TWI637377B - Apparatus and methods for driving displays - Google Patents

Apparatus and methods for driving displays Download PDF

Info

Publication number
TWI637377B
TWI637377B TW105130172A TW105130172A TWI637377B TW I637377 B TWI637377 B TW I637377B TW 105130172 A TW105130172 A TW 105130172A TW 105130172 A TW105130172 A TW 105130172A TW I637377 B TWI637377 B TW I637377B
Authority
TW
Taiwan
Prior art keywords
voltage
switch
display
during
resistor
Prior art date
Application number
TW105130172A
Other languages
Chinese (zh)
Other versions
TW201719616A (en
Inventor
肯尼士R 柯羅斯
德平 辛
卡爾瑞蒙 艾孟森
茲齊斯瓦夫傑 史吉姆玻斯基
Original Assignee
美商電子墨水股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/014,236 external-priority patent/US10475396B2/en
Application filed by 美商電子墨水股份有限公司 filed Critical 美商電子墨水股份有限公司
Publication of TW201719616A publication Critical patent/TW201719616A/en
Application granted granted Critical
Publication of TWI637377B publication Critical patent/TWI637377B/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/344Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2230/00Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0469Details of the physics of pixel operation
    • G09G2300/0473Use of light emitting or modulating elements having two or more stable states when no power is applied
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0251Precharge or discharge of pixel before applying new pixel voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0267Details of drivers for scan electrodes, other than drivers for liquid crystal, plasma or OLED displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0204Compensation of DC component across the pixels in flat panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/048Preventing or counteracting the effects of ageing using evaluation of the usage time
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/028Generation of voltages supplied to electrode drivers in a matrix display other than LCD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一種用於驅動電光顯示器的設備,包含:第一開關,其設計用以在第一驅動相位之期間提供第一電壓值至該電光顯示器;第二開關,其設計用以在第二驅動相位之期間提供第二電壓值至該電光顯示器;以及,一電容器,其係連接至該第二開關,用以在該第二驅動相位之期間提供該第二電壓值,其中在該第一驅動相位或該第二驅動相位之期間,該第一開關及該第二開關中僅一者是開路的。 An apparatus for driving an electro-optic display includes: a first switch designed to provide a first voltage value to the electro-optical display during a first driving phase; and a second switch designed to switch between Providing a second voltage value to the electro-optic display during the period; and a capacitor connected to the second switch for providing the second voltage value during the second driving phase, wherein during the first driving phase or During the second driving phase, only one of the first switch and the second switch is open.

Description

用於驅動顯示器的設備及方法 Device and method for driving display

本發明有關於用於驅動雙穩態電光顯示器之方法、以及使用於此種方法之設備。尤其,本發明有關於在主動更新之後調整閘極啟動電壓值之驅動方法及設備,以減低與可能因殘餘電壓放電致使的電壓應力有關的電晶體降級。 The present invention relates to a method for driving a bi-stable electro-optic display and a device used in such a method. In particular, the present invention relates to a driving method and a device for adjusting a gate start voltage value after an active update, so as to reduce a transistor degradation related to a voltage stress that may be caused by a residual voltage discharge.

[相關申請案之參照] [Reference to related applications]

此專利申請案係有關2016年8月3日提出申請之美國暫時申請案序號第62/370,703號,其本身係有關2015年11月30日提出申請之美國暫時申請案序號第62/261,104號、2015年2月4日提出申請之美國暫時申請案序號第62/111,927號(已經在2016年2月4日申請為非暫時申請案,申請案序號為15/014,236)、以及2015年9月16日提出申請之美國暫時申請案序號第62/219,606號。 This patent application is related to U.S. Provisional Application No. 62 / 370,703 filed on August 3, 2016, and is itself related to U.S. Provisional Application No. 62 / 261,104, filed on November 30, 2015, US Provisional Application Serial No. 62 / 111,927 filed on February 4, 2015 (already filed as a non-temporary application on February 4, 2016, with application serial number 15 / 014,236), and September 16, 2015 US Provisional Application No. 62 / 219,606 filed on the same day.

上述提及之專利申請案的完整揭示內容係併入此處以供參照。 The complete disclosures of the aforementioned patent applications are incorporated herein by reference.

根據此處所揭示的標的之一態樣,一種用於驅動電光顯示器的設備,可以包含:第一開關,其設計用以在第一驅動相位之期間提供第一電壓值至該電光顯示器;第二開關,其設計用以在第二驅動相位之期間提供第二電壓值至該電光顯示器;以及,一電容器,連接至該第二開關,用以在該第二驅動相位之期間提供該第二電壓值,其中在該第一驅動相位或該第二驅動相位之期間,該第一開關及該第二開關中僅一者是開路的。 According to one aspect of the subject matter disclosed herein, a device for driving an electro-optic display may include: a first switch designed to provide a first voltage value to the electro-optic display during a first driving phase; a second A switch designed to provide a second voltage value to the electro-optical display during a second driving phase; and a capacitor connected to the second switch to provide the second voltage during the second driving phase Value, wherein during the first driving phase or the second driving phase, only one of the first switch and the second switch is open.

102‧‧‧PMIC 102‧‧‧PMIC

104‧‧‧電壓線 104‧‧‧voltage line

106‧‧‧閘極驅動器 106‧‧‧Gate driver

108‧‧‧下拉電阻器 108‧‧‧ Pull-down resistor

202‧‧‧PMIC 202‧‧‧PMIC

204‧‧‧閘極啟動線 204‧‧‧Gate start line

206‧‧‧閘極驅動器 206‧‧‧Gate driver

208‧‧‧下拉電阻器 208‧‧‧Drop-down resistor

210‧‧‧開關 210‧‧‧Switch

220‧‧‧主動驅動相位 220‧‧‧Active driving phase

222‧‧‧電壓衰減相位 222‧‧‧Voltage Decay Phase

302‧‧‧PMIC 302‧‧‧PMIC

304‧‧‧閘極啟動電壓線 304‧‧‧Gate starting voltage line

306‧‧‧閘極驅動器 306‧‧‧Gate driver

308‧‧‧電阻器 308‧‧‧ Resistor

310‧‧‧第一開關 310‧‧‧First switch

312‧‧‧第二開關 312‧‧‧Second switch

314‧‧‧下拉電容器 314‧‧‧pull-down capacitor

320‧‧‧主動驅動相位 320‧‧‧ Active Drive Phase

322‧‧‧電壓衰減相位 322‧‧‧Voltage Decay Phase

402‧‧‧PMIC 402‧‧‧PMIC

404‧‧‧閘極啟動電壓線 404‧‧‧Gate start voltage line

406‧‧‧閘極驅動器 406‧‧‧Gate driver

408‧‧‧電阻器 408‧‧‧ Resistor

410‧‧‧第一開關 410‧‧‧First switch

412‧‧‧第二開關 412‧‧‧Second switch

414‧‧‧下拉電容器 414‧‧‧pull-down capacitor

416‧‧‧下拉電阻器 416‧‧‧Drop-down resistor

420‧‧‧主動驅動相位 420‧‧‧Active driving phase

422‧‧‧電壓衰減相位 422‧‧‧Voltage Decay Phase

502‧‧‧PMIC 502‧‧‧PMIC

504‧‧‧閘極啟動電壓線 504‧‧‧Gate start voltage line

506‧‧‧閘極驅動器 506‧‧‧Gate driver

508‧‧‧下拉電阻器 508‧‧‧ pull-down resistor

510‧‧‧第一開關 510‧‧‧The first switch

512‧‧‧第二開關 512‧‧‧Second switch

514‧‧‧電容器 514‧‧‧capacitor

602‧‧‧PMIC 602‧‧‧PMIC

604‧‧‧閘極啟動電壓線 604‧‧‧Gate start voltage line

606‧‧‧閘極驅動器 606‧‧‧Gate driver

608‧‧‧下拉電阻器 608‧‧‧Drop-down resistor

610‧‧‧第一開關 610‧‧‧First switch

612‧‧‧第二開關 612‧‧‧Second switch

614‧‧‧下拉電容器 614‧‧‧pull-down capacitor

616‧‧‧下拉電容器 616‧‧‧pull-down capacitor

618‧‧‧下拉電阻器 618‧‧‧Drop-down resistor

620‧‧‧主動驅動相位 620‧‧‧Active Drive Phase

622‧‧‧電壓衰減相位 622‧‧‧Voltage Decay Phase

702‧‧‧PMIC 702‧‧‧PMIC

704‧‧‧閘極啟動電壓線 704‧‧‧Gate start voltage line

706‧‧‧閘極驅動器 706‧‧‧Gate driver

708‧‧‧下拉電阻器 708‧‧‧Drop-down resistor

710‧‧‧第一開關 710‧‧‧The first switch

712‧‧‧第二開關 712‧‧‧Second switch

714‧‧‧稽納二極體 714‧‧‧Diode

804‧‧‧閘極啟動電壓線 804‧‧‧Gate starting voltage line

806‧‧‧閘極驅動器 806‧‧‧Gate driver

810‧‧‧第一開關 810‧‧‧The first switch

812‧‧‧第一電壓源 812‧‧‧first voltage source

814‧‧‧第二開關 814‧‧‧Second switch

816‧‧‧第二電壓源 816‧‧‧Second voltage source

818‧‧‧電容器 818‧‧‧Capacitor

820‧‧‧電阻器 820‧‧‧ Resistor

840‧‧‧主動相位 840‧‧‧ active phase

842‧‧‧第二主動相位 842‧‧‧Second Active Phase

844‧‧‧放電相位 844‧‧‧discharge phase

902‧‧‧線 902‧‧‧line

904‧‧‧線 904‧‧‧line

906‧‧‧線 906‧‧‧line

908‧‧‧線 908‧‧‧line

1002‧‧‧具有殘餘電壓放電 1002‧‧‧ with residual voltage discharge

1004‧‧‧不具有殘餘電壓放電 1004‧‧‧ without residual voltage discharge

1006‧‧‧具有殘餘電壓放電 1006‧‧‧ with residual voltage discharge

1008‧‧‧不具有殘餘電壓放電 1008‧‧‧ without residual voltage discharge

1102‧‧‧具有殘餘電壓放電 1102‧‧‧ with residual voltage discharge

1104‧‧‧不具有殘餘電壓放電 1104‧‧‧ without residual voltage discharge

1106‧‧‧具有殘餘電壓放電 1106‧‧‧ with residual voltage discharge

1108‧‧‧不具有殘餘電壓放電 1108‧‧‧ without residual voltage discharge

1110‧‧‧具有殘餘電壓放電及ON:OFF比例的標準化 1110‧‧‧Standardization with residual voltage discharge and ON: OFF ratio

1112‧‧‧具有殘餘電壓放電及ON:OFF比例的標準化 1112‧‧‧Standardization with residual voltage discharge and ON: OFF ratio

1202‧‧‧主動更新週期 1202‧‧‧Active update cycle

1204‧‧‧殘餘電壓放電週期 1204‧‧‧Residual voltage discharge cycle

1204‧‧‧ON狀態 1204‧‧‧ON status

1206‧‧‧OFF狀態 1206‧‧‧OFF state

1212‧‧‧高位準閘極線電壓 1212‧‧‧High quasi-gate line voltage

1214‧‧‧電壓 1214‧‧‧Voltage

1216‧‧‧前電極電壓 1216‧‧‧ Front electrode voltage

1218‧‧‧低位準閘極線電壓 1218‧‧‧Low quasi-gate line voltage

將參照所附之圖式而敘述此申請案的各種態樣以及實施例。應理解的是,該等圖式並非一定按比例繪製。在所有出現之圖式中,出現在多個圖式之物件係以相同的元件符號來標示。 Various aspects and embodiments of this application will be described with reference to the accompanying drawings. It should be understood that the drawings are not necessarily drawn to scale. In all occurrences of the drawing, objects appearing in multiple drawings are marked with the same component symbol.

第1A圖係根據某些實施例之電光顯示器的簡單閘極啟動電壓電路之示意圖。 FIG. 1A is a schematic diagram of a simple gate start voltage circuit of an electro-optic display according to some embodiments.

第1B圖係顯示根據某些實施例在主動更新之期間及在包括背驅動放電相位的電壓衰減相位之期間,閘極啟動電壓對時間的圖式,其中閘極啟動電壓指數般地衰減至接地。 FIG. 1B is a graph showing gate activation voltage versus time during an active update and during a voltage decay phase including a back drive discharge phase according to some embodiments, where the gate activation voltage decays exponentially to ground .

第1C圖係顯示根據某些實施例在主動更新之期間及具有一較佳的電壓曲線的電壓衰減相位之期間,閘極啟動電壓對時間的圖式。 FIG. 1C is a graph showing gate activation voltage versus time during an active update period and a voltage decay phase having a better voltage curve according to some embodiments.

第2A圖係根據某些實施例電光顯示器的閘極啟動電壓電路之示意圖,該電路包括電阻器。 FIG. 2A is a schematic diagram of a gate start voltage circuit of an electro-optic display according to some embodiments, the circuit including a resistor.

第2B圖係敘述根據某些實施例針對第2A圖的電路閘極啟動電壓隨時間之曲線圖。 FIG. 2B is a graph illustrating the gate start voltage of the circuit of FIG. 2A over time according to some embodiments.

第3A圖係根據某些實施例電光顯示器的閘極啟動電壓電路之示意圖,該電路包括電阻器以及電容器。 FIG. 3A is a schematic diagram of a gate start voltage circuit of an electro-optical display according to some embodiments, which includes a resistor and a capacitor.

第3B圖係敘述根據某些實施例針對第3A圖的電路閘極啟動電壓隨時間之曲線圖。 FIG. 3B is a graph illustrating the gate start voltage of the circuit of FIG. 3A over time according to some embodiments.

第4A圖係根據某些實施例電光顯示器的閘極啟動電壓電路之示意圖,該電路包括電阻器以及電容器。 FIG. 4A is a schematic diagram of a gate start voltage circuit of an electro-optic display according to some embodiments, which includes a resistor and a capacitor.

第4B圖係敘述根據某些實施例針對第4A圖的電路閘極啟動電壓隨時間之曲線圖。 FIG. 4B is a graph illustrating the gate start voltage of the circuit of FIG. 4A over time according to some embodiments.

第5A圖係根據某些實施例電光顯示器的閘極啟動電壓電路之示意圖,該電路包括電阻器以及電容器。 FIG. 5A is a schematic diagram of a gate start voltage circuit of an electro-optic display according to some embodiments, which includes a resistor and a capacitor.

第5B圖係敘述根據某些實施例針對第5A圖的電路閘極啟動電壓隨時間之曲線圖。 FIG. 5B is a graph illustrating the gate start voltage of the circuit of FIG. 5A over time according to some embodiments.

第6A圖係根據某些實施例電光顯示器的閘極啟動電壓電路之示意圖,該電路包括多個電阻器以及電容器。 FIG. 6A is a schematic diagram of a gate start voltage circuit of an electro-optic display according to some embodiments, which includes a plurality of resistors and capacitors.

第6B圖係敘述根據某些實施例針對第6A圖的電路閘極啟動電壓隨時間之曲線圖。 FIG. 6B illustrates a graph of gate start-up voltage versus time for the circuit of FIG. 6A according to some embodiments.

第7圖係根據某些實施例電光顯示器的閘極啟動電壓電路的示意圖,該電路包括稽納(Zener)二極體。 FIG. 7 is a schematic diagram of a gate start voltage circuit of an electro-optical display according to some embodiments, the circuit including a Zener diode.

第8A圖係根據某些實施例電光顯示器的閘極啟動電壓電路之示意圖,該電路包括電阻器以及電容器。 FIG. 8A is a schematic diagram of a gate start voltage circuit of an electro-optic display according to some embodiments, which includes a resistor and a capacitor.

第8B圖係敘述根據某些實施例針對第8A圖的電路閘極啟動電壓隨時間之曲線圖。 FIG. 8B is a graph illustrating the gate start voltage of the circuit of FIG. 8A over time according to some embodiments.

第9圖係第8A圖中所述之裝置的性能與習知裝置的性能之比較的解說圖。 FIG. 9 is an explanatory diagram comparing the performance of the device described in FIG. 8A with the performance of a conventional device.

第10A圖係顯示根據某些實施例最大灰階位移相對具殘餘電壓放電以及不具殘餘電壓放電的更新次數之圖式。 FIG. 10A is a graph showing the number of updates of the maximum gray scale displacement relative to the discharge with and without the residual voltage according to some embodiments.

第10B圖係顯示根據某些實施例最大鬼影位移相對具殘餘電壓放電以及不具殘餘電壓放電的更新次數之圖式。 FIG. 10B is a graph showing the maximum ghost displacement relative to the number of updates with and without residual voltage discharge according to some embodiments.

第11A圖係顯示根據某些實施例最大灰階位移相對具殘餘電壓放電、不具殘餘電壓放電、以及具殘餘電壓放電及負偏壓的更新次數之圖式。 FIG. 11A is a graph showing the maximum gray-scale displacements relative to the number of updates with residual voltage discharge, no residual voltage discharge, and residual voltage discharge and negative bias according to some embodiments.

第11B圖係顯示根據某些實施例最大鬼影位移相對具殘餘電壓放電、不具殘餘電壓放電、以及具殘餘電壓放電及縮減的電荷偏壓的更新次數之圖式。 FIG. 11B is a graph showing the maximum ghost displacement relative to the number of updates of discharges with residual voltage, discharges without residual voltage, and discharges with reduced voltage and reduced charge bias according to some embodiments.

第12A圖係顯示根據某些實施例閘極電壓相對時間的訊號時序之示意圖。 FIG. 12A is a schematic diagram showing the signal timing of the gate voltage versus time according to some embodiments.

第12B圖係顯示根據某些實施例電壓相對時間的訊號時序之示意圖。 FIG. 12B is a schematic diagram showing the signal timing of voltage versus time according to some embodiments.

用詞Word

電光顯示器包含一層電光材料,此處使用的用詞是其在成像技術中的習知意義,以指稱具有在至少一光學性質上相異的第一及第二顯示狀態之一材料,藉由施加一電場至該材料使該材料自其第一顯示狀態改變為第二顯示狀態。在本發明案的顯示器中,電光介質可 以是固態的(為了方便起見,此種顯示器之後可以稱為固態電光顯示器),就某種意義來說,電光介質具有固態外部表面,雖然這些介質可以(且通常是)具有內部液態或氣體填充空間。因此,「固態電光顯示器」一詞包括囊封電泳顯示器、囊封液晶顯示器、以及在以下討論的其他類型顯示器。 An electro-optical display includes a layer of electro-optic material. The term used herein is its conventional meaning in imaging technology. It refers to a material that has a first and a second display state that differ in at least one optical property by applying An electric field to the material changes the material from its first display state to a second display state. In the display of the present invention, the electro-optic medium may be Because they are solid (for convenience, such displays may be referred to as solid-state electro-optic displays hereinafter), in a sense, electro-optic media have a solid external surface, although these media can (and usually) have an internal liquid or gas Fill the space. Therefore, the term "solid-state electro-optical display" includes encapsulated electrophoretic displays, encapsulated liquid crystal displays, and other types of displays discussed below.

雖然光學性質對人眼而言典型為顏色感知,其可為另一光學性質,例如光學透射、反射率、亮度,或者在顯示器的情況下,就可見範圍外之電磁波長的反射率變化的意義而言,其係針對機械讀取、擬色(pseudo-color)。此處可以使用“L*”一詞,並且可以表示為“L*”。L*具有通常的CIE定義,L*=116(R/R0)1/3-16,其中R=反射率且R0係為標準反射率值。 Although the optical property is typically color perception to the human eye, it can be another optical property, such as optical transmission, reflectance, brightness, or in the case of a display, the significance of the change in reflectance at electromagnetic wavelengths outside the visible range In terms of mechanical reading, pseudo-color. The word "L *" can be used here and can be expressed as "L *". L * has the usual CIE definition, L * = 116 (R / R0) 1 / 3-16, where R = reflectance and R0 is the standard reflectance value.

「灰色狀態」一詞在此處係使用其在成像技術中的習知意義,以指稱介於一像素之兩個極端光學狀態中間之一狀態,且不一定意謂著這兩個極端狀態之間的黑-白轉換。例如,在下述所參照的數個專利及已公開專利申請案敘述電泳顯示器,其中極端狀態為白及深藍,以使得中間的「灰色狀態」實際上將是淡藍。實際上,如已經提及的,在二極端狀態之間的轉換可能根本不是顏色的變化。 The term "gray state" is used here in its conventional sense in imaging technology to refer to one of the two extreme optical states of a pixel, and does not necessarily mean the state of the two extreme states. Black-to-white conversion. For example, several patents and published patent applications referred to below describe electrophoretic displays, where the extreme states are white and dark blue, so that the "gray state" in the middle will actually be light blue. In fact, as already mentioned, the transition between the two extreme states may not be a change in color at all.

「雙穩態」及「雙穩定性」這些詞在此處使用的是在該技術中的習知意義,以指稱包含具有在至少一光學性質上相異之第一及第二顯示狀態之顯示元件的顯示器,並且使得,在任何給定的元件經由一具有有限 持續時間的定址脈衝驅動而採用其第一或第二顯示狀態之後,於該定址脈衝已終止之後,該狀態將至少持續數次(例如,至少四次),此為用來改變顯示元件的狀態所需之該定址脈衝的最小持續時間。在已公開之美國專利申請案No.2002/0180687中顯示,某些以粒子為基礎之有灰階能力的電泳顯示器不僅在其極端的黑與白狀態下呈穩態,且亦在其中間的灰色狀態下呈穩態,並且對某些其他類型的電光顯示器而言亦是如此。此類型的顯示器正確地稱之為「多穩態」而非雙穩態,雖然為了方便之故,「雙穩態」一詞可在此處用於涵蓋雙穩態及多穩態這兩種顯示器。 The words "bistable" and "bistable" are used herein in the conventional sense of the technology to refer to a display that includes first and second display states that differ in at least one optical property. Element display, and such that, in any given element via a After the address pulse of the duration is adopted to adopt its first or second display state, after the address pulse has been terminated, the state will last at least several times (for example, at least four times), which is used to change the state of the display element The minimum duration of the addressing pulse required. It has been shown in published U.S. Patent Application No. 2002/0180687 that certain particle-based electrophoretic displays with grayscale capabilities are not only stable in their extreme black and white states, but also in the middle. The gray state is stable, and is also true for some other types of electro-optic displays. This type of display is correctly called "multistable" rather than bistable, although for convenience, the term "bistable" can be used here to cover both bistable and multistable monitor.

此處所使用的「殘餘電壓」一詞係指在定址脈衝(用來改變電光介質的光學狀態之電壓脈衝)終止之後,可能殘留在電光顯示器中的持續性或衰減的電場。當殘餘電壓趨近於一臨界值時,電光顯示器的殘餘電壓之衰減率可能變成低的。即使是低的殘餘電壓(例如:大約是200mV或更少的殘餘電壓)可能導致電光顯示器的假影,包括但不限制為:與定址脈衝相關的光學狀態之位移、顯示器之光學狀態隨著時間的漂移、及/或鬼影。 The term "residual voltage" as used herein refers to a continuous or attenuated electric field that may remain in an electro-optical display after the addressing pulse (a voltage pulse used to change the optical state of the electro-optic medium) is terminated. When the residual voltage approaches a critical value, the decay rate of the residual voltage of the electro-optical display may become low. Even low residual voltages (eg, approximately 200 mV or less) can cause artifacts in electro-optic displays, including but not limited to: displacement of optical states related to addressing pulses, and optical states of displays over time Drift, and / or ghosting.

經過一顯著時間週期的殘餘電壓之存在,將「殘餘脈衝」施加至電光介質,以及嚴格說來,此殘餘脈衝(而不是殘餘電壓)可能對電光顯示器的光學狀態之影響負責,其通常被認為是殘餘電壓所致使。此種殘餘電壓可以導致在電光顯示器上顯示的影像之非所欲影響,包括但不限制為:所謂的「鬼影」現象,其中在顯示器已經重寫入之後,前個影像的痕跡仍是可見的。 The existence of a residual voltage after a significant period of time applies a "residual pulse" to the electro-optic medium and, strictly speaking, this residual pulse (rather than a residual voltage) may be responsible for the effect of the optical state of the electro-optic display, which is generally considered to be It is caused by the residual voltage. This residual voltage can cause unwanted effects on the image displayed on the electro-optic display, including but not limited to: the so-called "ghost image" phenomenon, where the trace of the previous image is still visible after the display has been rewritten of.

與定址脈衝相關的光學狀態之「位移(shift)」係指下述狀態,一特定的定址脈衝首先施加至電光顯示器導致第一光學狀態(例如:第一灰階),以及相同的定址脈衝接著施加至電光顯示器導致第二光學狀態(例如:第二灰階)。殘餘電壓可能會發生光學狀態之位移,因為在施加定址脈衝之期間施加至電光顯示器的像素之電壓,包括殘餘電壓以及定址脈衝之電壓的總和。 The "shift" of an optical state related to an addressing pulse refers to a state in which a specific addressing pulse is first applied to an electro-optical display resulting in a first optical state (eg, a first gray level), and the same addressing pulse is then Application to the electro-optic display results in a second optical state (eg, a second grayscale). The residual voltage may shift in the optical state because the voltage applied to the pixels of the electro-optic display during the application of the address pulse includes the sum of the residual voltage and the voltage of the address pulse.

顯示器之光學狀態隨著時間的「漂移(drift)」係指下述狀態,當顯示器處於休憩時(例如,在定址脈衝未被施加至顯示器上的週期之期間),電光顯示器的光學狀態改變。殘餘電壓可能發生光學狀態之漂移,因為像素的光學狀態可能依據像素的殘餘電壓,並且像素的殘餘電壓可能隨著時間衰減。 The "drift" of the optical state of the display over time refers to a state in which the optical state of the electro-optical display changes when the display is at rest (for example, during a period when an address pulse is not applied to the display). The residual voltage may shift in the optical state because the optical state of the pixel may depend on the residual voltage of the pixel and the residual voltage of the pixel may decay over time.

如上所述,「鬼影(ghosting)」係指下述狀態,在電光顯示器已經重寫入之後,前個影像的痕跡仍是可見的。殘餘電壓可能發生「邊緣鬼影」,是一種類型的鬼影,其中一部分的前個影像之輪廓(邊緣)仍是可見的。 As mentioned above, "ghosting" refers to a state in which traces of the previous image are still visible after the electro-optical display has been rewritten. Residual voltage may occur "edge ghosting", which is a type of ghosting in which the outline (edge) of a part of the previous image is still visible.

「脈衝」一詞在此處係使用其相對時間之電壓積分在成像技術中的習知意義。然而,某些雙穩態電光介質作用如電荷轉換器,且在使用此種介質時,可使用脈衝之一替代定義,亦即可以使用對時間的電流積分(其等於所施加的總電荷)。應該依據介質作用如電壓-時間脈衝轉換器或電荷脈衝轉換器,使用適當的脈衝定義。 The term "pulse" is used here in the conventional sense of imaging technology to use its voltage integral over time. However, some bistable electro-optic media functions as charge converters, and when using such media, one of the pulses can be used instead of the definition, that is, current integration over time (which is equal to the total charge applied) can be used. The appropriate pulse definition should be used depending on the role of the medium, such as a voltage-time pulse converter or a charge pulse converter.

已知有數種類型的電光顯示器。一類型的電光顯示器為一旋轉雙色構件類型,例如在美國專利號 5,808,783、5,777,782、5,760,761、6,054,071、6,055,091、6,097,531、6,128,124、6,137,467及6,147,791中所述(雖然此類型的顯示器常稱為「旋轉雙色球」顯示器,但「旋轉雙色構件」一詞所指稱的更為準確,因為在某些上述提及的專利文件中,旋轉構件並非球形)。此類顯示器使用大量的小主體(其可以是但非限制為球形或圓柱形),其具有二或多個具有不同光學特徵的區段及一內部偶極。這些主體係懸浮在位於一基質(matrix)中之液體填充的液泡內,液泡係以液體填充,以使得主體能自由旋轉。顯示器的外觀之改變係藉由對其施加一電場,從而使主體旋轉至各種位置,並改變透過一觀看表面所見的主體區段來予以改變。此類型的電光介質典型為雙穩態。 Several types of electro-optic displays are known. One type of electro-optic display is a rotating two-color component type, such as in the U.S. Patent No. 5,808,783, 5,777,782, 5,760,761, 6,054,071, 6,055,091, 6,097,531, 6,128,124, 6,137,467, and 6,147,791 (Although this type of display is often referred to as a "rotating two-color ball" display, the term "rotating two-color member" is more accurate, (Because in some of the aforementioned patent documents, the rotating member is not spherical). Such displays use a large number of small bodies (which can be, but are not limited to, spherical or cylindrical) with two or more segments with different optical characteristics and an internal dipole. These main systems are suspended in liquid-filled vacuoles located in a matrix. The vacuoles are filled with liquid so that the main body can rotate freely. The appearance of the display is changed by applying an electric field to the display, thereby rotating the main body to various positions, and changing the main body section seen through a viewing surface. This type of electro-optic medium is typically bistable.

另一類型的電光顯示器使用一電致變色介質,例如,一採取奈米呈色(nanochromic)薄膜形式的電致變色介質,其包括一電極,該電極至少部分由一半導電金屬氧化物形成;及複數個染料分子,其能夠進行可逆的顏色變化,並附接至該電極,參見例如,O'Regan,B.等人之Nature 1991,353,737及Wood,D.之Information Display,18(3),24(2002年3月)。亦參見Bach,U.等人之Adv.Mater.,2002,14(11),845。此類型的奈米呈色薄膜亦在例如美國專利號6,301,038、國際申請案公開號WO 01/27690、以及美國專利申請號2003/0214695中敘述。此類型的介質典型亦為雙穩態。 Another type of electro-optic display uses an electrochromic medium, for example, an electrochromic medium in the form of a nanochromic film, which includes an electrode that is formed at least partially from a semi-conductive metal oxide; and A plurality of dye molecules capable of reversible color change and attached to the electrode, see, eg, Nature's 1991, 353,737 by O'Regan, B. et al. And Information Display, 18 (3) by Wood, D., 24 (March 2002). See also Bach, U. et al. Adv. Mater., 2002, 14 (11), 845. Nano-colored films of this type are also described in, for example, US Patent No. 6,301,038, International Application Publication No. WO 01/27690, and US Patent Application No. 2003/0214695. This type of medium is also typically bistable.

另一類型的電光顯示器為以粒子為基礎的電泳顯示器,其中複數個帶電粒子在電場之影響下移動通 過懸浮液體。電泳顯示器的某些屬性係在2003年3月11日核準之美國專利號6,531,997中敘述,標題為「用於定址電泳顯示器之方法」,其完整內容係併入此處以供參照。 Another type of electro-optic display is a particle-based electrophoretic display, in which a plurality of charged particles move under the influence of an electric field. Over-suspended liquid. Certain properties of electrophoretic displays are described in US Patent No. 6,531,997, issued March 11, 2003, entitled "Methods for Addressing Electrophoretic Displays", the entire contents of which are incorporated herein by reference.

當與液晶顯示器相比時,電泳顯示器可具有下列屬性:良好的亮度及對比度、寬視角、狀態雙穩定性及低功率消耗。儘管如此,某些以粒子為基礎的電泳顯示器之長期影像品質的問題仍阻礙其廣泛的使用。例如,組成某些電泳顯示器的粒子可能傾向於沈降,導致此種顯示器之不足的使用年限。 When compared to liquid crystal displays, electrophoretic displays can have the following attributes: good brightness and contrast, wide viewing angles, state bistableness, and low power consumption. Nevertheless, the long-term image quality problems of some particle-based electrophoretic displays still prevent their widespread use. For example, the particles making up certain electrophoretic displays may tend to settle, resulting in inadequate service life for such displays.

如上述所提及,電泳介質可以包括一懸浮流體。此懸浮流體可以為液體,但電泳介質可使用氣態流體來製造;參見例如,Kitamura T.等人之「用於類似電子紙之顯示器之電顯像劑的移動(Electrical toner movement for electronic paper-like display)」,IDW Japan,2001,Paper HCS1-1及Yamaguchi Y.等人之「使用以摩擦帶電之方式帶電之絕緣粒子的顯像劑顯示器(Toner display using insulative particles charged triboelectrically)」,IDW Japan,2001,Paper AMD4-4。同參歐洲專利申請號1,429,178、1,462,847、以及1,482,354,以及國際專利申請號WO 2004/090626、WO 2004/079442、WO 2004/077140、WO 2004/059379、WO 2004/055586、WO 2004/008239、WO 2004/006006、WO 2004/001498、WO 03/091799、以及WO 03/088495。當將該介質使用於允許此類沈降的定向中時(例如,在介質 設置於垂直平面的標誌中),由於粒子沈降之故,某些以氣體為基礎的電泳介質可能顯現出易受與某些以液體為基礎之電泳介質相同類型之問題的影響。實際上,粒子沈降在某些以氣體為基礎的電泳介質中呈現出,比在某些以液體為基礎的介質中更為嚴重的問題,因為與液體相比,氣體懸浮流體的較低黏度允許電泳粒子更快速的沈降。 As mentioned above, the electrophoretic medium may include a suspension fluid. This suspension fluid can be a liquid, but the electrophoretic medium can be made using a gaseous fluid; see, for example, "Electrical toner movement for electronic paper-like" for Kitamura T. et al. display) ", IDW Japan, 2001, Paper HCS1-1 and Yamaguchi Y. et al." Toner display using insulative particles charged triboelectrically ", IDW Japan, 2001, Paper AMD4-4. See also European Patent Application Nos. 1,429,178, 1,462,847, and 1,482,354, and International Patent Application Nos. WO 2004/090626, WO 2004/079442, WO 2004/077140, WO 2004/059379, WO 2004/055586, WO 2004/008239, WO 2004 / 006006, WO 2004/001498, WO 03/091799, and WO 03/088495. When the medium is used in an orientation that allows such settling (e.g., in the medium Set in the vertical plane mark), due to particle sedimentation, some gas-based electrophoretic media may appear to be susceptible to the same types of problems as some liquid-based electrophoretic media. In fact, particle sedimentation appears to be a more serious problem in some gas-based electrophoretic media than in some liquid-based media, because the lower viscosity of gas suspension fluids allows for Electrophoretic particles settle faster.

許多受讓予麻省理工學院(Massachusetts Institute of Technology,MIT)、電子墨水公司(E Ink Corporation)、加州電子墨水(E Ink California,LLC)以及相關的公司或屬於其名下的專利及專利申請案,係敘述使用於囊封電泳(encapsulated electrophoretic)及微胞電泳以及其他電光介質中的各種技術。囊封電泳介質包含許多小膠囊,其自身各自地包含一在一流體介質中含有電泳流動粒子的內相及一包圍該內相的膠囊壁。典型地,膠囊自身係容納於一聚合物黏合劑中,以形成位於兩電極之間的一黏著層。在微胞電泳顯示器中,帶電粒子及流體並不是被囊封在微膠囊之內而是被保留在載體介質(其典型地是聚合物膜)內形成的複數個腔室之內。之後,可以使用「微腔電泳顯示器」一詞來涵蓋囊封電泳顯示器及微胞電泳顯示器。在這些專利及專利申請案中所述的技術包括:(a)電泳粒子、流體及流體添加劑;參見例如美國專利號7,002,728、以及7,679,814;(b)膠囊、黏合劑及囊封製程;參見例如美國專利號6,922,276***、以及7,411,719***; (c)微胞結構、壁材料、以及形成微胞之方法;參見例如美國專利號7,072,095、以及美國專利申請案公開號2014/0065369;(d)用於填充及密封微胞之方法;參加例如美國專利號7,144,942、以及美國專利申請案公開號2008/0007815;(e)含有電光材料的薄膜及次組件;參見例如美國專利號6,982,178、7,839,564;(f)使用於顯示器中的底板、黏著劑層及其他輔助層與方法;參見例如美國專利號7,116,318、以及7,535,624;(g)顏色形成及顏色調整;參見例如美國專利號7,075,502、以及7,839,564;(h)用於驅動顯示器的方法;參見例如美國專利號5,930,026、6,445,489、6,504,524、6,512,354、6,531,997、6,753,999、6,825,970、6,900,851、6,995,550、7,012,600、7,023,420、7,034,783、7,061,166、7,061,662、7,116,466、7,119,772、7,177,066、7,193,625、7,202,847、7,242,514、7,259,744、7,304,787、7,312,794、7,327,511、7,408,699、7,453,445、7,492,339、7,528,822、7,545,358、7,583,251、7,602,374、7,612,760、7,679,599、7,679,813、7,683,606、7,688,297、7,729,039、7,733,311、7,733,335、7,787,169、7,859,742、7,952,557、7,956,841、7,982,479、7,999,787、8,077,141、8,125,501、8,139,050、8,174,490、8,243,013、8,274,472、8,289,250、8,300,006、8,305,341、8,314,784、8,373,649、8,384,658、8,456,414、8,462,102、8,537,105、 8,558,783、8,558,785、8,558,786、8,558,855、8,576,164、8,576,259、8,593,396、8,605,032、8,643,595、8,665,206、8,681,191、8,730,153、8,810,525、8,928,562、8,928,641、8,976,444、9,013,394、9,019,197、9,019,198、9,019,318、9,082,352、9,171,508、9,218,773、9,224,338、9,224,342、9,224,344、9,230,492、9,251,736、9,262,973、9,269,311、9,299,294、9,373,289、9,390,066、9,390,661、以及9,412,314;以及美國專利申請案公開號2003/0102858、2004/0246562、2005/0253777、2007/0070032、2007/0076289、2007/0091418、2007/0103427、2007/0176912、2007/0296452、2008/0024429、2008/0024482、2008/0136774、2008/0169821、2008/0218471、2008/0291129、2008/0303780、2009/0174651、2009/0195568、2009/0322721、2010/0194733、2010/0194789、2010/0220121、2010/0265561、2010/0283804、2011/0063314、2011/0175875、2011/0193840、2011/0193841、2011/0199671、2011/0221740、2012/0001957、2012/0098740、2013/0063333、2013/0194250、2013/0249782、2013/0321278、2014/0009817、2014/0085355、2014/0204012、2014/0218277、2014/0240210、2014/0240373、2014/0253425、2014/0292830、2014/0293398、2014/0333685、2014/0340734、2015/0070744、2015/0097877、2015/0109283、2015/0213749、2015/0213765、 2015/0221257、2015/0262255、2016/0071465、2016/0078820、2016/0093253、2016/0140910、以及2016/0180777;(i)顯示器之應用;參見例如美國專利號7,312,784、8,009,348、以及9,197,704;以及(j)非電泳顯示器,如美國專利號6,241,921、美國專利申請案公開號2015/0277160;以及美國專利申請案公開號2015/0005720以及2016/0012710中所述者。 Many patents and patent applications assigned to or under the Massachusetts Institute of Technology (MIT), E Ink Corporation, E Ink California (LLC), and related companies This case describes various techniques used in encapsulated electrophoretic and microcellular electrophoresis, as well as other electro-optic media. The encapsulated electrophoretic medium includes a plurality of small capsules, each of which contains an internal phase containing electrophoretic flowing particles in a fluid medium and a capsule wall surrounding the internal phase. Typically, the capsule itself is contained in a polymer adhesive to form an adhesive layer between the two electrodes. In a microcellular electrophoresis display, charged particles and fluids are not encapsulated within the microcapsules but are retained within a plurality of chambers formed in a carrier medium (which is typically a polymer film). Later, the term "microcavity electrophoretic display" can be used to cover both encapsulated electrophoretic displays and microcellular electrophoretic displays. Techniques described in these patents and patent applications include: (a) electrophoretic particles, fluids, and fluid additives; see, for example, US Patent Nos. 7,002,728, and 7,679,814; (b) capsules, adhesives, and encapsulation processes; see, for example, the United States Patent Nos. 6,922,276 *** and 7,411,719 ***; (c) cell structure, wall material, and method for forming cells; see, for example, U.S. Patent No. 7,072,095, and U.S. Patent Application Publication No. 2014/0065369; (d) methods for filling and sealing cells; participate in, for example, U.S. Patent No. 7,144,942 and U.S. Patent Application Publication No. 2008/0007815; (e) films and subassemblies containing electro-optic materials; see, for example, U.S. Patent Nos. 6,982,178, 7,839,564; (f) substrates, adhesive layers used in displays And other auxiliary layers and methods; see, for example, U.S. Patent Nos. 7,116,318, and 7,535,624; (g) color formation and color adjustment; see, for example, U.S. Patent Nos. 7,075,502, and 7,839,564; (h) methods for driving displays; see, for example, U.S. Patent No. 5,930,026,6,445,489,6,504,524,6,512,354,6,531,997,6,753,999,6,825,970,6,900,851,6,995,550,7,012,600,7,023,420,7,034,783,7,061,166,7,061,662,7,116,466,7,119,772,7,177,066,7,193,625,7,202,847,7,242,514,7,259,744,7,304,787,7,312,794,7,327,511,7,408,699 , 7,453,445, 7,492,339, 7,528,822 7,545,358,7,583,251,7,602,374,7,612,760,7,679,599,7,679,813,7,683,606,7,688,297,7,729,039,7,733,311,7,733,335,7,787,169,7,859,742,7,952,557,7,956,841,7,982,479,7,999,787,8,077,141,8,125,501,8,139,050,8,174,490,8,243,013,8,274,472,8,289,250,8,300,006, 8,305,341, 8,314,784, 8,373,649, 8,384,658, 8,456,414, 8,462,102, 8,537,105, 8,558,783,8,558,785,8,558,786,8,558,855,8,576,164,8,576,259,8,593,396,8,605,032,8,643,595,8,665,206,8,681,191,8,730,153,8,810,525,8,928,562,8,928,641,8,976,444,9,013,394,9,019,197,9,019,198,9,019,318,9,082,352,9,171,508,9,218,773,9,224,338,9,224,342, 9,224,344, 9,230,492, 9,251,736, 9,262,973, 9,269,311, 9,299,294, 9,373,289, 9,390,066, 9,390,661, and 9,412,314; and U.S. Patent Application Publication Nos. 2003/0102858, 2004/0246562, 2005/0253777, 2007/0070032, 2007/0076289, 2007/0076289, 2007/0076289, 2007/0076289, 2007/0076289, 2007/0076289, 2007/0076289, 2007 0091418, 2007/0103427, 2007/0176912, 2007/0296452, 2008/0024429, 2008/0024482, 2008/0136774, 2008/0169821, 2008/0218471, 2008/0291129, 2008/0303780, 2009/0174651, 2009/0195568, 2009/0322721, 2010/0194733, 2010/0194789, 2010/0220121, 2010/0265561, 2010/0283804, 2011/0063314, 2011/0175875, 2011/0193840, 2011/0193841, 2011/0199671, 2011/0221740, 2012 / 0001957, 2012/0098740, 2013/0063333, 2013/0194250, 2013/0249782, 2013/0321278 2014/0009817, 2014/0085355, 2014/0204012, 2014/0218277, 2014/0240210, 2014/0240373, 2014/0253425, 2014/0292830, 2014/0293398, 2014/0333685, 2014/0340734, 2015/0070744, 2015 / 0097877, 2015/0109283, 2015/0213749, 2015/0213765, 2015/0221257, 2015/0262255, 2016/0071465, 2016/0078820, 2016/0093253, 2016/0140910, and 2016/0180777; (i) applications for displays; see, e.g., U.S. Patent Nos. 7,312,784, 8,009,348, and 9,197,704; and ( j) Non-electrophoretic displays, such as those described in U.S. Patent No. 6,241,921, U.S. Patent Application Publication No. 2015/0277160; and U.S. Patent Application Publication Nos. 2015/0005720 and 2016/0012710.

許多前述提及的專利及專利申請案均意識到在一囊封電泳介質中環繞分離微膠囊的壁可以被一連續相取代,因此製成所謂的聚合物分散電泳顯示器,其中電泳介質包括複數個電泳流體的分離小滴及一聚合物材料的連續相,且此類聚合物分散電泳顯示器內之電泳流體的分離小滴可視為膠囊或微膠囊,即使沒有分離的膠囊膜與每一個別的小滴相關聯亦如是;參見例如前述提及的美國專利申請公開號2002/0131147。因此,為了本專利申請案的目的,遂將此類聚合物分散電泳介質視為囊封電泳介質之亞種。 Many of the aforementioned patents and patent applications have realized that the wall surrounding the separated microcapsules in a encapsulated electrophoretic medium can be replaced by a continuous phase, so a so-called polymer dispersed electrophoretic display is made, where the electrophoretic medium includes a plurality of The separated droplets of the electrophoretic fluid and a continuous phase of a polymer material, and the separated droplets of the electrophoretic fluid in such a polymer-dispersed electrophoretic display can be regarded as capsules or microcapsules, even if there is no separate capsule film and each individual small The same goes for the drop association; see, for example, the aforementioned US Patent Application Publication No. 2002/0131147. Therefore, for the purpose of this patent application, such polymer-dispersed electrophoretic media are considered as a subspecies of encapsulated electrophoretic media.

一相關類型的電泳顯示器為所謂的「微胞電泳顯示器」。在微胞電泳顯示器中,帶電粒子及懸浮流體並未囊封在微膠囊內,取而代之的是留存在複數個形成於一載體介質(例如,聚合物膜)內的腔室之內。參見例如國際專利申請公開號WO 02/01281以及已公告之美國專利申請公開號2002/0075556,兩者均受讓予Sipix Imaging公司。 A related type of electrophoretic display is a so-called "microcellular electrophoretic display". In a microelectrophoresis display, charged particles and suspended fluids are not encapsulated within the microcapsules, but instead are stored in a plurality of chambers formed in a carrier medium (eg, a polymer film). See, for example, International Patent Application Publication No. WO 02/01281 and Published US Patent Application Publication No. 2002/0075556, both of which are assigned to Sipix Imaging Corporation.

許多前述提及的E Ink公司及MIT的專利及專利申請案,也考慮微胞電泳顯示器以及聚合物分散的電泳顯示器。「囊封電泳顯示器」一詞也可以指稱所有此種顯示器類型,其也可以統稱為「微腔電泳顯示器」,以使概括橫跨壁的形態。 Many of the aforementioned E Ink companies and MIT patents and patent applications also consider microelectrophoretic displays and polymer dispersed electrophoretic displays. The term "encapsulated electrophoretic display" can also refer to all such display types, which can also be collectively referred to as "microcavity electrophoretic displays" to summarize the shape across the wall.

另一類型的電光顯示器為一電子濕潤顯示器,其係由Philips發展並在Hayes R.A.等人之「以電子濕潤為基礎之視頻速度電子紙(Video-Speed Electronic Paper Based on Electrowetting)」,Nature,425,第383至385頁(2003)中敘述。在2004年10月6日申請的美國專利申請號10/711,802之共同待審申請案中顯示,此種電子濕潤顯示器可製造為雙穩態。 Another type of electro-optical display is an electronic wet display, which was developed by Philips and developed in "Video-Speed Electronic Paper Based on Electrowetting" by Hayes RA et al., Nature, 425 , Pp. 383-385 (2003). A co-pending application of US Patent Application No. 10 / 711,802 filed on October 6, 2004 shows that such an electronic wet display can be manufactured as a bi-stable state.

也可以使用其他類型的電光材料。尤其感興趣的,雙穩態鐵電液晶顯示器(FLCs)在此領域中是已知的,並顯示殘餘電壓的行為。 Other types of electro-optic materials can also be used. Of particular interest, bistable ferroelectric liquid crystal displays (FLCs) are known in the art and show the behavior of residual voltages.

雖然電泳介質常是不透光的(由於,例如,在許多電泳介質中,粒子實質上阻擋了可見光透過顯示器的傳輸)及在反射模式中操作,某些電泳顯示器可製造為以所謂的「快門模式」操作,其中一個顯示器狀態實質上為不透光,而一個則是可透光的。參見例如美國專利號6,130,774及6,172,798、以及美國專利號5,872,552、6,144,361、6,271,823、6,225,971、以及6,184,856。相似電泳顯示器但依靠電場強度變化的介電泳顯示器可以相似的模式操作;參見美國專利號4,418,346。其他類型的電光顯示器亦能夠以快門模式操作。 Although electrophoretic media are often opaque (because, for example, in many electrophoretic media, particles substantially block the transmission of visible light through the display) and operate in reflective mode, some electrophoretic displays can be manufactured with so-called "Mode" operation, where one display is essentially opaque and one is opaque. See, for example, U.S. Patent Nos. 6,130,774 and 6,172,798, and U.S. Patent Nos. 5,872,552, 6,144,361, 6,271,823, 6,225,971, and 6,184,856. Dielectrophoretic displays that are similar to electrophoretic displays but rely on changes in electric field strength can operate in similar modes; see US Patent No. 4,418,346. Other types of electro-optic displays can also be operated in shutter mode.

囊封電泳顯示器或是微胞電泳顯示器可能不遭受習知電泳裝置之群聚及沈降故障模式,並且可以提供另外的優點,例如,在各式各樣的可撓性及剛性基材上印刷或塗佈顯示器的能力。(字詞「印刷」之使用意欲包括所有形式之印刷及塗佈,其包括但不限制為:預先計量式塗佈(pre-metered coating)(例如,方塊式模具(patch die)塗佈)、狹縫或擠壓塗佈、斜板或階式(cascade)塗佈、淋幕式塗佈;滾筒式塗佈(例如,刮刀滾筒式(knife over roll)塗佈、前後滾筒式(forward and reverse roll)塗佈);凹版印刷式(gravure)塗佈;浸塗式塗佈;噴灑式塗佈;液面彎曲式(meniscus)塗佈;旋轉式塗佈;刷塗式塗佈;氣刀式(air-knife)塗佈;絲網印刷製程;靜電印刷製程;熱印刷製程;噴墨印刷製程;電泳沈積;以及其他相似技術。)因此,所產生的顯示器可以是可撓性的。再者,因為顯示器介質為可印刷(使用各種方法),顯示器自身可以低成本方式製成。 Encapsulated electrophoretic displays or microelectrophoretic displays may not suffer from the clustering and sinking failure modes of conventional electrophoretic devices, and may provide additional advantages, such as printing on a variety of flexible and rigid substrates or The ability to coat the display. (The use of the word "printing" is intended to include all forms of printing and coating, including but not limited to: pre-metered coating (e.g., patch die coating), Slit or extrusion coating, swash plate or cascade coating, curtain coating; roller coating (e.g., knife over roll coating, forward and reverse roller coating) roll coating); gravure coating; dip coating; spray coating; meniscus coating; spin coating; brush coating; air knife (air-knife) coating; screen printing process; electrostatic printing process; thermal printing process; inkjet printing process; electrophoretic deposition; and other similar technologies.) Therefore, the resulting display may be flexible. Furthermore, because the display medium is printable (using various methods), the display itself can be made at a low cost.

以粒子為基礎的電泳顯示器之雙穩態或多穩態行為以及其他電光顯示器的顯示相類似行為(為了方便起見,此種顯示器之後可以稱為「脈衝驅動顯示器」),相較於液晶顯示器(“LCDs”)之行為,形成鮮明的對比。扭曲向列型液晶不是雙穩態或多穩態,但作為電壓換能器之用,使得施加至此種顯示器之一像素的給定電場,在該像素產生一特定灰階,不論先前存在該像素的灰階。再者,LC顯示器僅在一方向上驅動(從非透射或「暗」至透射或「淡」),從一較淡狀態至一較深狀態的逆向轉 換藉由減少或消除電場而影響。並且,LC顯示器的像素之灰階對於電場的極性並不敏銳,僅對電場的數值敏銳,以及實際上針對技術理由,商用LC顯示器通常以頻繁的間隔將驅動電場的極性反轉。相對而言,針對第一近似,雙穩態電光顯示器作為脈衝換能器,使得像素的最終狀態不僅是依據所施加的電場及此電場施加的時間,也依據在施加電場之前像素的狀態而定。 The bistable or multistable behavior of particle-based electrophoretic displays and similar display behavior of other electro-optic displays (for convenience, such displays can be referred to as "pulse-driven displays"), compared to liquid crystal displays ("LCDs"), in stark contrast. Twisted nematic liquid crystals are not bistable or multistable, but are used as voltage transducers so that a given electric field applied to one pixel of this display produces a specific grayscale at that pixel, regardless of the pixel's previous existence Gray scale. Furthermore, the LC display is driven only in one direction (from non-transmissive or "dark" to transmissive or "light"), and reversed from a lighter state to a deeper state This is affected by reducing or eliminating electric fields. In addition, the gray scale of the pixels of the LC display is not sensitive to the polarity of the electric field, and only sensitive to the value of the electric field. In fact, for technical reasons, commercial LC displays usually reverse the polarity of the driving electric field at frequent intervals. In contrast, for the first approximation, the bi-stable electro-optical display acts as a pulse transducer, so that the final state of the pixel is not only determined by the applied electric field and the time during which the electric field is applied, but also by the state of the pixel before the electric field is applied. .

高解析度的顯示器可以包括可定址的個別像素,而不會與相鄰的像素干擾。獲得此種像素的方法之一在於提供非線性元件之陣列,例如電晶體或二極體之陣列,加上與每一像素相關的至少一非線性元件,以使產生「主動矩陣」顯示器。一定址電極或像素電極(將一像素定址)經由相關的非線性元件而連接至適當的電壓源。當非線性元件係為電晶體時,像素電極可以連接至電晶體的汲極,並且將在以下敘述中採用此配置,雖然它基本上是任意的,以及像素電極可以連接至電晶體的源極。在高解析度陣列中,該等像素可以用行與列二維陣列之方式而配置,以使得任一特定像素係藉由一特定行及一特定列的交叉而獨一地定義。在每一列的所有電晶體之源極可以連接至單個列電極,而在每一行的所有電晶體之閘極可以連接至單個行電極,再次地說明,若需要,源極至列電極及閘極至行電極的配置可以是反向的。 High-resolution displays can include individual pixels that can be addressed without interfering with neighboring pixels. One way to obtain such pixels is to provide an array of non-linear elements, such as an array of transistors or diodes, plus at least one non-linear element associated with each pixel to produce an "active matrix" display. An address electrode or a pixel electrode (addressing a pixel) is connected to an appropriate voltage source via an associated non-linear element. When the non-linear element is a transistor, the pixel electrode can be connected to the drain of the transistor, and this configuration will be adopted in the following description, although it is basically arbitrary, and the pixel electrode can be connected to the source of the transistor . In a high-resolution array, the pixels can be arranged in a two-dimensional array of rows and columns, so that any particular pixel is uniquely defined by the intersection of a particular row and a particular column. The sources of all transistors in each column can be connected to a single column electrode, and the gates of all transistors in each row can be connected to a single row electrode. Again, if necessary, the source is to the column electrode and the gate. The configuration to the row electrodes may be reversed.

顯示器可以用「行至行」之方式寫入。行電極係連接至行驅動器,其可以施加一電壓給選定行電 極,以使得確保在選定行的所有電晶體是導電的,而施加一電壓給所有其他行,以使得確保在這些非選定行的所有電晶體是非導電的。列電極係連接至列驅動器,在各種列電極上置放選定的電壓,以將在選定行中的像素驅動至所欲之光學狀態。(前述的電壓係相對於共同的前電極,其可以從非線性陣列設置在電光介質的相對側上,並延伸跨過整體顯示器)。在已知作為「線位址時間」的一預先選定間隔之後,解除選定一選定的行、選定另一行,並且改變在列驅動器上的電壓,使得顯示器的下一線被寫入。 The display can be written in a "line-to-line" manner. The row electrode is connected to a row driver, which can apply a voltage to a selected row of power. To ensure that all transistors in selected rows are conductive, and to apply a voltage to all other rows to ensure that all transistors in these non-selected rows are non-conductive. The column electrode is connected to a column driver, and a selected voltage is placed on various column electrodes to drive the pixels in the selected row to a desired optical state. (The aforementioned voltage is relative to a common front electrode, which can be placed on the opposite side of the electro-optic medium from a non-linear array and extends across the entire display). After a preselected interval known as the "line address time", a selected row is deselected, another row is selected, and the voltage on the column driver is changed so that the next line of the display is written.

殘餘電壓放電Residual voltage discharge

如同在2015年2月4日提出申請之美國專利暫時申請案號62/111,927中所述,其完整內容係併入此處以供參照。用於分散殘餘電壓之一較佳實施例致使所有的電晶體成為導電一延長的時間。例如,藉由下述,所有像素電晶體可以成為導電的:使閘極線(在此稱為「選擇線」)電壓相對於源極線電壓成為將像素電極變成一狀態的值,其中相較於非導電狀態時,它們是相對地導電的,並且用於將像素與源極線隔離,作為一正常主動矩陣驅動器的一部分。 As described in US Patent Provisional Application No. 62 / 111,927, filed on February 4, 2015, the entire contents of which are incorporated herein by reference. A preferred embodiment for dispersing residual voltage causes all transistors to become conductive for an extended period of time. For example, all pixel transistors can be made conductive by making the voltage of the gate line (referred to herein as the "selection line") relative to the source line voltage a value that changes the pixel electrode to a state, where In a non-conductive state, they are relatively conductive and are used to isolate pixels from source lines as part of a normal active matrix driver.

在某些實施例中,可以提供特殊設計的電路,以將所有的像素在同一時間定址。在一標準的主動矩陣操作中,選擇線控制電路典型地未將所有的閘極線成為針對所有的像素電極達成上述提及的導電狀態之值。達成此條件一便利的方式在於,藉由選擇線驅動器 晶片而給予,該晶片具有一輸入控制線,允許一外部訊號,以使強加一條件,其中所有選擇線輸出接收從被選定使像素電晶體成為導電之選擇驅動器所提供的電壓。藉由施加適當的電壓值給此特殊輸入控制線,所有的電晶體可以變為導電的。藉由例子,針對具有n型像素電晶體的顯示器,某些選擇驅動器具有“Xon”控制線輸入。藉由選擇一電壓值給Xon接腳(其輸入至該等選擇驅動器)的輸入,閘極啟動電壓被發送至所有的選擇線。為了簡化,本發明的詳細敘述係針對利用n型像素電晶體之背板而撰寫。在此例中,閘極啟動電壓是正的。然而,針對利用p型像素電晶體製造的背板,可以藉由將本發明所述及所顯示的所有電壓反轉,而使用此處所敘述的所有方法。在此例中,閘極啟動電壓將是負的。 In some embodiments, a specially designed circuit may be provided to address all pixels at the same time. In a standard active matrix operation, the selection line control circuit typically does not set all the gate lines to values that achieve the above-mentioned conductive state for all the pixel electrodes. A convenient way to achieve this is by selecting a line driver The chip is provided with an input control line allowing an external signal to impose a condition in which all selection line outputs receive a voltage provided from a selection driver selected to make the pixel transistor conductive. By applying an appropriate voltage value to this special input control line, all transistors can be made conductive. By way of example, for displays with n-type pixel transistors, some select drivers have an "Xon" control line input. By selecting a voltage value for the input of the Xon pin (which is input to the selection drivers), the gate start voltage is sent to all selection lines. For simplicity, the detailed description of the present invention is written for a backplane using an n-type pixel transistor. In this example, the gate start voltage is positive. However, for backplanes made using p-type pixel transistors, all methods described herein can be used by reversing all voltages described and shown in the present invention. In this example, the gate start voltage will be negative.

針對分散電光主動矩陣型顯示器的殘餘電壓之目的,閘極啟動電壓是重要的電壓。橫跨整體顯示器施加閘極啟動電壓係整合至「背驅動放電」,其典型地在「主動驅動相位」(此處也稱為「影像更新」或是「主動更新週期」)結束時施加。「背驅動放電相位」(此處也稱為「殘餘電壓放電相位」或是「殘餘電壓放電」)係為「電壓衰減相位」的一部分,並且,假如背驅動放電相位等於電壓衰減相位,則這些用語可以互換地使用(且此處係可互換地使用)。 For the purpose of dispersing the residual voltage of the electro-optic active matrix display, the gate start voltage is an important voltage. Applying the gate start voltage across the entire display is integrated into the "back drive discharge", which is typically applied at the end of the "active drive phase" (also referred to herein as the "image update" or "active update cycle"). The "back drive discharge phase" (also referred to herein as "residual voltage discharge phase" or "residual voltage discharge phase") is part of the "voltage decay phase", and if the back drive discharge phase is equal to the voltage decay phase, then these The terms are used interchangeably (and are used interchangeably herein).

然而,如同在2015年9月16日提出申請之美國專利暫時申請案號62/219,606中所述,其完整內容係併入此處以供參照,將像素電晶體保持在一導電狀態 一延長持續時間(以供殘餘電壓放電),可能致使像素電晶體降級及/或顯示器的光學性能之位移。下述是有利的,在背驅動放電相位之期間能夠調整閘極啟動電壓值,以使縮減及/或防止將像素電晶體保持一延長持續時間之效應。背驅動放電可以在每次主動更新之後執行、在指定數量的主動更新之後執行、在一指定時間週期之後執行、或是當使用者需要時執行。再者,背驅動放電可以被主動更新中斷,以使得閘極啟動電壓值可以不達到0值。 However, as described in US Patent Provisional Application No. 62 / 219,606 filed on September 16, 2015, the entire contents are incorporated herein by reference for maintaining the pixel transistor in a conductive state An extended duration (for residual voltage discharge) may cause degradation of the pixel transistor and / or displacement of the optical performance of the display. It is advantageous to be able to adjust the gate start voltage value during the back drive discharge phase to reduce and / or prevent the effect of maintaining the pixel transistor for an extended duration. Back drive discharge can be performed after each active update, after a specified number of active updates, after a specified time period, or when required by the user. Moreover, the back drive discharge can be interrupted by the active update, so that the gate start voltage value can not reach 0.

本發明敘述在主動更新相位之後調整閘極啟動電壓值之設備及方法。 The invention describes a device and method for adjusting a gate start voltage value after actively updating a phase.

E/O電子產品E / O electronics

如上所述,高閘極電壓的延長週期,例如在殘餘電壓放電之期間經歷的這些週期,可能致使像素電晶體降級。在殘餘電壓放電之期間縮減高閘極電壓值及/或為了分散殘餘電壓而加速衰減率,可以減少或避免像素電晶體降級。可藉由平衡放電效能的可接受位準以及在像素電晶體之跨導(transconductance)上的影響,而經驗地決定在顯示器中用於分散殘餘電壓的最佳衰減率。本發明的優點之一在於,可以用較低的電壓達成背驅動放電,此將會減低像素電晶體降級及避免光學位移。 As mentioned above, extended periods of high gate voltage, such as those experienced during the discharge of the residual voltage, may cause the pixel transistor to degrade. Reducing the high gate voltage value and / or accelerating the attenuation rate in order to disperse the residual voltage during the residual voltage discharge can reduce or avoid degradation of the pixel transistor. The optimal attenuation rate for dispersing residual voltage in a display can be determined empirically by balancing the acceptable level of discharge performance and the effect on the transconductance of the pixel transistor. One of the advantages of the present invention is that back drive discharge can be achieved with a lower voltage, which will reduce pixel transistor degradation and avoid optical displacement.

於下將詳細敘述上述之各種態樣、以及其他態樣。應理解的是,這些態樣可以單獨地使用,也可以共同地使用,或者是二者或多個的任意組合,甚或它們並未相互地排斥。 The various aspects described above and other aspects will be described in detail below. It should be understood that these aspects can be used individually or collectively, or any combination of two or more, or they are not mutually exclusive.

電光顯示器可接收來自外部電子產品(例如顯示器控制器)的電力,以及提供來自「電力管理」電路的電壓。電力管理電路可以提供多個電壓,包括提供給閘極線(此處也稱為「選擇線」)的「閘極啟動電壓」,以使得在選擇線上的電晶體成為導電的。電力管理電路可以是分離的組件或積體電路(例如:電力管理積體電路“PMIC”)。附加的電路可以包括下拉電阻器及/或下拉電容器。 Electro-optic displays can receive power from external electronics, such as display controllers, and provide voltage from "power management" circuits. The power management circuit may provide multiple voltages, including a "gate start voltage" provided to a gate line (also referred to herein as a "selection line"), so that the transistor on the selection line becomes conductive. The power management circuit may be a separate component or an integrated circuit (eg, a power management integrated circuit "PMIC"). Additional circuitry may include pull-down resistors and / or pull-down capacitors.

第1A圖係使用PMIC 102的電光顯示器之簡單閘極啟動電壓電路之示意圖,其顯示從PMIC 102至主動矩陣型顯示器的閘極驅動器106之閘極啟動電壓線104。第1圖的電路藉由改變下拉電阻器R 108的值而允許在主動驅動結束時控制閘極啟動電壓104。R 108的高數值顯示閘極啟動電壓衰減率,而R 108的低數值則加速閘極啟動電壓衰減率。採用從PMIC至閘極驅動器在線104上的電容元件C(圖未示)之某些位準,下拉電阻器(“R”)108將致使閘極啟動線104指數般地衰減至0伏特,而電阻器值(“R”)乘以線路電容(“C”)所給予之時間固定值。經由電阻器R 108的電壓衰減可藉由下述而計算:V(t)=V o e -t/RC FIG. 1A is a schematic diagram of a simple gate start voltage circuit of an electro-optical display using PMIC 102, which shows a gate start voltage line 104 from PMIC 102 to a gate driver 106 of an active matrix display. The circuit of FIG. 1 allows the gate start voltage 104 to be controlled at the end of active driving by changing the value of the pull-down resistor R 108. A high value of R 108 indicates the rate of decay of the gate start voltage, while a low value of R 108 accelerates the rate of decay of the gate start voltage. Using some level from the PMIC to the capacitive element C (not shown) on the gate driver line 104, the pull-down resistor ("R") 108 will cause the gate activation line 104 to decay exponentially to 0 volts, and The resistor value ("R") multiplied by the line capacitance ("C") is a fixed time given. The voltage decay through resistor R 108 can be calculated by: V ( t ) = V o e - t / RC

其中,V0係初始電壓,且其中,線路電容C包括電壓線的寄生電容以及設計為PMIC的一部分之任意電容,以使電壓穩定化。 Among them, V 0 is the initial voltage, and the line capacitance C includes the parasitic capacitance of the voltage line and any capacitance designed as a part of the PMIC to stabilize the voltage.

前述提及的美國專利暫時案62/111,927中所敘述的背驅動放電方法,係利用在閘極啟動電壓的緩慢 衰減。在背驅動放電相位之期間,其通常發生在主動更新相位之後,閘極啟動電壓被允許經由連接至接地的電阻器而典型地衰減。在背驅動放電之時,使所有的主動矩陣選擇線成為閘極啟動電壓,從在主動顯示驅動之期間的值而衰減至接地。 The back-driving discharge method described in the aforementioned U.S. Patent Provisional Case No. 62 / 111,927 utilizes the slow start voltage at the gate attenuation. During the back drive discharge phase, which typically occurs after the active update phase, the gate start voltage is typically allowed to decay via a resistor connected to ground. At the time of back drive discharge, all active matrix selection lines are made gate start voltages, and decay from the values during the active display drive to ground.

第1B圖係顯示在主動更新之期間及在包括背驅動放電相位的電壓衰減相位之期間,閘極啟動電壓對時間的圖式,其中閘極啟動電壓指數般地衰減至接地。時間t=0係主動更新結束時。在第1B圖中,「背驅動放電」週期定義為在時間t1開始在時間t2結束。在更新之後立即地開始背驅動放電的例子中,時間t1可以小到0,或者可以延遲直至閘極啟動電壓值衰減,或減低至一較佳值。時間t2則選定為足夠大的,使得背驅動放電在足夠地縮減顯示器之電荷偏極化上是有效的,或者,假如時間許可,直至閘極啟動電壓衰減至0伏特。 Figure 1B is a graph showing the gate start voltage versus time during the active update period and during the voltage decay phase including the back drive discharge phase, where the gate start voltage decays exponentially to ground. Time t = 0 is when the active update ends. In FIG. 1B, the "discharge driving back" period is defined as beginning at time t. 1 ends at time t 2. In the example where the back drive discharge is started immediately after the update, the time t 1 may be as small as 0, or may be delayed until the gate start-up voltage value decays, or is reduced to a better value. Then the selected time t 2 is sufficiently large, such that the discharge is driven back sufficiently reduced bias on the display of the polarization charge is valid, or, if time permits, until the gate voltage starts to decay to zero volts.

如上所述,下述是有利的,施加一足夠大量值的「閘極啟動」電壓,以致使像素殘餘電壓的排澇且不是較高的,以使得減低電晶體降級。高於所需的電壓量值增加TFT偏壓應力且不能改善殘餘電壓排澇。如第1B圖所示,背驅動放電的最簡單實行在於,允許「閘極啟動」電壓在背驅動放電之期間指數般地衰減。較高的初始電壓值對於殘餘電壓的適時排澇是足夠的,甚至,即使是較低的往後電壓值可能太小,以致不能將殘餘電壓的適時排澇。再者,下述是有利的,將所有的選擇線啟動以致使足夠的殘餘電壓放電之時間給予最小化,然 而不長於該時間。本發明藉由在背驅動放電相位之期間使「閘極啟動」電壓之時間曲線成型,控制「閘極啟動」電壓以達成這些優點。本發明係使用度量K,其對於評估在背驅動放電相位之期間「閘極啟動」電壓之曲線的有利特性,是有用處的。 As described above, it is advantageous to apply a "gate start" voltage of a sufficiently large value so that the drainage of the pixel residual voltage is not high, so as to reduce the degradation of the transistor. A voltage value higher than required increases the TFT bias stress and does not improve residual voltage drainage. As shown in Figure 1B, the simplest implementation of back drive discharge is to allow the "gate start" voltage to decay exponentially during the back drive discharge. A higher initial voltage value is sufficient for timely drainage of the residual voltage, and even, even lower backward voltage values may be too small to timely drain the residual voltage. Furthermore, it is advantageous to minimize the time for which all the select lines are activated so that sufficient residual voltage is discharged, but Not longer than that time. The present invention achieves these advantages by shaping the time curve of the "gate start" voltage during the back drive discharge phase, and controlling the "gate start" voltage. The present invention uses the metric K, which is useful for evaluating the advantageous characteristics of the "gate start" voltage curve during the back drive discharge phase.

其中Tm是在顯示器更新結束時開始且直至該更新結束之後的時間t2的時域之內,位在低電壓量值(VL)及高電壓量值(VH)之間的「閘極啟動」電壓的總時間,且Th係「閘極啟動」電壓大於VH的總時間。t2係當被其他顯示器處理(例如下一個影像更新)所中斷時,背驅動放電的結束之時間。數值VL及VH可以基於顯示器性能及使用而稍後地定義或界定。VL及VH的指定值將在下述更詳細地敘述。該等電壓係相對於其他電壓來定義,並且係相對於所有用於驅動電子產品(源極及/或選擇驅動器及顯示控制器)的「零電壓」或「接地」來定義。 Where T m is the “gate” between the low voltage magnitude (V L ) and the high voltage magnitude (V H ) within the time domain starting at the end of the display update and up to the time t 2 after the end of the update. The total time of the "start-up" voltage, and T h is the total time of the "gate-start" voltage greater than V H. t 2 is the time when the back-drive discharge ends when it is interrupted by other display processing (such as the next image update). The values V L and V H may be defined or defined later based on display performance and use. The specified values of V L and V H will be described in more detail below. These voltages are defined relative to other voltages, and are defined relative to "zero voltage" or "ground" used to drive electronic products (source and / or select driver and display controller).

天然的K(Knatural)可以定義為: Natural K (K natural ) can be defined as:

其中V0係在影像更新之期間或主動更新之期間所施加的閘極啟動電壓(如上所述,所有的電壓係相對於考量中之顯示器的閘極閉路電壓來定義的)。為了方便起見,此處將正規化的K定義為如下: Among them, V 0 is the gate starting voltage applied during the image update period or the active update period (as mentioned above, all voltages are defined relative to the gate closed-circuit voltage of the display under consideration). For convenience, the normalized K is defined as follows:

其中K、Knatural、及α全部都是時間t2及電壓參數VL及VH的函數。較佳的電壓曲線具有大於2的α、大於5的α,或是較佳地,大於20的α,且其中VL及VH的值符合下述限制條件的至少二者:(1)VL是至少V0的5%、(2)VH小於V0的80%、(3)VH大於VL、以及(4)(VH-VL)/[(VH+VL)/2]>0.1。第四個限制條件可能是符合,以確保相較於VH及VL之平均,在VH及VL之間的分隔是顯著的。 Among them, K, K natural and α are all functions of time t 2 and voltage parameters V L and V H. The preferred voltage curve has an alpha greater than 2 or an alpha greater than 5, or preferably an alpha greater than 20, and the values of V L and V H meet at least two of the following restrictions: (1) V L is at least 5% of V 0 , (2) V H is less than 80% of V 0 , (3) V H is greater than V L , and (4) (V H -V L ) / ((V H + V L ) /2]>0.1. A fourth limitation may be a match, to ensure that as compared to the average of the V H and V L, V H between the partition and the V L is significant.

第1C圖係顯示在主動更新之期間及在具有一較佳的電壓曲線的電壓衰減相位之期間,閘極啟動電壓對時間的圖式。在第1B圖中先前所描繪及敘述的虛線,係顯示在主動更新之後典型的指數般衰減。實線顯示背驅動放電相位之更為有利的電壓曲線之一例子,其中閘極啟動電壓快速地衰減或者是縮減至一較小值,接著隨著背驅動放電之時間從此縮減值衰減。如第1C圖所示,在主動更新之後閘極啟動電壓值的初始快速縮減,係在所有的選擇線之啟動之前完成的。可選擇地,所有的選擇線可以在t=0啟動。在另一可選擇例子中,所有的選擇線可以在閘極啟動電壓被初始地縮減且已經被衰減至一所欲的值之後啟動,或是在一預設的時間之後啟動。在背驅動放電對足夠縮減顯示器中之電荷偏極化是有效的之後,或是在閘極啟動電壓衰減至0伏特之後,可以關閉(t2)所有的選擇線。 Figure 1C is a graph showing the gate start-up voltage versus time during the active update period and during the voltage decay phase with a better voltage curve. The dashed line previously depicted and described in Figure 1B shows a typical exponential decay after active update. The solid line shows an example of a more favorable voltage curve for the back drive discharge phase, in which the gate start-up voltage rapidly decays or decreases to a smaller value, and then decays from this reduced value with the time of the back drive discharge. As shown in FIG. 1C, the initial rapid reduction of the gate starting voltage value after the active update is completed before the activation of all the selection lines. Alternatively, all selection lines can be activated at t = 0. In another alternative example, all the selection lines may be activated after the gate start voltage is initially reduced and has been attenuated to a desired value, or may be activated after a preset time. After the back-drive discharge is effective to sufficiently reduce the charge polarization in the display, or after the gate start voltage has decayed to 0 volts, all select lines can be closed (t 2 ).

第2A圖係第1A圖的簡單電路佈局另外包含位在PMIC 202及閘極驅動器206之間的「單極、單投」開關(“SW1”)210(如圖所示,係為「開路」的)的示意圖。當SW1開關210閉路時,電路主動地驅動閘極驅動器206。當SW1開關210開路時(在主動驅動結束時),PMIC 202將停止驅動閘極高電壓206,且閘極啟動電壓衰減率將藉由下拉電阻器R 208以及閘極啟動線204所經歷的各種電容來決定。 Figure 2A is the simple circuit layout of Figure 1A. In addition, it includes a "single-pole, single-throw" switch ("SW1") 210 (shown as "open circuit") between PMIC 202 and gate driver 206. ). When the SW1 switch 210 is closed, the circuit actively drives the gate driver 206. When the SW1 switch 210 is open (at the end of active driving), the PMIC 202 will stop driving the high gate voltage 206, and the gate start voltage decay rate will be reduced by the pull-down resistor R 208 and the gate start line 204. Capacitance to decide.

第2B圖係敘述在主動驅動相位220之期間當SW1開關是閉路時,以及在電壓衰減相位222之期間當SW1開關是開路時,在第2A圖之電路的閘極啟動電壓隨時間之示意圖。 FIG. 2B is a schematic diagram illustrating the gate start voltage of the circuit in FIG. 2A with time when the SW1 switch is closed during the active driving phase 220 and when the SW1 switch is open during the voltage decay phase 222.

第3A圖係根據本發明的一實施例之閘極啟動電壓電路之示意圖。第3A圖顯示從PMIC 302至主動矩陣型顯示器的閘極驅動器306,具有「單極、單投」開關(“SW1”)310的閘極啟動電壓線304。該電路更包含電阻器R308、第二「單極、雙投」開關(“SW2”)312(如圖所示,係在位置“a”)、以及下拉電容器C1 314。 FIG. 3A is a schematic diagram of a gate start voltage circuit according to an embodiment of the present invention. FIG. 3A shows a gate driver voltage line 304 having a “single-pole, single-throw” switch (“SW1”) 310 from the gate driver 306 of the PMIC 302 to the active matrix display. The circuit further comprises a resistor R308, a second "single-pole, double-throw" 312 (as shown, based on the position "a") switch ( "SW2"), and the pull-down capacitor C 1 314.

開關SW1及SW2係程式化以使近似同步地開路及閉路,使得在每次僅有一個開關被接合。當操作時,在主動顯示驅動之期間,SW1閉路且SW2開路,以及在電壓衰減相位及背驅動放電之期間,SW1開路且SW2閉路。SW1係「單極、單投」開關的一例子,其中僅當在閉路位置時它是連接的。SW2係「單極、雙投」開關的一例子,其中係在兩點之間切換,使得它不是連接至位置“a”就是連接至位置“b”。 Switches SW1 and SW2 are programmed to open and close in approximately synchronous fashion so that only one switch is engaged at a time. When operating, during active display driving, SW1 is closed and SW2 is open, and during the voltage decay phase and back drive discharge, SW1 is open and SW2 is closed. SW1 is an example of a "single-pole, single-throw" switch, where it is connected only when in the closed position. SW2 is an example of a "single-pole, double-throw" switch, which is switched between two points so that it is connected to either position "a" or position "b".

藉由合併下拉電容器C1 314及第二開關SW2 312,閘極啟動電壓值可以被縮減至較低的值,且接著,可以從此縮減的電壓值衰減。在主動驅動結束時,SW1是開路且SW2是在位置“b”,驅動電壓(“V”)衰減可以根據下述方程式而計算: By combining the pull-down capacitor C 1 314 and the second switch SW2 312, the gate start voltage value can be reduced to a lower value, and then, the reduced voltage value can be attenuated from this. At the end of active driving, SW1 is open and SW2 is at position "b". The drive voltage ("V") attenuation can be calculated according to the following equation:

其中C係閘極啟動線304的線路電容且V0係初始電壓。 Among them, C is the line capacitance of the gate start line 304 and V 0 is the initial voltage.

第3B圖係敘述在主動驅動相位320之期間,當SW1開關是閉路且SW2開關係在位置“a”時,以及在電壓衰減相位322之期間,當SW1開關是開路且SW2開關係連接至位置“b”時,針對在第3A圖的電路之閘極啟動電壓隨時間之示意圖。如第3B圖所示,在主動驅動相位320(當SW1是閉路且SW2係在位置“a”時)之期間,PMIC驅動閘極驅動器306。在電壓衰減相位[當SW1是開路且SW2係在位置“b”時)之期間,電壓值被快速地下拉至較小的電壓值(亦即,VoC/(C+C1)],且從此較小值322以藉由下拉電阻器R 308及電容器C及C1的電容所決定的速率而衰減。 FIG. 3B illustrates when the SW1 switch is closed and the SW2 open relationship is in position "a" during the active driving phase 320, and during the voltage decay phase 322, when the SW1 switch is open and SW2 is connected to the position "B" is a schematic diagram of the gate starting voltage of the circuit in FIG. 3A over time. As shown in FIG. 3B, during the active driving phase 320 (when SW1 is closed and SW2 is at the position "a"), the PMIC drives the gate driver 306. During the voltage decay phase [when SW1 is open and SW2 is at position "b"], the voltage value is quickly pulled down to a smaller voltage value (ie, V o C / (C + C 1 )], And from this smaller value 322 decays at a rate determined by the pull-down resistor R 308 and the capacitance of capacitors C and C 1 .

第4A圖係根據本發明的另一實施例之閘極啟動電壓電路之示意圖。第4A圖顯示從PMIC 402至主動矩陣型顯示器的閘極驅動器406,具有第一開關(“SW1”)410的閘極啟動電壓線404。該電路更包含電阻器R 408、第二開關SW2 412(如圖所示,係在位置“a”)、下拉電容器(“C1”)414、以及第二下拉電阻器(“R1”)416。 下拉電容器C1 414及下拉電阻器R1 416係與SW2 412是串聯的,然而,它們相對於SW2的位置可以交換的。 FIG. 4A is a schematic diagram of a gate start voltage circuit according to another embodiment of the present invention. FIG. 4A shows a gate driver voltage line 404 having a first switch (“SW1”) 410 from the gate driver 406 of the PMIC 402 to the active matrix display. The circuit further comprises a resistor R 408, a second switch SW2 412 (as shown, based on the position "a"), the pull-down capacitor ( "C 1") 414, and a second pull-down resistor ( "R 1") 416. Pull-down capacitor C 1 414 and pull-down resistors R 1 416 and SW2 412 lines are in series, however, they can be relative to the position of the exchange SW2.

如第4B圖所示,在主動驅動相位420(當SW1是閉路且SW2是在位置“a”時)之期間,PMIC係以主動驅動閘極啟動電壓值來驅動閘極驅動器406,且將電容器C1充電。在電壓衰減相位422(當SW1是開路的且SW2是在位置“b”時)之期間,閘極啟動電壓值被縮減至的電容器C1 414之值,並且以電阻器R 408以及R1 416所決定的速率而衰減。電容器C1以及電阻器R及R1的增加允許,在初始縮減時更好等級的控制,以及在閘極啟動電壓值的衰減率更好等級的控制。 As shown in FIG. 4B, during the active driving phase 420 (when SW1 is closed and SW2 is in the position "a"), the PMIC drives the gate driver 406 with the active driving gate start voltage value, and the capacitor C 1 charges. During voltage decay phase 422 (when SW1 is open and SW2 is at position "b"), the gate start voltage value is reduced to the value of capacitor C 1 414, and resistors R 408 and R 1 416 At a determined rate. The increase of the capacitor C 1 and the resistors R and R 1 allows for a better level of control during the initial reduction and a better level of control for the decay rate of the gate start voltage value.

第5A圖係根據本發明的另一實施例之閘極啟動電壓電路之示意圖,其與第3A圖是均等的。第5A圖顯示從PMIC 502至主動矩陣型顯示器的閘極驅動器506,具有第一開關(“SW1”)510的閘極啟動電壓線504。該電路更包含第二「單極、雙投」開關(“SW2”)512(如圖所示,係在位置a),其位在閘極啟動電壓線504上。SW2 512接合下拉電阻器R 508及下拉電容器C1 514。在主動驅動相位(如第3B圖中的320所述)之期間,當SW1是閉路且SW2是在位置“a”時,電容器C1 514將被充電。在電壓衰減相位(如第3B圖中的322所述)之期間,當SW1是開路且SW2是在位置“b”時,電壓值將被初始地降低至電容器C1 514的值,接著以電阻器R 508所決定的速率而衰減。 FIG. 5A is a schematic diagram of a gate start voltage circuit according to another embodiment of the present invention, which is equal to FIG. 3A. FIG. 5A shows the gate driver voltage line 504 having the first switch (“SW1”) 510 from the gate driver 506 of the PMIC 502 to the active matrix display. The circuit further includes a second "single-pole, double-throw" switch ("SW2") 512 (as shown in the figure, tied to position a), which is located on the gate start voltage line 504. SW2 512 engages the pull down resistor R 508 and pull-down capacitor C 1 514. During the active driving phase (as in 320 of FIG. 3B) of, when the switch SW1 is closed and SW2 is in the position "a", capacitor C 1 514 to be charged. During the phase of voltage decay (as described by 322 in Figure 3B), when SW1 is open and SW2 is at position "b", the voltage value will be initially reduced to the value of capacitor C 1 514, followed by a resistance At a rate determined by R 508.

使用第5A圖作為例示的電泳顯示器,在主動更新相位之期間,PMIC可以以+22伏特來驅動閘極啟動電壓。在背驅動放電相位(殘餘電壓放電)之期間,+22伏特的閘極啟動電壓值是超過的,且縮減的閘極高電壓值是較佳的。在某些顯示器中,可以藉由使用大約+8伏特的電壓值而達成殘餘電壓放電。第5A圖的較佳電路包括電容器C1,其足以致使在主動驅動相位之後使閘極啟動電壓快速地減低至大約10~12伏特。較佳的電容器C1值是大約等於當它附接至顯示器(SW2係在位置b)時但是PMIC未連接(SW1係在位置“b”)時,閘極啟動線之電容。因為不同的顯示器及驅動電子產品具有各種的閘極啟動電容,單一的電容值C1將不運用於所有的顯示器,然而,可以基於所欲之初始電壓下降而選擇。相同地,有關電阻器R 508,單一的電阻器值將不運用於所有的顯示器,然而,可以基於所欲之電壓衰減率而選擇。 Using FIG. 5A as an example electrophoretic display, the PMIC can drive the gate start-up voltage at +22 volts during the active phase update period. During the back drive discharge phase (residual voltage discharge), a gate start voltage value of +22 volts is exceeded, and a reduced gate high voltage value is preferred. In some displays, residual voltage discharge can be achieved by using a voltage value of approximately +8 volts. The preferred circuit of FIG. 5A includes a capacitor C 1 that is sufficient to cause the gate start voltage to be quickly reduced to approximately 10-12 volts after the active drive phase. Preferred capacitors C 1 is approximately equal to the value when it is attached to the display (SW2 based on the position b) when it is not connected PMIC (SW1 based on a position "b"), the gate line of the start capacitor. Because different displays and driving electronics have various gate start capacitors, a single capacitance value C 1 will not be used for all displays, however, it can be selected based on the desired initial voltage drop. Similarly, regarding resistor R 508, a single resistor value will not be applied to all displays, however, it can be selected based on the desired voltage decay rate.

第5B圖係根據本發明的另一實施例之閘極啟動電壓電路之示意圖,其與第4A圖是均等的。第5B圖係第5A圖之電路額外包含下拉電阻器R1 516之示意圖。在第5B圖中,SW2 512係接合下拉電阻器R 508、下拉電容器C1 514以及下拉電阻器R1 516。在主動驅動相位(如第4B圖中的420所述)之期間,當SW1係閉路的且SW2在位置“a”時,電容器C1 514將放電至0V。在電壓衰減相位(如第4B圖中的422所述)之期間,當SW1係開路的且SW2在位置“b”時,電壓值將初始地下降至電容器C1 514之值,接著以電阻器R 508及R1 516所決定之速率而衰減。 FIG. 5B is a schematic diagram of a gate start voltage circuit according to another embodiment of the present invention, which is equal to FIG. 4A. FIG. 5B is a schematic diagram of the circuit of FIG. 5A additionally including a pull-down resistor R 1 516. In FIG. 5B, SW2 512 is connected to a pull-down resistor R 508, a pull-down capacitor C 1 514, and a pull-down resistor R 1 516. During the active driving phase (as in 420 of FIG. 4B), the closed circuit when SW1 and SW2 based on the position "a", the discharge capacitor C 1 514 to 0V. During the voltage decay phase (as described by 422 in Figure 4B), when SW1 is open and SW2 is in position "b", the voltage value will initially drop to the value of capacitor C 1 514, and then a resistor Decreases at the rate determined by R 508 and R 1 516.

第6A圖係根據本發明的另一實施例之閘極啟動電壓電路之示意圖。第6A圖顯示從PMIC 602至主動矩陣型顯示器的閘極驅動器606,具有第一開關(“SW1”)610的閘極啟動電壓線604。該電路更包含下拉電阻器R 608、下拉電容器(“C1”)614、第二下拉電阻器(“R1”)618、第二下拉電容器(“C2”)616、以及第二開關(“SW2”)612(如圖所示,係「開路」的),其位於下拉電阻器R1 618及下拉電容器C2 616之間。下拉電容器C1 614、下拉電阻器R1 618、以及下拉電容器C2 616係串聯的。 FIG. 6A is a schematic diagram of a gate start voltage circuit according to another embodiment of the present invention. FIG. 6A shows a gate driver voltage line 604 having a first switch (“SW1”) 610 from the gate driver 606 of the PMIC 602 to the active matrix display. The circuit further comprises a pull-down resistor R 608, pull-down capacitor ( "C 1") 614, a second pull-down resistor ( "R 1") 618, a second pull-down capacitor ( "C 2") 616, and a second switch ( “SW2”) 612 (shown as “open”), which is located between the pull-down resistor R 1 618 and the pull-down capacitor C 2 616. The pull-down capacitor C 1 614, the pull-down resistor R 1 618, and the pull-down capacitor C 2 616 are connected in series.

當藉由使SW1閉路及使SW2開路,PMIC致使閘極啟動線成為V0伏特時,跨C1的電壓提升至Vo*C2/(C1+C2)。選定電容器C1及C2,以將此電壓設定至在背驅動放電週期之期間所欲之低位準。選定電阻器R1 618,以避免電流暴衝,其可能無法由PMIC所支援,且R1的值可以是0歐姆,在該例中R1不是必須的。此處需要注意的是,R1 618及C1 614的位置可以交換的。接著,在背驅動放電週期之期間,SW1是開路且SW2閉路,使得閘極線現在是保持在較低電壓,其經由電阻器R 608及R1 618之結合電阻值而透過放電緩慢地衰減。相較於先前的實施例,此替代性實施例的優點在於,(1)開關SW2是「單極、單投」的,其可以輕易地以電晶體來實施,以及(2)所欲之低電壓可以更加輕易近似地設定,而與藉由選定C1及C2值的閘極線電容無關,C1及C2值比閘極線604所經歷的其他電容值更大一些。 When SW1 is closed and SW2 is open, PMIC causes the gate start line to become V 0 volts, the voltage across C 1 is increased to V o * C 2 / (C 1 + C 2 ). The capacitors C 1 and C 2 are selected to set this voltage to a desired low level during the period of the back drive discharge. Resistor R 1618 is selected to avoid violent impulse current, which may not be supported by the PMIC made, and the value of R 1 may be a 0 ohm, in this embodiment, R 1 is not necessary. It should be noted here that the positions of R 1 618 and C 1 614 are interchangeable. Then, during the back drive discharge cycle, SW1 is open and SW2 is closed, so that the gate line is now maintained at a lower voltage, which decays slowly through discharge through the combined resistance value of resistors R 608 and R 1 618. Compared with the previous embodiment, this alternative embodiment has the advantages that (1) the switch SW2 is "single-pole, single-throw", which can be easily implemented with a transistor, and (2) the desired low The voltage can be set more easily and approximately, regardless of the gate line capacitance by selecting the values of C 1 and C 2, the values of C 1 and C 2 are larger than other capacitance values experienced by the gate line 604.

如第6B圖所示,在主動驅動相位620(當SW1是閉路且SW2是開路)之期間,PMIC以閘極啟動電壓值來驅動閘極驅動器606,以供主動驅動,並且將電容器C1及C2充電至相加達至閘極啟動電壓值之電壓值。在電壓衰減相位622(當SW1是開路且SW2是閉路)之期間,閘極啟動電壓值下降至在主動驅動之期間跨C1之電壓的位準,且接著從此較低值衰減。電容器C1及C2及以及電阻器R及R1之增加允許,在閘極啟動電壓值的初始縮減上更好等級的控制,包括時間及縮減量,以及在數值之初始下降之後的衰減率更好等級的控制。可以設定這些值,以使得在電壓衰減相位之期間在電壓值的縮減上最佳化,或者這些電阻器中的一者或二者可以從電路中移除。 As shown in FIG. 6B, during the active driving phase 620 (when SW1 is closed and SW2 is open), the PMIC drives the gate driver 606 with the gate start voltage value for active driving, and the capacitors C 1 and C 2 is charged to a voltage value added up to the gate start voltage value. In phase 622 the voltage decay (when SW1 is open and SW2 is closed) during the period, the gate voltage starts to drop across the voltage level of 1 C during the driving of the active, from a lower value and then decay. The addition of capacitors C 1 and C 2 and resistors R and R 1 allows a better level of control over the initial reduction of the gate start voltage value, including time and reduction, and the attenuation rate after the initial decrease in value Better level of control. These values can be set to optimize the reduction of the voltage value during the voltage decay phase, or one or both of these resistors can be removed from the circuit.

第7圖係根據本發明的另一實施例之閘極啟動電壓電路之示意圖。第7圖顯示從PMIC 702至主動矩陣型顯示器的閘極驅動器706,具有第一開關(“SW1”)710的閘極啟動電壓線704。該電路更包含第二開關(“SW2”)712(如圖所示,係「開路」的),其位於閘極啟動電壓線704上。SW2 712係接合下拉電阻器R 708及稽納(Zener)二極體714。在放電相位之期間,當SW1開路且SW2閉路時,稽納二極體快速地將閘極啟動電壓值下降至一預設值(「崩潰電壓值」,如以下所述),並且以其中該電壓被選用電阻器R 708所影響下降至此值的速率而衰減。 FIG. 7 is a schematic diagram of a gate start voltage circuit according to another embodiment of the present invention. FIG. 7 shows the gate driver voltage line 704 having the first switch (“SW1”) 710 from the gate driver 706 of the PMIC 702 to the active matrix display. The circuit further includes a second switch ("SW2") 712 (shown as "open circuit"), which is located on the gate start voltage line 704. SW2 712 is a combination of pull-down resistor R 708 and Zener diode 714. During the phase of the discharge, when SW1 is open and SW2 is closed, the audit diode quickly drops the gate start voltage value to a preset value ("collapse voltage value", as described below), and uses the The voltage is attenuated by the rate at which the resistor R 708 is selected to drop to this value.

稽納二極體是商業上可取得的二極體,其允許電流以如同理想二極體之相同模式而在向前方向上流動,然而當電壓是低於一固定值(「崩潰電壓」)時也允許它以相反方向流動。稽納二極體之取得可具有不同崩潰電壓且可以基於一特定顯示器的所欲之崩潰電壓值而選擇。稽納二極體在電壓及電流之間是非線性的,然而它如何反應至電壓及電流是可預測的。當電流是高時,稽納二極體將快速地降低電壓,然而,一旦當達到崩潰電壓時,電流關閉。這是在電壓衰減相位之期間快速地降低閘極啟動電壓值之另一方法。使用多於一個的稽納二極體來替代在第7圖中顯示的稽納二極體,亦是所欲的。使用串聯之二個或多個稽納二極體是共同的做法,以使得達成所欲之電壓,串聯之稽納二極體將電流傳導至其上。可以使用串聯之稽納二極體,以使增加在電壓之選擇上的彈性,在其上經由稽納二極體透過導電而使電壓下降。在此例中,此種串聯之稽納二極體的有效崩潰電壓係為組成之稽納二極體的每一者之「崩潰電壓」的總和。 Auditor diodes are commercially available diodes that allow current to flow in the forward direction in the same pattern as an ideal diode, but when the voltage is below a fixed value (the "crash voltage") It is also allowed to flow in the opposite direction. The acquisition of the audit diode can have different breakdown voltages and can be selected based on the desired breakdown voltage value of a particular display. Auditor diodes are non-linear between voltage and current, but how it reacts to voltage and current is predictable. When the current is high, the zener diode will drop the voltage quickly, however, once the breakdown voltage is reached, the current is turned off. This is another way to quickly reduce the gate start-up voltage during the voltage decay phase. It is also desirable to use more than one zener diode in place of the zener diode shown in Figure 7. It is common practice to use two or more zener diodes in series to achieve the desired voltage, and the zener diodes in series conduct current to them. An zener diode in series can be used to increase the flexibility in the choice of voltage, and the voltage can be reduced through the zener diode through conduction. In this example, the effective breakdown voltage of such a series of audit diodes is the sum of the "crash voltages" of each of the composed audit diodes.

此電路具有比先前版本更好之優點。在先前版本中,SW2係「單極、雙投」開關且依賴電容值,以使在背驅動放電任務之開始時達成所欲之電壓。在此版本中,SW2係「單極、單投」開關,其是更為簡單的。相較於利用電容器以使在放電相位之期間控制電壓,使用稽納二極體來控制所欲之電壓,給予在放電相位之期間更確信地控制電壓。圖式中的電阻器是選用的。吾人 可能應該顯示此例子,然而也可以顯示不具有電阻器之例子,或解釋電阻器值可為0的例子。 This circuit has the advantage over previous versions. In previous versions, SW2 was a "single-pole, dual-throw" switch and relied on the capacitor value to achieve the desired voltage at the beginning of the back-drive discharge task. In this version, SW2 is a "single-pole, single-throw" switch, which is simpler. Rather than using a capacitor to control the voltage during the discharge phase, using an audit diode to control the desired voltage gives the voltage to be controlled more confidently during the discharge phase. The resistor in the diagram is optional. I This example should probably be displayed, but it is also possible to show examples without resistors, or to explain examples where the resistor value can be zero.

根據本發明的另一實施例,電力管理電路(例如電力管理積體電路PMIC)可以組構以使主動地控制閘極啟動電壓。在主動更新之期間,可以設定閘極啟動電壓值,以允許像素足以充電至所欲之電壓,以供成功的顯示器操作。在主動更新之後,在背驅動放電之時序的期間,可以設定閘極啟動電壓至一縮減的值,其中較低的量值足以達成背驅動放電。PMIC係使用一開關,將顯示器之閘極啟動電壓輸出,在針對主動驅動顯示器之電壓值以及在針對背驅動放電之不同電壓值之間切換,而管理閘極啟動電壓之控制。在某些實施例中,該開關可以是PMIC之內部。在其他實施例中,該開關及電路可以是PMIC之外部。 According to another embodiment of the present invention, a power management circuit (such as a power management integrated circuit PMIC) may be configured to actively control the gate start voltage. During the active update period, the gate start voltage can be set to allow the pixel to be charged to a desired voltage for successful display operation. After the active update, during the timing of the back drive discharge, the gate start voltage can be set to a reduced value, where a lower value is sufficient to achieve the back drive discharge. PMIC uses a switch to output the gate start voltage of the display, switch between the voltage value for actively driving the display and different voltage values for the back drive discharge, and manage the control of the gate start voltage. In some embodiments, the switch may be internal to the PMIC. In other embodiments, the switches and circuits may be external to the PMIC.

第8A圖敘述根據此處所提出的發明標的之又另一實施例。第8A圖敘述從PMIC至主動矩陣型顯示器的閘極驅動器806,耦接至第一開關(“SW1”)810之閘極啟動電壓線804,而SW1耦接至第一電壓源812,組構以提供第一電壓給顯示器。再者,也可以經由第二開關(“SW2”)814而耦接第二電壓源816(通常是低電壓源)至閘極啟動電壓線804,且組構以提供第二電壓給主動矩陣型顯示器。另外,與電壓線804及閘極驅動器806相關,可以並聯地連接電容器C 818及電阻器R 820,以提供在閘極啟動電壓之衰減時的更好控制。 FIG. 8A illustrates yet another embodiment according to the inventive subject matter presented here. FIG. 8A illustrates the gate driver 806 from the PMIC to the active matrix display, coupled to the gate start voltage line 804 of the first switch (“SW1”) 810, and SW1 is coupled to the first voltage source 812. To provide a first voltage to the display. Furthermore, the second voltage source 816 (usually a low voltage source) can also be coupled to the gate start voltage line 804 via a second switch (“SW2”) 814, and configured to provide a second voltage to the active matrix type. monitor. In addition, in connection with the voltage line 804 and the gate driver 806, a capacitor C 818 and a resistor R 820 can be connected in parallel to provide better control when the gate start voltage is attenuated.

第8B圖敘述如同第8A圖中所述之電路所組構之閘極啟動電壓之衰減。如圖所示,在主動相位840(當SW1是閉路且SW2是在位置“a”時)之期間,PMIC係以主動驅動閘極啟動電壓值來驅動顯示器,以及將電容器C 818充電。在第二主動相位842(當SW1是在位置“b”且SW2是閉路時)之期間,PMIC係以藉由第二電壓源816所支配的電壓來驅動顯示器。在此第二主動相位842中,顯示器係以與第二電壓源816所提供的電壓值接近的電壓位準而驅動,且因此電容器C 818係參考第二電壓源816的電壓值而充電及放電。最後,在放電相位844(當SW1係在位置b且SW2係在位置“a”時)之期間,閘極啟動電壓被設計為以電容器C 818及電阻器R 820之組合所決定的速率而衰減。此組態允許在閘極啟動電壓上更快速的初始縮減,且因此促進整體的衰減過程,以及改善裝置之可靠度。 Fig. 8B illustrates the attenuation of the gate start voltage of the circuit configured as described in Fig. 8A. As shown in the figure, during the active phase 840 (when SW1 is closed and SW2 is in the position "a"), the PMIC drives the display with the active gate start voltage value and charges the capacitor C 818. During the second active phase 842 (when SW1 is in position “b” and SW2 is closed), the PMIC drives the display with a voltage dominated by the second voltage source 816. In this second active phase 842, the display is driven at a voltage level close to the voltage value provided by the second voltage source 816, and therefore the capacitor C 818 is charged and discharged with reference to the voltage value of the second voltage source 816 . Finally, during the discharge phase 844 (when SW1 is in position b and SW2 is in position "a"), the gate start voltage is designed to decay at a rate determined by the combination of capacitor C 818 and resistor R 820 . This configuration allows for a faster initial reduction in the gate start-up voltage and therefore facilitates the overall decay process and improves the reliability of the device.

當使用時,如第9圖所述,在一長的使用週期之後(例如10萬次更新),相較於某些習知的組態(線906及908),在第8A圖中所述之組態提供更佳的可靠度(線902及904)。 When used, as shown in Figure 9, after a long service life (such as 100,000 updates), compared to some conventional configurations (lines 906 and 908), described in Figure 8A The configuration provides better reliability (lines 902 and 904).

電晶體及典型電荷比例/電晶體降級Transistor and typical charge ratio / transistor degradation

因此,在某些態樣中,此處所述之標的也提供用於驅動雙穩態電光顯示器之方法,該顯示器具有主動矩陣陣列之複數個像素。各種類型的主動矩陣電晶體是商業上可取得的,包括:非晶矽、微晶質、多晶矽、及有機的等等。在主動矩陣型顯示器中之電晶體典型地 被設計為支援1:1000的ON:OFF比例,因大多數主動矩陣型顯示器具有大約1000行。針對主動矩陣型顯示器中之n通道(“n型”)非晶矽薄膜電晶體(“a-Si”TFT),當在閘極至源極上具有正電壓時,電晶體係在其ON狀態(選定了行),以及當在閘極至源極上具有負電壓時,電晶體係在其OFF狀態。因此,n型薄膜像素電晶體典型地經歷1:1000的正至負電荷比例。針對主動矩陣型顯示器中之p通道(“p”型)非晶矽薄膜電晶體a-Si TFT,電壓極性是相反的。當在閘極至源極上具有負電壓時,p型電晶體係在其ON狀態,以及當在閘極至源極上具有正電壓時,p型電晶體係在其OFF狀態。因此,p型薄膜像素電晶體典型地經歷1:1000的正至負電荷比例。當ON:OFF比例改變使得電晶體處於ON比正常比例更常時,電晶體可能降級且不利地影響了顯示器之光學性能。由於非典型電荷偏壓,非晶矽電晶體對於降級是高度易感的。用於減低此類型的電晶體降級的方法之一在於,藉由將電晶體微調至其OFF位置,使得ON:OFF比例將是接近其1:1000的典型值,因而標準化ON:OFF比例,於此處更為完整地敘述。 Therefore, in some aspects, the subject matter described herein also provides a method for driving a bi-stable electro-optic display having a plurality of pixels in an active matrix array. Various types of active matrix transistors are commercially available, including: amorphous silicon, microcrystalline, polycrystalline silicon, and organic. Transistors in active matrix displays are typically It is designed to support an ON: OFF ratio of 1: 1000 because most active matrix displays have approximately 1000 lines. For n-channel ("n-type") amorphous silicon thin-film transistors ("a-Si" TFTs) in active matrix displays, the transistor system is in its ON state when there is a positive voltage from the gate to the source ( The row is selected), and the transistor system is in its OFF state when there is a negative voltage across the gate to the source. Therefore, n-type thin film pixel transistors typically experience a positive to negative charge ratio of 1: 1000. For p-channel ("p") amorphous silicon thin film transistors a-Si TFTs in active matrix displays, the voltage polarity is reversed. When there is a negative voltage from the gate to the source, the p-type transistor system is in its ON state, and when there is a positive voltage from the gate to the source, the p-type transistor system is in its OFF state. Therefore, p-type thin-film pixel transistors typically experience a positive to negative charge ratio of 1: 1000. When the ON: OFF ratio is changed so that the transistor is ON more often than the normal ratio, the transistor may be degraded and adversely affect the optical performance of the display. Due to atypical charge bias, amorphous silicon transistors are highly susceptible to degradation. One method for reducing the degradation of this type of transistor is to normalize the ON: OFF ratio by adjusting the transistor to its OFF position so that the ON: OFF ratio will be close to its typical value of 1: 1000. More fully described here.

應可以理解的是,主動矩陣型顯示器之典型ON:OFF比例可以與1:1000比例不同,且此處所述之本發明的態樣仍可以運用。 It should be understood that the typical ON: OFF ratio of the active matrix display can be different from the 1: 1000 ratio, and the aspects of the invention described herein can still be applied.

基於電光顯示器的縮減殘餘電壓之電荷偏壓Charge bias for reducing residual voltage based on electro-optic display

電荷偏壓可能發生在,當殘餘電壓係從根據此處所揭示的技術之電光顯示器放電時,且更為完整揭 示在2015年2月4日所申請之美國專利暫時申請案62/111,927中,其完整內容係併入此處以供參照。電光顯示器的一像素之殘餘電壓可以藉由下述而放電:致動像素的電晶體(亦即,將所有的電晶體啟動為ON),以及將該像素的前電極及後電極之電壓設定為大約是一時間週期之相同值。在殘餘電壓放電脈衝之期間藉由一像素將殘餘電壓放電之量,可以至少部分地依據該像素將殘餘電壓放電之速率而定,以及依據殘餘電壓放電脈衝之持續時間而定。在某些實施例中,施加殘餘電壓放電脈衝(位在ON之位置)之期間的週期持續時間可以至少是50ms、至少100ms、至少300ms、至少500ms、至少1秒或任何其他適合的持續時間。 The charge bias may occur when the residual voltage is discharged from an electro-optic display according to the technology disclosed herein, and is more completely revealed. It is shown in US Patent Provisional Application No. 62 / 111,927 filed on February 4, 2015, the entire contents of which are incorporated herein by reference. The residual voltage of one pixel of the electro-optical display can be discharged by activating the transistors of the pixel (ie, turning on all the transistors to ON), and setting the voltages of the front and rear electrodes of the pixel to Approximately the same value over a period of time. The amount of residual voltage discharged by a pixel during the residual voltage discharge pulse can be determined at least in part by the rate at which the pixel discharges the residual voltage, and by the duration of the residual voltage discharge pulse. In some embodiments, the period duration during which the residual voltage discharge pulse is applied (located in the ON position) may be at least 50 ms, at least 100 ms, at least 300 ms, at least 500 ms, at least 1 second, or any other suitable duration.

例如,所有的像素電晶體可以藉由下述而成為可導電的:使閘極線電壓相對於源極線電壓成為使像素電晶體成為一狀態的值,在該狀態,相較於使用於隔離來自源極線(作為正常主動矩陣型驅動器的一部分)之像素的非導電狀態時,它們是相對地導電的。針對n型薄膜像素電晶體,此可藉由使閘極線成為實質高於源極線電壓值之值而達成。針對p型薄膜像素電晶體,此可藉由使閘極線成為實質低於源極線電壓值之值而達成。在一替代性實施例中,所有的像素電晶體可以藉由下述而成為導電的:使閘極線電壓成為0且使源極線電壓成為負的電壓(或者,針對p型電晶體,成為正的電壓)。 For example, all pixel transistors can be made conductive by making the gate line voltage relative to the source line voltage a value that causes the pixel transistor to be in a state where it is compared to being used for isolation When the pixels from the source line (as part of a normal active matrix driver) are non-conductive, they are relatively conductive. For n-type thin film pixel transistors, this can be achieved by making the gate line a value substantially higher than the source line voltage value. For p-type thin film pixel transistors, this can be achieved by making the gate line a value substantially lower than the source line voltage value. In an alternative embodiment, all pixel transistors can be made conductive by making the gate line voltage 0 and the source line voltage negative (or, for p-type transistors, becoming Positive voltage).

供選擇地,可以提供特殊設計的電路,以將所有的像素在同一時間定址。在一標準主動矩陣操作 中,選擇線控制電路典型地未將所有的閘極線成為針對所有的像素電晶體達成上述提及的導電狀態之值。達成此條件的一便利的方法在於,藉由選擇線驅動器晶片而給予,該晶片具有一輸入控制線,允許一外部訊號,以使強加一條件,其中所有選擇線輸出接收從被選定使像素電晶體成為導電之選擇驅動器所提供的電壓。藉由施加適當的電壓值給此特殊輸入控制線,所有的電晶體可以成為導電的。藉由例子,針對具有n型像素電晶體的顯示器,某些選擇驅動器具有“Xon”控制線輸入。藉由選擇一電壓值給Xon接腳(其輸入至該等選擇驅動器)的輸入,「閘極高電壓」被發送至所有的選擇線並且將所有電晶體開路成ON狀態。 Alternatively, a specially designed circuit can be provided to address all pixels at the same time. Operation in a standard active matrix However, the selection line control circuit typically does not set all the gate lines to a value that achieves the above-mentioned conductive state for all the pixel transistors. A convenient method to achieve this is to be given by a selection line driver chip, which has an input control line that allows an external signal to impose a condition where all selection line output receptions are selected from the selected pixels. The crystal becomes the voltage provided by the conductive selective driver. By applying an appropriate voltage value to this special input control line, all transistors can be made conductive. By way of example, for displays with n-type pixel transistors, some select drivers have an "Xon" control line input. By selecting a voltage value for the input of the Xon pin (which is input to the selection drivers), the "gate high voltage" is sent to all selection lines and all transistors are opened to the ON state.

當使用這些技術將殘餘電壓分散時,正對負電荷比例(例如是n型電晶體所經歷的),可以從大約1:1000至大約1:10或甚至是1:1變化。此非典型的電荷偏壓可能導致電晶體降級以及縮減的顯示器性能。因隨著時間增加之非典型電荷偏壓及電晶體降級,顯示器之電流及電壓(“IV”)曲線在數值上位移。假如IV曲線位移至較高的值,需要更多的電壓來致動電晶體開關。藉由選擇性地量測在顯示器反射率的組合之灰階位移及鬼影位移(在L*值之量測),可以顯示在IV曲線上的位移之效應。 When the residual voltage is dispersed using these techniques, the positive to negative charge ratio (such as experienced by n-type transistors) can vary from about 1: 1000 to about 1:10 or even 1: 1. This atypical charge bias can cause transistor degradation and reduced display performance. Due to the atypical charge bias and transistor degradation over time, the current and voltage ("IV") curve of the display shifts in value. If the IV curve is shifted to a higher value, more voltage is needed to actuate the transistor switch. By selectively measuring the gray scale displacement and ghost displacement (measured at the L * value) of the combination of the reflectance of the display, the effect of the displacement on the IV curve can be displayed.

灰階位移/鬼影位移Gray scale shift / ghost shift

通常有256個轉換(transitions),係定義為將顯示器從目前在顯示器上之16個可能灰階狀態(包括極 黑及極白)切換至待被顯示的下一影像之相同灰階狀態。灰階位移係量測這些轉換中的16個。鬼影位移量測其餘240個轉換的特性。 There are usually 256 transitions, which are defined to change the display from the 16 possible grayscale states (including polar Black and extremely white) to switch to the same grayscale state of the next image to be displayed. The gray scale displacement system measures 16 of these transformations. Ghost displacement measures the characteristics of the remaining 240 transitions.

灰階安置(“GTP”)係量測從施加16個轉換至當從一白色影像開始時所有可能的灰階(包括黑色及白色),所導致的光學狀態。如第1A圖所示,灰階安置位移係在時間k(其可藉由序列數來定義)時在16個灰階上方的最大L*位移之絕對值,減去在時間0時的灰階位移。GTP位移在此處也可以稱為灰階位移,可以使用以下方程式來計算:GTP shift(k)=max|(GTP(k)-GTP(0))|,其中GTP(0)係為初始的GTP,且GTP(k)係為在時間k時的GTP量測值。GTP位移係16個轉換的絕對量測值。 Gray-scale placement ("GTP") is a measurement of the optical state resulting from applying 16 transitions to all possible gray-scales (including black and white) when starting from a white image. As shown in Figure 1A, the grayscale placement displacement is the absolute value of the maximum L * displacement above 16 grayscales at time k (which can be defined by the number of sequences), minus the grayscale at time 0 Displacement. GTP shift can also be referred to as grayscale shift here, which can be calculated using the following equation: GTP shift (k) = max | (GTP (k) -GTP (0)) |, where GTP (0) is the initial GTP, and GTP (k) is the GTP measurement value at time k. The GTP displacement is an absolute measurement of 16 conversions.

鬼影係量測從除了白色以外所有可能的16個灰階至所有可能的16個灰階之其餘240個轉換,以及減去最後顯示之灰階的GTP值。換言之,鬼影量測係比較當它從非白色轉換時一灰階的光學狀態,以及當它從白色轉換時相同灰階的光學狀態。如第1B圖所示,鬼影位移係在時間k(其可藉由序列數來定義)時在最大鬼影之絕對值,減去在時間0時的鬼影。鬼影位移可以使用下述方程式來計算:GHOST shift(k)=max|(GHOST(k)-GHOST(0))|,其中GHOST(0)係為初始鬼影量測值,且GHOST(k)係為在時間k時的鬼影量測值。鬼影位移係基於GTP值的相對量測值。 Ghost measurement measures the conversion from all possible 16 gray levels except white to the remaining 240 gray levels, and subtracts the GTP value of the last gray level displayed. In other words, the ghost measurement system compares the optical state of a gray scale when it is switched from non-white and the optical state of the same gray scale when it is switched from white. As shown in FIG. 1B, the ghost shift is the absolute value of the maximum ghost at time k (which can be defined by the number of sequences), minus the ghost at time 0. Ghost shift can be calculated using the following equation: GHOST shift (k) = max | (GHOST (k) -GHOST (0)) |, where GHOST (0) is the initial ghost measurement and GHOST (k ) Is the ghost measurement at time k. Ghost displacement is a relative measurement based on GTP values.

在如第10A、10B、11A、及11B圖所示針對GTP位移及鬼影位移採取量測之前,藉由將顯示器從它的電流狀態切換至黑、白、白、白色,因而清潔該顯示器。然而,可以使用任何的顯示器清潔技術,只要它是相符合的,以使得量測值將是可比較的。 Before taking measurements for GTP displacement and ghost displacement as shown in Figures 10A, 10B, 11A, and 11B, the display is cleaned by switching the display from its current state to black, white, white, and white. However, any display cleaning technique can be used as long as it is compatible so that the measurements will be comparable.

以上所述之各種態樣以及其他態樣,現在將更為詳細地在以下敘述。應理解的是,這些態樣可以單獨地使用、也可以共同地使用,或者是二者或多個的任意組合,甚或它們並未相互地排斥。 The various aspects described above and other aspects will now be described in more detail below. It should be understood that these aspects may be used singly or in combination, or any combination of two or more, or they are not mutually exclusive.

第10A圖係顯示根據某些實施例藉由最大絕對灰階位移相對具有殘餘電壓放電1002之更新次數以及不具有殘餘電壓放電1004之更新次數,以攝氏45度量測光學響應位移之加速可靠度測試的結果之圖式。每一使用年係假定具有50,000次更新。如第10A圖所示,由於殘餘電壓放電(非典型電荷偏壓)的電晶體經歷之額外的ON時間,導致在大約100,000次更新(或是超過大約兩年)之後大約2L*的顯著灰階位移。 Figure 10A shows the acceleration reliability of optical response displacement measured at 45 degrees Celsius with the maximum absolute grayscale displacement relative to the number of updates with a residual voltage discharge of 1002 and the number of updates without a residual voltage discharge of 1004 according to some embodiments. Schematic representation of test results. Each use year is assumed to have 50,000 updates. As shown in Figure 10A, the additional ON time experienced by the transistor with residual voltage discharge (atypical charge bias) results in a significant grayscale of approximately 2L * after approximately 100,000 updates (or more than approximately two years) Displacement.

第10B圖係顯示根據某些實施例藉由最大絕對鬼影位移相對具有殘餘電壓放電1006之更新次數以及不具有殘餘電壓放電1008之更新次數,以攝氏45度量測光學響應位移之加速可靠度測試的結果之圖式。每一使用年係假定具有50,000次更新。如第10B圖所示,由於殘餘電壓放電(非典型電荷偏壓)的電晶體經歷之額外的ON時間,導致在大約100,000次更新(或是超過大約兩年)之後大約3L*的顯著鬼影位移。 Figure 10B shows the reliability of acceleration of optical response displacement measured at 45 degrees Celsius with the maximum absolute ghost displacement relative to the number of updates with a residual voltage discharge of 1006 and the number of updates without a residual voltage discharge of 1008 according to some embodiments. Schematic representation of test results. Each use year is assumed to have 50,000 updates. As shown in Figure 10B, due to the additional ON time experienced by the transistor with a residual voltage discharge (atypical charge bias), a significant ghost of approximately 3L * after approximately 100,000 updates (or more than approximately two years) Displacement.

第11A圖係顯示根據某些實施例藉由最大絕對灰階位移相對具有殘餘電壓放電1102之更新次數、不具有殘餘電壓放電1104之更新次數、以及具有殘餘電壓放電及ON:OFF比例標準化1110之更新次數,以攝氏45度量測光學響應位移之加速可靠度測試的結果之圖式。每一使用年係假定具有50,000次更新。如第11A圖所示,由於殘餘電壓放電1102(非典型電荷偏壓)的電晶體經歷之額外的ON時間,相較於不具有放電1104之更新時,導致在大約100,000次更新(或是超過大約兩年)之後大約2L*的顯著灰階位移。當藉由將電晶體微調至OFF位置持續一額外的時間週期而將具有殘餘電壓放電的更新標準化或偏移1110時,相較於不具有放電1104之更新時,在大約100,000次更新之後所產生的灰階位移僅約為0.25L*。 FIG. 11A shows the number of updates with residual voltage discharge 1102, the number of updates without residual voltage discharge 1104, and the standardization of 1110 with residual voltage discharge and ON: OFF ratio by the maximum absolute gray scale displacement according to some embodiments. The number of updates is a graph of the results of the accelerated reliability test of optical response displacement measured at 45 degrees Celsius. Each use year is assumed to have 50,000 updates. As shown in Figure 11A, the extra ON time experienced by the transistor due to residual voltage discharge 1102 (atypical charge bias) results in approximately 100,000 updates (or more than After about two years), a significant grayscale shift of about 2L *. When the update with residual voltage discharge is normalized or shifted by 1110 by trimming the transistor to the OFF position for an additional time period, it is generated after approximately 100,000 updates compared to the update without discharge 1104 The grayscale displacement is only about 0.25L *.

第11B圖係顯示根據某些實施例藉由最大絕對鬼影位移相對具有殘餘電壓放電1106之更新次數、不具有殘餘電壓放電1108之更新次數、以及具有殘餘電壓放電及ON:OFF比例標準化1112之更新次數,以攝氏45度量測光學響應位移之加速可靠度測試的結果之圖式。每一使用年係假定具有50,000次更新。如第11B圖所示,由於殘餘電壓放電1106(非典型電荷偏壓)的電晶體經歷之額外的ON時間,相較於不具有放電1108之更新時,導致在大約100,000次更新(或是超過大約兩年)之後大約3L*的顯著鬼影位移。當藉由將電晶體微調至OFF位置持續一額外的時間週期而將具有殘餘電壓放電的更 新標準化或偏移1112時,相較於不具有放電1108之更新時,在大約100,000次更新之後所產生的鬼影位移僅約為0.75L*。 Figure 11B shows the number of updates with residual voltage discharge 1106, the number of updates without residual voltage discharge 1108, and the standardization of 1112 with residual voltage discharge and ON: OFF ratio by the maximum absolute ghost displacement according to some embodiments. The number of updates is a graph of the results of the accelerated reliability test of optical response displacement measured at 45 degrees Celsius. Each use year is assumed to have 50,000 updates. As shown in Figure 11B, the extra ON time experienced by the transistor with a residual voltage discharge of 1106 (atypical charge bias) results in approximately 100,000 updates (or more than After about two years), a significant ghost shift of about 3L *. When the transistor is discharged by trimming the transistor to the OFF position for an additional time period, At the time of the new normalization or offset 1112, compared to the update without the discharge 1108, the ghost shift after only about 100,000 updates is only about 0.75L *.

第12A圖係顯示根據某些實施例閘極電壓相對時間的訊號時序之示意圖。第12A圖描述針對一光學更新隨著時間所施加的閘極電壓之圖式,其包括--主動更新週期1202,在主動更新週期之期間每一正的及負的轉換反映的一序列多個時框中的單一時框;殘餘電壓放電(ON狀態)週期1204;以及OFF狀態週期1206,在具有n型電晶體的主動矩陣型顯示器中。在n型電晶體中,施加正閘極電壓,以達成ON狀態1204,而施加負電壓以達成OFF狀態1206。在一實施例中,主動更新週期可以是500ms,ON週期可以是1秒且OFF週期可以是2秒。這些時間週期可以依據顯示器使用及/或在一定義的時間週期(例如:每分鐘、或每小時等等)之內所需的光學更新次數而改變。如所述,係在主動更新(亦即,光學更新)302之後而進行殘餘電壓放電脈衝(ON狀態)1204,以使剩餘的電荷排澇。在ON狀態之後進行OFF狀態,以達成接近典型1:1000比例的ON:OFF比例。雖然可能未達成1:1000比例,接近1:1000比例的ON:OFF比例,甚至是僅為1:10,將減低電晶體降級。 FIG. 12A is a schematic diagram showing the signal timing of the gate voltage versus time according to some embodiments. FIG. 12A depicts a graph of gate voltage applied to an optical update over time, which includes an active update period 1202, during which a positive and negative transition reflects a sequence of multiple A single time frame in the time frame; a residual voltage discharge (ON state) period 1204; and an OFF state period 1206 in an active matrix display with an n-type transistor. In the n-type transistor, a positive gate voltage is applied to reach the ON state 1204, and a negative voltage is applied to reach the OFF state 1206. In one embodiment, the active update period may be 500 ms, the ON period may be 1 second, and the OFF period may be 2 seconds. These time periods may vary depending on the display usage and / or the number of optical updates required within a defined time period (eg, every minute, or every hour, etc.). As described, the residual voltage discharge pulse (ON state) 1204 is performed after the active update (ie, the optical update) 302 to drain the remaining charge. The OFF state is performed after the ON state to achieve an ON: OFF ratio close to the typical 1: 1000 ratio. Although the 1: 1000 ratio may not be reached, the ON: OFF ratio close to the 1: 1000 ratio, or even only 1:10, will reduce the transistor degradation.

第12B圖係顯示根據某些實施例以利用Xon連接使得所有的電晶體同步地啟動為ON之顯示器,多個電壓相對時間的訊號時序之示意圖。第12B圖描述針對一光學更新隨著時間所施加的閘極電壓之圖式,其包 括:(1)主動更新週期1202,(2)殘餘電壓放電(ON狀態)週期1204,以及(3)OFF狀態週期1206,在具有n型電晶體的主動矩陣型顯示器中。如圖所示的四個電壓係為高位準閘極線電壓(“VDDH”)1212、低位準閘極線電壓(“VEE”)1218、前電極電壓(“VCOM”)1216、以及Xon電壓1214。每一電壓具有個別的0電壓軸,如灰色實線所述。在灰色實線上方的電壓表示正電壓,而在灰色實線下方的電壓表示負電壓。在第12B圖中,在第12A圖中所述之整體閘極電壓係VDDH及VEE電壓的結合。閘極驅動器輸出致能電壓(“VGDOE”)(圖中未示出),其控制施加何種閘極電壓(亦即,VEE或VDDH)。當接地時,Xon電壓同步地致動所有的電晶體,在放電週期1204之期間將所有電晶體啟動為ON。在OFF狀態週期1206之期間,VDDH成為接地的且該等電晶體經歷所施加的VEE(負電壓),其朝向該週期之結束而控制為趨近於0。針對一額外的時間週期,藉由將電晶體微調至其OFF位置,ON:OFF比例更為接近地反映其1:1000的典型值。雖然較佳係保持在1:1000之ON:OFF比例,將該比例朝向其典型值移動的任意ON:OFF週期,甚至是僅為1:10、1:50或是1:100,可以避免電晶體降級。 FIG. 12B is a schematic diagram showing signal timings of multiple voltages versus time according to some embodiments using a Xon connection to enable all transistors to be turned on synchronously. Figure 12B depicts a diagram of the gate voltage applied to an optical update over time. Including: (1) an active update period 1202, (2) a residual voltage discharge (ON state) period 1204, and (3) an OFF state period 1206, in an active matrix type display having an n-type transistor. The four voltages shown are high-level gate line voltage ("VDDH") 1212, low-level gate line voltage ("VEE") 1218, front electrode voltage ("VCOM") 1216, and Xon voltage 1214. . Each voltage has a separate zero voltage axis, as described by the solid grey line. The voltage above the solid grey line indicates a positive voltage, while the voltage below the solid grey line indicates a negative voltage. In FIG. 12B, the overall gate voltage described in FIG. 12A is a combination of VDDH and VEE voltages. The gate driver outputs an enable voltage ("VGDOE") (not shown in the figure), which controls which gate voltage (ie, VEE or VDDH) is applied. When grounded, the Xon voltage synchronously activates all transistors, turning on all transistors during the discharge cycle 1204. During the OFF state period 1206, VDDH becomes grounded and the transistors undergo an applied VEE (negative voltage), which is controlled to approach zero toward the end of the period. For an additional time period, by trimming the transistor to its OFF position, the ON: OFF ratio more closely reflects its typical value of 1: 1000. Although it is better to keep the ON: OFF ratio of 1: 1000, any ON: OFF cycle that moves the ratio toward its typical value, even only 1:10, 1:50, or 1: 100, can avoid electricity Crystal degradation.

OFF週期將時間加至每一更新。因此,OFF週期可以預先指定一定的時間量,其可以基於更新頻率而藉由控制器來決定及/或可以被中斷。OFF週期較佳地係發生在ON週期之後,但也可以發生在其他時間上,包括在主動更新週期之前。OFF週期可以是從500ms至 4秒的範圍,較佳地從1秒至2秒的範圍。依據光學更新時間以及在一時間週期之光學更新次數而定,OFF週期可以延長達至10秒。 The OFF cycle adds time to each update. Therefore, the OFF period can be specified in advance for a certain amount of time, which can be determined by the controller based on the update frequency and / or can be interrupted. The OFF cycle preferably occurs after the ON cycle, but can also occur at other times, including before the active update cycle. OFF period can be from 500ms to A range of 4 seconds, preferably a range of 1 second to 2 seconds. Depending on the optical update time and the number of optical updates in a time period, the OFF period can be extended up to 10 seconds.

某些實施例的進一步敘述Further description of certain embodiments

應理解的是,在圖式中顯示的各種實施例係例示性代表,且並非一定按比例繪製。在整體的說明書中有關「一個實施例」或「一實施例」或「某些實施例」之參照意謂著與至少一實施例中所涵蓋的實施例相關連之一特定的特徵、結構、材料、或是特性,然而非必要地在所有實施例中。因此,在整體的說明書之各種位置中「在一個實施例中」、「在一實施例中」或「在某些實施例中」之字詞的出現,非必要地指稱相同的實施例。 It should be understood that the various embodiments shown in the drawings are illustrative and are not necessarily drawn to scale. References in the entire specification to "one embodiment" or "an embodiment" or "certain embodiments" mean a specific feature, structure, etc. associated with at least one embodiment covered by the embodiment, Materials, or characteristics, but not necessarily in all embodiments. Thus, the appearances of the words "in one embodiment", "in an embodiment", or "in some embodiments" in various places throughout the specification are not necessarily referring to the same embodiment.

除非上下文清楚地要求,否則在整體的揭示內容中,字詞「包含」、「包含有」以及其他,係以包含的意義來解釋而不是排他或詳盡的意義;換言之,「包括、但未限制為」之意思。附加地,字詞「在此處」、「在下文」、「上述」、「下述」以及其他相似的字詞係整體地意謂有關此申請案,而非此申請案的任何特定部分。當使用字詞「或」來參照一系列的二個或多個項目時,該字詞涵蓋所有該字詞的下述說明之所有:在該列表的項目之任一者、在該列表的項目之所有、以及在該列表的項目之任意組合。 Unless the context clearly requires it, in the overall disclosure, the words "including", "including" and others are interpreted in an inclusive sense rather than in an exclusive or exhaustive sense; in other words, "including, but not limited to, For ". Additionally, the words "here," "below," "above," "below," and other similar words mean collectively about this application, not any particular part of this application. When the word "or" is used to refer to a series of two or more items, the word covers all of the following descriptions of the word: any of the items in the list, the items in the list All, and any combination of items in the list.

因此,已敘述此技術的至少一實施例之數個態樣,應理解的是,對於熟悉此技藝之人士,將可以輕易地做各種替換、修改及改良。此種替換、修改及改良 係包含在此技術的精神和範圍之內。因此,前面的敘述及圖式僅提供非限制性之例子。 Therefore, several aspects of at least one embodiment of the technology have been described. It should be understood that for those skilled in the art, various replacements, modifications and improvements can be easily made. Such replacements, modifications and improvements The system is within the spirit and scope of this technology. Therefore, the foregoing description and drawings provide only non-limiting examples.

Claims (18)

一種用於驅動電光顯示器的設備,包含:第一開關,其設計用以在第一驅動相位之期間提供一電壓至該電光顯示器;第二開關,其係連接至一顯示器模組且設計用以在第二驅動相位之期間控制該電壓;以及一第一電阻器,耦接至該第一開關及該第二開關,用以在該第二驅動相位之期間控制該電壓的衰減率,其中無論第一開關或該第二開關是閉路或開啟,該第一電阻器係一直連接至該顯示器模組;其中在該第一驅動相位或該第二驅動相位之期間,該第一開關及該第二開關中僅一者是閉路的。A device for driving an electro-optic display includes: a first switch designed to provide a voltage to the electro-optical display during a first driving phase; and a second switch connected to a display module and designed to Controlling the voltage during the second driving phase; and a first resistor coupled to the first switch and the second switch for controlling the attenuation rate of the voltage during the second driving phase, wherein The first switch or the second switch is closed or opened, and the first resistor is always connected to the display module; wherein during the first driving phase or the second driving phase, the first switch and the first switch Only one of the two switches is closed. 如請求項1之設備,進一步包含一電容器,其係耦接至該第一電阻器,用以在該第二驅動相位之期間控制該電壓的衰減。The device of claim 1 further includes a capacitor coupled to the first resistor to control the attenuation of the voltage during the second driving phase. 如請求項2之設備,其中該第一電阻器與該電容器是並聯的。The device of claim 2, wherein the first resistor and the capacitor are connected in parallel. 如請求項3之設備,進一步包含一第二電阻器,其係與該電容器是串聯地配置,用以在該第二驅動相位之期間控制該電壓的衰減。The device of claim 3, further comprising a second resistor configured in series with the capacitor to control the attenuation of the voltage during the second driving phase. 如請求項2之設備,其中該電容器係接地連接。The device of claim 2, wherein the capacitor is connected to ground. 如請求項2之設備,進一步包含一第二電阻器,其係串聯地耦接至該電容器,用以在該第二驅動相位之期間控制該電壓的衰減。The device of claim 2, further comprising a second resistor coupled to the capacitor in series to control the attenuation of the voltage during the second driving phase. 如請求項1之設備,其中該電光顯示器係一電泳顯示器。The device of claim 1, wherein the electro-optical display is an electrophoretic display. 如請求項7之設備,其中該電泳顯示器包括含有旋轉雙色構件的一電光材料或是電致變色材料。The device of claim 7, wherein the electrophoretic display comprises an electro-optic material or an electrochromic material containing a rotating two-color member. 如請求項1之設備,其中該第一開關及該第二開關在第三驅動相位之期間是開路的。The device of claim 1, wherein the first switch and the second switch are open during the third driving phase. 如請求項9之設備,進一步包含一電容器,其係耦接至該第一電阻器,用以在該第二驅動相位及該第三驅動相位之期間控制該電壓的衰減。The device of claim 9 further includes a capacitor coupled to the first resistor to control the attenuation of the voltage during the second driving phase and the third driving phase. 如請求項10之設備,進一步包含一第二電阻器,其與該電容器是串聯地配置,用以在該第二驅動相位及該第三驅動相位之期間控制該電壓的衰減。The device according to claim 10, further comprising a second resistor configured in series with the capacitor to control the attenuation of the voltage during the second driving phase and the third driving phase. 一種驅動電光顯示器的方法,包含:使一管理電路的第一開關閉路,用以在第一驅動相位之期間提供一電壓至該電光顯示器;使該管理電路的第二開關閉路,用以在第二驅動相位之期間控制該電壓,其中該第二開關係連接至一顯示器模組;以及在該第二驅動相位之期間使該第一開關開路,以允許該管理電路的一耦接之第一電阻器控制該電壓的衰減,其中在該第一驅動相位或該第二驅動相位之期間,該第一開關及該第二開關中僅一者是閉路的;並且其中無論第一開關或該第二開關是閉路或開啟,該第一電阻器係一直連接至該顯示器模組。A method for driving an electro-optic display includes: making a first on-off circuit of a management circuit to provide a voltage to the electro-optic display during a first driving phase; and making a second on-off circuit of the management circuit to Controlling the voltage during a second driving phase, wherein the second open relationship is connected to a display module; and opening the first switch during the second driving phase to allow a coupling of the management circuit The first resistor controls the attenuation of the voltage, wherein during the first driving phase or the second driving phase, only one of the first switch and the second switch is closed; and wherein whether the first switch or the second switch is closed, The second switch is closed or open, and the first resistor is always connected to the display module. 如請求項12之方法,進一步包含經由耦接至該管理電路的一電容器,控制該電壓的衰減。The method of claim 12, further comprising controlling the attenuation of the voltage via a capacitor coupled to the management circuit. 如請求項13之方法,其中該電容器與該第一電阻器係為並聯的。The method of claim 13, wherein the capacitor and the first resistor are connected in parallel. 如請求項13之方法,進一步包含將一第二電阻器串聯地耦接至該電容器,用以控制該第二電壓的衰減。The method of claim 13, further comprising coupling a second resistor to the capacitor in series to control the attenuation of the second voltage. 如請求項12之方法,進一步包含將一二極體耦接至該第一電阻器,用以控制該第二電壓的衰減。The method of claim 12, further comprising coupling a diode to the first resistor to control the attenuation of the second voltage. 如請求項12之方法,進一步包含在第三驅動相位之期間,使該第一開關及該第二開關開路,用以控制該電壓的衰減。The method of claim 12, further comprising opening the first switch and the second switch to control the attenuation of the voltage during the third driving phase. 如請求項12之方法,其中該電光顯示器係一電泳顯示器。The method of claim 12, wherein the electro-optical display is an electrophoretic display.
TW105130172A 2015-09-16 2016-09-19 Apparatus and methods for driving displays TWI637377B (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201562219606P 2015-09-16 2015-09-16
US62/219,606 2015-09-16
US201562261104P 2015-11-30 2015-11-30
US62/261,104 2015-11-30
US15/014,236 US10475396B2 (en) 2015-02-04 2016-02-03 Electro-optic displays with reduced remnant voltage, and related apparatus and methods
US15/014,236 2016-02-03
US201662370703P 2016-08-03 2016-08-03
US62/370,703 2016-08-03

Publications (2)

Publication Number Publication Date
TW201719616A TW201719616A (en) 2017-06-01
TWI637377B true TWI637377B (en) 2018-10-01

Family

ID=58289922

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105130172A TWI637377B (en) 2015-09-16 2016-09-19 Apparatus and methods for driving displays

Country Status (7)

Country Link
EP (1) EP3350798B1 (en)
JP (2) JP6871241B2 (en)
KR (2) KR102308589B1 (en)
CN (2) CN113241041B (en)
HK (1) HK1247729A1 (en)
TW (1) TWI637377B (en)
WO (1) WO2017049020A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109410849B (en) * 2018-12-21 2021-05-18 上海墨案智能科技有限公司 Refresh control method, device and storage medium
KR102659780B1 (en) * 2019-11-18 2024-04-22 이 잉크 코포레이션 Methods for driving electro-optical displays
CN113643658B (en) * 2021-10-14 2022-01-14 惠科股份有限公司 Debugging method of display panel, display device and storage medium
WO2023210430A1 (en) * 2022-04-25 2023-11-02 ソニーセミコンダクタソリューションズ株式会社 Display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200535773A (en) * 2004-04-22 2005-11-01 Novatek Microelectronics Corp Discharge device and discharge method and liquid crystal display using thereof
TW200641782A (en) * 2005-05-27 2006-12-01 Innolux Display Corp Discharge circuit and driving circuit of liquid crystal display panel using the same
US20080117200A1 (en) * 2006-11-16 2008-05-22 Au Optronics Corp. Liquid crystal display and gate modulation method thereof
TW201110082A (en) * 2009-09-08 2011-03-16 Prime View Int Co Ltd Driver circuit for bistable display device and control method thereof

Family Cites Families (204)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4418346A (en) 1981-05-20 1983-11-29 Batchelder J Samuel Method and apparatus for providing a dielectrophoretic display of visual information
JPS635368A (en) * 1986-06-25 1988-01-11 Canon Inc Printing position correcting device
JPS635386A (en) * 1986-06-25 1988-01-11 松下電器産業株式会社 Led display circuit
US5717418A (en) * 1994-08-30 1998-02-10 Proxima Corporation Ferroelectric liquid crystal display apparatus and method of making it
JPH08168013A (en) * 1994-12-14 1996-06-25 Toshiba Corp Horizontal deflection circuit
US5745094A (en) 1994-12-28 1998-04-28 International Business Machines Corporation Electrophoretic display
US6137467A (en) 1995-01-03 2000-10-24 Xerox Corporation Optically sensitive electric paper
US7327511B2 (en) 2004-03-23 2008-02-05 E Ink Corporation Light modulators
US7583251B2 (en) 1995-07-20 2009-09-01 E Ink Corporation Dielectrophoretic displays
US7999787B2 (en) 1995-07-20 2011-08-16 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US8089453B2 (en) 1995-07-20 2012-01-03 E Ink Corporation Stylus-based addressing structures for displays
US8139050B2 (en) 1995-07-20 2012-03-20 E Ink Corporation Addressing schemes for electronic displays
US7193625B2 (en) 1999-04-30 2007-03-20 E Ink Corporation Methods for driving electro-optic displays, and apparatus for use therein
US7411719B2 (en) 1995-07-20 2008-08-12 E Ink Corporation Electrophoretic medium and process for the production thereof
US7956841B2 (en) 1995-07-20 2011-06-07 E Ink Corporation Stylus-based addressing structures for displays
US7259744B2 (en) 1995-07-20 2007-08-21 E Ink Corporation Dielectrophoretic displays
US5760761A (en) 1995-12-15 1998-06-02 Xerox Corporation Highlight color twisting ball display
US6055091A (en) 1996-06-27 2000-04-25 Xerox Corporation Twisting-cylinder display
US5808783A (en) 1996-06-27 1998-09-15 Xerox Corporation High reflectance gyricon display
US5930026A (en) 1996-10-25 1999-07-27 Massachusetts Institute Of Technology Nonemissive displays and piezoelectric power supplies therefor
US5777782A (en) 1996-12-24 1998-07-07 Xerox Corporation Auxiliary optics for a twisting ball display
WO1998035267A1 (en) 1997-02-06 1998-08-13 University College Dublin Electrochromic system
US7002728B2 (en) 1997-08-28 2006-02-21 E Ink Corporation Electrophoretic particles, and processes for the production thereof
US6054071A (en) 1998-01-28 2000-04-25 Xerox Corporation Poled electrets for gyricon-based electric-paper displays
US6753999B2 (en) 1998-03-18 2004-06-22 E Ink Corporation Electrophoretic displays in portable devices and systems for addressing such displays
CA2320788A1 (en) 1998-03-18 1999-09-23 Joseph M. Jacobson Electrophoretic displays and systems for addressing such displays
JP3406508B2 (en) * 1998-03-27 2003-05-12 シャープ株式会社 Display device and display method
US7075502B1 (en) 1998-04-10 2006-07-11 E Ink Corporation Full color reflective display with multichromatic sub-pixels
JP2002513169A (en) 1998-04-27 2002-05-08 イー−インク コーポレイション Microencapsulated electrophoretic display in shutter mode
US6241921B1 (en) 1998-05-15 2001-06-05 Massachusetts Institute Of Technology Heterogeneous display elements and methods for their fabrication
AU5094899A (en) 1998-07-08 2000-02-01 E-Ink Corporation Method and apparatus for sensing the state of an electrophoretic display
US20030102858A1 (en) 1998-07-08 2003-06-05 E Ink Corporation Method and apparatus for determining properties of an electrophoretic display
US6184856B1 (en) 1998-09-16 2001-02-06 International Business Machines Corporation Transmissive electrophoretic display with laterally adjacent color cells
US6225971B1 (en) 1998-09-16 2001-05-01 International Business Machines Corporation Reflective electrophoretic display with laterally adjacent color cells using an absorbing panel
US6271823B1 (en) 1998-09-16 2001-08-07 International Business Machines Corporation Reflective electrophoretic display with laterally adjacent color cells using a reflective panel
US6144361A (en) 1998-09-16 2000-11-07 International Business Machines Corporation Transmissive electrophoretic display with vertical electrodes
US7002542B2 (en) * 1998-09-19 2006-02-21 Lg.Philips Lcd Co., Ltd. Active matrix liquid crystal display
US6128124A (en) 1998-10-16 2000-10-03 Xerox Corporation Additive color electric paper without registration or alignment of individual elements
US6097531A (en) 1998-11-25 2000-08-01 Xerox Corporation Method of making uniformly magnetized elements for a gyricon display
US6147791A (en) 1998-11-25 2000-11-14 Xerox Corporation Gyricon displays utilizing rotating elements and magnetic latching
US7119772B2 (en) 1999-04-30 2006-10-10 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US6504524B1 (en) * 2000-03-08 2003-01-07 E Ink Corporation Addressing methods for displays having zero time-average field
US6531997B1 (en) 1999-04-30 2003-03-11 E Ink Corporation Methods for addressing electrophoretic displays
US7012600B2 (en) 1999-04-30 2006-03-14 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US8009348B2 (en) 1999-05-03 2011-08-30 E Ink Corporation Machine-readable displays
WO2001027690A2 (en) 1999-10-11 2001-04-19 University College Dublin Electrochromic device
US6672921B1 (en) 2000-03-03 2004-01-06 Sipix Imaging, Inc. Manufacturing process for electrophoretic display
US7715088B2 (en) 2000-03-03 2010-05-11 Sipix Imaging, Inc. Electrophoretic display
US6788449B2 (en) 2000-03-03 2004-09-07 Sipix Imaging, Inc. Electrophoretic display and novel process for its manufacture
WO2002045061A2 (en) 2000-11-29 2002-06-06 E Ink Corporation Addressing circuitry for large electronic displays
TW567456B (en) * 2001-02-15 2003-12-21 Au Optronics Corp Apparatus capable of improving flicker of thin film transistor liquid crystal display
US7030854B2 (en) 2001-03-13 2006-04-18 E Ink Corporation Apparatus for displaying drawings
DE60210949T2 (en) 2001-04-02 2006-09-21 E-Ink Corp., Cambridge Electrophoresis medium with improved image stability
US7679814B2 (en) 2001-04-02 2010-03-16 E Ink Corporation Materials for use in electrophoretic displays
US20020188053A1 (en) 2001-06-04 2002-12-12 Sipix Imaging, Inc. Composition and process for the sealing of microcups in roll-to-roll display manufacturing
US7535624B2 (en) 2001-07-09 2009-05-19 E Ink Corporation Electro-optic display and materials for use therein
US6982178B2 (en) 2002-06-10 2006-01-03 E Ink Corporation Components and methods for use in electro-optic displays
US7038670B2 (en) 2002-08-16 2006-05-02 Sipix Imaging, Inc. Electrophoretic display with dual mode switching
US6825970B2 (en) 2001-09-14 2004-11-30 E Ink Corporation Methods for addressing electro-optic materials
WO2003027764A1 (en) 2001-09-19 2003-04-03 Bridgestone Corporation Particles and device for displaying image
US9412314B2 (en) 2001-11-20 2016-08-09 E Ink Corporation Methods for driving electro-optic displays
US7528822B2 (en) 2001-11-20 2009-05-05 E Ink Corporation Methods for driving electro-optic displays
US7952557B2 (en) 2001-11-20 2011-05-31 E Ink Corporation Methods and apparatus for driving electro-optic displays
US8558783B2 (en) 2001-11-20 2013-10-15 E Ink Corporation Electro-optic displays with reduced remnant voltage
US8125501B2 (en) 2001-11-20 2012-02-28 E Ink Corporation Voltage modulated driver circuits for electro-optic displays
US8593396B2 (en) 2001-11-20 2013-11-26 E Ink Corporation Methods and apparatus for driving electro-optic displays
US7202847B2 (en) 2002-06-28 2007-04-10 E Ink Corporation Voltage modulated driver circuits for electro-optic displays
EP2363745A1 (en) 2001-12-10 2011-09-07 Bridgestone Corporation Image display device
US6900851B2 (en) 2002-02-08 2005-05-31 E Ink Corporation Electro-optic displays and optical systems for addressing such displays
CN100339757C (en) 2002-03-06 2007-09-26 株式会社普利司通 Image displaying apparatus and method
US6950220B2 (en) 2002-03-18 2005-09-27 E Ink Corporation Electro-optic displays, and methods for driving same
US7698573B2 (en) * 2002-04-02 2010-04-13 Sharp Corporation Power source apparatus for display and image display apparatus
AU2003235217A1 (en) 2002-04-17 2003-10-27 Bridgestone Corporation Image display unit
EP1497867A2 (en) 2002-04-24 2005-01-19 E Ink Corporation Electronic displays
WO2003091799A1 (en) 2002-04-26 2003-11-06 Bridgestone Corporation Particle for image display and its apparatus
JP3498745B1 (en) * 2002-05-17 2004-02-16 日亜化学工業株式会社 Light emitting device and driving method thereof
US7649674B2 (en) 2002-06-10 2010-01-19 E Ink Corporation Electro-optic display with edge seal
US20110199671A1 (en) 2002-06-13 2011-08-18 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US20080024482A1 (en) 2002-06-13 2008-01-31 E Ink Corporation Methods for driving electro-optic displays
AU2003239619A1 (en) * 2002-06-13 2003-12-31 E Ink Corporation Methods for driving electro-optic displays
US20060087479A1 (en) 2002-06-21 2006-04-27 Bridgestone Corporation Image display and method for manufacturing image display
JPWO2004006006A1 (en) 2002-07-09 2005-11-04 株式会社ブリヂストン Image display device
JPWO2004008239A1 (en) 2002-07-17 2005-11-10 株式会社ブリヂストン Image display device
US7839564B2 (en) 2002-09-03 2010-11-23 E Ink Corporation Components and methods for use in electro-optic displays
KR100482340B1 (en) * 2002-09-14 2005-04-13 엘지전자 주식회사 Method And Apparatus Of Driving Plasma Display Panel
US20130063333A1 (en) 2002-10-16 2013-03-14 E Ink Corporation Electrophoretic displays
TWI229230B (en) 2002-10-31 2005-03-11 Sipix Imaging Inc An improved electrophoretic display and novel process for its manufacture
KR100937613B1 (en) 2002-12-16 2010-01-20 이 잉크 코포레이션 Backplanes for electro-optic displays
AU2003289411A1 (en) 2002-12-17 2004-07-09 Bridgestone Corporation Image display panel manufacturing method, image display device manufacturing method, and image display device
US6922276B2 (en) 2002-12-23 2005-07-26 E Ink Corporation Flexible electro-optic displays
US20060214906A1 (en) 2002-12-24 2006-09-28 Bridgestone Corporation Image display
US7369299B2 (en) 2003-02-25 2008-05-06 Bridgestone Corporation Image display panel and image display device
WO2004079442A1 (en) 2003-03-06 2004-09-16 Bridgestone Corporation Production method for iamge display unit and image display unit
WO2004090626A1 (en) 2003-04-02 2004-10-21 Bridgestone Corporation Particle used for image display medium, image display panel using same, and image display
WO2004104979A2 (en) 2003-05-16 2004-12-02 Sipix Imaging, Inc. Improved passive matrix electrophoretic display driving scheme
JP2004356206A (en) 2003-05-27 2004-12-16 Fuji Photo Film Co Ltd Laminated structure and its manufacturing method
US8174490B2 (en) 2003-06-30 2012-05-08 E Ink Corporation Methods for driving electrophoretic displays
KR20060032636A (en) * 2003-07-15 2006-04-17 코닌클리케 필립스 일렉트로닉스 엔.브이. Electrophoretic display unit
JP2007530984A (en) * 2003-07-15 2007-11-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electrophoretic display panel with reduced power consumption
WO2005020199A2 (en) 2003-08-19 2005-03-03 E Ink Corporation Methods for controlling electro-optic displays
EP1665214A4 (en) 2003-09-19 2008-03-19 E Ink Corp Methods for reducing edge effects in electro-optic displays
US8300006B2 (en) 2003-10-03 2012-10-30 E Ink Corporation Electrophoretic display unit
US7061662B2 (en) 2003-10-07 2006-06-13 Sipix Imaging, Inc. Electrophoretic display with thermal control
US8514168B2 (en) 2003-10-07 2013-08-20 Sipix Imaging, Inc. Electrophoretic display with thermal control
US7177066B2 (en) * 2003-10-24 2007-02-13 Sipix Imaging, Inc. Electrophoretic display driving scheme
US8928562B2 (en) 2003-11-25 2015-01-06 E Ink Corporation Electro-optic displays, and methods for driving same
CN1886776A (en) 2003-11-25 2006-12-27 皇家飞利浦电子股份有限公司 A display apparatus with a display device and a cyclic rail-stabilized method of driving the display device
US7492339B2 (en) 2004-03-26 2009-02-17 E Ink Corporation Methods for driving bistable electro-optic displays
US8289250B2 (en) 2004-03-31 2012-10-16 E Ink Corporation Methods for driving electro-optic displays
US20050253777A1 (en) 2004-05-12 2005-11-17 E Ink Corporation Tiled displays and methods for driving same
JP4633793B2 (en) 2004-07-27 2011-02-16 イー インク コーポレイション Electro-optic display
US20080136774A1 (en) 2004-07-27 2008-06-12 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US7453445B2 (en) 2004-08-13 2008-11-18 E Ink Corproation Methods for driving electro-optic displays
US8643595B2 (en) 2004-10-25 2014-02-04 Sipix Imaging, Inc. Electrophoretic display driving approaches
TWI280555B (en) * 2004-12-17 2007-05-01 Au Optronics Corp Liquid crystal display and driving method
JP4718859B2 (en) 2005-02-17 2011-07-06 セイコーエプソン株式会社 Electrophoresis apparatus, driving method thereof, and electronic apparatus
JP4690079B2 (en) 2005-03-04 2011-06-01 セイコーエプソン株式会社 Electrophoresis apparatus, driving method thereof, and electronic apparatus
KR100656843B1 (en) * 2005-10-13 2006-12-14 엘지전자 주식회사 Light-emitting device and method of driving the same
US7408699B2 (en) 2005-09-28 2008-08-05 Sipix Imaging, Inc. Electrophoretic display and methods of addressing such display
US20070176912A1 (en) 2005-12-09 2007-08-02 Beames Michael H Portable memory devices with polymeric displays
US7982479B2 (en) 2006-04-07 2011-07-19 Sipix Imaging, Inc. Inspection methods for defects in electrophoretic display and related devices
US7683606B2 (en) 2006-05-26 2010-03-23 Sipix Imaging, Inc. Flexible display testing and inspection
US20150005720A1 (en) 2006-07-18 2015-01-01 E Ink California, Llc Electrophoretic display
US20080024429A1 (en) 2006-07-25 2008-01-31 E Ink Corporation Electrophoretic displays using gaseous fluids
WO2008032468A1 (en) * 2006-09-15 2008-03-20 Sharp Kabushiki Kaisha Display apparatus
US8599128B2 (en) * 2006-11-03 2013-12-03 Creator Technology B.V. Sequential addressing of displays
US8274472B1 (en) 2007-03-12 2012-09-25 Sipix Imaging, Inc. Driving methods for bistable displays
KR101296646B1 (en) * 2007-04-04 2013-08-14 엘지디스플레이 주식회사 Electrophoresis display and driving method thereof
US8243013B1 (en) 2007-05-03 2012-08-14 Sipix Imaging, Inc. Driving bistable displays
EP2150881A4 (en) 2007-05-21 2010-09-22 E Ink Corp Methods for driving video electro-optic displays
US20080303780A1 (en) 2007-06-07 2008-12-11 Sipix Imaging, Inc. Driving methods and circuit for bi-stable displays
US9224342B2 (en) 2007-10-12 2015-12-29 E Ink California, Llc Approach to adjust driving waveforms for a display device
ES2823736T3 (en) 2008-04-11 2021-05-10 E Ink Corp Procedures for exciting electro-optical display devices
US8373649B2 (en) 2008-04-11 2013-02-12 Seiko Epson Corporation Time-overlapping partial-panel updating of a bistable electro-optic display
WO2009129217A2 (en) 2008-04-14 2009-10-22 E Ink Corporation Methods for driving electro-optic displays
US8462102B2 (en) 2008-04-25 2013-06-11 Sipix Imaging, Inc. Driving methods for bistable displays
WO2010014359A2 (en) 2008-08-01 2010-02-04 Sipix Imaging, Inc. Gamma adjustment with error diffusion for electrophoretic displays
US9019318B2 (en) 2008-10-24 2015-04-28 E Ink California, Llc Driving methods for electrophoretic displays employing grey level waveforms
US8558855B2 (en) 2008-10-24 2013-10-15 Sipix Imaging, Inc. Driving methods for electrophoretic displays
US20100194733A1 (en) 2009-01-30 2010-08-05 Craig Lin Multiple voltage level driving for electrophoretic displays
US20100194789A1 (en) 2009-01-30 2010-08-05 Craig Lin Partial image update for electrophoretic displays
US9251736B2 (en) 2009-01-30 2016-02-02 E Ink California, Llc Multiple voltage level driving for electrophoretic displays
US8576259B2 (en) 2009-04-22 2013-11-05 Sipix Imaging, Inc. Partial update driving methods for electrophoretic displays
US9460666B2 (en) 2009-05-11 2016-10-04 E Ink California, Llc Driving methods and waveforms for electrophoretic displays
JP2011033854A (en) * 2009-08-03 2011-02-17 Sony Corp Liquid crystal display device
KR20110026789A (en) * 2009-09-08 2011-03-16 엘지디스플레이 주식회사 Electrophoresis display
US9390661B2 (en) 2009-09-15 2016-07-12 E Ink California, Llc Display controller system
US20110063314A1 (en) 2009-09-15 2011-03-17 Wen-Pin Chiu Display controller system
JP5261337B2 (en) * 2009-09-28 2013-08-14 株式会社ジャパンディスプレイウェスト Liquid crystal display
US8810525B2 (en) 2009-10-05 2014-08-19 E Ink California, Llc Electronic information displays
US8576164B2 (en) 2009-10-26 2013-11-05 Sipix Imaging, Inc. Spatially combined waveforms for electrophoretic displays
JP5706910B2 (en) 2009-11-12 2015-04-22 ポール リード スミス ギターズ、リミテッド パートナーシップ Method, computer readable storage medium and signal processing system for digital signal processing
US7859742B1 (en) 2009-12-02 2010-12-28 Sipix Technology, Inc. Frequency conversion correction circuit for electrophoretic displays
US8928641B2 (en) 2009-12-02 2015-01-06 Sipix Technology Inc. Multiplex electrophoretic display driver circuit
US11049463B2 (en) 2010-01-15 2021-06-29 E Ink California, Llc Driving methods with variable frame time
US8558786B2 (en) 2010-01-20 2013-10-15 Sipix Imaging, Inc. Driving methods for electrophoretic displays
US9224338B2 (en) 2010-03-08 2015-12-29 E Ink California, Llc Driving methods for electrophoretic displays
TWI409767B (en) 2010-03-12 2013-09-21 Sipix Technology Inc Driving method of electrophoretic display
TWI591604B (en) 2010-04-09 2017-07-11 電子墨水股份有限公司 Methods for driving electro-optic displays
US9013394B2 (en) 2010-06-04 2015-04-21 E Ink California, Llc Driving method for electrophoretic displays
TWI444975B (en) 2010-06-30 2014-07-11 Sipix Technology Inc Electrophoretic display and driving method thereof
TWI436337B (en) 2010-06-30 2014-05-01 Sipix Technology Inc Electrophoretic display and driving method thereof
TWI455088B (en) 2010-07-08 2014-10-01 Sipix Imaging Inc Three dimensional driving scheme for electrophoretic display devices
US8665206B2 (en) 2010-08-10 2014-03-04 Sipix Imaging, Inc. Driving method to neutralize grey level shift for electrophoretic displays
TWI493520B (en) 2010-10-20 2015-07-21 Sipix Technology Inc Electro-phoretic display apparatus and driving method thereof
TWI518652B (en) 2010-10-20 2016-01-21 達意科技股份有限公司 Electro-phoretic display apparatus
TWI409563B (en) 2010-10-21 2013-09-21 Sipix Technology Inc Electro-phoretic display apparatus
US20160180777A1 (en) 2010-11-11 2016-06-23 E Ink California, Inc. Driving method for electrophoretic displays
TWI598672B (en) 2010-11-11 2017-09-11 希畢克斯幻像有限公司 Driving method for electrophoretic displays
JP5778485B2 (en) * 2011-06-03 2015-09-16 ルネサスエレクトロニクス株式会社 Panel display data driver
TWI436284B (en) 2011-06-28 2014-05-01 Sipix Technology Inc Electronic label system and operation method thereof
US9632374B2 (en) * 2011-07-01 2017-04-25 Rohm Co., Ltd. Overvoltage protection circuit, power supply device, liquid crystal display device, electronic device and television set
US20130044085A1 (en) * 2011-08-16 2013-02-21 Poshen Lin Liquid crystal panel driving circuit and liquid crystal display Device Using the Same
US8605354B2 (en) 2011-09-02 2013-12-10 Sipix Imaging, Inc. Color display devices
US9019197B2 (en) 2011-09-12 2015-04-28 E Ink California, Llc Driving system for electrophoretic displays
US9514667B2 (en) 2011-09-12 2016-12-06 E Ink California, Llc Driving system for electrophoretic displays
KR101925993B1 (en) * 2011-12-13 2018-12-07 엘지디스플레이 주식회사 Liquid Crystal Display Device having Discharge Circuit and Method of driving thereof
KR101960370B1 (en) * 2011-12-29 2019-07-16 엘지디스플레이 주식회사 Apparatus for detecting common voltage of electrophoresis display
JP6012766B2 (en) 2012-02-01 2016-10-25 イー インク コーポレイション Method for driving an electro-optic display
TWI537661B (en) 2012-03-26 2016-06-11 達意科技股份有限公司 Electrophoretic display system
US9513743B2 (en) 2012-06-01 2016-12-06 E Ink Corporation Methods for driving electro-optic displays
TWI470606B (en) 2012-07-05 2015-01-21 Sipix Technology Inc Driving methof of passive display panel and display apparatus
US9279906B2 (en) 2012-08-31 2016-03-08 E Ink California, Llc Microstructure film
TWI550580B (en) 2012-09-26 2016-09-21 達意科技股份有限公司 Electro-phoretic display and driving method thereof
US10037735B2 (en) * 2012-11-16 2018-07-31 E Ink Corporation Active matrix display with dual driving modes
US9792862B2 (en) 2013-01-17 2017-10-17 E Ink Holdings Inc. Method and driving apparatus for outputting driving signal to drive electro-phoretic display
US9218773B2 (en) 2013-01-17 2015-12-22 Sipix Technology Inc. Method and driving apparatus for outputting driving signal to drive electro-phoretic display
TWI600959B (en) 2013-01-24 2017-10-01 達意科技股份有限公司 Electrophoretic display and method for driving panel thereof
TWI490839B (en) 2013-02-07 2015-07-01 Sipix Technology Inc Electrophoretic display and method of operating an electrophoretic display
TWI490619B (en) 2013-02-25 2015-07-01 Sipix Technology Inc Electrophoretic display
US9721495B2 (en) 2013-02-27 2017-08-01 E Ink Corporation Methods for driving electro-optic displays
WO2014134504A1 (en) 2013-03-01 2014-09-04 E Ink Corporation Methods for driving electro-optic displays
WO2014138630A1 (en) * 2013-03-07 2014-09-12 E Ink Corporation Method and apparatus for driving electro-optic displays
TWI502573B (en) 2013-03-13 2015-10-01 Sipix Technology Inc Electrophoretic display capable of reducing passive matrix coupling effect and method thereof
US20140293398A1 (en) 2013-03-29 2014-10-02 Sipix Imaging, Inc. Electrophoretic display device
CA2912692C (en) 2013-05-17 2019-08-20 E Ink California, Llc Driving methods for color display devices
TWI526765B (en) 2013-06-20 2016-03-21 達意科技股份有限公司 Electrophoretic display and method of operating an electrophoretic display
US9620048B2 (en) 2013-07-30 2017-04-11 E Ink Corporation Methods for driving electro-optic displays
TWI550332B (en) 2013-10-07 2016-09-21 電子墨水加利福尼亞有限責任公司 Driving methods for color display device
US20150262255A1 (en) 2014-03-12 2015-09-17 Netseer, Inc. Search monetization of images embedded in text
WO2015148398A1 (en) 2014-03-25 2015-10-01 E Ink California, Llc Magnetophoretic display assembly and driving scheme
US20160012710A1 (en) 2014-07-10 2016-01-14 Sipix Technology Inc. Smart medication device
JP5888570B2 (en) * 2014-11-13 2016-03-22 Nltテクノロジー株式会社 Display medium erasing device
JP6613311B2 (en) 2015-02-04 2019-11-27 イー インク コーポレイション Electro-optic display with reduced residual voltage and related apparatus and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200535773A (en) * 2004-04-22 2005-11-01 Novatek Microelectronics Corp Discharge device and discharge method and liquid crystal display using thereof
TW200641782A (en) * 2005-05-27 2006-12-01 Innolux Display Corp Discharge circuit and driving circuit of liquid crystal display panel using the same
US20080117200A1 (en) * 2006-11-16 2008-05-22 Au Optronics Corp. Liquid crystal display and gate modulation method thereof
TW201110082A (en) * 2009-09-08 2011-03-16 Prime View Int Co Ltd Driver circuit for bistable display device and control method thereof

Also Published As

Publication number Publication date
JP2018529126A (en) 2018-10-04
CN113241041B (en) 2024-01-05
KR20180030949A (en) 2018-03-26
TW201719616A (en) 2017-06-01
JP6871241B2 (en) 2021-05-12
WO2017049020A1 (en) 2017-03-23
KR102308589B1 (en) 2021-10-01
JP2021092821A (en) 2021-06-17
EP3350798A4 (en) 2019-06-05
CN108028034B (en) 2021-06-04
CN108028034A (en) 2018-05-11
KR20200110475A (en) 2020-09-23
KR102158965B1 (en) 2020-09-23
EP3350798C0 (en) 2023-07-26
EP3350798B1 (en) 2023-07-26
CN113241041A (en) 2021-08-10
EP3350798A1 (en) 2018-07-25
HK1247729A1 (en) 2018-09-28

Similar Documents

Publication Publication Date Title
TWI654594B (en) Electro-optic display with reduced residual voltage and related device and method
US11450286B2 (en) Apparatus and methods for driving displays
JP2021092821A (en) Apparatus and methods for driving displays
JP2011118434A (en) Electro-optic display with reduced remnant voltage
CN110998706A (en) Electro-optic display and method for driving an electro-optic display
US11657774B2 (en) Apparatus and methods for driving displays
TWI835384B (en) Electro-optic displays and methods for driving electro-optic displays
CN114667561B (en) Method for driving electro-optic display
US20230213832A1 (en) Methods for driving electro-optic displays