TWI643360B - 紫外發光二極體及紫外線光源 - Google Patents

紫外發光二極體及紫外線光源 Download PDF

Info

Publication number
TWI643360B
TWI643360B TW104101317A TW104101317A TWI643360B TW I643360 B TWI643360 B TW I643360B TW 104101317 A TW104101317 A TW 104101317A TW 104101317 A TW104101317 A TW 104101317A TW I643360 B TWI643360 B TW I643360B
Authority
TW
Taiwan
Prior art keywords
light
layer
ultraviolet light
type
emitting
Prior art date
Application number
TW104101317A
Other languages
English (en)
Other versions
TW201532307A (zh
Inventor
木下亨
小幡俊之
岡山玲子
濱康孝
Original Assignee
斯坦雷電氣股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 斯坦雷電氣股份有限公司 filed Critical 斯坦雷電氣股份有限公司
Publication of TW201532307A publication Critical patent/TW201532307A/zh
Application granted granted Critical
Publication of TWI643360B publication Critical patent/TWI643360B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

本發明係一種紫外發光二極體及紫外線光源,係具有:以具有加以放射光之發光主面的基板,n型層,活性層,及p型層之順序加以層積之層積構造,更且,於p型層上具有p型電極,且於除去p型層,及活性層之一部分的範圍而使其露出之n型層上,具有n型電極之發光二極體,其特徵為,發光峰值波長位於220~350nm之範圍,在25℃中,在驅動電流值150mA之發光輸出密度為10W/cm2以上,驅動電壓值為10V以下之紫外發光二極體。

Description

紫外發光二極體及紫外線光源
本發明係有關產生具有高輸出密度之紫外線的新穎的紫外發光二極體。另外,本發明係有關新穎的紫外線光源。具體而言,關於使用於分光光度計之新穎的紫外線光源,或者為了硬化紫外線硬化性樹脂(單體及聚合開始劑)而使用之新穎的紫外線光源等,具有期望之分光分佈的新穎的紫外線光源者。
III族氮化物半導體係在相當於波長200nm至360nm之紫外範圍中,具有直接遷移型之能帶構造之故,可製造高效率之紫外發光裝置。因此,熱烈地進行有使用III族氮化物半導體之紫外發光二極體之研究。
對於製造上述紫外發光二極體之情況,係得到III族氮化物半導體結晶與晶格常數,及熱膨脹係數之整合性佳的基板則為困難。因此,一般而言,於藍寶石基板或碳化矽素基板等之與III族氮化物不同之異種材料基板上,形成III族氮化物半導體結晶(層),製造二極體 (參照非專利文獻1)。
但,將藍寶石基板等之異種材料基板做為種基板而使用時,有著與III族氮化物半導體結晶層之晶格常數差之故,而有容易在界面產生缺陷的問題。因此,對於驅動製作於上述之異種基板上之紫外發光二極體的情況,在以高電流密度之動作中,確保高信賴性的情況則為困難。
因此,加以檢討使用由III族氮化物所成之同種基板的方法。例如,可舉出經由原料粉末的昇華,使III族氮化物半導體結晶形成於III族氮化物的種基板(同種基板)上之方法。此方法係使用與III族氮化物半導體結晶層之晶格常數差為小之同種基板之故,未形成有在界面之缺陷,而並且具有III族氮化物半導體結晶層中之缺陷密度低之優點(參照非專利文獻2)。
但在此方法中,製作紫外線透過率高之III族氮化物基板的製作係為困難之故,使其產生之紫外光則由基板所吸收,其結果,招致發光輸出及效率之下降。
本發明者們係解決以昇華法所得到之同種基板的問題。即,製作紫外線透過率高之同種基板。並且,提案於其基板上,形成III族氮化物半導體結晶(層),製造發光二極體之方法(參照非專利文獻3,4)。
[先前技術文獻] [非專利文獻]
[非專利文獻1]Applied Physics Letters 88(2006)121106
[非專利文獻2]Applied Physics Express 3(2010)072103
[非專利文獻3]Applied Physics Express 5(2012)122101
[非專利文獻4]Applied Physics Express 6(2013)092103
[專利文獻]
[專利文獻1]日本特開2009-136796號公報
[專利文獻2]國際公開2012/056928號小冊子
[專利文獻3]國際公開2011/078252號小冊子
[專利文獻4]日本專利第3499385號公報
如根據非專利文獻3及4所記載之方法而製作之紫外發光二極體,在25℃、150mA之驅動電流值中,雖得到10W/cm2以上之高發光輸出密度,但其情況之驅動電壓值係11~14V程度,而對於為了作為耐久性更高之高性能之紫外發光二極體係有改善的空間。
另外,對於為了在波長300nm以下的深紫外範圍,特別是在245nm以下的深紫外範圍進行發光之發光二極體,係有必要使用Al組成高之III族氮化物半導體。在如此之紫外發光二極體中,使高紫外發光輸出密度,和低驅動電壓並存的情況係非常困難。因此,期望開發完全滿足此等要求之紫外發光二極體。
本發明之第1課題係提供具有高輸出密度與低驅動電壓特性之紫外發光二極體者。
對於本發明之第2課題加以說明。作為紫外發光二極體之用途,係考量有使用重氫燈之分光光度計的代替用途,使用高壓水銀燈之單體硬化用紫外線照射裝置之代替用途(例如,參照專利文獻1)。
但,以往之發光二極體的組合中,如上述,伴隨著成為短波長,而有發光強度(發光效率)下降之問題。例如,對於專利文獻1,係揭示有將照射波長範圍擴散於300~400nm之範圍的紫外線照射裝置,具體而言,組合具有發光峰值於波長360~370nm之主發光二極體,和在波長300~400nm之範圍,於波長360~370nm以外的範圍具有發光峰值之副發光二極體的裝置。但如根據本發明者們之檢討,於350nm以下的短波長,又300nm以下的短波長,特別是280nm以下之短波長的範圍,具有發光峰值之紫外發光二極體係如上述,有著發光強度(發光效率)低的問題。也就是,在組合以往之紫外發光二極體之紫外線照射裝置中,重氫燈同樣,作為具有一樣的照射強度之高亮度的光源之使用則為困難。
本發明之第2課題係在紫外線光源中,提供在所期望之發光波長的範圍,一樣具有高發光強度之紫外線光源者。
對於為了實現高輸出密度之紫外發光二極體,係必須成為降低在紫外發光二極體之各層之缺陷密度,抑制在基板之紫外光吸收而有效率地於外部取出光的構造。本發明者們係對於缺陷密度之降低及光取出構造的效率化進行檢討時,發現於經由氫化物氣相磊晶法而製作之缺陷密度為低之AlN單結晶基板上,經由製作n型層,活性層,及p型層之時,在謀求各層之缺陷密度之降低的同時,可抑制在AlN單結晶基板之紫外光吸收者。又,本發明者們係對於為了更一層實現高輸出密度,係追究必須降低驅動電壓之情況。本發明者們係進行檢討的結果,發現加以設置於n型層之電極(n型電極)的特性則為重要,經由進行其改良之時,在25℃之測定溫度中,將驅動電流值作為150mA時,驅動電壓值為10V以下,對於製作發光輸出密度為10W/cm2以上之紫外發光二極體之情況為成功,以至解決本發明之第1課題。
又,本發明著們係發現作為存在於短波長範圍,具體而言,發光峰值波長為220~350nm之範圍的複數之紫外發光二極體,經由組合發光輸出密度(發光峰值強度)高之上述紫外發光二極體,調整各紫外發光二極體之發光峰值強度的比之時,得到具有在所期望之發光波長範圍一樣高的發光強度之紫外線光源者,以至解決本發明之第2課題。
本發明之第1形態係為具有:以具有加以放射光之發光主面的基板,n型層,活性層,及p型層之順 序加以層積之層積構造,更且,於p型層上具有p型電極,且於除去p型層,及活性層之一部分的範圍而使其露出之n型層上,具有n型電極之發光二極體,其特徵為,發光峰值波長位於220~350nm之範圍,在25℃中,在驅動電流值150mA之發光輸出密度為10W/cm2以上,驅動電壓值為10V以下之紫外發光二極體。
如根據本發明之紫外發光二極體,亦可作為在25℃,驅動電流值150mA之發光輸出密度為30W/cm2以上之紫外發光二極體。
在本發明之紫外發光二極體中,p型電極之面積為0.0001~0.01cm2者為佳。
在本發明之紫外發光二極體中,於發光主面,加以形成有凹凸構造者為佳。
在本發明之紫外發光二極體中,具有發光主面之基板為氮化鋁單結晶基板者為佳。該氮化鋁單結晶基板係錯位密度為106cm-2以下,對於發光峰值波長之紫外光而言的內部透過率為85%以上為佳。如此之氮化鋁單結晶基板係例如,於經由昇華法而所得到之錯位密度為104cm-2以下之AlN單結晶種基板上,經由氫化物氣相磊晶法而使AlN單結晶層成長,之後可經由分離AlN單結晶層而得到。
在本發明之紫外發光二極體中,n型層,活性 層,及p型層則由AlXGa1-XN(但、X係滿足0≦X≦1.0有理數)所顯示之III族氮化物半導體所成者為佳。
在本發明之紫外發光二極體中,以加以設置有該n型電極之部分的電極面積(cm2)除以n型電極之固有接觸阻抗值(Ω.cm2)之n型電極阻抗值為不足1.0Ω者為佳。
如根據本發明之紫外發光二極體,發光峰值波長則更短,具體而言,發光峰值波長則位於220~245nm,外部量子效率為0.3%以上,將驅動電流值作為150mA,而在25℃進行連續運轉時,亦可作為發光輸出值則至成為初期發光輸出值之70%為止之壽命時間為300小時以上之紫外發光二極體者。
本發明之第2形態係複數搭載有關本發明之第1形態的紫外發光二極體之紫外線光源,其特徵為所有的發光二極體之發光峰值波長則存在於220~350nm之範圍,複數之發光二極體內,對於發光峰值強度成為最大之發光二極體的發光峰值強度(A)而言,對於發光峰值強度成為最小之發光二極體的發光峰值強度(B)的比(B/A)則成為0.2以上者,搭載具有不同之發光峰值之複數的發光二極體的紫外線光源。
如根據本發明之第1形態,可提供以低驅動 電壓,發揮高紫外發光輸出密度之紫外發光二極體者。
如根據本發明之第2形態,可提供達成具有一樣的發光強度之發光光譜之紫外線光源者。
1‧‧‧紫外發光二極體(紫外發光二極體晶圓)
2‧‧‧基板
3‧‧‧n型層
4‧‧‧活性層
8‧‧‧p型層
9‧‧‧n型電極(層)
10‧‧‧p型電極(層)
100‧‧‧電極圖案
101a、101b、101c‧‧‧圓形電極
102a、102b、102c‧‧‧開口部
103‧‧‧周圍電極
圖1係顯示本發明之紫外發光二極體的一形態之剖面模式圖。
圖2係顯示在實施例7所製造之發光二極體之發光強度分佈的發光光譜圖。
圖3係顯示在實施例18所製造之紫外線光源之發光強度分佈的發光光譜圖。
圖4係顯示在實施例19所製造之紫外線光源之發光強度分佈的發光光譜圖。
圖5係顯示在實施例20所製造之紫外線光源之發光強度分佈的發光光譜圖。
圖6係說明使用於經由TLM法之固有接觸阻抗值的測定之電極圖案的一例圖。
圖7係顯示在以與實施例1同樣條件所製作之n型電極的n型電極面積與n型電極阻抗值之關係圖。
本發明之紫外發光二極體係將發光峰值波長位於220~350nm之範圍者,作為對象。一般而言,發光 二極體之發光光譜係與水銀燈之輝線光譜或雷射的發光光譜不同,峰值波長之半值寬度為5~20nm程度之發光光譜。也就是,本發明之發光光譜係將220~350nm之範圍的發光峰值波長,作為中心,半值寬度為5~20nm之範圍的單一發光光譜。經由適宜調整n型層,p型層,活性層之組成等而可得到所期望之發光峰值波長者。
因此,在本發明中,形成發光二極體之n型層,活性層,及p層,係由包含Al之III族氮化物半導體,例如,以B.Al.Ga.InN之組成所示之III族氮化物半導體所成者為佳。其中,本發明之紫外發光二極體係考慮性能,及生產性時,於基板上,具有依序形成以AlXGa1-XN(但、X係滿足0≦X≦1.0之有理數)所示之III族氮化物半導體所成之n型層,活性層,p型層之層積構造者為佳。並且,為了確保n型層及p型層的導通,而加以設置p型電極於p型層上,更且,於除去p型層,及活性層之一部分的範圍而露出之n型層上,加以設置n型電極。
然而,n型層及p型層係經由含有公知之摻雜劑原料而賦予n型及p型導電性之導電層。另外,活性層係為了使後述之發光光譜產生的層,並無特別加以限制,但一般而言,經由層積數nm程度厚度之量子井層與障壁層之量子井構造而加以構成。上述量子井構造係亦可為具有單一量子井層所成之量子井構造,而具有複數之量子井層所成之多重量子井構造亦可。
本發明之紫外發光二極體係以25℃,將驅動 電流值作為150mA時之單一發光光譜之發光輸出密度為10W/cm2以上。在本發明之發光輸出密度係指以紫外發光二極體之p型電極之面積(cm2),除以本發明之紫外發光二極體之經由上述之發光光譜的全光束測定所求得之發光輸出(W)的值。經由使用根據本發明所得到之發光輸出密度為高之紫外發光二極體之時,成為可將為了得到所期望之紫外光輸出之光源裝置,作為小型化者。因此,上述之發光輸出密度係30W/cm2以上者為佳,而50W/cm2以上者則更佳。發光輸出密度之上限值係愈高越好,但當考慮通常之工業性生產時,為1000W/cm2。其中,如為發光峰值波長位於260~350nm之範圍之本發明的紫外發光二極體時,將發光輸出密度,作為30W/cm2以上、又50W/cm2以上、特別是60W/cm2以上者則為容易。
在本發明的紫外發光二極體中,以25℃,將驅動電流值作為150mA時之發光二極體之驅動電壓值係10V以下。經由將驅動電壓值作為10V以下之時,在以上述之高發光輸出密度而使其發光之情況,亦可抑制發光輸出之突發性的變動等,而進行安定之裝置動作。驅動電壓值之下限值係為了實現所期望之發光峰值波長而依存於成為必要之Al組成比。發光波長越長,Al組成比係變越小,伴隨於此,驅動電壓之下限值亦變小。發光峰值波長為350nm之情況的Al組成比係0.2程度,而驅動電壓之下限值係成為4V程度。另一方面,發光峰值波長為220nm之情況,Al組成比係0.95程度,而驅動電壓之下 限值係成為6V程度。
關於本發明之紫外發光二極體,在進行發光輸出密度及驅動電壓值之測定時,將驅動電流值限定為150mA的理由係如以下。即,驅動電流值為150mA時,如為滿足上述發光輸出密度及驅動電壓值,即使作為一般家電製品用之紫外發光二極體,以及工業製品用之紫外發光二極體,亦可不問用途而廣泛而使用之故。另外,本發明的紫外發光二極體係即使為150mA之高驅動電流值,亦可充分地使用。如此之高性能的紫外發光二極體係在本發明中最初加以開發之構成。
然而,在本發明中,發光輸出密度,及驅動電壓值之測定溫度係25℃。
對於本發明之紫外發光二極體之理想形態,參照圖1之同時,更具體加以說明。
(基板,基板之製造方法)
在本發明之紫外發光二極體1之基板2係如為可降低成長於其上方而形成之n型層3,及活性層4之錯位密度之材料,並未加以限定,而可使用藍寶石,氮化鋁單結晶(AlN單結晶)等之材料。對於為了更降低錯位密度,係作為基板而採用AlN單結晶基板者為佳。AlN單結晶基板之錯位密度係106cm-2以下者為佳,更且為104cm-2以下者為佳。然而,此錯位密度係以鹼性溶液而蝕刻AlN單結晶基板,經由可計算其凹坑數而求得的值。
另外,對於為了提高紫外發光二極體之輸出密度,係有必要抑制在基板之紫外光的吸收之故,而對於本發明之紫外發光二極體1之發光峰值波長之紫外光而言的基板2之內部透過率係為85%以上者為佳,而95%以上者為更佳。內部透過率之上限值係越高越好,而理想來說係為100%。另外,基板的厚度係內部透過率則成為85%以上,在未使操作性下降之範圍而決定者為佳。具體而言係50~500μm為佳。
對於作為基板2而使用AlN單結晶基板之情況,含於該基板之不純物濃度係壓低成未賦予不良影響於錯位密度及紫外光的透過性之程度者為佳。特別是,碳素濃度為5×1017cm-3以下者為佳,而2×1017cm-3以下者為更佳。經由如此降低不純物濃度之時,錯位密度則為106cm-2以下(理想係104cm-2以下),而作為內部透過率為85%以上之基板者則成為容易。於如此之基板上,經由形成n型層3,活性層4,p型層8之時,可製造發揮優越性能之本發明的紫外發光二極體。
錯位密度為106cm-2以下,內部透過率為85%以上之AlN單結晶基板係可經由以下方法而製造者。例如,亦可將錯位密度為106cm-2以下之AlN單結晶基板作為薄膜化,於經由昇華法而加以得到之錯位密度為104cm-2以下之AlN單結晶種基板上,經由氫化物氣相磊晶(HVPE)法而使AlN單結晶層成長,之後,分離AlN單結晶層,作為AlN單結晶基板亦可。然而,在此等之方法中 ,薄膜化AlN單結晶基板之工程,或分離經由HVPE法而使其成長之AlN單結晶層之工程係於形成n型層3,活性層4,及p型層8之前執行亦可,而於使n型層3,活性層4,及p型層8完成之後執行亦可。
然而,對於經由HVPE法而製造AlN單結晶基板之情況,AlN單結晶基板的膜厚係如具有分離後可自立程度之膜厚,並無特別限制,但從製造效率等之觀點,作為50~500μm者為佳。
於基板2之一方的面上,依序加以層積n型層3,活性層4,及p型層8,而基板2之另一方的面,即未加以形成此等n型層3,活性層4,及p型層8之相反的面則成為釋放光的發光主面。
對於加以形成於基板2上之n型層3,活性層4,及p型層8,於以下加以說明。
(n型層)
n型層3係經由含有公知之摻雜劑原料而賦予n型之導電性的導電層。從將本發明之紫外發光二極體之製造作為容易的觀點,係n型層3係由AlGaN單結晶所成者為佳,具體而言,n型層3係AlX1Ga1-X1N層者為佳。Al組成比之X1係因應所期望之發光峰值波長,可在0.1≦X1≦0.95之範圍作適宜決定者。
n型層3之錯位密度係理想為108cm-2以下,更理想為106cm-2以下,最理想為104cm-2以下。另外,n 型層3之厚度係並無特別加以限定,而500~5000nm者為佳。
n型層3係於結晶中,摻雜Si、O、Ge等之公知的n型摻雜材料的層。在公知的n型摻雜材料之中,所使用之摻雜材料係考慮原料濃度之控制性,或n型層3中的離子化能量等時,Si為佳。n型摻雜濃度係可呈得到所期望之導電性地作適宜決定,而一般而言為1×1018cm-3~1×1020cm-3之範圍內,而理想為5×1018cm-3~5×1019cm-3之範圍內。
n型層3之導電性係可經由上述之n型摻雜濃度而控制,而可因應紫外發光二極體的設計作適宜決定者。另外,n型層3係亦可為具有單一之Al組成及單一之n型摻雜濃度之單一層,而具有加以層積Al組成比及/或n型摻雜濃度為不同之複數的層之構造亦可。
另外,對於為了提高n型層3之n型導電性,在使n型層3成長時,對於n型摻雜劑而言作為補償中心而作動,呈可抑制III族元素之缺陷或III族元素與不純物之複合缺陷的形成地,適宜選定呈可降低n型摻雜劑以外之不純物之混入的成長條件者為佳。經由此等,可降低n型層3與n型電極9之接觸阻抗者。
如此之n型層3係可經由有機金屬氣相成長(MOCVD)法,分子束磊晶(MBE)法等之公知的結晶成長法,形成於基板2上。其中,生產性高而加以廣泛使用於工業性之MOCVD法為佳。經由MOCVD法之n型層 3的形成係例如,可與記載於國際公開2012/056928號小冊子(專利文獻2)的方法同樣地進行者,而專利文獻2的內容係以參照而放入於此。以MOCVD法而形成n型層3之情況,經由調整III族原料氣體及氮素源氣體的供給量等之時,可形成所期望之組成的n型層者。此時,亦可呈滿足所期望之摻雜濃度地調整摻雜劑氣體流量者。另外,對於為了將n型層3之錯位密度作為108cm-2以下,作為基板2而採用錯位密度低之AlN單結晶基板,具體而言係錯位密度106cm-2以下、更理想為104cm-2以下之AlN單結晶基板者為佳。
(活性層)
活性層4係加以形成於n型層3上。對於為了使在活性層4之發光效率提升,活性層4係具有組合量子井層與障壁層之量子井構造者為佳。
活性層4之量子井構造係具有單一量子井層之構造亦可,而亦可為具有複數之量子井層之多重量子井構造。量子井層的厚度係並無特別加以限定,但從發光效率的提升及信賴性的觀點,2~10nm者為佳,而4~8nm者為更佳。另外,對於為了安定得到更高輸出密度,活性層4係具有3層以上的量子井層者為佳。活性層4則經由具有具備3層以上厚度2~10nm之量子井層的多重量子井構造之時,可加大量子井層之實效性的體積之故,而成為可抑制紫外發光二極體驅動時之急遽的輸出特性之劣化 者。
障壁層之厚度亦無特別加以限定,但一般而言為5~30nm之範圍內。
量子井層及障壁層係從III族氮化物單結晶加以構成,其中,均為AlXGa1-XN層者為佳。各量子井層及障壁層的Al組成(X)及厚度係可呈可得到所期望之發光峰值波長地作適宜決定者。另外,對於量子井層及障壁層係將提升發光效率之情況作為目的,而摻雜不純物亦可。
活性層4亦可經由有機金屬氣相成長(MOCVD)法,分子束磊晶(MBE)法等之公知的結晶成長法,形成於n型層3上。其中,生產性高而加以廣泛使用於工業性之MOCVD法為佳。經由MOCVD法之活性層4的形成係例如,可與記載於國際公開2012/056928號小冊子(專利文獻2)之方法同樣加以進行者。以MOCVD法而形成活性層4之情況,經由調整III族原料氣體及氮素源氣體的供給量等之時,可形成所期望之組成的活性層(量子井層及障壁層)者。經由形成活性層於錯位密度低(具體而言係例如,108cm-2以下之)n型層上之時,可製造高性能之紫外發光二極體者。
(p型層)
p型層8係經由含有公知之p型摻雜劑原料而賦予p型之導電性的導電層。在公知之p型摻雜材料之中,摻雜Mg者為佳。
圖1所例示之紫外發光二極體1係具有3層所成之p型層8。對於為了將本發明之紫外發光二極體之製造作為容易,p型層8係由AlGaN單結晶及/或InGaN單結晶所成者為佳。圖1所例示之紫外發光二極體1係具有以p型AlX3Ga1-X3N層5、p型AlX4Ga1-X4N層6、p型InYGa1-YN層7的順序加以層積於活性層4上之3層構造所成之p型層8。
p型AlX3Ga1-X3N層5、及p型AlX4Ga1-X4N層6之Al組成係與n型層3同樣地,可因應所期望之發光峰值波長而在0.5≦X3≦1.0、0.2≦X4≦0.9之範圍作適宜決定者。其中,對於為了提高對於活性層4之電子的限制效果,X3及X4則各為上述範圍內,且為X4≦X3者為佳。另外,對於為了得到更高之輸出密度,又為X1≦X4≦X3者為佳。但X1係在構成上述所示之n型層3的n型AlX1Ga1-X1N層之Al組成比。
p型InYGa1-YN層7係為了降低與p型電極(p型電極層)10之接觸阻抗所設置的層。In組成比之Y係並無特別加以限定,但一般而言係0≦Y≦0.1。對於又降低電極之接觸阻抗,作為Y為0之p型GaN層7者為佳。
p型AlX3Ga1-X3N層5及p型AlX4Ga1-X4N層6的膜厚係並無特別加以限定,但各為5~50nm之範圍內者為佳。另外,p型InYGa1-YN層7的膜厚亦並無特別加以限定,但為5~200nm者為佳。另外,含於p型層8各 層之摻雜劑的量係從導電性的觀點,為1×1019~1×1020cm-3之範圍內者為佳。
如此之p型層8係可經由有機金屬氣相成長(MOCVD)法,分子束磊晶(MBE)法等之公知的結晶成長法,形成於活性層4上。其中,生產性高而加以廣泛使用於工業性之MOCVD法為佳。經由MOCVD法之p型層8的形成係例如,可與記載於國際公開2012/056928號小冊子(專利文獻2)之方法同樣加以進行者。以MOCVD法而形成p型層8之情況,經由調整III族原料氣體及氮素源氣體的供給量等之時,可形成所期望之組成的p型層者。此時,亦可呈滿足所期望之摻雜濃度地調整摻雜劑氣體流量者。經由調整III族原料氣體,氮素源氣體,摻雜劑原料氣體之供給量等之時,可形成所期望之組成的p型層者。並且,調整此等氣體的供給量,可形成具有多層構造,例如,p型AlX3Ga1-X3N層5、p型AlX4Ga1-X4N層6、及p型InYGa1-YN層7所成之多層構造的p型層8者。
(歐姆電極層(n型電極))
n型電極9係加以形成於n型層3上。通常,經由以下的方法而形成n型電極9於n型層3上。首先,製造具有以基板2、n型層3、活性層4、及p型層8的順序加以層積之層積構造的層積體。接著,根據經由蝕刻等而從p型層8側除去層積體之一部分而使n型層3的表面露出。 作為蝕刻方法係無特別限制地可採用公知的方法,例如,感應耦合電漿(ICP)蝕刻等之方法。並且,於使其露出之n型層3上,形成n型電極9。
n型電極9係可使用公知的n型歐姆電極材料及形成方法而形成者。n型歐姆電極材料係如為可降低與n型層3之接觸阻抗值的材料,並無特別加以限定。構成n型電極9之各層係可由真空蒸鍍法,濺鍍法等而形成。另外,為了使n型電極9與n型層3之接觸阻抗值降低,而在形成n型電極層9之後,在氬,氮素等之非活性氣體環境中進行退火者為佳。退火溫度係並無特別加以限制,但為700~1100℃者為佳。n型電極9係具體而言,例如,經由記載於國際公開2011/078252號小冊子(專利文獻3)之n型接觸電極的形成方法而可理想地加以形成者,而專利文獻3的內容係以參照放入於此。對於專利文獻3係揭示有包含Ti,及Al之n型歐姆電極材料及其形成方法。更詳細係對於專利文獻3,係揭示有於III族氮化物單結晶所成之n型半導體層上,形成n型接觸電極之方法,其中,包含:於該n型半導體層上,形成選自Ti,V及Ta而成的群之至少1種所成之金屬層而成之第一之電極金屬層之後,以800℃以上1200℃以下之溫度進行熱處理之工程,及於第一之電極金屬層上,形成含有功函數為4.0eV~4.8eV,且比阻抗為1.5×10-6Ω.cm~4.0×10-6Ω.cm之金屬所成之高導電性金屬層而成之第二之電極金屬層之後,以700℃以上1000℃以下的溫度進行熱處理之工程之 n型接觸電極的形成方法。在該方法中,作為構成第一之金屬電極層之金屬而使用Ti,且作為構成高導電性金屬層之金屬而使用Al者為佳,加上,第二之電極金屬層則具有包含:選自Ti、V及Ta所成的群之至少1種而成之接合金屬層(理想係Ti),功函數為4.0eV~4.8eV,且比阻抗為1.5×10-6Ω.cm~4.0×10-6Ω.cm之金屬所成之高導電性金屬層(理想係Al),以及Au及/或Pt所成之貴金屬層之多層構造,而在該多層構造中,接合金屬層係加以配置於最下層,貴金屬層係加以配置於較高導電性金屬層為上層者為佳。另外,n型電極(n型電極層)9之厚度係並無特別加以限定,如可適宜決定在降低退火後之接觸阻抗值之範圍而構成n型電極層9之各層的膜厚即可,但考慮n型電極層9之生產性等時,將總厚作為50~500nm者為佳。
本發明之紫外發光二極體係在25℃中,將驅動電流值作成150mA時之發光輸出密度為10W/cm2以上,驅動電壓值為10V以下。對於為了實現如此之發光輸出密度,及驅動電壓值,係以配設有n型電極9之部分的面積(電極面積(cm2)),除以n型電極9之固有接觸阻抗值(Ω.cm2)的值,即,以固有接觸阻抗值(Ω.cm2)/電極面積(cm2)所算出之n型電極阻抗為不足1.0Ω者為佳。然而,n型電極9之電極面積係指n型電極(n型電極層)9與n型層3所接觸之面積。當考慮電流-電壓特性時,n型電極阻抗係越小越佳,而為0.5Ω以下 者更佳,最佳為0.4Ω以下者。n型電極阻抗之下限值係理想為0,但經由加大電極面積之時,個別之紫外發光二極體的尺寸變大的結果,當考慮自一個基板之紫外發光二極體的取出數變少等之工業性的觀點時,為0.1Ω程度。
n型電極9之固有接觸阻抗值及電極面積係只要在n型電極阻抗值不足1.0Ω中,未特別加以限制,但為以下的範圍者為佳。具體而言,固有接觸阻抗值係為10-2Ω.cm2以下者為佳,而10-3Ω.cm2以下者更佳。固有接觸阻抗值之下限值係越低越佳,當考慮工業性的生產時,為10-7Ω.cm2。另外,電極面積係如配合n型電極阻抗而作適宜調整即可,而雖根據紫外發光二極體之大小,但通常,在0.5~0.0001cm2的範圍內。
在本發明之紫外發光二極體中,作為基板而採用上述之高品質之基板(即,錯位密度為106cm-2以下,紫外光的內部透過率為85%以上之AlN單結晶基板)之同時,將n型電極阻抗值作為不足1.0Ω者為佳。n型電極阻抗值之調整係可經由以下的方法而進行者。
固有接觸阻抗值係經由電極材料,成膜方法(包含退火處理等)等之電極形成條件而其值產生變化。因此,將電極面積作為一定,將電極形成條件作種種變更,於所得到之n型層上,形成n型電極。並且,預先調查在一定的電極面積之電極形成條件與固有接觸阻抗值之關係。又,在各電極形成條件中,從電極面積,和經由測定所得到之固有接觸阻抗值,算出n型電極阻抗值。並 且,在採用其一定之電極面積時,採用n型電極阻抗值則呈成為不足1.0Ω之電極形成條件,形成n型電極即可。
另外,亦可採用以下的方法。首先,將電極形成條件作為一定,將電極面積作種種變更,於所得到之n型層上,形成n型電極。並且,預先調查在一定的電極形成條件之電極面積,和從固有接觸阻抗值所算出之n型電極阻抗值之關係。將其結果為基準,在採用其一定之電極形成條件時,決定n型電極阻抗值則呈成為不足1.0Ω之電極面積,而形成其電極面積之n型電極即可。
圖7係顯示在後述之實施例1所製作之紫外發光二極體中,測定n型電極之固有接觸阻抗值,從此結果所得到之n型電極面積與n型電極阻抗值之關係的圖。從圖7,在一定之電極形成條件下,可決定n型電極阻抗值成為不足1.0Ω之n型電極面積者。
在實施例1以外之實施例中,亦進行同樣的實驗,依據n型電極面積與n型電極阻抗值之關係而決定n型電極阻抗值則呈成為不足1.0Ω之n型電極面積,製作紫外發光二極體。
從圖7係n型電極阻抗值則如為不足1.0Ω,了解到可減小n型電極面積對於n型電極阻抗值帶來的影響者。從此結果,認為經由將n型電極阻抗值作為不足1.0Ω之時,可效率佳地製造驅動電壓值低之紫外發光二極體。
然而,固有接觸阻抗值係可經由公知的TLM(Transmission Line Model)法而進行測定者。在一個之 電極面積與一個之電極形成條件的組合之固有接觸阻抗值之經由TLM法的測定,係經由所賦予之電極形成條件,可將例如,如圖6所示之電極圖案100,形成於n型層3上而進行者。電極圖案100係具有:具有所賦予之電極面積之同一面積的圓形電極101a,101b,101c,和對於圓形電極101a,101b,101c而言,各構成同心圓,且具有相互直徑不同之開口部102a,102b,102c之周圍電極103,對於夾持於周圍電極103與各圓形電極101a,101b,101c之間的範圍,係露出有n型層3。測定各圓形電極101a,101b,101c與周圍電極103之間的阻抗值,經由依據所測定之各阻抗值及各圓形電極101a,101b,101c與周圍電極103之間的距離,依照TLM法而進行計算之時,可求得在所賦予之電極面積與電極形成條件的組合之固有接觸阻抗值者。
採用如以上之方法,經由將n型電極阻抗值作為不足1.0Ω之時,可做為更高性能之紫外發光二極體者。
n型電極9之配置係並無特別加以限定,但n型電極9與p型電極10之間的距離係0.5~10μm者為佳,又,呈加以提高在紫外發光二極體1之驅動時之電流路徑的均一性地,n型電極9則略均等地圍繞p型電極10之周圍之形狀者為佳。
(歐姆電極層(p型電極))
p型電極(p型電極層)10係可使用公知的p型歐姆電極材料。具體而言,如為可降低與p型層8(在圖1中係p型InYGa1-YN層7)接觸阻抗值的材料,並無特別加以限定,但例如,可理想採用包含記載於專利第3499385號公報(專利文獻4)之Ni及Au的電極材料者。專利文獻4之內容係以參照放入於此。
此等之電極材料的層係可經由真空蒸鍍法,濺鍍法等而加以形成。對於形成p型電極之後,係為了使接觸阻抗值降低,而在氮素,氧等之環境中進行退火處理者為佳。退火溫度係並無特別加以限制,但一般而言為400~700℃程度為佳。例如,對於專利文獻4係揭示有在p型III族氮化物所成之半導體的電極之形成方法中,於該半導體之表面上,依序形成鎳(Ni)電極層和金(Au)電極層之後,在O2氣體,和選自N2、H2、He、Ne、Ar、Kr之1種以上之氣體的混合氣體環境下,進行熱處理(理想係以450℃~650℃之熱處理)之方法,將對於O2氣體之混合氣體全體之比率做為0.01~100%,經由該熱處理,根據金(Au)電極層之構成元素擴散及浸透於p型III族氮化物半導體之時,相對性地形成有鎳(Ni)電極層於金(Au)電極層上之p型III族氮化物半導體之電極形成方法。另外,雖無特別加以限制,但p型電極層10之厚度係5~300nm為佳。
亦可由調整p型電極10之面積而調整發光輸出密度者。然而,p型電極10之電極面積係指p型電極 (p型電極層)10與p型層8所接觸的面積。在本發明之紫外發光二極體中,p型電極之面積係對應於活性層之中貢獻於發光之部分的面積。對於驅動電流值為大之150mA之情況,係當p型電極面積過小時,輸出密度則飽和,驅動電壓則上升,加上有壽命變短之傾向。另一方面,當p型電極面積過大時,發光輸出密度低下之同時,LED晶片尺寸則做為大型化之故而並不理想。因而,p型電極面積係0.0001~0.01cm2為佳,而0.0005~0.005cm2為更佳。
本發明之紫外發光二極體係可依照如以上之層構造,製造方法而製造。接著,對於上述以外之特徵的部分加以說明。
(紫外發光二極體之其他的特徵)
在本發明之紫外發光二極體1中,與層積有基板2之n型層3的面相反側的面,則成為放射光的發光主面。並且,對於此發光主面係層積折射率為1.0~2.4之材質所成的層亦可。經由形成如此之材質所成的層之時,可效率佳地取出光。作為折射率為1.0~2.4之材質,係並無特別加以限制,除Al2O3、SiO2、CaF、MgF等之無機材料之其他,而可例示H2O等之液體材料。
另外,對於為了效率佳地取出光,係形成凹凸構造於發光主面者為佳。凹凸構造係經由公知的方法,例如,可經由蝕刻基板之方法等而形成於發光主面者。凹凸構造係如對應於發光峰值波長而作適宜調整即可,但形 成高度與寬度則各位於100~1000nm之範圍的凸部者為佳。
然而,於具有凹凸構造之發光主面上,經由形成折射率成為1.0~2.4之材質所成的層之時,亦可更一層效率佳地取出光者。
如根據本發明,可提高發光峰值波長則位於比較短之範圍之紫外發光二極體的性能者。具體而言,發光峰值波長則可提高最佳係220~280nm,又更佳係220~265nm,特佳係220~245nm之紫外發光二極體的性能者。特別是使用高品質之基板,經由將n型電極阻抗值作為上述特定的值以下之時,亦可得到例如,發光峰值波長為220~245nm,外部量子效率為0.3%以上,將驅動電流作為150mA,在25℃連續運轉時,發光輸出值至成為初期發光輸出值的70%為止之壽命時間呈成為300小時以上之紫外發光二極體。
(紫外線光源)
有關本發明之第2形態的紫外線光源係複數搭載有關本發明之第1形態的紫外發光二極體(紫外LED)之紫外線光源。在本發明之紫外線光源中,所有的紫外LED之發光峰值波長則存在於220~350nm之範圍內。也就是,經由搭載發光峰值波長不同之複數的紫外LED之時,本發明之紫外線光源係可使用於分光光度計用光源,或紫外線硬化性樹脂的硬化用光源等。於以下,對於有關作為紫 外可視分光光度計之光源所使用之情況的一實施形態之紫外線光源加以說明。然而,在後述之實施例7所製作之紫外LED的發光光譜圖,示於圖2。在本發明中,發光峰值強度,發光峰值波長,發光峰值之半值寬度係圖2所示的點或範圍的值。
本發明之紫外線光源係搭載具有不同之發光峰值波長於220~350nm之範圍之複數的紫外發光二極體,該複數之紫外發光二極體之中,對於發光峰值強度成為最大之紫外發光二極體之發光峰值強度(A)而言,發光峰值強度成為最小之紫外發光二極體之發光峰值強度(B)的比(B/A)則成為0.2以上者為特徵。對於使用以往之重氫燈之情況,係只得到發光強度為低,且該發光強度的波長依存性高之發光光譜時,本發明之紫外線光源係經由搭載具有不同之發光峰值波長之複數的紫外發光二極體之時,可得到一樣具有高發光強度之發光光譜者。另外,所使用之紫外發光二極體之發光峰值波長的範圍係理想為220nm以上300nm以下、更理想為220nm以上280nm以下。在300nm以下、特別是280nm以下之範圍,並存高發光強度且低驅動電壓之紫外發光二極體係經由本發明而實現者。經由使用具有發光峰值波長於如此之短波長範圍之紫外發光二極體之時,在短波長範圍中,亦認為成為呈可以與長波長範圍同樣之測定精確度進行分析者。
在本發明之紫外線光源中,係複數之LED之 中,必須將對於發光峰值強度成為最大之紫外發光二極體之發光峰值強度(A)而言,發光峰值強度成為最小之紫外發光二極體之發光峰值強度(B)的比(B/A)作為0.2以上者。然而,此比(B/A)係發光峰值強度成為最大之1個LED之發光峰值強度(A)與發光峰值強度成為最小之1個紫外發光二極體之發光峰值強度(B)的比。
對於該比(B/A)不足0.2之情況,係將發光光譜之發光強度作為一樣者則為困難之故,而並不理想。為了將發光光譜之發光強度作為一樣,而亦可複數搭載發光強度小之紫外發光二極體,但該比(B/A)不足0.2時,為此必須搭載多數之紫外LED。在本發明之紫外線光源中,該比(B/A)為0.2以上之故,在為了得到一樣的發光光譜而複數搭載發光強度小之紫外發光二極體之情況,發光強度小之紫外發光二極體的數量係有更少數量即足夠。另外,該比(B/A)不足0.2時,由將發光強度小之紫外LED,配置於試料附近,而將發光強度大之紫外發光二極體,配置於試料之遠處者,亦可將照射強度作為一樣,但如此之配置係將裝置作為複雜之故而並不理想。如根據本發明之紫外線光源,該比(B/A)成為0.2以上之故,即使未改變試料與光源之距離,亦可得到一樣之發光光譜,可單純化裝置構造。因將紫外發光二極體之搭載數量作為更少,又將裝置構造作為更單純化之故,上述比(B/A)係理想為0.3以上、更理想為0.5以上。然而,該比(B/A)之上限值係1.0。
並且,搭載於本發明之紫外線光源的所有紫外發光二極體係溫度25℃,在驅動電流值150mA之發光輸出密度為10W/cm2以上,驅動電壓值為10V以下。經由使用如此之紫外發光二極體之時,在以往所使用之光源中,比較於可視光而紫外光之發光強度為低之課題,可經由更少之搭載數的紫外發光二極體而解決。然而,紫外發光二極體之發光峰值強度(在功率頻譜之峰值高度)係至少為0.5mW/nm以上者為佳。紫外發光二極體之發光峰值強度的上限值係並無特別加以限制,但當考慮通常之工業性的生產時為50mW/nm。本發明之紫外線光源係限定複數存在之紫外發光二極體之各發光峰值強度的比。雖為當然的情況,但此發光峰值強度的比係成為與在發光峰值波長之各發光輸出密度的比相同的值。
(對於紫外線光源之發光分佈)
本發明之紫外線光源係具有上述特性之故,而發光強度分佈的調整則成為容易。因此,可作為顯示具有連續之發光強度範圍之發光光譜(參照圖3,圖4)的紫外線光源,或具有獨立之複數之發光峰值(發光光譜)的發光強度分佈之發光光譜(參照圖5)的紫外線光源者。對於此等加以說明。
(具有連續之發光強度範圍之發光光譜的紫外線光源)
本發明之紫外線光源係在一實施形態中,具有連續於 220~350nm之任意波長範圍之範圍之發光光譜之紫外線光源,在該範圍之從具有最短波長之發光峰值波長之紫外發光二極體的發光峰值波長至具有最長波長之發光峰值波長之紫外發光二極體的發光峰值波長為止之範圍中,可作為對於最大之發光強度(C)而言之最小之發光強度(D)的比(D/C)為0.5以上之紫外線光源者。在自以往,作為紫外線光源所使用之重氫燈中,該比(D/C)係在最小為0.1程度之故,經由將該比(D/C)作為0.5以上之時,經由波長之發光強度差變小而為有利。
另外,經由調整所使用之紫外LED之發光強度及/或發光峰值波長之時,亦可將最小之發光強度(D)作為最大之發光強度(C)之80%以上(將(D/C)的比作為0.8以上)者。然而,雖並無特別加以限定,但最佳的比(D/C)係1.0,為該比(D/C)之上限值。
對於本發明之紫外線光源則具有連續發光光譜之故,將紫外線光源所具有之複數之紫外發光二極體之鄰接之發光峰值波長(λ1)與發光峰值波長(λ2)的差(|λ1-λ2|),作為複數之紫外發光二極體之中,發光峰值之半值寬度成為最小之紫外發光二極體之該半值寬度以下者為佳。在此,「半值寬度」係意味半值全寬度。通常,紫外發光二極體係具有發光光譜之半值寬度為5~20nm之單一峰值。因此,經由將發光峰值波長之鄰接之2個紫外發光二極體之發光峰值波長與發光峰值波長的差之絕對值,作為所搭載之複數之紫外發光二極體之中,具有最小 之半值寬度之紫外發光二極體之半值寬度以下之時,可容易地得到具有連續範圍的發光強度分佈者。
另外,經由具有複數個使用發光峰值波長均等之紫外發光二極體之時,在從該範圍之具有最短波長之發光峰值波長之紫外發光二極體的發光峰值波長至具有最長波長之發光峰值波長之紫外發光二極體的發光峰值波長為止之範圍中,作為對於最大之發光強度(C)而言之最小之發光強度(D)之比率為50%以上(比(D/C)為0.5以上)之紫外線光源者則成為容易。另外,經由調整所使用之紫外發光二極體之發光強度及/或發光峰值波長之時,亦可將最小之發光強度(D)作為最大之發光強度(C)之80%以上(將比(D/C)作為0.8以上)者。然而,雖並無特別加以限定,但最佳的比(D/C)係1.0,為該比之上限值。另外,發光峰值強度成為最大之紫外發光二極體的個數係為1個者為佳。
具有如此之連續的範圍之紫外線光源,係可作為分光光度計用紫外線光源而理想地使用。
(具有獨立之發光光譜之紫外線光源)
本發明之紫外線光源係在另一實施形態中,紫外線光源之發光光譜則可作為具有在220~350nm之範圍,各紫外發光二極體之發光光譜則未重疊而獨立存在之發光強度分佈之紫外線光源者。此情況,在所使用之紫外發光二極體中,如選擇使用未重疊有發光光譜的範圍者即可,又如 因應用途而選擇發光波長即可。
對於作為具有如此之獨立之發光光譜之紫外線光源的情況,係經由複數個使用發光峰值波長均等之紫外發光二極體之時,在該紫外線光源之獨立之發光光譜的發光峰值波長中,可將對於最大之發光強度(C)而言之最小之發光強度(D)的比(D/C)作為0.5%以上者。經由該比(D/C)為0.5以上之時,在所期望之獨立的發光波長之發光強度的差則變小之故,例如,對於作為紫外光硬化性樹脂的硬化用光源而使用之情況,係成為可同時硬化具有不同硬化波長之複數的紫外光硬化性樹脂,又成為可降低硬化不勻者。另外,雖並無特別加以限定,但最佳的比(D/C)係1.0,為該比之上限值。然而,發光峰值強度成為最大之發光二極體的個數係為1個者為佳。
(紫外線光源之製造方法)
對於有關本發明之第2形態之紫外線光源的製造方法加以說明。
本發明之紫外線光源,係可將發光峰值波長則存在於220~350nm範圍之複數之紫外發光二極體,作為構件而使用製造。複數之紫外發光二極體內,對於發光峰值強度成為最大之紫外發光二極體的發光峰值強度(A)而言,發光峰值強度成為最小之紫外發光二極體的發光峰值強度(B)的比(B/A)則呈成為0.2以上地,經由組合使用發光峰值波長不同之紫外發光二極體之時,可製造本發明之 紫外線光源。
另外,對於紫外發光二極體或搭載紫外發光二極體之紫外線光源,使用蓋體時,使用在220~350nm之波長範圍的透過性高者為佳。經由此,成為可未衰減紫外發光二極體之發光而照射至試料者。
(搭載於紫外線光源之紫外發光二極體的電路)
搭載於紫外線光源之複數的紫外發光二極體係對於一個電源而言,串聯地連接亦可,而亦可對於一個電源而言,並聯地連接。另外,作為組合串聯電路與並聯電路之複合電路亦可,而亦可使用複數之電源,於各複數之紫外發光二極體,設置個別的電源,以單獨控制各個紫外發光二極體。串聯地連接複數之紫外發光二極體之情況,係有必要將電源電壓,作為連接於電路之所有的紫外發光二極體之驅動電壓值的和以上。本發明之紫外線光源係因具有有關本發明之第1形態之紫外發光二極體之故,因該紫外發光二極體之驅動電壓值為低而引起,可容易地抑制電源電壓者。對於並聯地連接複數之紫外發光二極體之情況,係與紫外發光二極體串聯地連接阻抗者,可防止流動有過電流於阻抗小之紫外發光二極體者。或者,例如,比較於複數之紫外發光二極體之中,其他之紫外發光二極體,對於發光峰值強度小之紫外發光二極體,係經由比較於其他之紫外發光二極體而流動大的電流之時,具有發光強度差小之發光光譜之紫外線光源的製造則成為容易。特別是經 由將有關本發明之第1形態之紫外發光二極體,作為構件而使用之時,可對於該紫外發光二極體,流動比較大之電流之故,具有發光強度差小之發光光譜之紫外線光源的製造則成為容易。另外,對於使用複數之電源而各單獨控制各個紫外發光二極體之情況,係流動於各紫外發光二極體之電流的控制則成為容易。如以上,可結合所期望的形態而組裝電路者。
[實施例]
以下,舉出實施例及比較例而對於本發明之紫外發光二極體及紫外線光源加以做詳細說明,但本發明之紫外發光二極體及紫外線光源係並不限定於此等實施例者。
<實施例1> (基板:基板之準備)
為了製作本發明之紫外發光二極體的AlN單結晶基板係經由記載於Applied Physics Express 5(2012)122101(非專利文獻3)之方法而製作。具體而言,首先,於經由物理氣相輸送(PVT)法而加以製作之直徑25mm之AlN種基板上,經由氫化物氣相磊晶(HVPE)法,以250μm之厚度形成AlN厚膜,進行AlN厚膜成長面之化學機械(CMP)研磨。如此之HVPE法,將AlN厚膜/AlN種基板之層積體(成長用基板)作為紫外發光二極體之成 長用基板而使用。然而,於下述加以詳述,但AlN種基板係最終從此成長用基板除去。以完全相同的條件製作7片此成長用基板。
將1個成長用基板,使用於分析用之故,除去AlN種基板部分。測定所得到之AlN單結晶基板(厚度170μm、HVPE法AlN厚膜部分)之X射線搖擺曲線之半值寬度。具體而言,經由高分解能X射線繞射裝置(日本spectris公司PANalytical事業部製X’Pert),而以加速電壓45kV、加速電流40mA的條件,進行AlN單結晶基板之(002)及(101)面的X射線搖擺曲線測定。X射線搖擺曲線之半值寬度係均為30arcsec以下。另外,在另一方之6個成長用基板中,以同樣的條件進行研磨之AlN厚膜部分之(002)及(101)面的X射線搖擺曲線測定。其結果,X射線搖擺曲線之半值寬度係均為30arcsec以下。從此情況,除了AlN種基板之AlN單結晶基板,和成長用基板之AlN厚膜部分係可確認為具有相同結晶性之同一AlN單結晶者。
經由紫外可視分光光度計(日本島津製作所製UV-2550)而測定此分析用之AlN單結晶基板之內部透過率之結果,在265nm之內部透過率係為95%,在220nm~350nm之範圍內之內部透過率係為85%以上。另外,經由蝕孔觀察而測定之錯位密度係2×105cm-2
之後,將6片之成長用基板,切斷為7mm角程度之正方形形狀(準備7mm角程度之24片正方形形狀 的成長用基板)。
(n型層、活性層、p型層之形成)
於切斷後一個之成長用基板之AlN厚膜上,經由MOCVD法,以1080℃、依序層積n型Al0.65Ga0.35N層(厚度1μm:n型層)、3重量子井層(Al0.40Ga0.6N(厚度4nm:量子井層)/Al0.55Ga0.45N層(厚度10nm:障壁層):活性層)、p型AlN層(厚度50nm:p型層)、p型Al0.75Ga0.25N(厚度50nm:p型層)、p型GaN層(厚度20nm:p型層),製作紫外發光用層積體。不純物之摻雜劑係n型層中之Si濃度則呈成為2×1019cm-3、p型層中之Mg濃度則呈成為3×1019cm-3地,控制作為摻雜劑而使用之四甲基矽烷及雙環戊二烯鎂流量。
(歐姆電極層之形成:n型電極之形成方法)
接著,經由ICP蝕刻裝置,至露出有n型Al0.65Ga0.35N層(n型層)為止而蝕刻紫外發光用層積體之一部份(自p型層側的一部份)。於該露出表面,經由真空蒸鍍法,而形成Ti層(厚度20nm)/Al層(厚度100nm)/Ti層(厚度20nm)/Au層(厚度50nm)所成之n型電極。在實施例1之形態中,面積則呈成為0.002cm2地,形成n型電極(n型電極層)。之後,在氮素環境中,1分鐘,950℃之條件進行熱處理。
(歐姆電極層之形成:p型電極之形成方法)
接著,於p型GaN層上,經由真空蒸鍍法而形成Ni層(厚度20nm)/Au層(厚度50nm)所成之p型電極之後,在氧環境中,5分鐘,500℃之條件進行熱處理。然而,在本實施例之p型電極之面積係0.001cm2
(AlN種基板之除去:紫外發光二極體晶圓之製造)
接著,根據經由機械研磨而除去AlN種基板部分之時,而使紫外發光二極體晶圓完成。研磨後之HVPE法AlN厚膜層之殘留厚度係170μm。
(紫外發光二極體,及其物性評價)
之後,經由將紫外發光二極體晶圓,切斷成0.8mm角程度之正方形形狀之時而製作紫外發光二極體晶片,將該紫外發光二極體晶片,安裝於多結晶AlN載體,而完成紫外發光二極體。所製作之紫外發光二極體之發光輸出密度及發光峰值波長係使用2英吋積分球(日本SphereOptics公司製zenithcoating)、及多通道分光器(日本Ocean Optics製USB4000)而測定。紫外發光二極體之發光峰值波長係280nm。將發光輸出密度(W/cm2)、驅動電壓值(V)、外部量子效率(EQE)(%)、n型電極之固有接觸阻抗值(Ω.cm2)、n型電極阻抗值(Ω),彙整於表1。然而,此等的值係以驅動電流值150mA、25℃而測定的值。然而,對於表1亦顯示以驅動電流值 100mA、25℃而測定之發光輸出密度(W/cm2)、驅動電壓值(V)。
另外,在25℃、驅動電流值150mA之條件下,進行連續運轉動作試驗,從至試驗開始後300h為止之輸出下降特性估計之元件壽命(輸出定義為成為初期值之70%之時間(L70)),顯示於表1。在此實施例1中,係為3.8×1000小時(h)。另外,將發光峰值波長之半值寬度、發光峰值強度、n型電極面積、p型電極面積、及凹凸構造之有無,合併彙整於表1。
<實施例2>
與實施例1同樣作為而製作紫外發光二極體晶圓。經由機械研磨而除去AlN種基板部分之後,將機械研磨面浸漬於氫氧化鉀水溶液,製作經由濕蝕刻之凹凸構造(高度與寬度則各具有50~1000nm程度尺寸之任意的凸部之凹凸構造)以外,係與實施例1同樣作為而完成紫外發光二極體,進行同樣之評估。發光峰值波長係279nm。將所得到之結果,示於表1。另外,將發光峰值波長之半值寬度、發光峰值強度、n型電極面積、p型電極面積、及凹凸構造之有無,合併彙整於表1。
<實施例3>
將形成於切斷後之一個成長用基板之AlN厚膜上的3重量子井層(活性層),變更為(Al0.50Ga0.5N(厚度 4nm:量子井層)/Al0.55Ga0.45N層(厚度10nm:障壁層))以外係與實施例1同樣作為,完成紫外發光二極體,進行同樣之評估。發光峰值波長係260nm。將所得到之結果,示於表1。另外,將發光峰值波長之半值寬度、發光峰值強度、n型電極面積、p型電極面積、及凹凸構造之有無,合併彙整於表1。
<實施例4>
將形成於切斷後之一個成長用基板之AlN厚膜上的3重量子井層(活性層),變更為(Al0.50Ga0.5N(厚度4nm:量子井層)/Al0.55Ga0.45N層(厚度10nm:障壁層))以外係與實施例2同樣作為,完成紫外發光二極體,進行同樣之評估。發光峰值波長係260nm。將所得到之結果,示於表1。另外,將發光峰值波長之半值寬度、發光峰值強度、n型電極面積、p型電極面積、及凹凸構造之有無,合併彙整於表1。
<實施例5>
於切斷後之一個成長用基板之AlN厚膜上,作為n型層而形成n型Al0.8Ga0.2N層(厚度1μm)、作為活性層而形成3重量子井層(Al0.68Ga0.32N(厚度4nm:量子井層)/Al0.75Ga0.25N層(厚度10nm:障壁層))、作為p型層而形成p型AlN層(厚度50nm)、p型Al0.85Ga0.15N層(厚度50nm)、及p型GaN層(厚度20nm),而將n 型電極面積變更為0.005cm2以外,係與實施例1相同作為,完成紫外發光二極體,進行同樣之評估。發光峰值波長係240nm。將所得到之結果,示於表1。另外,將發光峰值波長之半值寬度、發光峰值強度、n型電極面積、p型電極面積、及凹凸構造之有無,合併彙整於表1。
<實施例6>
於切斷後之一個成長用基板之AlN厚膜上,作為n型層而形成n型Al0.8Ga0.2N層(厚度1μm)、作為活性層而形成3重量子井層(Al0.68Ga0.32N(厚度4nm:量子井層)/Al0.75Ga0.25N層(厚度10nm:障壁層))、作為p型層而形成p型AlN層(厚度50nm)、p型Al0.85Ga0.15N層(厚度50nm)、及p型GaN層(厚度20nm),而將n型電極面積作為0.005cm2以外,係與實施例2相同作為,完成紫外發光二極體,進行同樣之評估。發光峰值波長係239nm。將所得到之結果,示於表1。另外,將發光峰值波長之半值寬度、發光峰值強度、n型電極面積、p型電極面積、及凹凸構造之有無,合併彙整於表1。
<比較例1>
將n型電極(層)之電極面積,變更為0.0008cm2以外係與實施例1相同作為,完成紫外發光二極體,進行同樣之評估。發光峰值波長係282nm。將所得到之結果,示於表1。另外,將發光峰值波長之半值寬度、發光峰值強 度、n型電極面積、p型電極面積、及凹凸構造之有無,合併彙整於表1。
<比較例2>
將n型電極(層)之電極面積,變更為0.0008cm2以外係與實施例3相同作為,完成紫外發光二極體,進行同樣之評估。發光峰值波長係260nm。將所得到之結果,示於表1。另外,將發光峰值波長之半值寬度、發光峰值強度、n型電極面積、p型電極面積、及凹凸構造之有無,合併彙整於表1。
<比較例3>
將n型電極(層)之電極面積,變更為0.0008cm2以外係與實施例5相同作為,完成紫外發光二極體,進行同樣之評估。發光峰值波長係241nm。將所得到之結果,示於表1。另外,將發光峰值波長之半值寬度、發光峰值強度、n型電極面積、p型電極面積、及凹凸構造之有無,合併彙整於表1。
<實施例7>
將形成於切斷後之成長用基板之AlN厚膜上之元件層,變更為n型Al0.70Ga0.30N層(厚度1μm:n型層)、3重量子井層(Al0.50Ga0.50N層(厚度4nm:量子井層)/Al0.65Ga0.35N層(厚度10nm:障壁層):活性層)、p型AlN層(厚度50nm:p型層)、p型Al0.80Ga0.20N層(厚度50nm:p型層)、及p型GaN層(厚度20nm:p型層),而將p型電極的面積變更為0.0008cm2以外,係與實施例1相同作為,完成紫外發光二極體,進行同樣之評估。n型電極阻抗值係0.45Ω。紫外發光二極體之發光峰值波長係265nm。在製造例7所製造之紫外發光二極體之發光光譜,示於圖2。將所得到之結果,示於表2。另外,將發光峰值波長之半值寬度、發光峰值強度、n型電極面積、p型電極面積、及凹凸構造之有無,合併彙整於表2。
<實施例8>
將形成於切斷後之成長用基板之AlN厚膜上之元件層,變更為n型Al0.70Ga0.30N層(厚度1μm:n型層)、3重量子井層(Al0.45Ga0.55N層(厚度4nm:量子井層)/Al0.60Ga0.40N層(厚度10nm:障壁層):活性層)、p型AlN層(厚度50nm:p型層)、p型Al0.80Ga0.20N層(厚度50nm:p型層)、及p型GaN層(厚度20nm:p型層)以外,係與實施例7相同作為,完成紫外發光二極體 ,進行同樣之評估。發光峰值波長係273nm。將所得到之結果,示於表2。另外,將發光峰值波長之半值寬度、發光峰值強度、n型電極面積、p型電極面積、及凹凸構造之有無,合併彙整於表2。
<實施例9>
將形成於切斷後之成長用基板之AlN厚膜上之元件層,變更為n型Al0.65Ga0.35N層(厚度1μm:n型層)、3重量子井層(Al0.40Ga0.60N層(厚度4nm:量子井層)/Al0.55Ga0.45N層(厚度10nm:障壁層):活性層)、p型AlN層(厚度50nm:p型層)、p型Al0.75Ga0.25N層(厚度50nm:p型層)、及p型GaN層(厚度20nm:p型層)以外,係與實施例7相同作為,完成紫外發光二極體,進行同樣之評估。發光峰值波長係280nm。將所得到之結果,示於表2。另外,將發光峰值波長之半值寬度、發光峰值強度、n型電極面積、p型電極面積、及凹凸構造之有無,合併彙整於表2。
<實施例10>
將形成於切斷後之成長用基板之AlN厚膜上之元件層,變更為n型Al0.65Ga0.35N層(厚度1μm:n型層)、3重量子井層(Al0.35Ga0.65N層(厚度4nm:量子井層)/Al0.50Ga0.50N層(厚度10nm:障壁層):活性層)、p型AlN層(厚度50nm:p型層)、p型Al0.75Ga0.25N層( 厚度50nm:p型層)、及p型GaN層(20nm:p型層)以外,係與實施例7相同作為,完成紫外發光二極體,進行同樣之評估。發光峰值波長係288nm。將所得到之結果,示於表2。另外,將發光峰值波長之半值寬度、發光峰值強度、n型電極面積、p型電極面積、及凹凸構造之有無,合併彙整於表2。
<實施例11>
將形成於切斷後之成長用基板之AlN厚膜上之元件層,變更為n型Al0.65Ga0.35N層(厚度lμm:n型層)、3重量子井層(Al0.30Ga0.70N層(厚度4nm:量子井層)/Al0.45Ga0.55N層(厚度10nm:障壁層):活性層)、p型AlN層(厚度50nm:p型層)、p型Al0.75Ga0.25N層(厚度50nm:p型層)、及p型GaN層(20nm:p型層)以外,係與實施例7相同作為,完成紫外發光二極體,進行同樣之評估。發光峰值波長係297nm。將所得到之結果,示於表2。另外,將發光峰值波長之半值寬度、發光峰值強度、n型電極面積、p型電極面積、及凹凸構造之有無,合併彙整於表2。
<實施例12>
將形成於切斷後之成長用基板之AlN厚膜上之元件層,變更為n型Al0.80Ga0.20N層(厚度1μm:n型層)、3重量子井層(Al0.65Ga0.35N層(厚度4nm:量子井層) /Al0.75Ga0.25N層(厚度10nm:障壁層):活性層)、p型AlN層(厚度50nm:p型層)、p型Al0.85Ga0.15N(厚度50nm:p型層)、及p型GaN層(厚度20nm:p型層),而將p型電極的面積變更為0.0008cm2以外,係與實施例2相同作為,完成紫外發光二極體,進行同樣之評估。發光峰值波長係245nm。將所得到之結果,示於表2。另外,將發光峰值波長之半值寬度、發光峰值強度、n型電極面積、p型電極面積、及凹凸構造之有無,合併彙整於表2。
<實施例13>
將形成於切斷後之成長用基板之AlN厚膜上之元件層,變更為n型Al0.80Ga0.20N層(厚度1μm:n型層)、3重量子井層(Al0.60Ga0.40N層(厚度4nm:量子井層)/Al0.75Ga0.25N層(厚度10nm:障壁層):活性層)、p型AlN層(厚度50nm:p型層)、p型Al0.85Ga0.15N層(厚度50nm:p型層)、及p型GaN層(厚度20nm:p型層)以外,係與實施例7相同作為,完成紫外發光二極體,進行同樣之評估。發光峰值波長係251nm。將所得到之結果,示於表2。另外,將發光峰值波長之半值寬度、發光峰值強度、n型電極面積、p型電極面積、及凹凸構造之有無,合併彙整於表2。
<實施例14>
將形成於切斷後之成長用基板之AlN厚膜上之元件層,變更為n型Al0.75Ga0.25N層(厚度1μm:n型層)、3重量子井層(Al0.57Ga0.43N層(厚度4nm:量子井層)/Al0.70Ga0.30N層(厚度10nm:障壁層):活性層)、p型AlN層(厚度50nm:p型層)、p型Al0.85Ga0.15N(厚度50nm:p型層)、及p型GaN層(厚度20nm:p型層)以外,係與實施例7相同作為,完成紫外發光二極體,進行同樣之評估。發光峰值波長係256nm。將所得到之結果,示於表2。另外,將發光峰值波長之半值寬度、發光峰值強度、n型電極面積、p型電極面積、及凹凸構造之有無,合併彙整於表2。
<實施例15>
將形成於切斷後之成長用基板之AlN厚膜上之元件層,變更為n型Al0.75Ga0.25N層(厚度1μm:n型層)、3重量子井層(Al0.53Ga0.47N層(厚度4nm:量子井層)/Al0.68Ga0.32N層(厚度10nm:障壁層):活性層)、p型AlN層(厚度50nm:p型層)、p型Al0.80Ga0.20N(厚度50nm:p型層)、及p型GaN層(厚度20nm:p型層)以外,係與實施例7相同作為,完成紫外發光二極體,進行同樣之評估。發光峰值波長係261nm。將所得到之結果,示於表2。另外,將發光峰值波長之半值寬度、發光峰值強度、n型電極面積、p型電極面積、及凹凸構造之有無,合併彙整於表2。
<實施例16>
將p型電極層之面積變更為0.0003cm2,而將n型電極面積變更為0.003cm2以外係與實施例1同樣作為,完成紫外發光二極體,進行同樣之評估。發光峰值波長係280nm。將所得到之結果,示於表3。另外,將發光峰值波長之半值寬度、發光峰值強度、n型電極面積、p型電極面積、及凹凸構造之有無,合併彙整於表3。
<實施例17>
將p型電極層之面積,變更為0.002cm2以外係與實施例1相同作為,完成紫外發光二極體,進行同樣之評估。發光峰值波長係281nm。將所得到之結果,示於表3。另外,將發光峰值波長之半值寬度、發光峰值強度、n型電極面積、p型電極面積、及凹凸構造之有無,合併彙整於表3。
<比較例4>
將p型電極層之面積變更為0.0003cm2,而將n型電極面積變更為0.0008cm2以外係與實施例1同樣作為,完成紫外發光二極體,進行同樣之評估。發光峰值波長係281nm。將所得到之結果,示於表3。另外,將發光峰值波長之半值寬度、發光峰值強度、n型電極面積、p型電極面積、及凹凸構造之有無,合併彙整於表3。
<實施例18>
將在實施例7~11所製造之紫外發光二極體,各作為個別的電路,於各自,連接最大輸出電壓100V之直流安定化電源。紫外發光二極體係呈使用帕耳帖元件而元件溫度為25℃成為一定地加以控制。將以直流150mA進行定電流驅動時之發光光譜,示於圖3。所使用之紫外發光二極體之中,對於發光峰值強度成為最大之紫外發光二極體(在實施例11所製造之紫外發光二極體)之發光峰值強度((A):2.5mW/nm)而言,發光峰值強度成為最小之紫外發光二極體(在實施例9所製造之紫外發光二極體)之發光峰值強度((B):1.9mW/nm)的比(B/A)係 0.76。並且,在圖3之發光光譜中,在從具有最短波長之發光峰值波長之紫外發光二極體(在實施例7所製造之紫外發光二極體)之發光峰值波長(265nm)至具有最長波長之發光峰值波長之紫外發光二極體(在實施例11所製造之紫外發光二極體)之發光峰值波長(297nm)為止之範圍中,對於最大之發光強度((C):3.06mW/nm、276nm)而言之最小之發光強度((D):2.47mW/nm、265nm)的比(D/C)係0.81。另外,鄰接之發光峰值波長與發光峰值波長的差(|λ1-λ2|)係發光峰值波長之半值寬度成為最小之紫外發光二極體(在實施例11所製造之紫外發光二極體)之該半值寬度(9nm)以下。
<實施例19>
將在實施例12所製造之發光二極體2個,在實施例13所製造之發光二極體2個,在實施例14所製造之發光二極體1個,及在實施例15所製造之發光二極體1個,各作為個別之電路,而於各自,連接最大輸出電壓100V之直流安定化電源。紫外發光二極體係呈使用帕耳帖元件而元件溫度為25℃成為一定地加以控制。將以直流150mA進行定電流驅動時之發光光譜,示於圖4。所使用之紫外發光二極體之中,對於發光峰值強度成為最大之紫外發光二極體(在實施例15所製造之紫外發光二極體)之發光峰值強度((A):2.5mW/nm)而言,發光峰值強度成為最小之紫外發光二極體(在實施例12所製造之紫 外發光二極體)之發光峰值強度((B):1.1mW/nm)的比(B/A)係0.44。並且,在圖4之發光光譜中,在從具有最短波長之發光峰值波長之紫外發光二極體(在實施例12所製造之紫外發光二極體)之發光峰值波長(245nm)至具有最長波長之發光峰值波長之紫外發光二極體(在實施例15所製造之紫外發光二極體)之發光峰值波長(261nm)為止之範圍中,對於最大之發光強度((C):3.8mW/nm、252nm)而言之最小之發光強度((D):3.1mW/nm、245nm)的比(D/C)係0.82。另外,鄰接之發光峰值波長與發光峰值波長的差(|λ1-λ2|)係發光峰值波長之半值寬度成為最小之紫外發光二極體(在實施例11所製造之紫外發光二極體)之該半值寬度(8nm)以下。
<實施例20>
將在實施例1所製造之發光二極體1個,在實施例6所製造之發光二極體2個,各作為個別之電路,於各自,連接最大輸出電壓100V之直流安定化電源。紫外發光二極體係呈使用帕耳帖元件而元件溫度為25℃成為一定地加以控制。將以直流150mA進行定電流驅動時之發光光譜,示於圖5。所使用之紫外發光二極體之中,對於發光峰值強度成為最大之紫外發光二極體(在實施例1所製造之紫外發光二極體)之發光峰值強度((A):2.7mW/nm)而言,發光峰值強度成為最小之紫外發光二極體(在實 施例6所製造之紫外發光二極體)之發光峰值強度((B):1.4mW/nm)的比(B/A)係0.52。並且,在此等獨立之發光光譜之發光峰值波長中,對於最大的發光強度((C):2.8mW/nm:在實施例6所製造之紫外發光二極體2個分)而言之最小的發光強度((D):2.7mW/nm:在實施例1所製造之紫外發光二極體1個分)的比(D/C)係0.96。

Claims (15)

  1. 一種紫外發光二極體,係具有:以具有加以放射光之發光主面的基板,n型層,活性層,及p型層之順序加以層積之層積構造,更且,於前述p型層上具有p型電極,且於除去前述p型層及前述活性層之一部分的範圍而使其露出之前述n型層上,具有n型電極之發光二極體,其特徵為,發光峰值波長位於220~350nm之範圍,在25℃中,在驅動電流值150mA之發光輸出密度為10W/cm2以上,驅動電壓值為10V以下,前述p型電極的面積為0.0001~0.01cm2
  2. 如申請專利範圍第1項記載之紫外發光二極體,其中,在25℃中,在驅動電流值150mA之發光輸出密度為30W/cm2以上者。
  3. 如申請專利範圍第1項或第2項記載之紫外發光二極體,其中,於前述發光主面,加以形成有凹凸構造者。
  4. 如申請專利範圍第1項或第2項記載之紫外發光二極體,其中,具有前述發光主面之基板則由氮化鋁單結晶所成者。
  5. 如申請專利範圍第1項或第2項記載之紫外發光二極體,其中,前述n型層,前述活性層,及前述p型層則由AlXGa1-XN(但、X係滿足0≦X≦1.0有理數)所顯示之III族氮化物半導體所成者。
  6. 一種紫外發光二極體,係具有:以具有加以放射光 之發光主面的基板,n型層,活性層,及p型層之順序加以層積之層積構造,更且,於前述p型層上具有p型電極,且於除去前述p型層及前述活性層之一部分的範圍而使其露出之前述n型層上,具有n型電極之發光二極體,其特徵為,發光峰值波長位於220~350nm之範圍,在25℃中,在驅動電流值150mA之發光輸出密度為10W/cm2以上,驅動電壓值為10V以下,以加以設置有該n型電極之部分的電極面積(cm2)除以前述n型電極之固有接觸阻抗值(Ω.cm2)之n型電極阻抗值為不足1.0Ω者。
  7. 一種紫外發光二極體,係具有:以具有加以放射光之發光主面的基板,n型層,活性層,及p型層之順序加以層積之層積構造,更且,於前述p型層上具有p型電極,且於除去前述p型層及前述活性層之一部分的範圍而使其露出之前述n型層上,具有n型電極之發光二極體,其特徵為,發光峰值波長位於220~350nm之範圍,在25℃中,在驅動電流值150mA之發光輸出密度為10W/cm2以上,驅動電壓值為10V以下,發光峰值波長位於220~245nm之範圍,而外部量子效率為0.3%以上,將驅動電流值作為150mA而以25℃進行連續運轉時,發光輸出值則至成為初期發光輸出值之70%為止之壽命時間為300小時以上者。
  8. 一種紫外線光源,係具有:以具有加以放射光之發光主面的基板,n型層,活性層,及p型層之順序加以層積之層積構造,更且,於前述p型層上具有p型電極,且於除去前述p型層及前述活性層之一部分的範圍而使其露出之前述n型層上,具有n型電極之發光二極體,發光峰值波長位於220~350nm之範圍,在25℃中,在驅動電流值150mA之發光輸出密度為10W/cm2以上,驅動電壓值為10V以下之搭載複數之紫外線光源,其特徵為所有的發光二極體之發光峰值波長則存在於220~350nm之範圍,前述複數之發光二極體內,對於發光峰值強度成為最大之發光二極體的發光峰值強度(A)而言,發光峰值強度成為最小之發光二極體的發光峰值強度(B)的比(B/A)則成為0.2以上,搭載具有不同之發光峰值之複數的發光二極體者。
  9. 如申請專利範圍第8項記載之紫外線光源,其中,成為具有前述紫外線光源之發光光譜所連續之範圍的發光強度分佈,搭載於該紫外線光源之前述複數之發光二極體之中,在從具有最短波長之發光峰值波長之發光二極體的發光峰值波長至具有最長波長之發光峰值波長之發光二極體的發光峰值波長為止之範圍中,對於最大之發光強度(C)而 言之最小之發光強度(D)的比(D/C)為0.5以上者。
  10. 如申請專利範圍第8項或第9項記載之紫外線光源,其中,經由將鄰接之發光峰值波長(λ1)與發光峰值波長(λ2)的差(|λ1-λ2|),作為前述複數之發光二極體之中,發光峰值之半值寬度成為最小之發光二極體的該半值寬度以下之時,成為具有前述紫外線光源之發光光譜所連續之範圍的發光強度分佈者。
  11. 如申請專利範圍第8項或第9項記載之紫外線光源,其中,經由複數個使用發光峰值波長均等之發光二極體之時,搭載於前述紫外線光源之前述複數之發光二極體之中,在從具有最短波長之發光峰值波長之發光二極體的發光峰值波長至具有最長波長之發光峰值波長之發光二極體的發光峰值波長為止之範圍中,將對於最大之發光強度(C)而言之最小之發光強度(D)的比(D/C)作為0.5以上者。
  12. 如申請專利範圍第8項之紫外線光源,其中,前述紫外線光源之發光光譜則成為在220~350nm之範圍,各前述發光二極體之發光光譜則未重疊而獨立存在之發光強度分佈者。
  13. 如申請專利範圍第12項之紫外線光源,其中,經由複數個使用發光峰值波長均等之發光二極體之時,在前述紫外線光源之獨立的發光光譜之發光峰值波長中,將對於最大之發光強度(C)而言之最小之發光強度(D)的比(D/C)作為0.5以上者。
  14. 如申請專利範圍第8項或第9項記載之紫外線光源,其中,僅具有1個發光峰值強度成為最大之發光二極體。
  15. 如申請專利範圍第8項或第9項記載之紫外線光源,其中,所有的發光二極體之發光峰值波長則存在於220~280nm之範圍者。
TW104101317A 2014-01-16 2015-01-15 紫外發光二極體及紫外線光源 TWI643360B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014005608 2014-01-16
JP2014-005608 2014-01-16
JP2014161459 2014-08-07
JP2014-161459 2014-08-07

Publications (2)

Publication Number Publication Date
TW201532307A TW201532307A (zh) 2015-08-16
TWI643360B true TWI643360B (zh) 2018-12-01

Family

ID=53542975

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104101317A TWI643360B (zh) 2014-01-16 2015-01-15 紫外發光二極體及紫外線光源

Country Status (2)

Country Link
TW (1) TWI643360B (zh)
WO (1) WO2015108089A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080187016A1 (en) * 2007-01-26 2008-08-07 Schowalter Leo J Thick Pseudomorphic Nitride Epitaxial Layers
TW200903936A (en) * 2007-03-29 2009-01-16 Mitsubishi Electric Corp Method for manufacturing semiconductor optical device
TW201218420A (en) * 2010-04-30 2012-05-01 Univ Boston High efficiency ultraviolet light emitting diode with band structure potential fluctuations
US20120258591A1 (en) * 2009-12-22 2012-10-11 Tokuyama Corporation N-Type Contact Electrode Comprising a Group III Nitride Semiconductor, and Method Forming Same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007300069A (ja) * 2006-04-04 2007-11-15 Toyoda Gosei Co Ltd 発光素子、この発光素子を用いた発光装置及びこの発光素子の製造方法
JP2012054492A (ja) * 2010-09-03 2012-03-15 Nk Works Kk 紫外線半導体発光素子
JP5594530B2 (ja) * 2010-10-21 2014-09-24 創光科学株式会社 窒化物半導体紫外線発光素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080187016A1 (en) * 2007-01-26 2008-08-07 Schowalter Leo J Thick Pseudomorphic Nitride Epitaxial Layers
TW200903936A (en) * 2007-03-29 2009-01-16 Mitsubishi Electric Corp Method for manufacturing semiconductor optical device
US20120258591A1 (en) * 2009-12-22 2012-10-11 Tokuyama Corporation N-Type Contact Electrode Comprising a Group III Nitride Semiconductor, and Method Forming Same
TW201218420A (en) * 2010-04-30 2012-05-01 Univ Boston High efficiency ultraviolet light emitting diode with band structure potential fluctuations

Also Published As

Publication number Publication date
TW201532307A (zh) 2015-08-16
WO2015108089A1 (ja) 2015-07-23

Similar Documents

Publication Publication Date Title
JP6621990B2 (ja) 紫外発光ダイオード
KR100706796B1 (ko) 질화물계 탑에미트형 발광소자 및 그 제조 방법
US8772757B2 (en) Deep ultraviolet light emitting devices and methods of fabricating deep ultraviolet light emitting devices
CN109075226B (zh) Iii族氮化物层叠体及iii族氮化物发光元件
US9312432B2 (en) Growing an improved P-GaN layer of an LED through pressure ramping
Gong et al. Electrical, spectral and optical performance of yellow–green and amber micro-pixelated InGaN light-emitting diodes
CN105895759A (zh) 一种duv led外延片结构
CN102422445B (zh) 发光二极管用外延晶片
KR102099440B1 (ko) 발광 소자의 제조 방법
WO2007021549A2 (en) Ligh emitting diodes with quantum dots
JP2016039362A (ja) 紫外線光源
TWI643360B (zh) 紫外發光二極體及紫外線光源
JP5684501B2 (ja) 発光ダイオード用エピタキシャルウェーハ
Lee et al. Effective color conversion of GaN-based LEDs via coated phosphor layers
KR101189162B1 (ko) 발광 다이오드 및 그 제조 방법
US8536585B2 (en) Semiconductor light emitting device including anode and cathode having the same metal structure
RU60269U1 (ru) Светодиодная гетероструктура на подложке из монокристаллического сапфира
KR200410859Y1 (ko) 3원색 다중발광 양자우물층이 포함된 백색 조명램프
WO2014034762A1 (ja) 窒化物半導体素子
KR102353850B1 (ko) 발광소자
KR101188915B1 (ko) 열적 안정성이 향상된 Ⅲ족 n형 질화물계 반도체 소자 및 이의 제조방법
Ferguson Innovative Development of Next Generation and Energy Efficient Solid State Light Sources for General Illumination
TW201505210A (zh) Led元件