TWI649265B - Perovskite structure, electronic device using the same, and relative method for manufacture a photoelectric conversion layer - Google Patents
Perovskite structure, electronic device using the same, and relative method for manufacture a photoelectric conversion layer Download PDFInfo
- Publication number
- TWI649265B TWI649265B TW107104276A TW107104276A TWI649265B TW I649265 B TWI649265 B TW I649265B TW 107104276 A TW107104276 A TW 107104276A TW 107104276 A TW107104276 A TW 107104276A TW I649265 B TWI649265 B TW I649265B
- Authority
- TW
- Taiwan
- Prior art keywords
- perovskite structure
- perovskite
- layer
- precursor
- micrometers
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/60—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation in which radiation controls flow of current through the devices, e.g. photoresistors
- H10K30/65—Light-sensitive field-effect devices, e.g. phototransistors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Photovoltaic Devices (AREA)
Abstract
一種鈣鈦礦結構,設置於一基板。鈣鈦礦結構包括複數個晶粒。複數個晶粒實質上具有介於3微米(μm)與5微米(μm)之範圍內的尺寸。晶粒的材料為ABX3,其中A包括銫、甲胺、甲脒之其中至少一者,B包括鉛、錫、和鍺之其中至少一者,X包括氯、溴、和碘之其中至少一者。 A perovskite structure disposed on a substrate. The perovskite structure includes a plurality of grains. The plurality of grains substantially have a size ranging from 3 micrometers (μm) to 5 micrometers (μm). The material of the crystal grains is ABX 3 , wherein A includes at least one of hydrazine, methylamine, and formazan, and B includes at least one of lead, tin, and antimony, and X includes at least one of chlorine, bromine, and iodine. By.
Description
本發明是有關於一種鈣鈦礦結構、應用其之電子裝置、及相關之光電轉換層的製造方法。 The present invention relates to a perovskite structure, an electronic device using the same, and a method of manufacturing a related photoelectric conversion layer.
鈣鈦礦材料具有獨特的光電特性,在許多領域中作為光電轉換的結構展現出了極佳的效率。並且,鈣鈦礦結構還有原料用量少、製程容易、成本低等優點。因此,目前正有許多人致力於將其應用於各種光電轉換領域,諸如顯示器、發光二極體裝置、太陽能電池等等。然而目前製作鈣鈦礦結構的方法難以量產化。 Perovskite materials have unique optoelectronic properties and exhibit excellent efficiency as a structure for photoelectric conversion in many fields. Moreover, the perovskite structure has the advantages of less raw materials, easy process, and low cost. Therefore, many people are currently working on various fields of photoelectric conversion, such as displays, light-emitting diode devices, solar cells, and the like. However, current methods for producing perovskite structures are difficult to mass produce.
本發明提供一種可將鈣鈦礦結構量產化的製造方法,及應由此種方法形成的鈣鈦礦結構及電子裝置。 The present invention provides a manufacturing method capable of mass-producing a perovskite structure, and a perovskite structure and an electronic device to be formed by such a method.
在本發明的一方面,提供一種鈣鈦礦結構。鈣鈦礦結構設置於一基板。該鈣鈦礦結構包括複數個晶粒。該些晶粒實 質上具有介於約3微米(μm)與約5微米(μm)之範圍內的尺寸。晶粒的材料為ABX3,其中A包括銫(Cs)、甲胺、和甲脒之其中至少一者,B包括鉛、錫、和鍺之其中至少一者,X包括氯、溴、和碘之其中至少一者。 In one aspect of the invention, a perovskite structure is provided. The perovskite structure is disposed on a substrate. The perovskite structure includes a plurality of grains. The grains have a size substantially in the range of about 3 micrometers (μm) and about 5 micrometers (μm). The material of the crystal grains is ABX 3 , wherein A includes at least one of cerium (Cs), methylamine, and formazan, and B includes at least one of lead, tin, and antimony, and X includes chlorine, bromine, and iodine. At least one of them.
在本發明的另一方面,提供一種電子裝置。該電子裝置包括一根據實施例的鈣鈦礦結構、一電洞源層、和一電子源層。鈣鈦礦結構設置於電洞源層與電子源層之間。 In another aspect of the invention, an electronic device is provided. The electronic device includes a perovskite structure, a hole source layer, and an electron source layer according to an embodiment. The perovskite structure is disposed between the hole source layer and the electron source layer.
在本發明的又一方面,提供一種光電轉換層的製造方法。該製造方法包括下列步驟。首先,以一極性溶劑溶解一AX前驅物和一BX2前驅物,形成一鈣鈦礦前驅物混合溶液,其中A包括銫、甲基胺、和甲脒之其中至少一者,B包括鉛、錫、和鍺之其中至少一者,X包括氯、溴、和碘之其中至少一者。在一基板上塗佈鈣鈦礦前驅物混合溶液,形成一鈣鈦礦前驅物層。接著,對於鈣鈦礦前驅物層進行一真空閃蒸步驟(vacuum flash process),以移除極性溶劑且形成一光電轉換層。真空閃蒸步驟是藉由一抽真空設備將一反應容器中之氣壓從大氣壓降低至10-1托(torr)~10-3托(torr)。 In still another aspect of the invention, a method of manufacturing a photoelectric conversion layer is provided. The manufacturing method includes the following steps. First, an AX precursor and a BX 2 precursor are dissolved in a polar solvent to form a mixed solution of a perovskite precursor, wherein A includes at least one of hydrazine, methylamine, and formazan, and B includes lead, At least one of tin, and bismuth, X includes at least one of chlorine, bromine, and iodine. A perovskite precursor mixed solution is coated on a substrate to form a perovskite precursor layer. Next, a vacuum flash process is performed on the perovskite precursor layer to remove the polar solvent and form a photoelectric conversion layer. The vacuum flashing step is to reduce the gas pressure in a reaction vessel from atmospheric pressure to 10 -1 torr to 10 -3 torr by a vacuuming device.
為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下: In order to better understand the above and other aspects of the present invention, the following detailed description of the embodiments and the accompanying drawings
100‧‧‧鈣鈦礦結構 100‧‧‧Perovskite structure
102‧‧‧晶粒 102‧‧‧ grain
104‧‧‧表面 104‧‧‧ Surface
200‧‧‧基板 200‧‧‧Substrate
202‧‧‧電洞源層 202‧‧‧ hole source layer
204‧‧‧電子源層 204‧‧‧Electronic source layer
300‧‧‧載板 300‧‧‧ Carrier Board
302‧‧‧步驟 302‧‧‧Steps
304‧‧‧步驟 304‧‧‧Steps
306‧‧‧步驟 306‧‧‧Steps
400‧‧‧抽真空設備 400‧‧‧vacuum equipment
402‧‧‧腔室 402‧‧‧室
404‧‧‧開口 404‧‧‧ openings
406‧‧‧扣環 406‧‧‧ buckle
408‧‧‧載台 408‧‧‧ stage
410‧‧‧抽氣孔 410‧‧‧Pumping holes
412‧‧‧快速接頭 412‧‧‧Quick joint
414‧‧‧真空幫浦 414‧‧‧vacuum pump
416‧‧‧調節閥 416‧‧‧Regulator
420‧‧‧擋板 420‧‧ ‧ baffle
422‧‧‧孔洞 422‧‧‧ holes
D‧‧‧尺寸 D‧‧‧ size
第1A~1B圖為一根據實施例之鈣鈦礦結構的示意圖; 第2圖為一根據實施例之鈣鈦礦結構的製造方法的流程圖;第3圖為一根據實施例之應用於鈣鈦礦結構的製造方法中的抽真空設備的示意圖;第4A~4B圖示出第一實施例之鈣鈦礦結構的原子力顯微鏡觀察結果;第5A~5C圖示出第二實施例之鈣鈦礦結構的原子力顯微鏡觀察結果;第6A~6B圖示出第一比較例之鈣鈦礦結構的原子力顯微鏡觀察結果;第7A~7B圖示出第二比較例之鈣鈦礦結構的原子力顯微鏡觀察結果;第8圖示出第一實施例之鈣鈦礦結構的X光繞射分析結果;第9圖示出第二實施例之鈣鈦礦結構的X光繞射分析結果;第10圖示出第一比較例之鈣鈦礦結構的X光繞射分析結果;第11圖示出第二比較例之鈣鈦礦結構的X光繞射分析結果;第12圖為一根據實施例之電子裝置的一部分的示意圖;第13圖示出第二實施例、第一比較例、和第二比較例之鈣鈦礦結構的發光-電壓曲線。 1A-1B are schematic views of a perovskite structure according to an embodiment; 2 is a flow chart of a method for manufacturing a perovskite structure according to an embodiment; and FIG. 3 is a schematic view of a vacuuming device applied to a method for manufacturing a perovskite structure according to an embodiment; 4A to 4B The graph shows the results of atomic force microscopy of the perovskite structure of the first embodiment; the 5A-5C shows the results of atomic force microscopy of the perovskite structure of the second embodiment; and the 6A to 6B show the first comparison. Atomic force microscopic observation results of the perovskite structure; 7A to 7B show the results of atomic force microscopic observation of the perovskite structure of the second comparative example; and Fig. 8 shows the X of the perovskite structure of the first embodiment Light diffraction analysis results; FIG. 9 shows X-ray diffraction analysis results of the perovskite structure of the second embodiment; and FIG. 10 shows X-ray diffraction analysis results of the perovskite structure of the first comparative example; 11 is a view showing an X-ray diffraction analysis result of the perovskite structure of the second comparative example; FIG. 12 is a schematic view showing a part of the electronic device according to the embodiment; and FIG. 13 is a second embodiment, the first embodiment Luminescence-voltage curve of the perovskite structure of the comparative example and the second comparative example line.
在所附圖式中,為了清楚起見,放大了層、膜、面板、區域等的厚度。在整個說明書中,相同的元件符號表示相同的元件。應當理解,當諸如層、膜、區域、或基板的元件被稱為 在另一元件「上」或「連接到」另一元件時,其可以直接在另一元件上或與另一元件連接,或者也可以存在中間元件。相反地,當元件被稱為「直接在另一元件上」或「直接連接到」另一元件時,不存在中間元件。如本文所使用的,「連接」可以指物理及/或電性連接。再者,「電性連接」或「耦接/合」可為二元件間存在其它元件。 In the figures, the thickness of layers, films, panels, regions, etc., are exaggerated for clarity. Throughout the specification, the same component symbols denote the same components. It should be understood that when an element such as a layer, film, region, or substrate is referred to as When the other element is "on" or "connected" to another element, it can be directly connected to another element or to another element, or an intermediate element can be present. In contrast, when an element is referred to as being "directly on" or "directly connected to" another element, there is no intermediate element. As used herein, "connected" may refer to both physical and/or electrical connections. Furthermore, "electrical connection" or "coupling/closing" may be the presence of other components between the two components.
本文使用的「約」、「近似」、「實質上」、或「大致上」包括所述值和在本發明所屬技術領域中具有通常知識者確定的特定值的可接受的偏差範圍內的平均值,考慮到所討論的測量和與測量相關的誤差的特定數量(即,測量系統的限制)。例如,「約」可以表示在所述值的一個或多個標準偏差內,或±30%、±20%、±10%、±5%內。再者,本文使用的「約」、「近似」、或「實質上」可依光學性質、蝕刻性質、或其它性質,來選擇較可接受的偏差範圍或標準偏差,而可不用一個標準偏差適用全部性質。 As used herein, "about", "approximately", "substantially", or "substantially" includes the stated value and the average within the acceptable range of the particular value determined by the ordinary skill in the art to which the invention pertains. Value, taking into account the specific number of measurements and errors associated with the measurement (ie, limitations of the measurement system). For example, "about" can mean within one or more standard deviations of the stated value, or within ±30%, ±20%, ±10%, ±5%. Furthermore, the term "about", "approximately", or "substantially" as used herein may select a more acceptable range or standard deviation depending on optical properties, etching properties, or other properties, and may be applied without a standard deviation. All properties.
除非另有定義,本文使用的所有術語(包括技術和科學術語)具有與本發明所屬技術領域中具有通常知識者通常理解的相同的含義。將進一步理解的是,諸如在通常使用的字典中定義的那些術語應當被解釋為具有與它們在相關技術和本發明的上下文中的含義一致的含義,並且將不被解釋為理想化的或過度正式的意義,除非本文中明確地這樣定義。 All terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains, unless otherwise defined. It will be further understood that terms such as those defined in commonly used dictionaries should be interpreted as having meanings consistent with their meaning in the context of the related art and the present invention, and will not be construed as idealized or excessive. Formal meaning, unless explicitly defined in this article.
以下將參照所附圖式對於根據實施例之畫素結構基 板進行詳細說明。並且,圖式中可能省略部分元件。一實施例中的元件和特徵,能夠與另一實施例的元件和特徵組合,然而並未對此作進一步的列舉。 The pixel structure base according to the embodiment will be referred to below with reference to the accompanying drawings. The board is described in detail. Also, some of the elements may be omitted from the drawings. The elements and features of one embodiment can be combined with the elements and features of another embodiment, but are not further enumerated.
在本發明的一方面,提供一種鈣鈦礦結構。請參照第1A~1B圖,其繪示一根據實施例之鈣鈦礦結構100,其中第1A圖為上視圖,第1B圖為側視圖。鈣鈦礦結構100設置於一基板200。在此,基板200可以是單純支撐用的基板,也可以是具有電子/電洞傳輸功能的膜層。舉例來說,基板200可為一晶圓、一矽基板、一陽極層、一陰極層、一電洞源層、或一電子源層,無須特別限制。基板200與鈣鈦礦結構100可配置或不配置其他結構,然本發明不以此為限。 In one aspect of the invention, a perovskite structure is provided. Please refer to FIGS. 1A-1B, which illustrate a perovskite structure 100 according to an embodiment, wherein FIG. 1A is a top view and FIG. 1B is a side view. The perovskite structure 100 is disposed on a substrate 200. Here, the substrate 200 may be a substrate for simple support, or may be a film layer having an electron/hole transfer function. For example, the substrate 200 can be a wafer, a germanium substrate, an anode layer, a cathode layer, a hole source layer, or an electron source layer, without particular limitation. The substrate 200 and the perovskite structure 100 may or may not be configured with other structures, but the invention is not limited thereto.
鈣鈦礦結構100包括複數個晶粒102。晶粒102的材料為ABX3,其中A包括銫(Cs)、甲胺(methylamine,例如:CH3NH2)及其衍生物、和甲脒(formamidine,例如:H2N-CH=NH或者表示為HC(=NH)NH2)及其衍生物、或其它合適的材料之其中至少一者,B包括鉛(Pb)、錫(Sn)、和鍺(Ge)、或其它合適的材料之其中至少一者,X包括氯(Cl)、溴(Br)、和碘(I)、或其它合適的材料之其中至少一者。於本實施例之ABX3中,A包括銫(Cs)、甲胺(methylamine,例如:CH3NH2)及其衍生物、和甲脒(formamidine,例如:H2N-CH=NH或者表示為HC(=NH)NH2)及其衍生物、或其它合適的材料之其中一者,B包括鉛(Pb)、錫(Sn)、和鍺(Ge)、或其它合適的材料之其中一者,X包括氯(Cl)、 溴(Br)、和碘(I)、或其它合適的材料之其中一者為範例,但不限於此。於部份實施例之ABX3中,A包括銫(Cs)、甲胺(methylamine,例如:CH3NH2)及其衍生物、和甲脒(formamidine,例如:H2N-CH=NH或者表示為HC(=NH)NH2)及其衍生物、或其它合適的材料之其中一者,B包括鉛(Pb)、錫(Sn)、和鍺(Ge)、或其它合適的材料之其中至少一者,X包括氯(Cl)、溴(Br)、和碘(I)、或其它合適的材料之其中一者,例如:當ABX3之B存在鉛(Pb)與錫(Sn)且前述其中一種成份(例如:鉛)可佔據在ABX3中B只有錫成份之位置,而前述二者成份之多寡依設計需求而變更。同理,當ABX3中A及/或X同時包含至少二種成份時,可參閱前述描述。 The perovskite structure 100 includes a plurality of grains 102. The material of the die 102 is ABX 3 , wherein A includes cesium (Cs), methylamine (eg, CH 3 NH 2 ) and its derivatives, and formamidine (eg, H 2 N-CH=NH or Expressed as at least one of HC(=NH)NH2) and its derivatives, or other suitable materials, B includes lead (Pb), tin (Sn), and germanium (Ge), or other suitable materials. In at least one, X includes at least one of chlorine (Cl), bromine (Br), and iodine (I), or other suitable materials. In ABX 3 of the present embodiment, A includes cesium (Cs), methylamine (for example, CH 3 NH 2 ) and derivatives thereof, and formamidine (for example, H 2 N-CH=NH or As one of HC(=NH)NH2) and its derivatives, or other suitable materials, B includes one of lead (Pb), tin (Sn), and germanium (Ge), or other suitable materials. , X includes one of chlorine (Cl), bromine (Br), and iodine (I), or other suitable materials, but is not limited thereto. In some embodiments of ABX 3 , A includes cesium (Cs), methylamine (eg, CH 3 NH 2 ) and its derivatives, and formamidine (eg, H 2 N-CH=NH or Expressed as one of HC(=NH)NH2) and its derivatives, or other suitable materials, B includes at least one of lead (Pb), tin (Sn), and germanium (Ge), or other suitable materials. In one case, X includes one of chlorine (Cl), bromine (Br), and iodine (I), or other suitable materials, for example, when lead (Pb) and tin (Sn) are present in B of ABX 3 and the foregoing One of the ingredients (eg, lead) can occupy the position of B in the ABX 3 where only the tin component is present, and the amount of the above two components varies depending on the design requirements. Similarly, when A and/or X of ABX 3 contain at least two components at the same time, refer to the foregoing description.
晶粒102的尺寸D可實質上介於約3微米(μm)與約5微米(μm)之範圍內。在此,「實質上」意味著絕大多數的晶粒102具有在所定義之範圍內的尺寸D,例如在基板200上之部份鈣鈦礦結構100之單位表面積下,約90%以上的晶粒102具有介於約3微米與約5微米之範圍內的尺寸D,其中鈣鈦礦結構100之單位表面積為選取基板200上的部分面積,舉例而言約10微米(μm)×10微米(μm)為單位表面積。根據一些實施例,尺寸D可定義為晶粒102在鈣鈦礦結構100的一平面(包括表面和剖面)上於一選定之方向上二點連接實質上最大距離,如第1A圖所示,其可藉由顯微鏡例如掃描式電子顯微鏡(SEM)、原子力顯微鏡(AFM)或其它合適的顯微鏡觀測而得。晶粒102的尺寸D的實質上一致 性或實質上均一性高有利於鈣鈦礦結構100在許多方面的應用,例如在光電轉換方面可有利於載子傳輸均一性。此外,晶粒尺寸D稍大相對的也減少了晶粒介面缺陷數量,例如與後續對比例所形成之鈣鈦礦結構相比,本揭露的實施例晶粒介面缺陷數量以定性方式的表示可減少至少約60%。 The dimension D of the die 102 can be substantially in the range of about 3 micrometers (μm) and about 5 micrometers (μm). Here, "substantially" means that most of the crystal grains 102 have a size D within a defined range, for example, more than 90% of the unit surface area of a portion of the perovskite structure 100 on the substrate 200. The die 102 has a dimension D in the range of about 3 microns and about 5 microns, wherein the unit surface area of the perovskite structure 100 is a partial area on the selected substrate 200, for example about 10 microns (μm) x 10 microns. (μm) is the unit surface area. According to some embodiments, the dimension D may be defined as a substantially maximum distance between the die 102 in a plane (including the surface and the cross-section) of the perovskite structure 100 at two points in a selected direction, as shown in FIG. 1A. It can be obtained by a microscope such as a scanning electron microscope (SEM), an atomic force microscope (AFM) or other suitable microscope. The size D of the die 102 is substantially uniform High or substantial homogeneity facilitates the application of the perovskite structure 100 in many respects, such as in the photoelectric conversion, which facilitates carrier transport uniformity. In addition, the slightly larger grain size D also reduces the number of grain interface defects. For example, compared with the perovskite structure formed by the subsequent comparative example, the number of grain interface defects in the embodiment of the present disclosure can be expressed in a qualitative manner. Reduce by at least about 60%.
在一些實施例中,鈣鈦礦結構100之部份表面104具有中心線平均粗糙度(Ra)為約14奈米(nm)以下且大於約0奈米。在一些實施例中,鈣鈦礦結構100之部份表面104具有最大粗糙度(Rmax)小於約80奈米且大於約0奈米,例如小於約50奈米且大於約0奈米。鈣鈦礦結構100之表面104的粗糙度低,例如Ra值在約14奈米以下,有利於載子均一性傳輸。 In some embodiments, a portion of surface 104 of perovskite structure 100 has a centerline average roughness (Ra) of less than about 14 nanometers (nm) and greater than about 0 nanometers. In some embodiments, a portion of surface 104 of perovskite structure 100 has a maximum roughness (Rmax) of less than about 80 nanometers and greater than about 0 nanometers, such as less than about 50 nanometers and greater than about 0 nanometers. The surface 104 of the perovskite structure 100 has a low roughness, for example, an Ra value of about 14 nm or less, which facilitates uniformity of carrier transport.
當進行X光繞射(XRD)分析時,鈣鈦礦結構100之鈣鈦礦相具有一最大峰值I1(例如:主要產物的訊號的最大峰值(例如:強度a.u.)),雜相具有一最大峰值I2(例如:雜質的訊號或附產物的訊號綜合來說的最大峰值(例如:強度a.u.))。鈣鈦礦相即晶粒102的材料確實形成ABX3鈣鈦礦結構,雜相可能源於所用的材料本身並未形成鈣鈦礦結構而是形成其他結構、或與空氣中氧氣反應等等所形成的雜質。理論上,當鈣鈦礦結構100完全由鈣鈦礦相構成,雜相的訊號應接近0,因此鈣鈦礦相的最大峰值I1與雜相的最大峰值I2的比值I1/I2(無單位)較佳接近無限大,即主要產物純度極高。實際操作上,受限於製程與XRD分析儀器等因素,在一些實施例中,鈣鈦礦結構100之鈣鈦礦相的最 大峰值I1與雜相的最大峰值I2的比值I1/I2較佳介於約4.7與約10之間。 When performing X-ray diffraction (XRD) analysis, the perovskite phase of the perovskite structure 100 has a maximum peak I1 (for example, the maximum peak value of the signal of the main product (for example, intensity au)), and the heterophase has a maximum Peak I2 (for example: the maximum peak value of the signal of the impurity or the signal of the attached product (for example: intensity au)). The material of the perovskite phase, ie, the grain 102, does form an ABX 3 perovskite structure, and the heterophase may be derived from the fact that the material used does not form a perovskite structure but forms other structures or reacts with oxygen in the air. Impurities. Theoretically, when the perovskite structure 100 consists entirely of a perovskite phase, the signal of the heterophase should be close to zero, so the ratio of the maximum peak I1 of the perovskite phase to the maximum peak I2 of the heterophase I1/I2 (no unit) It is preferably close to infinity, that is, the purity of the main product is extremely high. In practice, due to factors such as the process and the XRD analysis instrument, in some embodiments, the ratio I1/I2 of the maximum peak I1 of the perovskite phase of the perovskite structure 100 to the maximum peak I2 of the heterophase is preferably between Between about 4.7 and about 10.
在本發明的一方面,鈣鈦礦結構100可包含一光電轉換層。舉例來說,鈣鈦礦結構100整體可為一光電轉換層。光電轉換層將光能轉成電能或將電能轉成光能,例如是一發光層、一光敏層、或一波長轉換層、或其它可適用的膜層,但不受限於此。所述光電轉換元件進而可應用於電子裝置中,例如鈣鈦礦LED(perovskite LED,PeLED)或鈣鈦礦太陽能電池等等。 In an aspect of the invention, the perovskite structure 100 can comprise a photoelectric conversion layer. For example, the perovskite structure 100 as a whole can be a photoelectric conversion layer. The photoelectric conversion layer converts light energy into electrical energy or converts electrical energy into light energy, such as a light-emitting layer, a photosensitive layer, or a wavelength conversion layer, or other applicable film layer, but is not limited thereto. The photoelectric conversion element can be further applied to an electronic device such as a perovskite LED (PeLED) or a perovskite solar cell or the like.
在本發明的又一方面,提供一種鈣鈦礦結構的製造方法。該鈣鈦礦結構特別是一光電轉換層。請參照第2圖,其為此種製造方法的流程圖。 In still another aspect of the invention, a method of producing a perovskite structure is provided. The perovskite structure is in particular a photoelectric conversion layer. Please refer to Fig. 2, which is a flow chart of such a manufacturing method.
首先,在步驟302,以一極性溶劑溶解一AX前驅物和一BX2前驅物,形成一鈣鈦礦前驅物混合溶液,其中A包括銫(Cs)、甲基胺(例如:CH3NH2)及其衍生物、和甲脒(例如:H2N-CH=NH或者表示為HC(=NH)NH2)及其衍生物、或其它合適的材料之其中至少一者,B包括鉛(Pb)、錫(Sn)、和鍺(Ge)、或其它合適的材料之其中至少一者,X包括氯(Cl)、溴(Br)、和碘(I)、或其它合適的材料之其中至少一者。在一些實施例中,AX前驅物和BX2前驅物分別可為約0.1莫耳~約5莫耳,例如:約0.1莫耳~約5莫耳之AX前驅物與約0.1莫耳~約5莫耳之BX2前驅物二者可採任意適合的比例混合。其中,莫耳=(質量/原(分)子量)。於部份實施例中,為了讓計算出莫耳較為穩定,則莫耳=[(質量/1 個原(分)子的質量)/6×1023(個)]。根據一些實施例,極性溶劑可為有機極性溶劑,例如N,N-二甲基甲醯胺(DMF)、或其它合適的溶劑,但不受限於此。 First, in step 302, an AX precursor and a BX 2 precursor are dissolved in a polar solvent to form a perovskite precursor mixed solution, wherein A includes cesium (Cs), methylamine (eg, CH 3 NH 2 ) And at least one of its derivatives, and formazan (for example: H 2 N-CH=NH or expressed as HC(=NH)NH 2 ) and derivatives thereof, or other suitable materials, B includes lead ( At least one of Pb), tin (Sn), and germanium (Ge), or other suitable material, X includes chlorine (Cl), bromine (Br), and iodine (I), or other suitable materials thereof. At least one. In some embodiments, the AX precursor and the BX 2 precursor may each be from about 0.1 moles to about 5 moles, for example, from about 0.1 moles to about 5 moles of AX precursor and from about 0.1 moles to about 5 Both of the BX 2 precursors of Mohr can be mixed in any suitable ratio. Among them, Moer = (mass / original (minute) sub-quantity). In some embodiments, in order to make the calculation of the molars more stable, Mohr = [(mass / mass of 1 original (minute)) / 6 × 10 23 (pieces)]. According to some embodiments, the polar solvent may be an organic polar solvent such as N,N-dimethylformamide (DMF), or other suitable solvent, but is not limited thereto.
在步驟304,在一基板上塗佈鈣鈦礦前驅物混合溶液,形成一鈣鈦礦前驅物層。舉例來說,可使用旋轉塗佈(spin coating)、含浸塗佈(dip coating)等等,無須特別限制。 At step 304, a perovskite precursor mixed solution is coated on a substrate to form a perovskite precursor layer. For example, spin coating, dip coating, or the like can be used without particular limitation.
在步驟306,對於鈣鈦礦前驅物層進行一真空閃蒸步驟(vacuum flash process),以移除極性溶劑且形成一鈣鈦礦結構,其特別是一光電轉換層。真空閃蒸步驟可以是藉由一抽真空設備將一反應容器(未標示)或者是腔室402中之氣壓從大氣壓降至氣壓小於或實質上等於約10-1托(torr),例如是約10-1托(torr)~約10-3托(torr)。在一些實施例中,舉例而言,將氣壓從大氣壓降低至預定氣壓(例如:約10-1torr)後開始計時一段時間(例如:約1分鐘~約60分鐘),於該段時間內仍繼續地以相同的抽真空手段(例如:如第3圖所示之真空幫浦414)來降低氣壓(例如:小於或實質上等於約10-1托(torr),例如是約10-1托(torr)~約10-3托(torr))。在一些實施例中,真空閃蒸步驟的溫度以室溫為範例,然本發明並不以此為限。 At step 306, a vacuum flash process is performed on the perovskite precursor layer to remove the polar solvent and form a perovskite structure, particularly a photoelectric conversion layer. The vacuum flashing step may be performed by a vacuuming device to reduce the pressure in a reaction vessel (not labeled) or chamber 402 from atmospheric pressure to atmospheric pressure less than or substantially equal to about 10 -1 torr, for example, about 10 -1 torr ~ about 10 -3 torr (torr). In some embodiments, for example, the gas pressure is reduced from atmospheric pressure to a predetermined gas pressure (eg, about 10 -1 torr) and then started for a period of time (eg, about 1 minute to about 60 minutes), during which time The air pressure is continuously reduced by the same vacuuming means (e.g., vacuum pump 414 as shown in Figure 3) (e.g., less than or substantially equal to about 10 -1 torr, for example about 10 -1 torr) (torr) ~ about 10 -3 torr (torr)). In some embodiments, the temperature of the vacuum flashing step is exemplified by room temperature, but the invention is not limited thereto.
現在請參照第3圖,其繪示一根據實施例之抽真空設備400。根據一些實施例,抽真空設備400可包括一抽氣孔410和一擋板420,其中,擋板420配置於抽氣孔410與形成有鈣鈦礦前驅物層的基板(未繪示於第3圖)之間,且擋板420包括複數個孔洞 422。舉例而言,抽真空設備400可包括一腔室402。腔室402可具有一開口404,其可供基板(未繪示於第3圖)與檔板420進出。開口404可藉由O形環(O-ring)與扣環406密封。腔室402中可配置一載台408。反應容器(未繪示於第3圖)和/或基板(未繪示於第3圖)在處理期間置於載台408上。腔室402係透過抽氣孔410抽真空。抽氣孔410可經由快速接頭412連接至一真空幫浦414,並可在路徑上配置調節閥416(例如:手動或自動調節閥)。藉由配置具有孔洞422的擋板420,可使得鈣鈦礦前驅物層在極性溶劑被移除而形成鈣鈦礦結構的過程中,可處於較為均勻的氣壓環境下。在一些實施例中,孔洞422的尺寸實質上為1毫米(mm)~10毫米(mm),但不限於此。 Referring now to Figure 3, a vacuuming apparatus 400 in accordance with an embodiment is illustrated. According to some embodiments, the vacuuming apparatus 400 may include a venting hole 410 and a baffle 420, wherein the baffle 420 is disposed on the venting hole 410 and the substrate on which the perovskite precursor layer is formed (not shown in FIG. 3) Between the two, and the baffle 420 includes a plurality of holes 422. For example, the vacuuming device 400 can include a chamber 402. The chamber 402 can have an opening 404 for accessing the substrate (not shown in FIG. 3) and the baffle 420. The opening 404 can be sealed to the buckle 406 by an O-ring. A stage 408 can be disposed in the chamber 402. The reaction vessel (not shown in Figure 3) and/or the substrate (not shown in Figure 3) are placed on the stage 408 during processing. The chamber 402 is evacuated through the suction holes 410. The bleed hole 410 can be coupled to a vacuum pump 414 via a quick coupler 412 and can be configured with a regulating valve 416 (eg, a manual or automatic regulating valve). By configuring the baffle 420 having the holes 422, the perovskite precursor layer can be placed in a relatively uniform atmosphere during the removal of the polar solvent to form a perovskite structure. In some embodiments, the size of the holes 422 is substantially 1 millimeter (mm) to 10 millimeters (mm), but is not limited thereto.
值得注意的是,在步驟306中,無須額外通入氣體來將抽真空設備400中的氣壓維持在一特定低壓下,而只是通過單純地抽氣使得抽真空設備400中的氣壓連續性地降低,即可達成良好的極性溶劑移除效果,因此,可形成尺寸大小的一致性高的晶粒,且非鈣鈦礦相的雜相所佔比例極低,鈣鈦礦結構還可具有相當低的表面粗糙度中之中心線平均粗糙度(Ra),例如:Ra值低於約14奈米(nm)。 It should be noted that in step 306, no additional gas is required to maintain the gas pressure in the vacuuming device 400 at a specific low pressure, but the gas pressure in the vacuuming device 400 is continuously reduced by simply pumping air. A good polar solvent removal effect can be achieved, so that crystal grains of uniform size can be formed, and the proportion of the heterophase of the non-perovskite phase is extremely low, and the perovskite structure can also be relatively low. The center line average roughness (Ra) in the surface roughness, for example, the Ra value is less than about 14 nanometers (nm).
為了使本發明的效果更為明顯,以下將提供數個關於所述鈣鈦礦結構的實施例與對照用的比較例進行說明。 In order to make the effects of the present invention more apparent, a number of comparative examples of the perovskite structure and comparative examples will be described below.
[樣品製備] [Sample Preparation]
[實施例1] [Example 1]
在一玻璃基板上沉積形成銦錫氧化物(ITO)層。在ITO層上旋轉塗佈形成氧化鎳(NiO)層。準備甲基胺溴化合物(MABr)前驅物(例如:Sigma-Aldrich,Methylammonium bromide)和鉛溴化合物(例如:Sigma-Aldrich,Lead(II)bromide)前驅物為範例,以約1.07:1的莫耳比例,使用極性溶劑溶解二者,形成鈣鈦礦前驅物混合溶液。在氧化鎳(NiO)層上旋轉塗佈鈣鈦礦前驅物混合溶液,形成鈣鈦礦前驅物層。接著,將樣品置入如參照第3圖所述之抽真空設備中,進行真空閃蒸步驟,但不配置如第3圖所示之隔板(或稱為擋板420)。真空閃蒸步驟是利用抽真空設備將反應容器(未標示)或者是腔室402中之氣壓從大氣壓降至氣壓小於或實質上等於約10-1托(torr),例如是約10-1托(torr)~約10-3托(torr)後計時約1分鐘。藉此,形成具有鈣鈦礦結構的第一樣品。在第一樣品的鈣鈦礦結構上沉積形成1,3,5-三(1-苯基-1H-2-苯並咪唑基)苯(1,3,5-tris(N-phenylbenzimiazole-2-yl)benzene,TPBI)層。在TPBI層上沉積形成氟化鋰/鋁(LiF/Al)層,形成第二樣品。 An indium tin oxide (ITO) layer is deposited on a glass substrate. Spin coating on the ITO layer to form a nickel oxide (NiO) layer. Preparation of precursors of methylamine bromine (MABr) (eg, Sigma-Aldrich, Methylammonium bromide) and lead bromine compounds (eg, Sigma-Aldrich, Lead (II) bromide) as an example, with a molar of about 1.07:1 The ratio of the ears is dissolved using a polar solvent to form a mixed solution of the perovskite precursor. A perovskite precursor mixed solution is spin-coated on a nickel oxide (NiO) layer to form a perovskite precursor layer. Next, the sample was placed in a vacuuming apparatus as described with reference to Fig. 3, and a vacuum flashing step was carried out, but a separator (also referred to as a baffle 420) as shown in Fig. 3 was not disposed. The vacuum flashing step utilizes a vacuuming device to reduce the pressure in the reaction vessel (not labeled) or chamber 402 from atmospheric pressure to atmospheric pressure less than or substantially equal to about 10 -1 torr, for example, about 10 -1 torr. (torr) ~ about 10 -3 torr (torr) after about 1 minute. Thereby, a first sample having a perovskite structure is formed. Deposition of 1,3,5-tris(1-phenyl-1H-2-benzimidazolyl)benzene on the perovskite structure of the first sample (1,3,5-tris (N-phenylbenzimiazole-2) -yl)benzene, TPBI) layer. A lithium fluoride/aluminum (LiF/Al) layer was deposited on the TPBI layer to form a second sample.
[實施例2] [Embodiment 2]
以類似於實施例1的方式製備樣品,但在真空閃蒸步驟的過程中,於抽真空設備400中配置孔洞422大小為約1毫米(mm)的隔板(或稱為擋板420)。 A sample was prepared in a manner similar to that of Example 1, except that during the vacuum flashing step, a separator (or referred to as a baffle 420) having a hole size 422 of about 1 mm (mm) was disposed in the vacuuming apparatus 400.
[比較例1] [Comparative Example 1]
比較例1使用一步法方式製備樣品,包括先藉由溶 劑混合鹵基前驅物,將混合後的前驅物塗佈至基板上,再利用加熱去除溶劑,以形成鈣鈦礦層。與實施例1的製備方式差別在形成鈣鈦礦前驅物層之後,不進行真空閃蒸步驟,而是加溫至約90℃後,維持約10分鐘以除去極性有機溶劑。 Comparative Example 1 uses a one-step method to prepare a sample, including dissolution first. The halogen precursor is mixed, the mixed precursor is applied onto the substrate, and the solvent is removed by heating to form a perovskite layer. The difference from the preparation method of Example 1 was that after the formation of the perovskite precursor layer, the vacuum flashing step was not carried out, but after heating to about 90 ° C, it was maintained for about 10 minutes to remove the polar organic solvent.
[比較例2] [Comparative Example 2]
比較例2使用反溶劑法方式製備樣品,使用反溶劑(或稱為負溶劑或逆溶劑,nonsolvent),例如:非極性有機溶劑去除前述前驅物的極性溶劑。與實施例1的製備方式差別在形成鈣鈦礦前驅物層之後,不進行真空閃蒸步驟,而是滴加非極性有機溶劑(或稱反溶劑)以除去極性溶劑。 Comparative Example 2 prepared a sample using an anti-solvent method, using an anti-solvent (also referred to as a negative solvent or a nonsolvent, nonsolvent), for example, a non-polar organic solvent to remove the polar solvent of the foregoing precursor. Difference from the preparation method of Example 1 After the formation of the perovskite precursor layer, the vacuum flashing step was not carried out, but a non-polar organic solvent (or anti-solvent) was added dropwise to remove the polar solvent.
[樣品觀察與量測] [Sample observation and measurement]
[原子力顯微鏡觀察和量測] [Atomic Force Microscope Observation and Measurement]
使用原子力顯微鏡(例如:Bruker,DI D3100)掃描約10μm×10μm之單位表面積,分析各實施例和比較例的第一樣品,觀察各第一樣品之鈣鈦礦結構的晶粒尺寸,並計算其平均值。其中,解析度為512*512畫素(pixels)為範例,但不限於此。又以原子力顯微鏡掃描約10μm之單位長度,量測各第一樣品之鈣鈦礦結構之表面粗糙度中之中心線平均粗糙度(Ra)與最大粗糙度(Rmax)。第一實施例之鈣鈦礦結構、第二實施例之鈣鈦礦結構、第一比較例之鈣鈦礦結構、和第二比較例之鈣鈦礦結構的原子力顯微鏡觀察和量測結果,分別示於第4A~4B圖、第5A~5C圖、第6A~6B圖、和第7A~7B圖,並整理於表1。其中,在第4A~7A 圖可見其橫向尺寸(例如:約10μm),縱向的濃淡軸表示深度差異(單位為奈米(nm))。 The unit surface area of about 10 μm × 10 μm was scanned using an atomic force microscope (for example, Bruker, DI D3100), and the first samples of the respective examples and comparative examples were analyzed, and the grain size of the perovskite structure of each of the first samples was observed, and Calculate the average. Among them, the resolution is 512*512 pixels, but is not limited thereto. Further, the unit length of about 10 μm was scanned by an atomic force microscope, and the center line average roughness (Ra) and the maximum roughness (Rmax) in the surface roughness of the perovskite structure of each of the first samples were measured. Atomic force microscopy observation and measurement results of the perovskite structure of the first embodiment, the perovskite structure of the second embodiment, the perovskite structure of the first comparative example, and the perovskite structure of the second comparative example, respectively It is shown in Figs. 4A to 4B, 5A to 5C, 6A to 6B, and 7A to 7B, and is shown in Table 1. Among them, in 4A~7A The figure shows its lateral dimension (for example: about 10 μm), and the vertical shade axis indicates the difference in depth (in nanometers (nm)).
[X光繞射分析] [X-ray diffraction analysis]
使用X光繞射儀(例如:Bruker,D8 Discover)分析各第一樣品之鈣鈦礦結構。以銅(Cu,Kα波長為約0.154nm)作為X光射線,且操作條件,例如:以電壓約40kV、電流約40mA,及掃描2θ角約為5°~55°來操作,但不限於此。其中,以銅作為X光射線係指通過高能X射線輻射銅靶,產生多個特徵波長的螢光X射線,且主要成分是波長為約0.154nm的射線,其可被稱為Kα射線或CuKα射線。第一實施例之鈣鈦礦結構、第二實施例之鈣鈦礦結構、第一比較例之鈣鈦礦結構、和第二比較例之鈣鈦礦結構的X光繞射分分析結果,分別示於第8圖、第9圖、第10圖、和第11圖,並整理於表1。 The perovskite structure of each of the first samples was analyzed using an X-ray diffractometer (for example, Bruker, D8 Discover). Copper (Cu, Kα wavelength is about 0.154 nm) is used as the X-ray, and the operating conditions are, for example, operating at a voltage of about 40 kV, a current of about 40 mA, and a scanning 2θ angle of about 5 to 55, but are not limited thereto. . Wherein, using copper as the X-ray means that the copper target is irradiated by high-energy X-rays to generate a plurality of characteristic wavelengths of fluorescent X-rays, and the main component is a radiation having a wavelength of about 0.154 nm, which may be referred to as Kα ray or CuKα. Rays. X-ray diffraction analysis results of the perovskite structure of the first embodiment, the perovskite structure of the second embodiment, the perovskite structure of the first comparative example, and the perovskite structure of the second comparative example, respectively It is shown in Fig. 8, Fig. 9, Fig. 10, and Fig. 11, and is organized in Table 1.
[結果與討論] [Results and discussion]
從第4A~4B圖至第7A~7B圖及表1可知,根據實施例的鈣鈦礦結構可具有更一致的晶粒尺寸及相對低的表面粗糙度。 請特別參照第5C圖,該圖中標示了所觀察到之各晶粒尺寸,可以清楚看到第二實施例之鈣鈦礦結構在原子力顯微鏡觀察到的單位面積下,可觀察到的完整晶粒的尺寸分別約為4.11微米、3.55微米、3.93微米、3.47微米、和3.83微米,皆約介於3微米與5微米的範圍內。另外,從從第8圖至第11圖及表1可知,在根據前述實施例的鈣鈦礦結構,基本上都是形成鈣鈦礦相,相較於前述比較例而言,雜相的訊號強度大幅降低,亦即雜相的比例大幅降低。 It can be seen from FIGS. 4A-4B to 7A-7B and Table 1 that the perovskite structure according to the embodiment can have a more uniform grain size and a relatively low surface roughness. Please refer to Figure 5C in particular, which shows the observed grain size. It can be clearly seen that the perovskite structure of the second embodiment can be observed under the atomic force microscope. The size of the particles is about 4.11 microns, 3.55 microns, 3.93 microns, 3.47 microns, and 3.83 microns, respectively, all in the range of about 3 microns and 5 microns. Further, as is apparent from Figs. 8 to 11 and Table 1, in the perovskite structure according to the foregoing embodiment, the perovskite phase is basically formed, and the signal of the heterophase is compared with the foregoing comparative example. The intensity is greatly reduced, that is, the proportion of the heterophase is greatly reduced.
在本發明的另一方面,提供一種電子裝置10。請參照第12圖,其繪示一根據實施例之電子裝置10的一部分。電子裝置10包括根據任一實施例之鈣鈦礦結構100、一電洞源層202、和一電子源層204。在一些實施例中,電子裝置10可包括一載板300,前述元件配置於其上。於一些實施例中,鈣鈦礦結構100設置於電洞源層202與電子源層204之間,其中電洞源層202或電子源層204任一層可以視為第1B圖中的基板200。電洞源層202、鈣鈦礦結構100與電子源層204依序從載板300之內表面堆疊,其中載板300可以是硬質基板,例如是但不限於玻璃基板、藍寶石基板或其它合適的基板。在另一些實施例中,載板300也可以是軟質基板,例如是但不限於可撓式基板(flexible substrate)或其它合適的基板。電洞源層202可位於陽極側,例如電洞源層202可配置於一陽極層(未繪示)與鈣鈦礦結構100之間,但不受限於此。在一些 實施例中,電洞源層202為一電洞傳輸層及/或一電洞注入層。電子源層204可位於陰極側,例如電子源層204可配置於一陰極層(未繪示)與鈣鈦礦結構100之間,但不受限於此。在一些實施例中,電子源層204為一電子傳輸層及/或一電子注入層。 In another aspect of the invention, an electronic device 10 is provided. Please refer to FIG. 12, which illustrates a portion of an electronic device 10 in accordance with an embodiment. The electronic device 10 includes a perovskite structure 100, a hole source layer 202, and an electron source layer 204 in accordance with any of the embodiments. In some embodiments, the electronic device 10 can include a carrier 300 on which the aforementioned components are disposed. In some embodiments, the perovskite structure 100 is disposed between the hole source layer 202 and the electron source layer 204, wherein either the hole source layer 202 or the electron source layer 204 can be considered as the substrate 200 in FIG. 1B. The hole source layer 202, the perovskite structure 100 and the electron source layer 204 are sequentially stacked from the inner surface of the carrier 300, wherein the carrier 300 may be a rigid substrate such as, but not limited to, a glass substrate, a sapphire substrate or other suitable Substrate. In other embodiments, the carrier 300 can also be a flexible substrate such as, but not limited to, a flexible substrate or other suitable substrate. The hole source layer 202 may be located on the anode side. For example, the hole source layer 202 may be disposed between an anode layer (not shown) and the perovskite structure 100, but is not limited thereto. In some In an embodiment, the hole source layer 202 is a hole transport layer and/or a hole injection layer. The electron source layer 204 may be located on the cathode side. For example, the electron source layer 204 may be disposed between a cathode layer (not shown) and the perovskite structure 100, but is not limited thereto. In some embodiments, the electron source layer 204 is an electron transport layer and/or an electron injection layer.
舉例來說,陽極層可為單層或多層結構,且其材料可使用銦錫氧化物(ITO)或其它合適的材料,電洞傳輸層可為單層或多層結構,且其材料可使用聚[(9,9-二辛基芴-2,7-二基)-共-(4,4'-(N-(4-仲丁基苯基)二苯胺)(TFB)、N,N'-二(3-甲基苯基)-N,N'-二苯基-[1,1'-聯苯基]-4,4'-二胺(TPD)、1,3,5-三(1-苯基-1H-2-苯並咪唑基)苯(TPBI)、聚(9,9-二辛基芴)(F8)、聚(3,4-並乙二氧基噻吩)-聚苯乙烯磺酸(PEDOT:PSS)、氧化鎳(NiO)、或其它合適的材料,電洞注入層可為單層或多層結構,且其材料可使用酞菁銅(CuPc)、鈦氧基酞菁(TiOPc)、4,4',4"-三(N-3-甲基苯基-N-苯基氨基)三苯胺(m-MTDATA)、4,4',4"-三[2-萘基苯基氨基]三苯基胺(2-TNATA)、或其它合適的材料,電子傳輸層可為單層或多層結構,且其材料可使用氧化鋅/聚乙烯亞胺(ZnO:PEI)、(6,6)-苯基-C61丁酸甲酯(PC61BM)、二氧化鈦(TiO2)、1,3,5-三(1-苯基-1H-2-苯並咪唑基)苯(TPBI)、或其它合適的材料,電子注入層可為單層或多層結構,且其材料可使用氟化鋰(LiF)、鎂酞菁(MgPc)、氟化鎂(MgF2)、三氧化二鋁(Al2O3),陰極可為單層或多層結構,且其材料可使用鋁(Al)、鎂-銀合金(Mg/Ag)、或其它合適的材料。根據一些實施例,電子裝 置10可為一顯示器、一發光二極體裝置、一背光裝置、一磷光裝置、或一太陽能電池、或其它合適用途的電子裝置,但不受限於此。 For example, the anode layer may be a single layer or a multilayer structure, and the material thereof may be indium tin oxide (ITO) or other suitable materials, and the hole transport layer may be a single layer or a multilayer structure, and the material thereof may be aggregated. [(9,9-dioctylindole-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl)diphenylamine) (TFB), N, N' - bis(3-methylphenyl)-N,N'-diphenyl-[1,1'-biphenyl]-4,4'-diamine (TPD), 1,3,5-tri ( 1-phenyl-1H-2-benzimidazolyl)benzene (TPBI), poly(9,9-dioctylfluorene) (F8), poly(3,4-ethylenedioxythiophene)-polyphenylene For the ethylene sulfonic acid (PEDOT: PSS), nickel oxide (NiO), or other suitable materials, the hole injection layer may be a single layer or a multilayer structure, and the material thereof may be copper phthalocyanine (CuPc) or titanyl phthalocyanine. (TiOPc), 4,4',4"-tris(N-3-methylphenyl-N-phenylamino)triphenylamine (m-MTDATA), 4,4',4"-tris[2-naphthalene Phenylaminoamino]triphenylamine (2-TNATA), or other suitable material, the electron transport layer may be a single layer or a multilayer structure, and the material thereof may be zinc oxide/polyethyleneimine (ZnO: PEI), (6,6) - phenyl -C61 butyric acid methyl ester (PC 61 BM), titanium dioxide (TiO 2), 1,3,5- tris (1-phenyl -1H-2- benzimidazole Yl) benzene (TPBI), or other suitable material, an electron injection layer may be a monolayer or multilayer structure, and the material can be lithium fluoride (of LiF), magnesium phthalocyanine (MgPc), magnesium fluoride (MgF 2) Aluminum oxide (Al 2 O 3 ), the cathode may be a single layer or a multilayer structure, and the material thereof may be aluminum (Al), magnesium-silver alloy (Mg/Ag), or other suitable materials. According to some implementations For example, the electronic device 10 can be a display, a light emitting diode device, a backlight device, a phosphorescent device, or a solar cell, or other suitable electronic device, but is not limited thereto.
為了使本發明的效果更為明顯,以下將提供數個關於所述電子裝置的實施例與對照用的比較例進行說明。 In order to make the effects of the present invention more apparent, a plurality of comparative examples for the electronic device and comparative examples will be described below.
[樣品製備] [Sample Preparation]
取各實施例和比較例的第一樣品。在第一樣品的鈣鈦礦結構上沉積形成1,3,5-三(1-苯基-1H-2-苯並咪唑基)苯(TPBI)層。在TPBI層上沉積形成氟化鋰/鋁(LiF/Al)層,形成第二樣品。 The first samples of the respective examples and comparative examples were taken. A 1,3,5-tris(1-phenyl-1H-2-benzimidazolyl)benzene (TPBI) layer was deposited on the perovskite structure of the first sample. A lithium fluoride/aluminum (LiF/Al) layer was deposited on the TPBI layer to form a second sample.
[發光-電壓曲線量測] [Luminescence-voltage curve measurement]
使用SMU儀器(例如:SourceMeter,Keithley,Model:2400),量測第二實施例、第一比較例、和第二比較例之第二樣品(例如:於電子裝置中)的發光-電壓曲線,示於第13圖。 Measuring the luminescence-voltage curve of the second sample (eg, in an electronic device) of the second embodiment, the first comparative example, and the second comparative example using an SMU instrument (eg, SourceMeter, Keithley, Model: 2400), Shown in Figure 13.
[結果與討論] [Results and discussion]
請參照第13圖,第二實施例的鈣鈦礦結構,在施加同樣的電壓的情況下,可較比較例的鈣鈦礦結構發出更強的光,在施加約7V大小的電壓時的輝度(單位:cd/m2)甚至可達約106,376cd/m2。這意味著根據實施例的鈣鈦礦結構係更有利於將電能轉成光能的應用如PeLED等等。 Referring to FIG. 13, the perovskite structure of the second embodiment can emit stronger light than the comparative example of the perovskite structure when the same voltage is applied, and the luminance when a voltage of about 7 V is applied. (Unit: cd/m 2 ) even up to about 106,376 cd/m 2 . This means that the perovskite structure according to the embodiment is more advantageous for applications in which electrical energy is converted into light energy such as PeLED and the like.
綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者, 在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In conclusion, the present invention has been disclosed in the above embodiments, but it is not intended to limit the present invention. Those of ordinary skill in the art to which the present invention pertains, Various changes and modifications can be made without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107104276A TWI649265B (en) | 2018-02-07 | 2018-02-07 | Perovskite structure, electronic device using the same, and relative method for manufacture a photoelectric conversion layer |
CN201810205710.6A CN108447996B (en) | 2018-02-07 | 2018-03-13 | Perovskite structure, electronic device using same, and method for manufacturing related photoelectric conversion layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107104276A TWI649265B (en) | 2018-02-07 | 2018-02-07 | Perovskite structure, electronic device using the same, and relative method for manufacture a photoelectric conversion layer |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI649265B true TWI649265B (en) | 2019-02-01 |
TW201934491A TW201934491A (en) | 2019-09-01 |
Family
ID=63194105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107104276A TWI649265B (en) | 2018-02-07 | 2018-02-07 | Perovskite structure, electronic device using the same, and relative method for manufacture a photoelectric conversion layer |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108447996B (en) |
TW (1) | TWI649265B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109560199A (en) * | 2018-11-28 | 2019-04-02 | 上海大学 | A kind of preparation method of the perovskite thin film photoelectric device based on low pressure flash crystallization |
CN110349886B (en) * | 2019-06-19 | 2022-02-15 | 江苏大学 | Large-area perovskite solar cell preparation device and preparation method |
TWI793826B (en) * | 2021-10-26 | 2023-02-21 | 財團法人金屬工業研究發展中心 | Method for producing perovskite film, perovskite substrate and perovskite solar cell |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201603307A (en) * | 2014-02-26 | 2016-01-16 | 澳大利亞國家科學工業研究所 | Process of forming a photoactive layer of a perovskite photoactive device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104134720A (en) * | 2014-07-10 | 2014-11-05 | 上海大学 | Preparation method of organic and inorganic hybridization perovskite material growing by single-source flash evaporation method and plane solar cell of material |
CN106098948A (en) * | 2016-06-13 | 2016-11-09 | 上海大学 | The perovskite thin film of single step flash method growing large-size crystal grain and the preparation method of plane solaode |
CN106917064A (en) * | 2017-02-16 | 2017-07-04 | 上海大学 | Single step original position flash method growth ABX3The preparation method of type perovskite thin film |
CN107068875B (en) * | 2017-03-10 | 2019-06-25 | 武汉大学 | A method of optimization perovskite crystal film morphology |
-
2018
- 2018-02-07 TW TW107104276A patent/TWI649265B/en active
- 2018-03-13 CN CN201810205710.6A patent/CN108447996B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201603307A (en) * | 2014-02-26 | 2016-01-16 | 澳大利亞國家科學工業研究所 | Process of forming a photoactive layer of a perovskite photoactive device |
Also Published As
Publication number | Publication date |
---|---|
TW201934491A (en) | 2019-09-01 |
CN108447996B (en) | 2022-06-28 |
CN108447996A (en) | 2018-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019200940A1 (en) | Perovskite thin film and preparation method therefor, perovskite electroluminescent device and preparation method therefor, and display device | |
US11245076B2 (en) | Perovskite optoelectronic device, preparation method therefor and perovskite material | |
TWI649265B (en) | Perovskite structure, electronic device using the same, and relative method for manufacture a photoelectric conversion layer | |
Qiu et al. | Pinhole-free perovskite films for efficient solar modules | |
Rong et al. | Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells | |
Wang et al. | Smooth perovskite thin films and efficient perovskite solar cells prepared by the hybrid deposition method | |
JP7464595B2 (en) | Manufacturing method of A/M/X materials | |
Liu et al. | Interfacial engineering for highly efficient quasi-two dimensional organic–inorganic hybrid perovskite light-emitting diodes | |
CN110943178B (en) | Self-assembly multi-dimensional quantum well CsPbX3Perovskite nanocrystalline electroluminescent diode | |
Lin et al. | Dual‐phase regulation for high‐efficiency perovskite light‐emitting diodes | |
US11691887B2 (en) | Tunable blue emitting lead halide perovskites | |
CN104485425A (en) | Perovskite type material preparation method and equipment and machining method of photovoltaic device made from perovskite type material | |
WO2021190169A1 (en) | Light-emitting thin film and manufacturing method therefor, and electroluminescent device | |
CN110148673B (en) | PSS (stabilized PEDOT-doped tin sulfide), preparation method and preparation method of graphene-based perovskite quantum dot light-emitting diode | |
CN111740019A (en) | Halide perovskite photoelectric device based on polar interface | |
KR20170028054A (en) | High-Performance Perovskite Film, Perovskite Light-Emitting Diodes and Method For Producing The Same | |
WO2022218026A1 (en) | Optoelectronic device and manufacturing method therefor | |
Jeong et al. | The introduction of a perovskite seed layer for high performance perovskite solar cells | |
CN113871556B (en) | Preparation method of perovskite film in semiconductor device | |
Zhu et al. | Highly Efficient Light‐Emitting Diodes Based on Self‐Assembled Colloidal Quantum Wells | |
CN109686841A (en) | A kind of hypotoxicity anti-solvent prepares the method and its application of Br based perovskite film | |
US10509145B2 (en) | Optical device and methods for manufacturing the same | |
CN108682747B (en) | Double-heterojunction perovskite photoelectric device and preparation method thereof | |
CN114891498B (en) | Nanocrystalline film of cation coated one-dimensional perovskite and application thereof | |
Yudco et al. | Controlling the device functionality by solvent engineering, solar cell versus light emitting diode |