遲電壓,包含第一端,耦接於開關522之第二端,及第二端,耦接於接地端14。開關524可接收致能脈衝SGH2用以控制其導通和截止。開關522之控制端係耦接於延遲時間電路56之正反器562的輸入端,開關522之控制端及正反器562的輸入端均接收反向致能脈衝SGH2B。反向致能脈衝SGH2B與致能脈衝SGH2互為反相。由於CA*VCA=ITD*t,CA為電容CA之電容值,VCA為延遲電壓,ITD為電容CA之充電電流,電容CA之充電時間t可與比較電壓VCA成正相關。比較電壓VCA越大,充電時間t越長。
The
延遲時間電路56耦接於延遲電壓電路52及箝位器54,可依據箝位電壓VRTD及延遲電壓VCA產生延遲時間訊號Sdly。延遲時間電路56包含比較器560及正反器562。比較器560可依據延遲電壓VCA及箝位電壓VRTD產生比較訊號Vcp,包含第一輸入端,耦接於延遲電壓電路52,第二輸入端,耦接於箝位器54,
及輸出端,用以輸出比較訊號Vcp。比較訊號Vcp可正相關於延遲電壓VCA及箝位電壓VRTD之間之差值。正反器562包含輸入端,用以接收反向致能脈衝SGH2B,重置端,耦接於比較器560之輸出端,用以依據比較訊號Vcp重置正反器562,及輸出端,用以輸出延遲時間訊號Sdly。延遲時間訊號Sdly自致能脈衝SGH2之結束時間點開始,持續到當延遲電壓VCA遞增到大於箝位電壓VRTD時結束。
The
當差值電流(IVSP-IVS_GLR)等於預定電流Iset時,比較電壓VCR維持實質穩定,延遲時間訊號Sdly之脈寬維持實質不變;當差值電流(IVSP-IVS_GLR)大於預定電流Iset時,比較電壓VCR下降,比較訊號Vcp較早發生,進而使延遲時間訊號Sdly之脈寬縮短;當差值電流(IVSP-IVS_GLR)小於預定電流Iset時,比較電壓VCR上升,比較訊號Vcp較晚發生,進而使延遲時間訊號Sdly加長。舉例而言,當差值電流(IVSP-IVS_GLR)等於0A時,預定電流Iset會使比較電壓VCR增加,進而使延遲時間訊號Sdly之脈寬加長;如此確保主開關Mm導通時間點是在諧振極值IVSP發生時間點後,至少具有對應於預定電流Iset的延遲時間間隔;避免延遲時間訊號Sdly之脈寬過短,導致主開關Mm斷路關閉狀態下且已經施加致能脈衝後的開關電流指示訊號IVS尚未上升到達最大值前,過早施加主開關脈衝Pm。 When the difference current (IVSP-IVS_GLR) is equal to the predetermined current Iset, the comparison voltage VCR remains substantially stable, and the pulse width of the delay time signal Sdly remains substantially unchanged; when the difference current (IVSP-IVS_GLR) is greater than the predetermined current Iset, compare When the voltage VCR drops, the comparison signal Vcp occurs earlier, thereby shortening the pulse width of the delay time signal Sdly; when the difference current (IVSP-IVS_GLR) is less than the predetermined current Iset, the comparison voltage VCR rises, and the comparison signal Vcp occurs later, and then Make the delay time signal Sdly longer. For example, when the difference current (IVSP-IVS_GLR) is equal to 0A, the predetermined current Iset will increase the comparison voltage VCR, thereby increasing the pulse width of the delay time signal Sdly; this ensures that the main switch Mm is turned on at the resonance pole. After the value IVSP occurs, there is at least a delay time interval corresponding to the predetermined current Iset; to avoid the pulse width of the delay time signal Sdly being too short, causing the main switch Mm to open and close and the switch current indicator signal after the enable pulse has been applied Before the IVS rises to the maximum value, the main switching pulse Pm is applied prematurely.
第1圖至第5圖之實施例依據輔助線圈電壓VA產生開關電流指示訊號IVS,依據開關電流指示訊號IVS之目標電流值IVS_GL及諧振極值IVSP調整施加於箝位開關之致能脈衝之脈寬,及依據開關電流指示訊號IVS之諧振極值IVSP及切換電流值IVS_GLR調整延遲時間以於延遲時間之後對主開關施加主開關脈衝,藉以達成主開關之零電壓切換,及降低主動箝位返馳式轉換器之能量損失。 The embodiments in Figures 1 to 5 generate the switching current indication signal IVS according to the auxiliary coil voltage VA, and adjust the pulse of the enable pulse applied to the clamp switch according to the target current value IVS_GL and the resonance extreme value IVSP of the switching current indication signal IVS The delay time is adjusted according to the resonance extreme value IVSP of the switch current indication signal IVS and the switching current value IVS_GLR to apply the main switch pulse to the main switch after the delay time, so as to achieve the zero voltage switching of the main switch and reduce the active clamp return The energy loss of the freewheeling converter.
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化 與修飾,皆應屬本發明之涵蓋範圍。 The above are only preferred embodiments of the present invention, and all changes made in accordance with the scope of the patent application of the present invention are equal And modifications should fall within the scope of the present invention.
GH,GL:控制訊號 GH, GL: control signal
IVS:開關電流指示訊號 IVS: Switch current indication signal
IVS_GL:目標電流值 IVS_GL: target current value
IVS_GLR:切換電流值 IVS_GLR: Switch current value
IVSP:諧振極值 IVSP: resonance extreme value
Pm11至Pm41,Pc11,Pc12,Pc21,Pc22,Pc31,Pc32:脈衝 Pm11 to Pm41, Pc11, Pc12, Pc21, Pc22, Pc31, Pc32: pulse
TD1至TD3:延遲時間 TD1 to TD3: Delay time
TGH12至TGH32:脈寬 TGH12 to TGH32: pulse width
Tdis1至Tdis3:放電期間 Tdis1 to Tdis3: during discharge
Tglon1至Tglon3:充電期間 Tglon1 to Tglon3: during charging
Tres1至Tres3:諧振期間 Tres1 to Tres3: during resonance
t1至t24:時間點 t1 to t24: time point
VD:開關電壓 VD: Switching voltage
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109140946A TWI741882B (en) | 2020-11-23 | 2020-11-23 | Active clamp flyback converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109140946A TWI741882B (en) | 2020-11-23 | 2020-11-23 | Active clamp flyback converter |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI741882B true TWI741882B (en) | 2021-10-01 |
TW202222022A TW202222022A (en) | 2022-06-01 |
Family
ID=80782357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109140946A TWI741882B (en) | 2020-11-23 | 2020-11-23 | Active clamp flyback converter |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI741882B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI820915B (en) * | 2022-04-14 | 2023-11-01 | 大陸商台達電子企業管理(上海)有限公司 | Flyback circuit and control method of clamping switch of flyback circuit |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103825468A (en) * | 2013-02-18 | 2014-05-28 | 崇贸科技股份有限公司 | Control circuit of flyback power converter |
TW201918004A (en) * | 2017-10-16 | 2019-05-01 | 立錡科技股份有限公司 | Flyback power converter circuit with active clamping and conversion control circuit and control method thereof |
TW201935838A (en) * | 2018-02-12 | 2019-09-01 | 新加坡商西拉娜亞洲私人有限公司 | Quasi-resonant flyback converter controller |
CN110299835A (en) * | 2018-03-21 | 2019-10-01 | 戴洛格半导体(英国)有限公司 | System and method for powering for dc-dc converter |
US10742124B2 (en) * | 2018-09-18 | 2020-08-11 | Leadtrend Technology Corporation | Active clamp flyback converter capable of switching operation modes |
US10797603B2 (en) * | 2018-07-03 | 2020-10-06 | Delta Electronics (Shanghai) Co., Ltd. | Method and apparatus for controlling a flyback converter |
-
2020
- 2020-11-23 TW TW109140946A patent/TWI741882B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103825468A (en) * | 2013-02-18 | 2014-05-28 | 崇贸科技股份有限公司 | Control circuit of flyback power converter |
TW201918004A (en) * | 2017-10-16 | 2019-05-01 | 立錡科技股份有限公司 | Flyback power converter circuit with active clamping and conversion control circuit and control method thereof |
TW201935838A (en) * | 2018-02-12 | 2019-09-01 | 新加坡商西拉娜亞洲私人有限公司 | Quasi-resonant flyback converter controller |
CN110299835A (en) * | 2018-03-21 | 2019-10-01 | 戴洛格半导体(英国)有限公司 | System and method for powering for dc-dc converter |
US10797603B2 (en) * | 2018-07-03 | 2020-10-06 | Delta Electronics (Shanghai) Co., Ltd. | Method and apparatus for controlling a flyback converter |
US10742124B2 (en) * | 2018-09-18 | 2020-08-11 | Leadtrend Technology Corporation | Active clamp flyback converter capable of switching operation modes |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI820915B (en) * | 2022-04-14 | 2023-11-01 | 大陸商台達電子企業管理(上海)有限公司 | Flyback circuit and control method of clamping switch of flyback circuit |
Also Published As
Publication number | Publication date |
---|---|
TW202222022A (en) | 2022-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210242784A1 (en) | Flyback converter, control circuit and control method thereof | |
CN108736729B (en) | Active clamping flyback power supply conversion circuit and conversion control circuit therein | |
US6600670B2 (en) | Switching power supply capable of ac to dc conversion | |
TWI509971B (en) | System and method and controller for output detection and synchronous rectification mechanism for adjusting power supply conversion system | |
CN103825468B (en) | The control circuit of flyback power converter | |
TWI653810B (en) | Control device and control method | |
US8908393B2 (en) | Soft transition apparatus and method for switching power converters | |
TWI419469B (en) | Regulator and synchronized pulse generator thereof | |
TWI448063B (en) | Controllers and switching methods for power converters and controlling methods for quasi-resonant power converters | |
TWI355794B (en) | Synchronous rectifying circuit for power converter | |
TW201236300A (en) | A magnetic field coupling and contactless power transmission device | |
TW201427257A (en) | Active clamp circuits | |
US6700801B2 (en) | Switching power supply capable of ac to dc conversion | |
TW201238219A (en) | Switching controller with valley-lock switching and limited maximum frequency for quasi-resonant power converters | |
TW201626706A (en) | Insulation type DC power supply unit and control method | |
TW201622331A (en) | Systems and Methods for Regulating Power Conversion Systems with Output Detection and Synchronized Rectifying Mechanisms | |
WO2022170954A1 (en) | Controller for dc/dc converter and control system thereof | |
CN113595399A (en) | Control device and control method | |
CN107834857A (en) | Power control and insulated switch power supply apparatus | |
US20200343818A1 (en) | Power converter and control circuit thereof | |
TWI741882B (en) | Active clamp flyback converter | |
EP1289110B1 (en) | Switching power supply | |
Dutta et al. | A soft-switched flyback converter with recovery of stored energy in leakage inductance | |
CN108900096B (en) | Synchronous rectification power supply circuit with absorption function | |
TWI586092B (en) | Single-stage ac-to-dc converter |