TWI646697B - 具有低崩潰電壓之突崩光二極體 - Google Patents
具有低崩潰電壓之突崩光二極體 Download PDFInfo
- Publication number
- TWI646697B TWI646697B TW106139025A TW106139025A TWI646697B TW I646697 B TWI646697 B TW I646697B TW 106139025 A TW106139025 A TW 106139025A TW 106139025 A TW106139025 A TW 106139025A TW I646697 B TWI646697 B TW I646697B
- Authority
- TW
- Taiwan
- Prior art keywords
- region
- apd
- layer
- disposed
- scope
- Prior art date
Links
- 230000015556 catabolic process Effects 0.000 title abstract description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 16
- 239000010703 silicon Substances 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 9
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 8
- 229910052732 germanium Inorganic materials 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 claims 2
- 238000010521 absorption reaction Methods 0.000 abstract description 12
- 230000003287 optical effect Effects 0.000 abstract description 9
- 238000004891 communication Methods 0.000 abstract description 7
- 230000009172 bursting Effects 0.000 abstract description 5
- 239000000969 carrier Substances 0.000 abstract description 4
- 238000000098 azimuthal photoelectron diffraction Methods 0.000 abstract 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 11
- 230000005684 electric field Effects 0.000 description 8
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003032 molecular docking Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/0004—Devices characterised by their operation
- H01L33/0008—Devices characterised by their operation having p-n or hi-lo junctions
- H01L33/0012—Devices characterised by their operation having p-n or hi-lo junctions p-i-n devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/10—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
- H01L31/101—Devices sensitive to infrared, visible or ultraviolet radiation
- H01L31/102—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
- H01L31/107—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0352—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
- H01L31/035272—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/10—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
- H01L31/101—Devices sensitive to infrared, visible or ultraviolet radiation
- H01L31/102—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
- H01L31/107—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
- H01L31/1075—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Light Receiving Elements (AREA)
Abstract
具有低崩潰電壓特徵的Si/Ge吸收、電荷及增加(SACM)突崩光二極體(APD)包含吸收區及增加區,增加區具有各種具有特定厚度及摻雜濃度的層。光波導導引紅外線及/或光訊號或能量至吸收區中。造成的光產生載子被掃入i-Si層以及/或用於突崩增加之增加區中。突崩光二極體(APD)具有徹底小於12V的崩潰偏壓以及大於10GHz的操作頻寬,因而適用於消費性電子裝置、高速通訊網路、等等。
Description
實施例大致上關於光二極體,更特別地,關於具有低崩潰電壓特徵的矽/鍺(Si/Ge)分開吸收、電荷及增加(SACM)突崩光二極體(APD)。
突崩光二極體(APD)主要用在需要高靈敏度的應用中。這些應用特別包含長距離光纖通信、雷射測距儀、及單光子等級偵測以及成像。SiGe突崩光二極體提供執行以近紅外線光訊號為目標之有前景的應用。在Si/Ge分開吸收、電荷及增加(SACM)突崩光二極體中,鍺(Ge)在近紅外線波長供應高響應,而矽(Si)用以低雜訊地放大產生的光載子。
此外,應用CMOS技術至SiGe為基礎的突崩光二極體的製造相對於其III-V族突崩光二極體之對應體,其能夠確定地降低價格。突崩光二極體(APD)因較高的成本限制而傳統上以高階市場為目標,所以,SiGe突崩光二極體(APD)是在近紅外線光譜中要求高靈敏度的低階市場之確 定候選產品。
但是,單有價格降低不足以實現突崩光二極體的廣泛應用。最大的障礙是突崩光二極體的操作要求高偏壓,在習知技藝中,遠在例如伺服器、桌上型電腦產品及其它消費性電子產品等現代電子產生內可見之最大可取得偏壓12V之外,其才能操作。
因此,期望降低Si/Ge突崩光二極體的操作偏壓、或崩潰電壓,以致於它們能被成功地併入於消費性電子產品、高速通訊網路、等等之中。
100‧‧‧突崩光二極體
105‧‧‧基底
110‧‧‧n型摻雜矽層
115‧‧‧本質矽層
120‧‧‧p型摻雜矽層
122‧‧‧載子增加區
125‧‧‧本質鍺層
130‧‧‧p型摻雜矽(p+ Ge)層
132‧‧‧吸收區
135‧‧‧第一金屬接點
140‧‧‧第二金屬接點
145‧‧‧鈍化層
155‧‧‧波導
160‧‧‧頂部
165‧‧‧底部
在圖式中,以舉例說明的方式而非限定之方式,顯示本發明的實施例,其中,類似代號意指類似的元件。
圖1顯示根據本發明的實施例之突崩光二極體(APD)的剖面視圖。
圖2顯示圖1的突崩光二極體理想的內部電場分佈圖。
圖3顯示圖1的突崩光二極體的模擬暗電流及光電流圖。
圖4顯示圖1的突崩光二極體的測量的暗電流及光電流圖。
圖5顯示根據本發明的實施例之二樣品突崩光二極體之測量的頻寬圖。
現在將詳細參考本發明的實施例,其實例顯示於附圖中。在下述詳細說明中,揭示眾多具體細節以助於能完整瞭解本發明。但是,應瞭解,具有此技藝一般技術者可以沒有這些細節,仍能實施本發明。在其它情形中,未詳述習知的方法、程序、組件、電路、及網路,以免模糊實施例的態樣。
將瞭解,雖然此處使用第一、第二等詞以說明不同的元件,但是,這些元件不應被這些詞所限定。這些詞僅用以區別一元件與其它元件。舉例而言,在不悖離本發明的範圍之下,第一層可被稱為第二層,類似地,第二層可稱為第一層。
於此本發明的說明中使用的術語僅是為了說明特定實施例,而非要限定本發明。如同本發明的說明及後附的申請專利範圍中所使用般,除非文中清楚地另外表示,否則,單數形式的「一(a)」、「一(an)」、及「定冠詞(the)」也包含複數形式。也將瞭解,此處所使用的「及/或」係意指及涵蓋一或更多相關連的列出項目中之一或更多的所有可能組合。又將瞭解,「包括」及/或「分詞的包括」當用於本說明書中時係指明陳述的特點、整數、步驟、操作、元件、及/或組件的存在,但未排除一或更多其它特點、整數、步驟、操作、元件、組件、及/或其群組的存在或增加。
圖1顯示根據本發明的實施例之突崩光二極體(APD)100的剖面視圖。APD 100是Si/Ge分開吸收、電 荷及增加(SACM)低電壓突崩光二極體(LVAPD)。為了一致性但非限定,此處所述的突崩光二極體將簡稱為APD 100。將瞭解,此處所述的APD 100的各式層及組件不一定依比例繪製,而是以清楚地顯示各組件之方式顯示。
APD 100包含基底105。n型摻雜矽(n+ Si)層110配置在基底105上。本質矽(i-Si)層115配置在n+ Si層110的至少一部份上。在i-Si層115的頂上,配置p型摻雜矽(p Si)層120。n+ Si層110、i-Si層115、及p Si層120形成載子增加區122。
在某些實施例中,p Si層120的厚度T120是20奈米(nm)。在某些實施例中,p Si層120的厚度T120約20nm,或者,換言之,接近20nm。在某些實施例中,p Si層120的摻雜濃度在2×1018cm-3至3×1018cm-3之間。在某些實施例中,p Si層120的摻雜濃度在約2×1018cm-3至3×1018cm-3之間,換言之,在接近2×1018cm-3至3×1018cm-3之間。
在某些實施例中,i-Si層115的厚度T115是在0.07至0.13微米(μm)之間。在某些實施例中,i-Si層115的厚度T115是在約0.07至0.13μm之間,或者,換言之,在接近0.07至0.13μm之間。在某些實施例中,i-Si層115的厚度T115是100nm。在某些實施例中,i-Si層115的厚度T115是約100nm,或者,換言之,接近100nm。在某些實施例中,i-Si層115的摻雜濃度小於5×1015cm-3。在某些實施例 中,i-Si層115的摻雜濃度小於約5×1015cm-3,或者,換言之,小於接近5×1015cm-3。
本質鍺(i-Ge)層125配置在至少部份p Si層120上。p型摻雜鍺(p+Ge)層130配置在i-Ge層125上。p+Ge層130及i-Ge層125形成吸收區132。鈍化層145配置在p+Ge層130、p Si層120、及n+Si層110等各層的至少一部份上。第一金屬接點135配置在p+Ge層130上,第二金屬接點140配置在n+Si層110上。
光波導155將紅外線、近紅外線、及/或光訊號或能量150導入吸收區132。舉例而言,特別是對於高速操作,可以使用經由波導155進入吸收區132之光訊號衰減耦合及對接混合或衰減。在某些實施例中,進入的紅外線及/或光訊號或能量首先被收集在i-Ge層125及/或吸收區132中,而結果的光產生載子被掃入i-Si層115及/或用於突崩增加的增加區122。替代地、或增加地,將紅外線及/或光訊號或能量,從相對於APD 100的層之頂部160或底部165,導入APD 100。
不同的摻雜層控制APD的內部電場,以致於APD 100正確地作用。除了接近100nm厚的i-Si層115之外,如上詳述所示般,p Si電荷層120高度地摻雜並製成特別地薄,以將APD操作偏壓抑制在12V之下。p+Ge層130、i-Ge層125、及n+Si層110等各層的厚度、以及基底105的厚度並非如此關鍵的,它們也不要求特定的層厚度以便可由此處揭示的發明態樣操作。如同此處所述般,p Si層120及i-Si 層115等各層的厚度及摻雜濃度對於取得低偏壓電壓及高性能是更重要的。
APD 100具有與其相關的崩潰偏壓。較佳地,崩潰偏壓是8.5V或大約8.5V。在某些實施例中,崩潰偏壓小於12V或大約12V。APD 100也具有與其相關連的頻寬。較佳地,操作頻寬是10GHz或大約10GHz。在某些實施例中,操作頻寬大於8GHz。在某些實施例中,操作頻寬大於10GHz。於下更詳細地說明APD 100的模擬、測量、及性能特徵。
圖2顯示圖1的APD之理想的內部電場分佈圖。例如APD的頻寬及靈敏度等性能態樣是視其內部電場輪廓或分佈而定。在Ge吸收區132之內的電場確保光產生的載子快速地漂移出來以取得高頻寬,但保持足夠低以避免在Ge材料內穿隧或突崩增加。此外,侷限在Si增加區122之內的高電場提供突崩增益以取得高靈敏度。電場輪廓是靈敏的且視各層的摻雜程度而定。舉例而言,如上所述般,電場輪廓是靈敏的且視p Si層120及i-Si層115的摻雜濃度而定。
圖3顯示圖1的APD的模擬暗電流及光電流的圖。圖4顯示圖1的APD的測量的暗電流及光電流的圖。現在參考圖3及4。
在各圖中顯示暗電流(例如圖3的305及圖4的405)及光電流(例如圖3的310及圖4的410)。光電流相當於照明下的APD電流。評估及使用模擬結果以決定較佳的或其它情形 的最佳層厚度以及摻雜濃度。測量值確認APD 100的操作特徵及性能。
圖5顯示根據本發明的實施例之二樣品APD的測量頻寬圖。測得的崩潰偏壓,或是換言之,操作偏壓約為8.5V,這是良好地在消費性電子產生的目標12V之下。在圖5中,觀察在1550nm雷射照明下之APD 100的光響應。頻寬測量顯示APD 100能夠在超過10GHz的頻寬操作,並在12V之下的電壓操作。此處揭示的APD的實施例可以併入於很多應用中,例如長通信距離的光纖通信、雷射測距儀及單光子位準偵測和成像等應用。此外,SiGe APD提供以近紅外線光訊號為目標之有前景的應用。
如同此處所述的APD 100的發明態樣使得Si/Ge APD技術能夠利用於消費性電子產品之內,由於操作電壓及成本限制,這是APD傳統上難以進入的市場。此處揭示之本發明的實施例能用於各式各樣的要求低電壓之高速度及高靈敏光接收器矽光子系統。
雖然已說明特定實施例,但是,將瞭解本發明的實施例不限於這些實施例。此處所述的發明概念可以用於高速通訊系統,舉例而言,包含10G位元/秒或更高的通訊網路。此處所述的突崩光二極體可包含在一般電腦、平板電路、智慧型手機、超薄筆記型電腦、伺服器、等等之中。此處所述的實施例提供輕巧、高性能及高頻響應之具有低崩潰偏壓特徵的APD。
在不悖離後述申請專利範圍揭示的本發明的原理之 下,可以作出其它變化及修改。
Claims (20)
- 一種半導體突崩光二極體(APD),包括:第一區,包含n型摻雜的矽;第二區,配置在該第一區上,其中該第二區包含矽,且其中該第二區的厚度在約0.07微米與約0.13微米之間;第三區,配置在該第二區上,其中該第三區包含p型摻雜的矽;以及第四區,配置在該第三區上,其中該第四區包含鍺。
- 如申請專利範圍第1項之APD,又包括:基底,其中該第一區、該第二區、該第三區及該第四區形成於該基底上。
- 如申請專利範圍第1或2項之APD,又包括:第五區,配置在該第四區上,其中該第五區包含p型摻雜的材料。
- 如申請專利範圍第1或2項之APD,其中該第二區的該厚度約為100奈米。
- 如申請專利範圍第1或2項之APD,其中該第二區的摻雜濃度小於約5×1015cm-3。
- 如申請專利範圍第1或2項之APD,其中該第三區的摻雜濃度在約2×1018cm-3與約3×1018cm-3之間。
- 如申請專利範圍第1或2項之APD,其中該第二區直接配置在該第一區上,其中該第三區直接配置在該第二區上,並且其中該第四區直接配置在該第三區上。
- 如申請專利範圍第1或2項之APD,其中該第二區 的摻雜方式不同於該第一區及該第三區。
- 如申請專利範圍第1或2項之APD,其中該APD是第IV族APD。
- 如申請專利範圍第1或2項之APD,其中該第三區的厚度約為20奈米。
- 如申請專利範圍第3項之APD,又包括:金屬接點,配置在該第五區上。
- 一種半導體突崩光二極體(APD),包括:第一區,包含n型摻雜的矽;第二區,配置在該第一區上,其中該第二區包含矽,且其中該第二區的摻雜濃度小於約5×1015cm-3;第三區,配置在該第二區上,其中該第三區包含p型摻雜的矽,且其中該第三區的摻雜濃度在約2×1018cm-3與約3×1018cm-3之間;以及第四區,配置在該第三區上,其中該第四區包含鍺。
- 如申請專利範圍第12項之APD,其中該第二區的厚度在約0.07微米與約0.13微米之間。
- 如申請專利範圍第13項之APD,其中該第二區的該厚度約為100奈米。
- 如申請專利範圍第12至14項中任一項之APD,又包括:基底,其中該第一區、該第二區、該第三區及該第四區形成於該基底上。
- 如申請專利範圍第12至14項中任一項之APD,其 中該第三區的厚度約為20奈米。
- 如申請專利範圍第12至14項中任一項之APD,又包括:第五區,配置在該第四區上,其中該第五區包含p型摻雜的材料。
- 如申請專利範圍第17項之APD,又包括:金屬接點,配置在該第五區上。
- 如申請專利範圍第18項之APD,其中該金屬接點是第一金屬接點,並且其中該APD又包括:第二金屬接點,配置在該第一區上。
- 如申請專利範圍第12至14項中任一項之APD,其中該第二區的摻雜方式不同於該第一區及該第三區。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2011/067934 WO2013101110A1 (en) | 2011-12-29 | 2011-12-29 | Avalanche photodiode with low breakdown voltage |
??PCT/US11/67934 | 2011-12-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201824577A TW201824577A (zh) | 2018-07-01 |
TWI646697B true TWI646697B (zh) | 2019-01-01 |
Family
ID=48698344
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106139025A TWI646697B (zh) | 2011-12-29 | 2012-11-23 | 具有低崩潰電壓之突崩光二極體 |
TW101143994A TWI637529B (zh) | 2011-12-29 | 2012-11-23 | 具有低崩潰電壓之突崩光二極體 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101143994A TWI637529B (zh) | 2011-12-29 | 2012-11-23 | 具有低崩潰電壓之突崩光二極體 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9614119B2 (zh) |
EP (1) | EP2798677A4 (zh) |
KR (1) | KR20140106625A (zh) |
CN (2) | CN104025315B (zh) |
TW (2) | TWI646697B (zh) |
WO (1) | WO2013101110A1 (zh) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101691851B1 (ko) | 2013-03-11 | 2017-01-02 | 인텔 코포레이션 | 실리콘 기반 광 집적 회로를 위한 오목 미러를 갖는 저전압 아발란치 광 다이오드 |
CN105247691B (zh) | 2014-02-12 | 2017-03-29 | 华为技术有限公司 | 一种雪崩光电二极管及其制造方法 |
US9299864B2 (en) * | 2014-02-21 | 2016-03-29 | Sifotonics Technologies Co., Ltd. | Ge/Si avalanche photodiode with integrated heater and fabrication thereof |
TWI544303B (zh) | 2015-01-30 | 2016-08-01 | 財團法人工業技術研究院 | 單光子雪崩光電二極體的超額偏壓控制系統與方法 |
CN104794294B (zh) * | 2015-04-27 | 2017-11-24 | 重庆邮电大学 | 一种Ge/Si SACM结构雪崩光电二极管的等效电路模型建立方法 |
US10680131B2 (en) * | 2015-07-27 | 2020-06-09 | Hewlett Packard Enterprise Development Lp | Doped absorption devices |
CN105679875B (zh) * | 2016-03-08 | 2017-03-01 | 昆明理工大学 | 一种波导集成的硅基单光子探测器 |
JP7024976B2 (ja) | 2016-07-26 | 2022-02-24 | コニカミノルタ株式会社 | 受光素子及び近赤外光検出器 |
JP7061753B2 (ja) * | 2016-07-26 | 2022-05-02 | コニカミノルタ株式会社 | 受光素子及び近赤外光検出器 |
CN106531822B (zh) * | 2016-11-29 | 2017-12-19 | 电子科技大学 | 一种光电探测器 |
GB2562481B (en) * | 2017-05-15 | 2020-04-01 | Rockley Photonics Ltd | Germanium-based avalanche photodiode structure coupled to Si-waveguide |
US12100773B2 (en) | 2017-05-15 | 2024-09-24 | Rockley Photonics Limited | Avalanche photodiode structure |
CN108110081B (zh) * | 2018-02-01 | 2023-12-08 | 北京一径科技有限公司 | 异质结雪崩光电二极管 |
DE102018009162A1 (de) * | 2018-11-22 | 2020-05-28 | Tdk-Micronas Gmbh | Halbleitersensorstruktur |
US10854768B2 (en) | 2018-12-20 | 2020-12-01 | Hewlett Packard Enterprise Development Lp | Optoelectronic component with current deflected to high-gain paths comprising an avalanche photodiode having an absorbing region on a p-doped lateral boundary, an n-doped lateral boundary and an amplifying region |
US10797194B2 (en) | 2019-02-22 | 2020-10-06 | Hewlett Packard Enterprise Development Lp | Three-terminal optoelectronic component with improved matching of electric field and photocurrent density |
EP3940798A1 (en) * | 2020-07-13 | 2022-01-19 | Imec VZW | Avalanche photodiode device with a curved absorption region |
WO2022061821A1 (zh) * | 2020-09-27 | 2022-03-31 | 深圳市大疆创新科技有限公司 | 器件及其制备方法、接收芯片、测距装置、可移动平台 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011083657A1 (ja) * | 2010-01-07 | 2011-07-14 | 株式会社日立製作所 | アバランシェフォトダイオード及びそれを用いた受信機 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52101990A (en) * | 1976-02-21 | 1977-08-26 | Hitachi Ltd | Semiconductor device for photoelectric transducer and its manufacture |
US6359322B1 (en) * | 1999-04-15 | 2002-03-19 | Georgia Tech Research Corporation | Avalanche photodiode having edge breakdown suppression |
JP2001127336A (ja) * | 1999-10-27 | 2001-05-11 | Natl Science Council Of Roc | 高利得の吸収/増倍分離式の電子なだれフォトダイオード |
US6858829B2 (en) * | 2001-06-20 | 2005-02-22 | Agilent Technologies, Inc. | Avalanche photodiode array biasing device and avalanche photodiode structure |
JP2004079701A (ja) * | 2002-08-14 | 2004-03-11 | Sony Corp | 半導体装置及びその製造方法 |
US7340709B1 (en) * | 2004-07-08 | 2008-03-04 | Luxtera, Inc. | Method of generating a geometrical rule for germanium integration within CMOS |
US7209623B2 (en) * | 2005-05-03 | 2007-04-24 | Intel Corporation | Semiconductor waveguide-based avalanche photodetector with separate absorption and multiplication regions |
US7233051B2 (en) * | 2005-06-28 | 2007-06-19 | Intel Corporation | Germanium/silicon avalanche photodetector with separate absorption and multiplication regions |
US7741657B2 (en) * | 2006-07-17 | 2010-06-22 | Intel Corporation | Inverted planar avalanche photodiode |
US8044436B2 (en) * | 2007-03-07 | 2011-10-25 | Princeton Lightwave, Inc. | Avalanche photodiode having controlled breakdown voltage |
US20120199932A1 (en) * | 2009-10-12 | 2012-08-09 | The Regents Of The University Of California | Low noise, stable avalanche photodiode |
US8461624B2 (en) | 2010-11-22 | 2013-06-11 | Intel Corporation | Monolithic three terminal photodetector |
US8704272B2 (en) * | 2011-06-24 | 2014-04-22 | SiFotonics Technologies Co, Ltd. | Avalanche photodiode with special lateral doping concentration |
WO2013066959A1 (en) * | 2011-10-31 | 2013-05-10 | The Trustees Of Columbia University In The City Of New York | Systems and methods for imaging using single photon avalanche diodes |
-
2011
- 2011-12-29 EP EP11879014.6A patent/EP2798677A4/en not_active Withdrawn
- 2011-12-29 KR KR1020147017849A patent/KR20140106625A/ko active Search and Examination
- 2011-12-29 US US13/976,379 patent/US9614119B2/en active Active
- 2011-12-29 CN CN201180076057.4A patent/CN104025315B/zh active Active
- 2011-12-29 WO PCT/US2011/067934 patent/WO2013101110A1/en active Application Filing
- 2011-12-29 CN CN201710897038.7A patent/CN107658351B/zh active Active
-
2012
- 2012-11-23 TW TW106139025A patent/TWI646697B/zh active
- 2012-11-23 TW TW101143994A patent/TWI637529B/zh active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011083657A1 (ja) * | 2010-01-07 | 2011-07-14 | 株式会社日立製作所 | アバランシェフォトダイオード及びそれを用いた受信機 |
Non-Patent Citations (4)
Title |
---|
H. W. Ruegg, "An optimized avalanche photodiode," IEEE Trans.Electron Devices, vol. 14, no. 5, May 1967, pp. 239–251 * |
J. E. Bowers, D. Dai, Y. Kang, and M. Morse, "High-gain high-sensitivity resonant Ge/Si APD photodetectors," Proc. SPIE, vol. 7660, May 2010, pp. 76603H–1–76603H-8. * |
Jurgen Michel, et. al:"High-performance Ge-on-Si photodetectors", Nature Photonics 4, 527–534 (2010),Published online:30 July 2010 * |
Yimin Kang, et. al:"Monolithic Ge/Si avalanche photodiodes" , Published in: Group IV Photonics, 2009. GFP '09. 6th IEEE International Conference on, Date of Conference: 9-11 Sept. 2009, Date Added to IEEE Xplore: 17 November 2009 * |
Also Published As
Publication number | Publication date |
---|---|
KR20140106625A (ko) | 2014-09-03 |
TW201824577A (zh) | 2018-07-01 |
EP2798677A4 (en) | 2015-10-14 |
US9614119B2 (en) | 2017-04-04 |
TW201340355A (zh) | 2013-10-01 |
CN107658351B (zh) | 2019-12-17 |
CN107658351A (zh) | 2018-02-02 |
WO2013101110A1 (en) | 2013-07-04 |
CN104025315A (zh) | 2014-09-03 |
US20140151839A1 (en) | 2014-06-05 |
CN104025315B (zh) | 2017-11-03 |
TWI637529B (zh) | 2018-10-01 |
EP2798677A1 (en) | 2014-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI646697B (zh) | 具有低崩潰電壓之突崩光二極體 | |
Chen et al. | Low dark current high gain InAs quantum dot avalanche photodiodes monolithically grown on Si | |
US20140291682A1 (en) | High Performance GeSi Avalanche Photodiode Operating Beyond Ge Bandgap Limits | |
US11791432B2 (en) | Microstructure enhanced absorption photosensitive devices | |
US8786043B2 (en) | High performance GeSi avalanche photodiode operating beyond Ge bandgap limits | |
TWI550893B (zh) | 高速、廣光頻寬且高效率的共振空腔增強型光檢測器 | |
US20150076641A1 (en) | Avalanche Photodiodes with Defect-assisted Silicon Absorption Regions | |
TWI489638B (zh) | 波導累崩光偵測器 | |
Kim et al. | Single-chip photonic transceiver based on bulk-silicon, as a chip-level photonic I/O platform for optical interconnects | |
CN111129168B (zh) | 一种光电探测器 | |
CN111129201B (zh) | 一种光电探测器 | |
Baek et al. | Room temperature quantum key distribution characteristics of low-noise InGaAs/InP single-photon avalanche diode | |
JPWO2018021126A1 (ja) | 受光素子及び近赤外光検出器 | |
Lee et al. | Optical-power dependence of gain, noise, and bandwidth characteristics for 850-nm CMOS silicon avalanche photodetectors | |
Ahmad et al. | Avalanche photodiodes with multiple multiplication layers for coherent detection | |
Lee et al. | Bandwidth improvement of CMOS-APD with carrier-acceleration technique | |
US10312397B2 (en) | Avalanche photodiode with low breakdown voltage | |
Afzalian et al. | Characterization of quantum efficiency, effective lifetime and mobility in thin film ungated SOI lateral PIN photodiodes | |
EP3480862B1 (en) | Light-receiving element and near infrared light detector | |
KR102015408B1 (ko) | 수직 입사형 포토다이오드 | |
Atef et al. | High-speed photodiodes in 40 nm standard CMOS technology | |
Abdulwahid et al. | Physical modelling of InGaAs–InAlAs APD and PIN photodetectors for> 25 Gb/s data rate applications | |
US20210255385A1 (en) | Waveguide photodetector | |
Nakajima et al. | High-speed avalanche photodiode for 100-gbit/s ethernet | |
Pan et al. | A 65-nm CMOS P-well/Deep N-well avalanche photodetector for integrated 850-nm optical |