TWI637184B - Touch screen test method, touch screen test system and automatic test device - Google Patents
Touch screen test method, touch screen test system and automatic test device Download PDFInfo
- Publication number
- TWI637184B TWI637184B TW107102163A TW107102163A TWI637184B TW I637184 B TWI637184 B TW I637184B TW 107102163 A TW107102163 A TW 107102163A TW 107102163 A TW107102163 A TW 107102163A TW I637184 B TWI637184 B TW I637184B
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- test
- clock signal
- time
- automatic test
- Prior art date
Links
Landscapes
- Position Input By Displaying (AREA)
Abstract
一種觸控屏測試系統包括一薄膜電晶體及一自動測試電路。自動測試電路儲存N個第一時間值及N個第二時間值,且依序據以產生一第一及第二時鐘信號。該自動測試電路用以產生一測試信號和一源極驅動信號。該電荷泵根據第一及第二時鐘信號產生一閘極驅動信號輸出到電晶體的閘極,第一時間的定義為第二時鐘信號剛進入充電階段時相位延遲轉態的時間,第二時間的定義為第二時鐘信號於放電階段中維持脈波的時間。自動測試電路將N×N的回饋信號的每一進行信噪比運算且判斷出一最佳信噪比值。藉由動態調整第一及第二時鐘信號的非重疊時間,而有效提高觸控檢測的準確度。A touch screen test system includes a thin film transistor and an automatic test circuit. The automatic test circuit stores N first time values and N second time values, and sequentially generates a first and second clock signals. The automatic test circuit is configured to generate a test signal and a source drive signal. The charge pump generates a gate drive signal to output to the gate of the transistor according to the first and second clock signals, and the first time is defined as the time when the second clock signal enters the charging phase and the phase delays the transition state, the second time It is defined as the time during which the second clock signal maintains the pulse wave during the discharge phase. The automatic test circuit performs a signal to noise ratio calculation for each of the N x N feedback signals and determines an optimum signal to noise ratio value. The accuracy of the touch detection is effectively improved by dynamically adjusting the non-overlap time of the first and second clock signals.
Description
本發明是有關於一種觸控屏偵測技術,特別是指一種可動態調整電荷泵開關切換的不重疊時間的觸控屏測試系統、自動測試裝置及觸控屏測試方法。The invention relates to a touch screen detection technology, in particular to a touch screen test system, an automatic test device and a touch screen test method capable of dynamically adjusting the non-overlap time of charge pump switch switching.
如圖1所示,現有的觸控偵測技術是,為了確保掃描信號Tx被電容Ctouch準確接收,需要在薄膜場效應電晶體(Thin Film Transistor,以下簡稱為TFT)的閘極和源極上分別疊加一個與掃描信號Tx同步信號V G、V S,以抵消TFT的寄生電容Cgd、Csd和面板電容(即Cpanel)。此外,源極上的同步信號V S可以直接利用掃描信號Tx,閘極上的同步信號V G需要在電荷泵的配合之下才能產生。 As shown in FIG. 1 , in the existing touch detection technology, in order to ensure that the scan signal Tx is accurately received by the capacitor Ctouch, it is required to be respectively on the gate and source of a thin film field effect transistor (TFT). A sync signal V G , V S is superimposed with the scan signal Tx to cancel the parasitic capacitances Cgd, Csd and panel capacitance (ie, Cpanel) of the TFT. In addition, the sync signal V S on the source can directly utilize the scan signal Tx, and the sync signal V G on the gate needs to be generated by the charge pump.
如圖2和圖3所示,在掃描信號Tx的基礎之上,利用簡單的延時電路獲取與Tx之間具有一定非重疊(non-overlap)的控制信號CLK_CH和CLK_PM,來控制電荷泵交替處於充電(charging)階段(即,開關SWN導通、開關SWP不導通)和放電(pumping) 階段(即,開關SWN不導通、開關SWP導通),。然而,由於上述控制信號CLK_CH和CLK_PM的不重疊(non-overlap)時間不具備靈活地可調性,無法實現自動可調功能,因此無法有效提高信噪比。針對上述的問題,目前尚未提出有效的解決方案。As shown in FIG. 2 and FIG. 3, based on the scan signal Tx, a simple delay circuit is used to obtain a non-overlap control signal CLK_CH and CLK_PM with Tx to control the charge pump alternately. The charging phase (ie, the switch SWN is turned on, the switch SWP is not turned on) and the pumping phase (ie, the switch SWN is not turned on, and the switch SWP is turned on). However, since the non-overlap time of the above control signals CLK_CH and CLK_PM does not have flexible adjustability, the automatic adjustable function cannot be realized, and thus the signal-to-noise ratio cannot be effectively improved. In response to the above problems, no effective solution has been proposed yet.
因此,本發明之一目的,即在提供一種解決在現有的觸控檢測過程中因無法態調整非重疊時間而導致無法有效地提高信噪比的觸控屏測試系統。Therefore, it is an object of the present invention to provide a touch screen test system that can not effectively improve the signal to noise ratio due to the inability to adjust the non-overlap time in the existing touch detection process.
於是,本發明觸控屏測試系統,包括一觸控屏及一自動測試裝置。Thus, the touch screen test system of the present invention includes a touch screen and an automatic test device.
該觸控屏包括一像素單元及一測試端,該像素單元包括一薄膜電晶體及一電容,該薄膜電晶體具有一閘極、一源極及一汲極,該電容電連接該測試端與該薄膜電晶體的汲極間。The touch panel includes a pixel unit and a test end. The pixel unit includes a thin film transistor and a capacitor. The thin film transistor has a gate, a source and a drain. The capacitor is electrically connected to the test end. The thin film transistor is between the drains.
該自動測試裝置包括一電連接該薄膜電晶體的閘極的電荷泵、一電連接該觸控屏的測試端的接收端及一電連接該電荷泵與該接收端與該測試端的自動測試電路,該自動測試電路儲存N個第一時間值及N個第二時間值,且依序根據該N個第一時間值的其中之一與該N個第二時間值的其中之一,產生一第一時鐘信號及一第二時鐘信號,N為正整數,N≧2,該自動測試電路用以產生一測試信號到和一源極驅動信號,該測試信號和該源極驅動信號分別輸出到該測試端和該電晶體的源極,其中,該源極驅動信號同步於該測試信號,該電荷泵電連接該自動測試電路以接收該第一時鐘信號及該第二時鐘信號,且根據該第一時鐘信號及該第二時鐘信號產生一同步於該測試信號的閘極驅動信號,該閘極驅動信號輸出到該電晶體的閘極,其中,該電荷泵根據該充電時鐘信號及該放電時鐘信號操作於一充電階段與一放電階段,該第一時間的定義為該第二時鐘信號剛進入充電階段時相位延遲轉態的時間,該第二時間的定義為該第二時鐘信號於放電階段中維持脈波的時間,其中,該第二時鐘信號的相位互補於該第一時鐘信號。The automatic test device includes a charge pump electrically connected to the gate of the thin film transistor, a receiving end electrically connected to the test end of the touch screen, and an automatic test circuit electrically connecting the charge pump and the receiving end and the test end. The automatic test circuit stores N first time values and N second time values, and sequentially generates one according to one of the N first time values and one of the N second time values. a clock signal and a second clock signal, N is a positive integer, N≧2, the automatic test circuit is configured to generate a test signal to and a source drive signal, and the test signal and the source drive signal are respectively output to the a test terminal and a source of the transistor, wherein the source drive signal is synchronized with the test signal, the charge pump is electrically connected to the automatic test circuit to receive the first clock signal and the second clock signal, and according to the first a clock signal and the second clock signal generate a gate drive signal synchronized with the test signal, the gate drive signal is output to a gate of the transistor, wherein the charge pump is based on the charge clock signal and the The discharge clock signal is operated in a charging phase and a discharging phase. The first time is defined as a time when the second clock signal just enters the charging phase, and the second time is defined as the second clock signal. The time during which the pulse wave is maintained in the discharge phase, wherein the phase of the second clock signal is complementary to the first clock signal.
該接收端接收來自該像素單元的N×N個回饋信號,其中,由該N個第一時間值及N個第二時間值的排列組合共可產生N×N種的閘極驅動信號,該N×N種的回饋信號分別對應該N×N種的閘極驅動信號。The receiving end receives N×N feedback signals from the pixel unit, wherein a total of N×N gate driving signals are generated by the combination of the N first time values and the N second time values, and the gate driving signal is generated. The N × N kinds of feedback signals respectively correspond to N × N kinds of gate drive signals.
該自動測試電路將該N×N的回饋信號的每一進行信噪比運算,以得到N×N個信噪比值。The automatic test circuit performs a signal to noise ratio operation on each of the N×N feedback signals to obtain N×N signal to noise ratio values.
該自動測試電路比較該N×N個信噪比值以判斷出一最佳信噪比值,且記錄該最佳信噪比值所對應的該第一時間值及該第二時間值。The automatic test circuit compares the N×N SNR values to determine an optimal SNR value, and records the first time value and the second time value corresponding to the optimal SNR value.
本發明之一另一目的,即在提供一觸控屏測試方法。Another object of the present invention is to provide a touch screen test method.
該觸控屏測試方法包含步驟(A)~(F)。The touch screen test method includes steps (A) to (F).
(A)該自動測試電路儲存N個第一時間值及N個第二時間值,且依序根據該N個第一時間值的其中之一與該N個第二時間值的其中之一,產生一第一時鐘信號及一第二時鐘信號,N為正整數,N≧2。(A) the automatic test circuit stores N first time values and N second time values, and sequentially according to one of the N first time values and one of the N second time values, A first clock signal and a second clock signal are generated, N being a positive integer, N ≧ 2.
(B)該自動測試電路用以產生一測試信號和一源極驅動信號,該測試信號和該源極驅動信號分別輸出到該測試端和該電晶體的源極,其中,該源極驅動信號同步於該測試信號。(B) the automatic test circuit is configured to generate a test signal and a source drive signal, the test signal and the source drive signal are respectively output to the test terminal and the source of the transistor, wherein the source drive signal Synchronized to the test signal.
(C)該電荷泵根據該第一時鐘信號及一第二時鐘信號產生一同步於該測試信號的閘極驅動信號,該閘極驅動信號輸出到該電晶體的閘極,其中,該電荷泵根據該充電時鐘信號及該放電時鐘信號操作於一充電階段與一放電階段,該第一時間的定義為該第二時鐘信號剛進入充電階段時相位延遲轉態的時間,該第二時間的定義為該第二時鐘信號於放電階段中維持脈波的時間,其中,該第二時鐘信號的相位互補於該第一時鐘信號。(C) the charge pump generates a gate driving signal synchronized with the test signal according to the first clock signal and a second clock signal, and the gate driving signal is output to a gate of the transistor, wherein the charge pump The charging clock signal and the discharging clock signal are operated in a charging phase and a discharging phase, and the first time is defined as a time when the second clock signal just enters the charging phase, and the phase is delayed. The second time is defined. A time during which the second clock signal maintains a pulse wave in a discharge phase, wherein a phase of the second clock signal is complementary to the first clock signal.
(D)該接收端接收來自該像素單元的N×N個回饋信號,其中,由該N個第一時間值及N個第二時間值的排列組合共可產生N×N種的閘極驅動信號,該N×N種的回饋信號分別對應該N×N種的閘極驅動信號。(D) the receiving end receives N×N feedback signals from the pixel unit, wherein a total of N×N gate drivers are generated by the combination of the N first time values and the N second time values The signal, the N×N kinds of feedback signals respectively correspond to N×N kinds of gate driving signals.
(E)該自動測試電路將該N×N的回饋信號的每一進行信噪比運算,以得到N×N個信噪比值。(E) The automatic test circuit performs a signal-to-noise ratio operation on each of the N×N feedback signals to obtain N×N signal-to-noise ratio values.
(F)該自動測試電路比較該N×N個信噪比值以判斷出一最佳信噪比值,且記錄該最佳信噪比值所對應的該第一時間值及該第二時間值。(F) the automatic test circuit compares the N×N SNR values to determine an optimal SNR value, and records the first time value and the second time corresponding to the optimal SNR value. value.
本發明之功效在於:動態調整電荷泵的開關切換的不重疊時間且以最優的信噪比值所對應的第一時間值與第二時間值來設定第一及第二時鐘信號來使電荷泵產生閘極驅動信號,有效提升偵測觸控屏的準確度。The effect of the invention is to dynamically adjust the non-overlap time of the switching of the charge pump and set the first and second clock signals to make the charge with the first time value and the second time value corresponding to the optimal signal to noise ratio value. The pump generates a gate drive signal, which effectively improves the accuracy of detecting the touch screen.
在本發明被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。Before the present invention is described in detail, it should be noted that in the following description, similar elements are denoted by the same reference numerals.
參閱圖4、5,本發明觸控屏測試系統之一實施例,包括:一觸控屏2及一自動測試裝置3。Referring to FIG. 4 and FIG. 5, an embodiment of the touch screen test system of the present invention includes: a touch screen 2 and an automatic test device 3.
該觸控屏2包括一像素單元20及一測試端21,該像素單元20包括一薄膜電晶體TFT及一電容Cpanel,該薄膜電晶體TFT具有一閘極、一源極及一汲極,該電容Cpanel電連接該測試端21與該薄膜電晶體TFT的汲極間。該薄膜電晶體TFT具有寄生電容Cgd、Csd。The touch panel 2 includes a pixel unit 20 and a test terminal 21. The pixel unit 20 includes a thin film transistor TFT and a capacitor Cpanel. The thin film transistor TFT has a gate, a source and a drain. A capacitor Cpanel is electrically connected between the test terminal 21 and the drain of the thin film transistor TFT. The thin film transistor TFT has parasitic capacitances Cgd and Csd.
自動測試裝置3包括一電連接該薄膜電晶體TFT的閘極的電荷泵34、一電連接該觸控屏2的測試端21的接收端37及一電連接該電荷泵34與該接收端37與該測試端21的自動測試電路4。The automatic test device 3 includes a charge pump 34 electrically connected to the gate of the thin film transistor TFT, a receiving end 37 electrically connected to the test end 21 of the touch screen 2, and an electrical connection between the charge pump 34 and the receiving end 37. The automatic test circuit 4 with the test terminal 21.
電荷泵34受第一及第二時鐘信號控制,產生一閘極驅動信號,且包括四個開關SWN、SWP及一電容C F,分別接收第一電壓V1、第二電壓V2。 The charge pump 34 is controlled by the first and second clock signals to generate a gate drive signal, and includes four switches SWN, SWP and a capacitor C F for receiving the first voltage V1 and the second voltage V2, respectively.
該自動測試電路4包括一放大器31、一類比數位轉換器32、一控制器33及一測試組件30。The automatic test circuit 4 includes an amplifier 31, an analog-to-digital converter 32, a controller 33, and a test component 30.
測試組件30包括一開關St及一測試電容Ct。該開關St具有一電連接該接收端37的第一端及一第二端,且受控制於導通與不導通間切換,當處於自動測試模式時,則該開關St恆導通。該測試電容Ct具有一電連接該開關St的第二端的第一端及一接地的第二端,用以模擬人體電容Ctouch。如圖6所示,為電荷泵34的操作時序圖,以下將進一步說明。The test component 30 includes a switch St and a test capacitor Ct. The switch St has a first end and a second end electrically connected to the receiving end 37, and is controlled to switch between conduction and non-conduction. When in the automatic test mode, the switch St is constantly conducting. The test capacitor Ct has a first end electrically connected to the second end of the switch St and a grounded second end for simulating the human body capacitance Ctouch. As shown in FIG. 6, it is an operation timing chart of the charge pump 34, which will be further described below.
如圖7所示,該觸控屏測試系統執行一種觸控屏測試方法,該觸控屏測試方法包括以下步驟:As shown in FIG. 7, the touch screen test system performs a touch screen test method, and the touch screen test method includes the following steps:
步驟(A):該自動測試電路4儲存N個第一時間值及N個第二時間值,且依序根據該N個第一時間值的其中之一與該N個第二時間值的其中之一,產生一第一時鐘信號CLK_CH及一第二時鐘信號CLK_PM,N為正整數,N≧2。Step (A): the automatic test circuit 4 stores N first time values and N second time values, and sequentially according to one of the N first time values and the N second time values. One of them generates a first clock signal CLK_CH and a second clock signal CLK_PM, N being a positive integer, N ≧ 2.
步驟(B):該自動測試電路4用以產生一測試信號Tx到和一源極驅動信號Vs,該測試信號Tx到和該源極驅動信號Vs分別輸出到該測試端21和該電晶體TFT的源極,其中,該源極驅動信號Vs同步於該測試信號Tx。Step (B): the automatic test circuit 4 is configured to generate a test signal Tx and a source drive signal Vs, and the test signal Tx and the source drive signal Vs are output to the test terminal 21 and the transistor TFT, respectively. a source, wherein the source driving signal Vs is synchronized with the test signal Tx.
步驟(C):該電荷泵34接收該第一時鐘信號CLK_CH及該第二時鐘信號CLK_PM,且根據該第一時鐘信號CLK_CH及該第二時鐘信號CLK_PM產生一同步於該測試信號Tx的閘極驅動信號V G,該閘極驅動信號V G輸出到該電晶體TFT的閘極,其中,如圖6所示,該電荷泵34根據該第一時鐘信號CLK_CH及該第二時鐘信號CLK_PM操作於一充電階段與一放電階段,該第一時間T1的定義為該第二時鐘信號CLK_PM剛進入充電階段時相位延遲轉態的時間,該第二時間T2的定義為該第二時鐘信號CLK_PM於放電階段中維持脈波寬度的時間,其中,該第二時鐘信號CLK_PM的相位互補於該第一時鐘信號CLK_CH。 Step (C): the charge pump 34 receives the first clock signal CLK_CH and the second clock signal CLK_PM, and generates a gate synchronized with the test signal Tx according to the first clock signal CLK_CH and the second clock signal CLK_PM. a driving signal V G , the gate driving signal V G is output to the gate of the transistor TFT, wherein, as shown in FIG. 6 , the charge pump 34 operates according to the first clock signal CLK_CH and the second clock signal CLK_PM a charging phase and a discharging phase, the first time T1 is defined as a time when the second clock signal CLK_PM just enters the charging phase, and the second time T2 is defined as the second clock signal CLK_PM is discharged. The time during which the pulse width is maintained in the phase, wherein the phase of the second clock signal CLK_PM is complementary to the first clock signal CLK_CH.
當重覆步驟(A)~(C)將N×N種的第一及第二時間值T1、T2的排列組合的每一都執行過,則進到步驟(D)。When the repeating steps (A) to (C) have performed each of the arrangement combinations of the first and second time values T1, T2 of the N × N types, the process proceeds to step (D).
步驟(D):該接收端接收來自該像素單元20的N×N個回饋信號Rx,其中,由該N個第一時間值T1及N個第二時間值T2的排列組合共可產生N×N種的閘極驅動信號V G,該N×N種的回饋信號Rx分別對應該N×N種的閘極驅動信號。 Step (D): The receiving end receives N×N feedback signals Rx from the pixel unit 20, wherein a total combination of the N first time values T1 and N second time values T2 can generate N× N kinds of gate drive signals V G , the N × N kinds of feedback signals Rx respectively correspond to N × N kinds of gate drive signals.
步驟(E):該自動測試電路將該N×N的回饋信號Rx的每一進行信噪比運算,以得到N×N個信噪比值。Step (E): The automatic test circuit performs a signal-to-noise ratio operation on each of the N×N feedback signals Rx to obtain N×N signal-to-noise ratio values.
步驟(F):該自動測試電路4比較該N×N個信噪比值以判斷出一最佳信噪比值,且記錄該最佳信噪比值所對應的該第一時間值T1及該第二時間值T2。進而,該自動測試電路4以最佳信噪比值所對應的第一時間值T1與第二時間值T2來產生該該第一時鐘信號CLK_CH及該第二時鐘信號CLK_PM,以控制電荷泵34產生閘極驅動信號V G。 Step (F): the automatic test circuit 4 compares the N×N SNR values to determine an optimal SNR value, and records the first time value T1 corresponding to the optimal SNR value and The second time value T2. Further, the automatic test circuit 4 generates the first clock signal CLK_CH and the second clock signal CLK_PM with the first time value T1 and the second time value T2 corresponding to the optimal signal to noise ratio value to control the charge pump 34. A gate drive signal V G is generated.
如圖5所示,在此更進一步說明步驟(E)、(F),放大器31電連接該接收端Rx以接收每一回饋信號Rx,請將該回饋信號Rx進行放大。類比數位轉換器32電連接該放大器31以接收該放大後的回饋信號,並進行類比至數位轉換,產生一數位信號。控制器33電連接該類比數位轉換器32以接收該數位信號,並對該數位信號進行頻譜分析,以得到信號與噪聲各自的能量,以計算信噪比值,如式As shown in FIG. 5, steps (E) and (F) are further described herein. The amplifier 31 is electrically connected to the receiving end Rx to receive each feedback signal Rx. Please amplify the feedback signal Rx. Analog to digital converter 32 is electrically coupled to amplifier 31 to receive the amplified feedback signal and analog to digital conversion to produce a digital signal. The controller 33 is electrically connected to the analog-to-digital converter 32 to receive the digital signal, and performs spectrum analysis on the digital signal to obtain respective energy of the signal and the noise to calculate a signal-to-noise ratio value.
,其中,參數SNR定義是信噪比值,參數Es、En的定義分別是信號的能量、噪聲的能量。 Wherein, the parameter SNR is defined as the signal-to-noise ratio value, and the parameters Es and En are defined as the energy of the signal and the energy of the noise, respectively.
該控制器33具有一第一暫存器(圖未示)及一第二暫存器(圖未示),該第一暫存器用以儲存該N個不同的第一時間值T1,該第二暫存器用以儲存該N個不同的第二時間值T2,如表一。The controller 33 has a first register (not shown) and a second register (not shown) for storing the N different first time values T1, the first The second register is configured to store the N different second time values T2, as shown in Table 1.
<TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> T1(或T2) </td><td> 延遲時間 </td></tr><tr><td> 0 </td><td> 0 </td><td> 0 </td><td> 0 </td><td> 0 </td><td> 0 </td><td> 0*時間單位 </td></tr><tr><td> 0 </td><td> 0 </td><td> 0 </td><td> 0 </td><td> 0 </td><td> 1 </td><td> 1*時間單位 </td></tr><tr><td> 0 </td><td> 0 </td><td> 0 </td><td> 0 </td><td> 1 </td><td> 0 </td><td> 2*時間單位 </td></tr><tr><td> ……略 </td><td> ……略 </td></tr><tr><td> 1 </td><td> 1 </td><td> 1 </td><td> 1 </td><td> 1 </td><td> 0 </td><td> 62*時間單位 </td></tr><tr><td> 1 </td><td> 1 </td><td> 1 </td><td> 1 </td><td> 1 </td><td> 1 </td><td> 63*時間單位 </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> T1 (or T2) </td><td> delay time</td></tr ><tr><td> 0 </td><td> 0 </td><td> 0 </td><td> 0 </td><td> 0 </td><td> 0 </ Td><td> 0*time unit</td></tr><tr><td> 0 </td><td> 0 </td><td> 0 </td><td> 0 </ Td><td> 0 </td><td> 1 </td><td> 1*time unit</td></tr><tr><td> 0 </td><td> 0 </ Td><td> 0 </td><td> 0 </td><td> 1 </td><td> 0 </td><td> 2*time units</td></tr>< Tr><td> ...... slightly</td><td> ...... slightly</td></tr><tr><td> 1 </td><td> 1 </td><td> 1 < /td><td> 1 </td><td> 1 </td><td> 0 </td><td> 62*time units</td></tr><tr><td> 1 < /td><td> 1 </td><td> 1 </td><td> 1 </td><td> 1 </td><td> 1 </td><td> 63* time unit </td></tr></TBODY></TABLE>
表一Table I
T1的取值範圍從000000至111111,T2的取值範圍從000000至111111,通過T1與T2取值的任意組合來實現不重疊(non-overlap)時間的靈活調整。例如:當T2取值為000000時,T1從000000至111111依次取值,當T2取值為000001時,T1再從000000至111111依次取值,當T2取值為000010時,T1再從000000至111111依次取值,…,以此類推,總共存在2 6×2 6=4096個組合。也就是,當處於自動測試模式時,通過控制器33,對第一時間值T1[5:0]和第二時間值T2[5:0]兩個數值從低到高進行依序自動調整,以此對第一及第二時鐘信號的不重疊時間長度進行自動調整。每一次的第一及第二時間值調整後,就計算出對應的信噪比數據,並對該信噪比數據進行儲存。當上述第一時間值T1[5:0]和第二時間值T2[5:0]兩個數值調整完畢以後(共4096個組合),通過控制器33對所儲存的全部信噪比數據(共4096個)進行比較分析,確定出使信噪比最高所對應的第一及第二時間值T1、T2的數據,作為在非自動測試模式的正常工作時,用來設定電荷泵34產生閘極驅動信號V G,從而完成整個自動測試過程。 The value of T1 ranges from 000000 to 111111, and the value of T2 ranges from 000000 to 111111. Flexible adjustment of non-overlap time is achieved by any combination of values of T1 and T2. For example, when T2 takes the value 000000, T1 takes the value from 000000 to 111111 in turn. When T2 takes the value of 000001, T1 takes the value from 000000 to 111111 in turn. When T2 takes the value of 000010, T1 is again from 000000 to 111111 takes values in order, ..., and so on, and there are a total of 2 6 × 2 6 = 4096 combinations. That is, when in the automatic test mode, the first time value T1 [5:0] and the second time value T2 [5:0] are automatically adjusted by the controller 33 from low to high. Thereby, the non-overlapping time lengths of the first and second clock signals are automatically adjusted. After each of the first and second time values is adjusted, the corresponding signal to noise ratio data is calculated, and the signal to noise ratio data is stored. After the two values of the first time value T1[5:0] and the second time value T2[5:0] are adjusted (total 4096 combinations), all the stored signal to noise ratio data are stored by the controller 33 ( A total of 4096) are subjected to comparative analysis to determine data of the first and second time values T1 and T2 corresponding to the highest signal-to-noise ratio, and are used to set the gate of the charge pump 34 as a normal operation in the non-automatic test mode. The pole drives the signal V G to complete the entire automated test process.
綜上所述,上述實施例的優點在於:一、動態調整電荷泵34的開關切換的不重疊時間得到各種信噪比值。二、以最優的信噪比值所對應的第一時間值T1與第二時間值T2來設定電荷泵34產生閘極驅動信號V G,有效提升偵測觸控屏的準確度,故確實能達成本發明之目的。 In summary, the above embodiments have the advantages that: one dynamically adjusts the non-overlapping time of the switching of the charge pump 34 to obtain various signal to noise ratio values. 2. The first time value T1 and the second time value T2 corresponding to the optimal signal to noise ratio value are used to set the gate pump driving signal V G to effectively improve the accuracy of detecting the touch screen. The object of the invention can be achieved.
惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。However, the above is only the embodiment of the present invention, and the scope of the invention is not limited thereto, and all the equivalent equivalent changes and modifications according to the scope of the patent application and the patent specification of the present invention are still The scope of the invention is covered.
2‧‧‧觸控屏2‧‧‧ touch screen
20‧‧‧像素單元 20‧‧‧ pixel unit
TFT‧‧‧薄膜電晶體 TFT‧‧‧thin film transistor
21‧‧‧測試端 21‧‧‧Test end
3‧‧‧自動測試裝置 3‧‧‧Automatic test device
4‧‧‧自動測試電路 4‧‧‧Automatic test circuit
30‧‧‧測試組件 30‧‧‧Test components
St‧‧‧開關 St‧‧ switch
Ct‧‧‧電容 Ct‧‧‧ capacitor
31‧‧‧放大器 31‧‧‧Amplifier
32‧‧‧類比數位轉換器 32‧‧‧ Analog Digital Converter
33‧‧‧控制電路 33‧‧‧Control circuit
34‧‧‧ 34‧‧‧
37‧‧‧接收端 37‧‧‧ Receiver
A‧‧‧產生第一及第二時鐘信號的步驟 A‧‧‧Steps for generating the first and second clock signals
B‧‧‧產生測試信號和源極驅動信號的步驟 B‧‧‧Steps for generating test signal and source drive signal
C‧‧‧產生閘極驅動信號的步驟 C‧‧‧Steps for generating gate drive signals
D‧‧‧接收來回饋信號的步驟 D‧‧‧Steps for receiving the feedback signal
E‧‧‧信噪比運算的步驟 E‧‧‧Steps of signal-to-noise ratio calculation
F‧‧‧判斷出一最佳信噪比值的步驟 F‧‧‧Steps to determine an optimal SNR value
VG‧‧‧閘極驅動信號 VG‧‧‧ gate drive signal
Vs‧‧‧源極驅動信號 Vs‧‧‧ source drive signal
Tx‧‧‧測試信號 Tx‧‧‧ test signal
Rx‧‧‧回饋信號 Rx‧‧‧ feedback signal
CLK_PM 第二時鐘信號 CLK_PM second clock signal
CLK_CH 第一時鐘信號 CLK_CH first clock signal
Cgd‧‧‧寄生電容 Cgd‧‧‧ parasitic capacitance
Csd‧‧‧寄生電容 Csd‧‧‧ parasitic capacitance
CF‧‧‧電容C F ‧‧‧ capacitor
SWN‧‧‧開關 SWN‧‧ switch
SWP‧‧‧開關 SWP‧‧‧ switch
本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是現有觸控偵測技術的部分電路圖; 圖2是電荷泵的一電路圖; 圖3是該現有觸控偵測技術的一時序圖; 圖4是本發明觸控屏測試系統之一實施例的一方塊圖; 圖5是該實施例之一電路圖; 圖6是該實施例之一時序圖;及 圖7是該實施例執行一觸控屏測試方法的一流程圖。Other features and effects of the present invention will be apparent from the following description of the drawings, wherein: FIG. 1 is a partial circuit diagram of a conventional touch detection technology; FIG. 2 is a circuit diagram of a charge pump; FIG. 4 is a block diagram of an embodiment of the touch screen test system of the present invention; FIG. 5 is a circuit diagram of the embodiment; FIG. 6 is a timing diagram of the embodiment. And FIG. 7 is a flow chart of the method for performing a touch screen test in the embodiment.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106125582 | 2017-07-28 | ||
??106125582 | 2017-07-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI637184B true TWI637184B (en) | 2018-10-01 |
TW201910794A TW201910794A (en) | 2019-03-16 |
Family
ID=64797472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107102163A TWI637184B (en) | 2017-07-28 | 2018-01-22 | Touch screen test method, touch screen test system and automatic test device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI637184B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114199519A (en) * | 2021-10-31 | 2022-03-18 | 昆山丘钛光电科技有限公司 | Testing device and system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201120720A (en) * | 2009-07-07 | 2011-06-16 | Nuvoton Technology Corp | Display screen system and methods for providing and using the same |
TW201120844A (en) * | 2009-12-09 | 2011-06-16 | Intellectual Point Of Technology Shenzhen Co Ltd | Touch-control display capable of removing touch-control impact on display. |
US20110163766A1 (en) * | 2010-01-07 | 2011-07-07 | 3M Innovative Properties Company | Capacitance measurement circuit with dynamic feedback |
JP2012253789A (en) * | 2010-03-02 | 2012-12-20 | Semiconductor Energy Lab Co Ltd | Semiconductor device |
CN104077996A (en) * | 2014-07-08 | 2014-10-01 | 上海天马微电子有限公司 | Grid driving circuit, display panel and display device thereof |
CN104820529A (en) * | 2014-01-31 | 2015-08-05 | 株式会社日本显示器 | Display device provided with sensor and method of driving the same |
JP2016109660A (en) * | 2014-05-02 | 2016-06-20 | 株式会社半導体エネルギー研究所 | Display device and input/output device |
-
2018
- 2018-01-22 TW TW107102163A patent/TWI637184B/en active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201120720A (en) * | 2009-07-07 | 2011-06-16 | Nuvoton Technology Corp | Display screen system and methods for providing and using the same |
TW201120844A (en) * | 2009-12-09 | 2011-06-16 | Intellectual Point Of Technology Shenzhen Co Ltd | Touch-control display capable of removing touch-control impact on display. |
US20110163766A1 (en) * | 2010-01-07 | 2011-07-07 | 3M Innovative Properties Company | Capacitance measurement circuit with dynamic feedback |
JP2012253789A (en) * | 2010-03-02 | 2012-12-20 | Semiconductor Energy Lab Co Ltd | Semiconductor device |
CN104820529A (en) * | 2014-01-31 | 2015-08-05 | 株式会社日本显示器 | Display device provided with sensor and method of driving the same |
JP2016109660A (en) * | 2014-05-02 | 2016-06-20 | 株式会社半導体エネルギー研究所 | Display device and input/output device |
CN104077996A (en) * | 2014-07-08 | 2014-10-01 | 上海天马微电子有限公司 | Grid driving circuit, display panel and display device thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114199519A (en) * | 2021-10-31 | 2022-03-18 | 昆山丘钛光电科技有限公司 | Testing device and system |
CN114199519B (en) * | 2021-10-31 | 2024-04-16 | 昆山丘钛光电科技有限公司 | Testing device and system |
Also Published As
Publication number | Publication date |
---|---|
TW201910794A (en) | 2019-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI463769B (en) | Charge pump device | |
TWI512714B (en) | A power supply circuit of a display device | |
US8362818B2 (en) | Clock adjustment circuit, shift detection circuit of duty ratio, imaging device and clock adjustment method | |
US20060044052A1 (en) | Charge pump circuit | |
JP2011142643A (en) | Drive voltage control device | |
JP2011139309A5 (en) | ||
CN114333672B (en) | Driving circuit, driving method and display device of display panel | |
KR101650315B1 (en) | Device and method for use in controlling pulse output | |
US20080197907A1 (en) | Driver amplifier circuit | |
CN109671413B (en) | Booster circuit, shutdown circuit, driving method thereof, and display device | |
US20190044437A1 (en) | Charge pump circuit and operating method thereof | |
TWI637184B (en) | Touch screen test method, touch screen test system and automatic test device | |
TWI247258B (en) | Capacitive load driving circuit driving capacitive loads such as pixels in plasma display panels and plasma display apparatus having the capacitive load driving circuit | |
TW201201176A (en) | Gate pulse modulation circuit and angle modulating method thereof | |
EP1659560A3 (en) | Plasma display device and capacitive load driving circuit | |
US7459943B2 (en) | High accuracy sample and hold circuit having a common negative input terminal | |
TWI440002B (en) | Driving circuit of liquid crystal panel and liquid crystal device | |
TWI500015B (en) | Bi-direction circuit, gate driver and testing circuit utilizing the same | |
US20100164772A1 (en) | Analog input device | |
US20200117292A1 (en) | Capacitive sensing and sampling circuit and sensing and sampling method thereof | |
US20070103130A1 (en) | DC-DC converter and organic light emitting display using the same | |
WO2020129947A1 (en) | Dll circuit, temporal difference amplifying circuit, and ranging/imaging device | |
JP5394572B2 (en) | Capacitor charging system, digital control module for capacitor charging system, and insulated collection module | |
TWI573113B (en) | Driving apparatus | |
US8941579B2 (en) | Driving unit and gate driver circuit |