TWI650882B - Flexible light source structure and method for manufacturing same - Google Patents

Flexible light source structure and method for manufacturing same Download PDF

Info

Publication number
TWI650882B
TWI650882B TW107101931A TW107101931A TWI650882B TW I650882 B TWI650882 B TW I650882B TW 107101931 A TW107101931 A TW 107101931A TW 107101931 A TW107101931 A TW 107101931A TW I650882 B TWI650882 B TW I650882B
Authority
TW
Taiwan
Prior art keywords
layer
flexible
dielectric layer
light
thin
Prior art date
Application number
TW107101931A
Other languages
Chinese (zh)
Other versions
TW201933626A (en
Inventor
洪梓健
連亞琦
Original Assignee
榮創能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 榮創能源科技股份有限公司 filed Critical 榮創能源科技股份有限公司
Priority to TW107101931A priority Critical patent/TWI650882B/en
Application granted granted Critical
Publication of TWI650882B publication Critical patent/TWI650882B/en
Publication of TW201933626A publication Critical patent/TW201933626A/en

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Led Device Packages (AREA)

Abstract

本發明涉及一種可撓式超薄發光體結構,其包括:柔性介電層、形成在所述柔性介電層表面的導電線路層、形成在所述導電線路層表面的發光晶片及覆蓋所述發光晶片的封裝層,所述導電線路層的表面還形成有電路元件,所述電路元件包括用於控制所述發光晶片發光的控制元件和/或用於驅動所述發光晶片的開關元件,所述封裝層覆蓋所述發光晶片、所述電路元件及填充所述電路元件、所述發光晶片之間的間隙。本發明還涉及一種可撓式超薄發光體結構的製作方法。由此方法製作形成的可撓式超薄發光體結構,能滿足薄型化、可撓曲的需求,可以用於指示燈箱、照明光板、背光模組、廣告燈板等裝置中。 The invention relates to a flexible ultra-thin illuminant structure, comprising: a flexible dielectric layer, a conductive circuit layer formed on a surface of the flexible dielectric layer, a light-emitting chip formed on a surface of the conductive circuit layer, and covering the An encapsulation layer of the light-emitting chip, the surface of the conductive circuit layer further having a circuit component, the circuit component comprising a control element for controlling illumination of the light-emitting chip and/or a switching element for driving the light-emitting chip, The encapsulation layer covers the luminescent wafer, the circuit component, and a gap between the circuit component and the luminescent wafer. The invention also relates to a method of fabricating a flexible ultra-thin illuminant structure. The flexible ultra-thin illuminator structure formed by the method can meet the requirements of thinning and flexibility, and can be used in an indicator box, an illumination board, a backlight module, an advertising lamp board and the like.

Description

可撓式超薄發光體結構及其製作方法 Flexible ultra-thin illuminator structure and manufacturing method thereof

本發明涉及顯示技術領域,尤其涉及一種能用於背光模組的可撓式超薄發光體結構。 The present invention relates to the field of display technologies, and in particular, to a flexible ultra-thin illuminator structure that can be used in a backlight module.

隨著光電科技的進步,發光二極體光源的應用也隨之愈加廣泛,諸如指示燈箱、照明光板、背光模組、廣告燈板等應用。無論是何種應用,皆對各類照明、顯示產品造成革命性的變化,顛覆目前所認知的刻板印象。大多數的產品應用均將發光二極體光源朝向超薄化面光源技術發展。 With the advancement of optoelectronic technology, the application of light-emitting diode light sources has become more and more extensive, such as indicator boxes, lighting panels, backlight modules, advertising panels and other applications. Regardless of the application, it revolutionizes all types of lighting and display products, and subverts the stereotypes that are currently recognized. Most product applications have developed light-emitting diode sources toward ultra-thin surface light source technology.

就目前相關技術而言,無論是側投式的光源模組或直下式的光源模組皆存在有部分缺失,例如不具可撓性等。因此,提供一個可撓式光源模組實有其必要性。 As far as the related art is concerned, there is a partial loss in the side-projection light source module or the direct-lit light source module, for example, it is not flexible. Therefore, it is necessary to provide a flexible light source module.

有鑑於此,有必要提供一種能夠解決上述技術問題的可撓式超薄發光體結構。 In view of the above, it is necessary to provide a flexible ultra-thin illuminator structure that can solve the above technical problems.

一種可撓式超薄發光體結構,其包括:柔性介電層、形成在所述柔性介電層表面的導電線路層、形成在所述導電線路層表面的發光晶片及覆蓋所述發光晶片的封裝層,所述導電線路層的表面還形成有電路元件,所述電路元件包括用於控制所述發光晶片發光的控制元件和/或用於驅動所述發光晶片的開關元件,所述封裝層覆蓋所述發光晶片、所述電路元件及填充所述電路元件、所述發光晶片之間的間隙。 A flexible ultra-thin illuminant structure comprising: a flexible dielectric layer, a conductive circuit layer formed on a surface of the flexible dielectric layer, a light-emitting chip formed on a surface of the conductive circuit layer, and an illuminating wafer covering the luminescent wafer An encapsulation layer, a surface of the conductive circuit layer further formed with circuit elements, the circuit element comprising a control element for controlling illumination of the illumination wafer and/or a switching element for driving the illumination wafer, the encapsulation layer Covering the light-emitting chip, the circuit component, and filling a gap between the circuit component and the light-emitting chip.

一個優選實施方式中,所述封裝層的厚度介於1微米至500微米,所述封裝層的熱膨脹係數與所述介電層的熱膨脹係數一致。 In a preferred embodiment, the thickness of the encapsulation layer is between 1 micrometer and 500 micrometers, and the thermal expansion coefficient of the encapsulation layer is consistent with the thermal expansion coefficient of the dielectric layer.

一個優選實施方式中,所述柔性介電層為透明的高分子薄膜,所述柔性介電層的厚度介於5微米至50微米。 In a preferred embodiment, the flexible dielectric layer is a transparent polymer film, and the flexible dielectric layer has a thickness of 5 micrometers to 50 micrometers.

本發明是涉及一種可撓式超薄發光體結構的製作方法。 The invention relates to a method for manufacturing a flexible ultra-thin illuminant structure.

一種可撓式超薄發光體結構的製作方法,其包括步驟:提供支撐基板,在所述支撐基板的表面形成一層柔性介電層;在所述柔性介電層的表面形成導電線路層;在所述導電線路層的表面設置多個發光晶片;在所述發光晶片的表面形成一層的封裝層,所述封裝層覆蓋所述發光晶片及填充發光晶片之間的間隙;以及將所述柔性介電層底面的所述支撐基板移除,以得到可撓式超薄發光體結構。 A method for fabricating a flexible ultra-thin illuminant structure, comprising the steps of: providing a support substrate, forming a flexible dielectric layer on a surface of the support substrate; forming a conductive circuit layer on a surface of the flexible dielectric layer; a surface of the conductive circuit layer is provided with a plurality of light-emitting wafers; an encapsulation layer is formed on a surface of the light-emitting chip, the encapsulation layer covers a gap between the light-emitting chip and the filling light-emitting chip; and the flexible medium is The support substrate on the bottom surface of the electrical layer is removed to obtain a flexible ultra-thin illuminant structure.

一個優選實施方式中,在形成所述導電線路層之後還包括利用低溫多晶矽技術在所述導電線路層的表面形成電路元件的步驟。 In a preferred embodiment, the step of forming a circuit component on the surface of the conductive wiring layer using a low temperature polysilicon technology is further included after the formation of the conductive wiring layer.

一個優選實施方式中,所述導電線路層是通過濺鍍、氣相沉積或者電鍍的方式形成在所述柔性介電層上,所述導電線路層的厚度為5至50微米。 In a preferred embodiment, the conductive circuit layer is formed on the flexible dielectric layer by sputtering, vapor deposition or electroplating, and the conductive circuit layer has a thickness of 5 to 50 micrometers.

一個優選實施方式中,該支撐基板是通過彎折分離、蝕刻、鐳射切割或研磨的方式而移除。 In a preferred embodiment, the support substrate is removed by bending, etching, laser cutting or grinding.

一個優選實施方式中,所述柔性介電層為透明的高分子薄膜,所述柔性介電層的厚度介於5微米至50微米。 In a preferred embodiment, the flexible dielectric layer is a transparent polymer film, and the flexible dielectric layer has a thickness of 5 micrometers to 50 micrometers.

一個優選實施方式中,所述封裝層的熱膨脹係數與所述介電層的熱膨脹係數一致,且所述封裝層的厚度介於1微米至500微米。 In a preferred embodiment, the thermal expansion coefficient of the encapsulation layer is consistent with the thermal expansion coefficient of the dielectric layer, and the thickness of the encapsulation layer is between 1 micrometer and 500 micrometers.

一個優選實施方式中,該封裝層為聚對苯二甲酸乙二醇酯、環氧樹脂、矽氧烷其中之一。 In a preferred embodiment, the encapsulating layer is one of polyethylene terephthalate, epoxy resin, and decane.

與現有技術相比,本發明提供的可撓式超薄發光體結構的製作方法及由此製作形成的可撓式超薄發光體結構,能滿足薄型化、可撓曲的需求,且能實現雙面出光,可以用於指示燈箱、照明光板、背光模組、廣告燈板等裝置中。 Compared with the prior art, the manufacturing method of the flexible ultra-thin illuminant structure provided by the present invention and the flexible ultra-thin illuminant structure formed thereby can meet the requirements of thinning and flexibility, and can realize Double-sided light can be used in indicator boxes, lighting panels, backlight modules, advertising panels and other devices.

100‧‧‧可撓式超薄發光體結構 100‧‧‧Flexible ultra-thin illuminator structure

10‧‧‧支撐基板 10‧‧‧Support substrate

20‧‧‧柔性介電層 20‧‧‧Flexible dielectric layer

30‧‧‧導電線路層 30‧‧‧ Conductive circuit layer

32‧‧‧電路元件 32‧‧‧ Circuit components

40‧‧‧發光晶片 40‧‧‧Lighting chip

50‧‧‧封裝層 50‧‧‧Encapsulation layer

60‧‧‧鐳射光源 60‧‧‧Laser light source

12‧‧‧上表面 12‧‧‧ upper surface

14‧‧‧下表面 14‧‧‧ Lower surface

圖1是本發明提供的可撓式超薄發光體結構的製作流程圖。 1 is a flow chart showing the fabrication of a flexible ultra-thin illuminator structure provided by the present invention.

圖2是提供支撐基板及在支撐基板上形成柔性介電層的剖面圖。 2 is a cross-sectional view showing a support substrate and a flexible dielectric layer formed on the support substrate.

圖3是在圖2所示的基礎上形成導電線路層的剖面圖。 Figure 3 is a cross-sectional view showing the formation of a conductive wiring layer on the basis of Fig. 2.

圖4是在圖3的基礎上形成發光晶片的剖面圖。 4 is a cross-sectional view showing the formation of a light-emitting wafer on the basis of FIG.

圖5是在圖4的基礎上壓合一層封裝層的剖面圖。 Figure 5 is a cross-sectional view of a layer of encapsulation laminated on the basis of Figure 4.

圖6是在圖5的基礎上移除支撐基板的剖面圖。 Figure 6 is a cross-sectional view showing the support substrate removed on the basis of Figure 5.

圖7是最後得到的可撓式超薄發光體結構的剖面圖。 Figure 7 is a cross-sectional view showing the structure of the finally obtained flexible ultra-thin illuminator.

下面結合將結合附圖及實施例,對本發明提供的可撓式超薄發光體結構100製作方法及由此得到的可撓式超薄發光體結構100作進一步的詳細說明。 The flexible ultra-thin illuminant structure 100 provided by the present invention and the flexible ultra-thin illuminant structure 100 thus obtained will be further described in detail below in conjunction with the accompanying drawings and embodiments.

請參閱圖1至圖7,本發明提供一種可撓式超薄發光體結構100的製作方法,其包括如下步驟: Referring to FIG. 1 to FIG. 7 , the present invention provides a method for fabricating a flexible ultra-thin illuminant structure 100 , which includes the following steps:

第一步:請參閱圖2,提供支撐基板10,所述支撐基板10包括相背的上表面12及下表面14,在所述支撐基板10的上表面12形成一層高分子柔性介電層20。 First step: Referring to FIG. 2, a support substrate 10 is provided. The support substrate 10 includes opposite upper and lower surfaces 12 and 14 , and a polymer flexible dielectric layer 20 is formed on the upper surface 12 of the support substrate 10 . .

支撐基板10作為後續步驟中所形成結構的機械性支撐,其可為一透明或不透明基板,例如一玻璃基板或者一陶瓷基板。由於支撐基板10不構成最終形成的可撓式超薄發光體結構100產品的一部分,所以支撐基板10可採用成本相對較低的材料,只要其可提供必要的機械性支撐即可。例如,支撐基板10可採用素玻璃而非化學強化玻璃,以降低可撓式超薄發光體結構100的製作成本。 The support substrate 10 serves as a mechanical support for the structure formed in the subsequent step, and may be a transparent or opaque substrate such as a glass substrate or a ceramic substrate. Since the support substrate 10 does not form part of the final formed flexible ultra-thin illuminator structure 100 product, the support substrate 10 can be of relatively low cost material as long as it provides the necessary mechanical support. For example, the support substrate 10 may be made of plain glass instead of chemically strengthened glass to reduce the manufacturing cost of the flexible ultra-thin illuminant structure 100.

另外,支撐基板10在後續自可撓式超薄發光體結構100上移除後,還可以再重複回收利用,如此,可進一步降低製作成本。值得注意的是,支撐基板10並不限於玻璃,其可以是其他任何可提供機械支撐的合適材料。 In addition, after the support substrate 10 is removed from the flexible ultra-thin illuminant structure 100, it can be reused again, so that the manufacturing cost can be further reduced. It is to be noted that the support substrate 10 is not limited to glass, and it may be any other suitable material that can provide mechanical support.

在所述支撐基板10的上表面12形成柔性介電層20的方法包括塗布、印刷或者模壓的方式。塗布的方式可以包括刮刀塗覆(Doctor Blade)、旋轉塗布(Spin Coating)。塗布之後再高溫烘烤,使塗布的膜層固化,從而在所述支撐基板10的表面上形成一層耐高溫的柔性介電層20,所述柔性介電層的厚度為5至50微米。 The method of forming the flexible dielectric layer 20 on the upper surface 12 of the support substrate 10 includes coating, printing or molding. The manner of coating may include doctor blade coating, spin coating. After coating, high temperature baking is performed to cure the coated film layer to form a high temperature resistant flexible dielectric layer 20 on the surface of the support substrate 10, the flexible dielectric layer having a thickness of 5 to 50 microns.

此厚度範圍的柔性介電層20具有良好的機械性能,包括延展性、韌性及熱穩定性,同時柔性介電層20還具有良好的光學特性,例如高穿透率,以用於製作雙面透光的可撓式超薄發光體結構100。 The flexible dielectric layer 20 of this thickness range has good mechanical properties including ductility, toughness and thermal stability, while the flexible dielectric layer 20 also has good optical properties, such as high transmittance, for making double-sided. A light transmissive flexible ultra-thin illuminant structure 100.

所述柔性介電層20可以是能耐高溫的聚醯亞胺(Polyimide)、聚對苯二甲酸乙二醇酯(PET)、聚碳酸酯(PC)、聚醚碸(PES)、聚甲基丙烯酸甲酯(PMMA)。此處的高溫是指400度左右的溫度。 The flexible dielectric layer 20 may be high temperature resistant polyimide, polyethylene terephthalate (PET), polycarbonate (PC), polyether oxime (PES), polymethyl. Methyl acrylate (PMMA). The high temperature here means a temperature of about 400 degrees.

優選地,是選擇與支撐基板10的熱膨脹係數較為接近的聚醯亞胺來形成所述柔性介電層20,可以防止柔性介電層20在固化時翹曲、在後續固定發光晶片40的回流焊時翹曲。聚醯亞胺的熱膨脹係數介於:2×10-5-3×10-5/℃的範圍。 Preferably, the flexible dielectric layer 20 is formed by selecting a polyimide having a thermal expansion coefficient close to that of the support substrate 10, which can prevent the flexible dielectric layer 20 from warping during curing and subsequently reflowing the light-emitting wafer 40. Warping during welding. The thermal expansion coefficient of the polyimine is in the range of 2 × 10 -5 - 3 × 10 -5 / ° C.

例如,以聚醯亞胺來製作柔性介電層20為例說明,將支撐基板10放置於可移動的平臺上,通過一塗布刀頭或一塗布機將一定配比的溶液塗布於支撐基板上,再加熱烘烤,使部分溶劑揮發和/或使溶液中的部分成分(例如聚合單體或前驅體)產生聚合,從而形成聚醯亞胺薄膜。 For example, the flexible dielectric layer 20 is made of polyimine. The support substrate 10 is placed on a movable platform, and a certain ratio of the solution is applied to the support substrate through a coating blade or a coater. The baking is further heated to volatilize part of the solvent and/or to polymerize a part of the components (for example, a polymerizable monomer or a precursor) in the solution to form a polyimide film.

也即,由於所述柔性介電層20是通過塗覆、塗布,印刷或者模壓的方式形成,從而能控制所述柔性介電層20的厚度,以使後續形成的可撓式超薄發光體結構100滿足薄型化的需求。由於柔性介電層20的厚度較薄,從而, 發光晶片產生的熱量能迅速通過所述柔性介電層散發至外界,不會產生熱量的積聚。 That is, since the flexible dielectric layer 20 is formed by coating, coating, printing or molding, the thickness of the flexible dielectric layer 20 can be controlled, so that the subsequently formed flexible ultra-thin illuminator can be formed. Structure 100 meets the need for thinning. Since the thickness of the flexible dielectric layer 20 is thin, The heat generated by the luminescent wafer can be quickly dissipated to the outside through the flexible dielectric layer without generating heat.

第二步,請參閱圖3,在所述柔性介電層20的表面形成導電線路層30,所述導電線路層30的層數可以為一層,也可以為多層。 In the second step, referring to FIG. 3, a conductive circuit layer 30 is formed on the surface of the flexible dielectric layer 20. The number of layers of the conductive circuit layer 30 may be one layer or multiple layers.

導電線路層30可以通過濺鍍(Spattering)、氣相沉積或者電鍍的方式形成在所述柔性介電層20上,每層所述導電線路層30的厚度為5至50微米。 The conductive wiring layer 30 may be formed on the flexible dielectric layer 20 by sputtering, vapor deposition, or electroplating, and each of the conductive wiring layers 30 has a thickness of 5 to 50 μm.

導電線路層30的材料可以是銀、鎳、銅、錫、鋁或前述金屬材料的合金,或者是銦錫氧化物(ITO)、銦鋅氧化物(IZO)、銦鎵氧化物(IGO)及銦鎢氧化物(IWO)等透明導電材料。 The material of the conductive circuit layer 30 may be silver, nickel, copper, tin, aluminum or an alloy of the foregoing metal materials, or indium tin oxide (ITO), indium zinc oxide (IZO), indium gallium oxide (IGO), and Transparent conductive material such as indium tungsten oxide (IWO).

依次重複在導電線路層30的表面形成柔性介電層20,及在柔性介電層20表面形成導電線路層30的步驟,即可得到多層導電線路層。 The steps of forming the flexible dielectric layer 20 on the surface of the conductive wiring layer 30 and forming the conductive wiring layer 30 on the surface of the flexible dielectric layer 20 are sequentially performed, thereby obtaining a multilayer conductive wiring layer.

請參閱圖4,在形成所述導電線路層30後還包括在所述導電線路層30的表面形成電路元件32。具體地,可以採用低溫多晶矽(Low Temperature Poly-silicon,LTPS)技術形成所述電路元件32。電路元件32包括用於控制發光晶片發光的控制元件和/或驅動用的開關元件。通過低溫多晶矽技術形成的電路元件32實際上是低溫多晶矽薄膜電晶體,厚度也是可以控制的,比直接在導電線路層30上設置的電路元件的尺寸會進一步縮小,如此,會降低可撓式超薄發光體結構100的厚度。 Referring to FIG. 4, after the conductive circuit layer 30 is formed, the circuit component 32 is further formed on the surface of the conductive circuit layer 30. Specifically, the circuit component 32 can be formed using a low temperature poly-silicon (LTPS) technique. The circuit component 32 includes a control element for controlling the illumination of the light-emitting wafer and/or a switching element for driving. The circuit component 32 formed by the low-temperature polysilicon technology is actually a low-temperature polysilicon thin film transistor, and the thickness is also controllable, and the size of the circuit component disposed directly on the conductive wiring layer 30 is further reduced, thus reducing the flexible super The thickness of the thin illuminant structure 100.

如果可撓式超薄發光體結構100僅僅用作簡單的照明產品,可以採用開關元件通過穩流、調整電流,以實現出光亮度的調整;如果可撓式超薄發光體結構100需要實現某些控制功能,如控制電流的時域模式或頻率模式對驅動電路進行控制,指示驅動電路調整或改變LED中的電流,可以採用邏輯控制電路元件或智慧控制元件以實現相應的功能。 If the flexible ultra-thin illuminant structure 100 is only used as a simple lighting product, the switching element can be used to stabilize the current and adjust the current to achieve the adjustment of the brightness; if the flexible ultra-thin illuminant structure 100 needs to implement some Control functions, such as controlling the current mode of the current mode or the frequency mode to control the drive circuit, instructing the drive circuit to adjust or change the current in the LED, may use logic control circuit components or smart control components to achieve the corresponding function.

第三步,請參閱圖4,在所述導電線路層30的表面設置多個發光晶片40,發光晶片40優選地為無機半導體發光晶片,每個發光晶片40的面積為2.5×104平方微米。所述發光晶片40與所述導電線路層30電性連接。發光晶片和導電線路層30的電連接方式包括但不限於引線鍵合也可以使用倒裝焊、回流焊(Solder Reflow)等技術。這種回流焊接工藝在220℃-320℃的作業條件下進行,為防止在回流焊時柔性介電層20從所述支撐基板10上翹曲,所以,在最初選擇柔性介電層20的材料時要選擇與支撐基板10的熱膨脹係數更接近的材料來形成所述柔性介電層20。 In the third step, referring to FIG. 4, a plurality of light emitting wafers 40 are disposed on the surface of the conductive circuit layer 30. The light emitting wafers 40 are preferably inorganic semiconductor light emitting wafers, each of which has an area of 2.5×10 4 square micrometers. . The light emitting chip 40 is electrically connected to the conductive circuit layer 30. The electrical connection of the light-emitting wafer and the conductive circuit layer 30 includes, but is not limited to, wire bonding, and techniques such as flip chip bonding, solder reflow (Solder Reflow), and the like can also be used. This reflow soldering process is performed under operating conditions of 220 ° C - 320 ° C. In order to prevent the flexible dielectric layer 20 from warping from the support substrate 10 during reflow soldering, the material of the flexible dielectric layer 20 is initially selected. The flexible dielectric layer 20 is formed by selecting a material that is closer to the thermal expansion coefficient of the support substrate 10.

第四步,請參閱圖5,在所述發光晶片40的表面形成一層的封裝層50,所述封裝層50覆蓋所述電路元件32、發光晶片40及填充電路元件32及發光晶片40之間的間隙。所述封裝層50的厚度介於1至500微米,此厚度範圍的封裝層50能滿足最終形成的發光體結構的薄型化需求。封裝層50可以選用LED封裝領域常用的矽樹脂(silicone;又稱矽氧烷)、環氧樹脂(epoxy)和塑膠。封裝層50能保證發光晶片40所發出的光線能夠發射出去且有效隔絕外界濕氣並保護發光晶片40。優選地是,所述封裝層50的熱膨脹係數與所述柔性介電層20的熱膨脹係數相當。在本實施方式中,所述封裝層50為聚對苯二甲酸乙二醇酯(PET),如此,能保證形成的發光體結構具可撓曲特徵的同時不會發生翹曲。 In a fourth step, referring to FIG. 5, a layer of encapsulation layer 50 is formed on the surface of the luminescent wafer 40. The encapsulation layer 50 covers the circuit component 32, the luminescent wafer 40, and the filling circuit component 32 and the luminescent wafer 40. Clearance. The encapsulation layer 50 has a thickness of 1 to 500 micrometers, and the encapsulation layer 50 of the thickness range can satisfy the thinning requirement of the finally formed illuminant structure. The encapsulating layer 50 can be selected from the group consisting of silicone (also known as siloxane), epoxy, and plastic. The encapsulation layer 50 ensures that the light emitted by the luminescent wafer 40 can be emitted and effectively isolates the outside moisture and protects the luminescent wafer 40. Preferably, the thermal expansion coefficient of the encapsulation layer 50 is comparable to the thermal expansion coefficient of the flexible dielectric layer 20. In the present embodiment, the encapsulating layer 50 is polyethylene terephthalate (PET). Thus, it is ensured that the formed illuminant structure has flexible characteristics without warping.

封裝層50可以通過轉移成型(transfer-molding)或是注入成型(inject-molding)等方式形成。 The encapsulation layer 50 may be formed by transfer-molding or injection-molding.

第五步,請參閱圖6,將所述柔性介電層20底面的支撐基板10移除。當該封裝層50硬化後,可以通過彎折分離、蝕刻、鐳射切割或研磨將支撐基板10移除。 In the fifth step, referring to FIG. 6, the support substrate 10 on the bottom surface of the flexible dielectric layer 20 is removed. After the encapsulation layer 50 is hardened, the support substrate 10 can be removed by bend separation, etching, laser cutting or grinding.

在本實施方式中,可以利用鐳射光源60發出的光束掃描所述支撐基板10的下表面14,以移除所述支撐基板10,請參閱圖7,從而得到所述可撓式超薄發光體結構100。 In this embodiment, the lower surface 14 of the support substrate 10 can be scanned by the light beam emitted by the laser light source 60 to remove the support substrate 10. Please refer to FIG. 7 to obtain the flexible ultra-thin illuminator. Structure 100.

由於所述柔性介電層20是通過在所述支撐基板10的表面塗布高分子材料形成,所述導電線路層30是通過濺鍍、氣相沉積或者電鍍的方式形成,所以,從而可以控制柔性介電層20的厚度及控制導電線路層30的厚度,進而達到控制所述可撓式超薄發光體結構100的厚度。 Since the flexible dielectric layer 20 is formed by coating a polymer material on the surface of the support substrate 10, the conductive circuit layer 30 is formed by sputtering, vapor deposition or electroplating, so that flexibility can be controlled. The thickness of the dielectric layer 20 and the thickness of the conductive circuit layer 30 are controlled to control the thickness of the flexible ultra-thin illuminant structure 100.

由於所述柔性介電層20與所述封裝層50均能透射光線,從而,形成的所述可撓式超薄發光體結構100為雙面發光結構。 Since the flexible dielectric layer 20 and the encapsulation layer 50 are both capable of transmitting light, the flexible ultra-thin illuminant structure 100 formed is a double-sided illuminating structure.

所述可撓式超薄發光體結構100的整體厚度介於7至600微米之間,所以,所述可撓式超薄發光體結構100能滿足薄型化、可撓曲的需求,可以用於指示燈箱、照明光板、背光模組、廣告燈板等裝置中。 The flexible ultra-thin illuminant structure 100 has an overall thickness of between 7 and 600 micrometers. Therefore, the flexible ultra-thin illuminant structure 100 can meet the requirements of thinning and flexibility, and can be used for Indicator box, lighting board, backlight module, advertising board and other devices.

請再次參閱圖7,由上述製作方法製作形成的可撓式超薄發光體結構100包括:柔性介電層20,形成在所述柔性介電層20表面的導電線路層30,形成在導電線路層30表面的電路元件32、發光晶片40,以及形成在發光晶片40表面的封裝層50。電路元件32及所述發光晶片40均與所述導電線路層30電性連接。 Referring to FIG. 7 again, the flexible ultra-thin illuminant structure 100 formed by the above manufacturing method comprises: a flexible dielectric layer 20, and a conductive circuit layer 30 formed on the surface of the flexible dielectric layer 20, formed on the conductive line. The circuit component 32 on the surface of the layer 30, the luminescent wafer 40, and the encapsulation layer 50 formed on the surface of the luminescent wafer 40. The circuit component 32 and the luminescent wafer 40 are electrically connected to the conductive circuit layer 30.

所述柔性介電層20的厚度為5至50微米。所述柔性介電層20可以是能耐高溫的聚醯亞胺(Polyimide)、聚對苯二甲酸乙二醇酯(PET)、聚碳酸酯(PC)、聚醚碸(PES)、聚甲基丙烯酸甲酯(PMMA)。此處的高溫是指400度左右的溫度。由於柔性介電層20是無色透明的,從而,可撓式超薄發光體結構100可以實現雙面出光。 The flexible dielectric layer 20 has a thickness of 5 to 50 microns. The flexible dielectric layer 20 may be high temperature resistant polyimide, polyethylene terephthalate (PET), polycarbonate (PC), polyether oxime (PES), polymethyl. Methyl acrylate (PMMA). The high temperature here means a temperature of about 400 degrees. Since the flexible dielectric layer 20 is colorless and transparent, the flexible ultra-thin illuminant structure 100 can achieve double-sided light output.

所述導電線路層30的厚度為5至50微米。 The conductive wiring layer 30 has a thickness of 5 to 50 μm.

所述電路元件32用於控制發光晶片40的發光,在本實施方式中,實施電路元件32為低溫多晶矽薄膜電晶體。 The circuit component 32 is used to control the illumination of the luminescent wafer 40. In the present embodiment, the implementation circuit component 32 is a low temperature polysilicon thin film transistor.

所述封裝層50覆蓋所述電路元件32、發光晶片40及填充電路元件32及發光晶片40之間的間隙。所述封裝層50的厚度介於1至500微米。封裝層50可以選用LED封裝領域常用的矽樹脂(silicone;又稱矽氧烷)、環氧樹脂(epoxy)和塑膠。所述封裝層50的熱膨脹係數與所述柔性介電層20的熱膨脹係數相當。以防止所述可撓式超薄發光體結構100翹曲。 The encapsulation layer 50 covers a gap between the circuit component 32, the luminescent wafer 40, and the filling circuit component 32 and the luminescent wafer 40. The encapsulation layer 50 has a thickness of from 1 to 500 microns. The encapsulating layer 50 can be selected from the group consisting of silicone (also known as siloxane), epoxy, and plastic. The coefficient of thermal expansion of the encapsulation layer 50 is comparable to the coefficient of thermal expansion of the flexible dielectric layer 20. To prevent the flexible ultra-thin illuminant structure 100 from warping.

所述可撓式超薄發光體結構100的整體厚度介於7至600微米之間,所以,所述可撓式超薄發光體結構100能滿足薄型化、可撓曲、雙面出光的需求。 The flexible ultra-thin illuminant structure 100 has an overall thickness of between 7 and 600 micrometers. Therefore, the flexible ultra-thin illuminant structure 100 can meet the requirements of thinning, flexible, and double-sided light-emitting. .

綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施方式,自不能以此限限製本案之申請專利範圍。舉凡熟悉本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and the scope of the patent application of the present invention is not limited thereto. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.

Claims (10)

一種可撓式超薄發光體結構,其包括:柔性介電層、形成在所述柔性介電層表面的導電線路層、形成在所述導電線路層表面的發光晶片及覆蓋所述發光晶片的封裝層,所述導電線路層的表面還形成有電路元件,所述電路元件包括用於控制所述發光晶片發光的控制元件和/或用於驅動所述發光晶片的開關元件,所述封裝層覆蓋所述發光晶片、所述電路元件及填充所述電路元件、所述發光晶片之間的間隙。 A flexible ultra-thin illuminant structure comprising: a flexible dielectric layer, a conductive circuit layer formed on a surface of the flexible dielectric layer, a light-emitting chip formed on a surface of the conductive circuit layer, and an illuminating wafer covering the luminescent wafer An encapsulation layer, a surface of the conductive circuit layer further formed with circuit elements, the circuit element comprising a control element for controlling illumination of the illumination wafer and/or a switching element for driving the illumination wafer, the encapsulation layer Covering the light-emitting chip, the circuit component, and filling a gap between the circuit component and the light-emitting chip. 如請求項1所述的可撓式超薄發光體結構,其中,所述封裝層的厚度介於1微米至500微米,所述封裝層的熱膨脹係數與所述介電層的熱膨脹係數一致。 The flexible ultra-thin illuminant structure according to claim 1, wherein the encapsulation layer has a thickness of from 1 micrometer to 500 micrometers, and a thermal expansion coefficient of the encapsulation layer is consistent with a thermal expansion coefficient of the dielectric layer. 如請求項1所述的可撓式超薄發光體結構,其中,所述柔性介電層為透明的高分子薄膜,所述柔性介電層的厚度介於5微米至50微米,所述導電線路層的厚度為5至50微米。 The flexible ultra-thin illuminant structure according to claim 1, wherein the flexible dielectric layer is a transparent polymer film, and the flexible dielectric layer has a thickness of 5 μm to 50 μm, and the conductive The thickness of the wiring layer is 5 to 50 microns. 一種可撓式超薄發光體結構的製作方法,其包括步驟:提供支撐基板,在所述支撐基板的表面形成一層柔性介電層;在所述柔性介電層的表面形成導電線路層;在所述導電線路層的表面設置多個發光晶片;在所述發光晶片的表面形成一層封裝層,所述封裝層覆蓋所述發光晶片及填充多個所述發光晶片之間的間隙;以及將所述柔性介電層底面的所述支撐基板移除,以得到可撓式超薄發光體結構。 A method for fabricating a flexible ultra-thin illuminant structure, comprising the steps of: providing a support substrate, forming a flexible dielectric layer on a surface of the support substrate; forming a conductive circuit layer on a surface of the flexible dielectric layer; a surface of the conductive circuit layer is provided with a plurality of light-emitting wafers; an encapsulation layer is formed on a surface of the light-emitting chip, the encapsulation layer covers the light-emitting chip and fills a gap between the plurality of light-emitting wafers; The support substrate on the bottom surface of the flexible dielectric layer is removed to obtain a flexible ultra-thin illuminant structure. 如請求項4所述的可撓式超薄發光體結構的製作方法,其中,在形成所述導電線路層之後還包括利用低溫多晶矽技術在所述導電線路層的表面形成電路元件的步驟。 The method of fabricating a flexible ultra-thin illuminant structure according to claim 4, further comprising the step of forming a circuit component on the surface of the conductive wiring layer by using a low-temperature polysilicon technology after forming the conductive wiring layer. 如請求項4所述的可撓式超薄發光體結構的製作方法,其中,所述導電線路層是通過濺鍍、氣相沉積或者電鍍的方式形成在所述柔性介電層上,所述導電線路層的厚度為5至50微米。 The method for fabricating a flexible ultra-thin illuminant structure according to claim 4, wherein the conductive circuit layer is formed on the flexible dielectric layer by sputtering, vapor deposition or electroplating. The conductive wiring layer has a thickness of 5 to 50 μm. 如請求項4所述的可撓式超薄發光體結構的製作方法,其中,所述支撐基板是通過彎折分離、蝕刻、鐳射切割或研磨的方式而移除。 The method for fabricating a flexible ultra-thin illuminant structure according to claim 4, wherein the support substrate is removed by bending separation, etching, laser cutting or grinding. 如請求項4所述的可撓式超薄發光體結構的製作方法,其中,所述柔性介電層為透明的高分子薄膜,所述柔性介電層的厚度介於5微米至50微米。 The method for fabricating a flexible ultra-thin illuminant structure according to claim 4, wherein the flexible dielectric layer is a transparent polymer film, and the flexible dielectric layer has a thickness of 5 micrometers to 50 micrometers. 如請求項4所述的可撓式超薄發光體結構的製作方法,其中,所述封裝層的熱膨脹係數與所述介電層的熱膨脹係數一致,且所述封裝層的厚度介於1微米至500微米。 The method for fabricating a flexible ultra-thin illuminant structure according to claim 4, wherein a thermal expansion coefficient of the encapsulation layer is consistent with a thermal expansion coefficient of the dielectric layer, and a thickness of the encapsulation layer is between 1 micrometer. Up to 500 microns. 如請求項9所述的可撓式超薄發光體結構的製作方法,其中,所述封裝層為聚對苯二甲酸乙二醇酯、環氧樹脂、矽氧烷其中之一。 The method for fabricating a flexible ultra-thin illuminant structure according to claim 9, wherein the encapsulating layer is one of polyethylene terephthalate, epoxy resin, and siloxane.
TW107101931A 2018-01-18 2018-01-18 Flexible light source structure and method for manufacturing same TWI650882B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107101931A TWI650882B (en) 2018-01-18 2018-01-18 Flexible light source structure and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107101931A TWI650882B (en) 2018-01-18 2018-01-18 Flexible light source structure and method for manufacturing same

Publications (2)

Publication Number Publication Date
TWI650882B true TWI650882B (en) 2019-02-11
TW201933626A TW201933626A (en) 2019-08-16

Family

ID=66214015

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107101931A TWI650882B (en) 2018-01-18 2018-01-18 Flexible light source structure and method for manufacturing same

Country Status (1)

Country Link
TW (1) TWI650882B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW594210B (en) * 2003-08-28 2004-06-21 Ind Tech Res Inst A method for manufacturing a flexible panel for FPD
TWI265606B (en) * 2005-09-19 2006-11-01 Ind Tech Res Inst Method of fabricating flexible thin film transistor array substrate
TW201503424A (en) * 2013-07-05 2015-01-16 Ligitek Electronics Co Ltd Flexible LED package
TW201712269A (en) * 2015-09-25 2017-04-01 茂林光電科技股份有限公司 Light guide structure and backlight module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW594210B (en) * 2003-08-28 2004-06-21 Ind Tech Res Inst A method for manufacturing a flexible panel for FPD
TWI265606B (en) * 2005-09-19 2006-11-01 Ind Tech Res Inst Method of fabricating flexible thin film transistor array substrate
TW201503424A (en) * 2013-07-05 2015-01-16 Ligitek Electronics Co Ltd Flexible LED package
TW201712269A (en) * 2015-09-25 2017-04-01 茂林光電科技股份有限公司 Light guide structure and backlight module

Also Published As

Publication number Publication date
TW201933626A (en) 2019-08-16

Similar Documents

Publication Publication Date Title
US20120248488A1 (en) Light-Emitting Diode Package and Manufacturing Method Thereof
US20070236934A1 (en) Illumination system and display device
US8963195B2 (en) Flexible lighting device including a heat-spreading layer
TWI671571B (en) Package structure for backlight module
US20130271959A1 (en) Illumination apparatus
US20210066538A1 (en) Display substrate, manufacturing method thereof, and display device
JP2008160128A (en) Printed circuit board, light emitting device containing same, and its manufacturing method
CN108962914A (en) Electronic device and its manufacturing method
CN112908985B (en) Array substrate and display panel
JP5388877B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
KR101926715B1 (en) Micro light emitting diode module and its manufacturing method
CN104051594B (en) Flexible light device including protecting conformal coating
TWI650882B (en) Flexible light source structure and method for manufacturing same
TWI742519B (en) Flexible display device and manufacturing method thereof
TW202211726A (en) Light source module and manufacturing method therefor
US10297638B1 (en) Flexible light source structure and method for manufacturing same
US11670749B2 (en) Method for manufacturing light emitting diode packaging structure
KR101926714B1 (en) Micro light emitting diode module and its manufacturing method
KR20230114162A (en) Manufacturing method of package structure of electronic device
US11735684B2 (en) Method for manufacturing a light-emitting device
TW202129949A (en) Display substrate and producing method therefor, and display device
KR101353299B1 (en) LED Package Structure with high efficiency and high heat radiation structure, and Manufacturing method
TWI599744B (en) Light guide structure and backlight module
JP2020102512A (en) Forming method of sealing member
US20230395484A1 (en) Electronic device and manufacturing method thereof