TW201120844A - Touch-control display capable of removing touch-control impact on display. - Google Patents

Touch-control display capable of removing touch-control impact on display. Download PDF

Info

Publication number
TW201120844A
TW201120844A TW98142156A TW98142156A TW201120844A TW 201120844 A TW201120844 A TW 201120844A TW 98142156 A TW98142156 A TW 98142156A TW 98142156 A TW98142156 A TW 98142156A TW 201120844 A TW201120844 A TW 201120844A
Authority
TW
Taiwan
Prior art keywords
display
touch
signal
electrode
circuit
Prior art date
Application number
TW98142156A
Other languages
Chinese (zh)
Inventor
qi-liang Chen
Hai-Ping Liu
de-hai Li
Original Assignee
Intellectual Point Of Technology Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intellectual Point Of Technology Shenzhen Co Ltd filed Critical Intellectual Point Of Technology Shenzhen Co Ltd
Priority to TW98142156A priority Critical patent/TW201120844A/en
Publication of TW201120844A publication Critical patent/TW201120844A/en

Links

Abstract

The present invention discloses a touch-control display capable of removing touch-control impact on display, which includes: an active display, a display driving circuit, a touch-control circuit and a display/touch-control signal strobe output circuit or a display/touch-control signal load circuit. One substrate of the display is provided with a row and column electrode set, and another substrate of the display is provided with a common electrode. There is a frame blanking time period between each two display scanning time periods of the electrode of the display. During this time period, the display does not execute the display driving by stopping scanning the row electrode, the column electrode and common electrode remain in an original outputting state or a certain preset outputting signal, and some or all of the active elements in the display are on a cut-off state. During the period of transmitting the touch-control signal by the display electrode, the transient potential difference of the applied touch-control signal between each electrode enables the active elements to remain in the cut-off state, thereby removing the touch-control signal impact on display.

Description

201120844 六、發明說明: 【發明所屬之技術領诚】 _]本發明涉及觸#紗平板㈣11,尤其涉及—種觸控 . 顯示器。 . 【先前技術】 _2]觸控螢幕發展至今已廣泛用於個人電腦' 智慧型電話、 公共資訊、智慧家電、工業控制等幕多領域。在目前的 觸控領域,主要有電阻式觸控螢幕、光電式觸控螢幕、 超聲波式觸控螢幂、平面電容式觸控螢幕,近年來投射 〇 電容式觸控螢幕發辱迅速。但目前這些觸控螢幕均具有 各自的技術缺點,造成它們雖然在某些特殊場合已廣為 -ai ;r δ s s-gi: i: ig. :¾-¾¾ 採用,但難以在普通顯示器上推廣應’^ β [0003]顯示器與觸控螢幕是對孿生產品,現穹技術中,通常顯 示器與觸控螢幕各自獨立承擔顯示和觸控任務8目前這 種分立式的具有觸控功能的平板顯示器以顯示器、顯示 驅動器、觸控螢幕、觸控訊號(S i gna 1)檢測器、背光源 Q 等部件構成,觸控榮幕有應用不同赛測原理的電阻式、 電容式、電磁式、超聲波式和光電式等,顯示器有無源 液晶顯示器(TN/STN-LCD)、有源液晶顯示器(TFT-LCD) 、有機發光二極體顯示器(OLED、AM-0LED)、等離子體 顯示器(PDP)、納米碳管顯示器、電子紙(e_ paper)等 。帶有觸控螢幕的平板顯示器是將分體的觸控榮幕與顯 示器層巷在-起’通過觸控螢幕探測到觸摸點的平面位 置’再使顯示器上的游標跟隨觸摸點定位。觸控榮幕與 顯示器的層疊使得觸控式平板顯示器變厚變重成本增加 098142156 表單編號A0101 第3頁/共77頁 0993125345-0 201120844 :在觸控螢幕置於顯示器前面時,觸控螢幕感測電極產 生的反射又會使得顯示不均勻和在強外界光環境下顯示 對比度的下降,影響顯示效果。將觸控板和顯示器集成 為一體,使具有觸控功能的平板顯示器變得更加輕薄, 是人們努力的方向。 [0004] 找出一種解決上述的結構複雜問題的方案,提高具有觸 控功能的平板顯示器可靠性、改善顯示效果、壓縮厚度 、降低成本,以簡潔的方法實現平板顯示器觸控功能是 必要的。 [0005] 申請號為CN20061 00948141、名稱為《觸控式平板顯示 器》和申請號為CN20061 0 1 065583、名稱為《具有觸控 功能的平板顯示器》的中國發明專利說明書,分別揭示 了一種觸控探測電路與顯示器電極之間的連接方式,通 過類比開關或載入電路使顯示器電極既傳輸顯示驅動訊 號,又傳輸並感測觸控訊號,顯示驅動和觸控探測分時 多工或同時共用顯示器電極,顯示器電極既用於顯示驅 動又用於觸控探測,從而創新性地提出了 “觸控式平板 顯示器”的概念。 [0006] 申請號為CN20091 02035358、名稱為《一種觸控式平板 顯示器的驅動實現》的中國發明專利說明書,申請號為 CN20091 01 399060、名稱為《一種觸控式平板顯示器的 驅動實現》的中國發明專利說明書,申請號為 CN20081 013341 7X、名稱為《一種觸控式平板顯示器》 的中國發明專利說明書,則又對觸控式平板顯示器做出 了進一步的改進。 098142156 表單編號A0101 第4頁/共77頁 0993125345-0 201120844 [0007] 上述中國專利所揭示的這類觸控式平板顯示器的基本工 ❹ 作原理是,利用顯示器上兩組相交的電極作為觸控傳感 電極,電極組的各條電極線連接觸控激勵源,觸控激勵 源向電極線施加交流或直流的觸控激勵訊號。當人的手 指或其他觸控物靠近或接觸某條電極線時,觸控電路通 過探測各條電極線觸控訊號變化的大小,從而找出手指 或其他觸控物在顯示器上的位置。這是一種全新的顯示 與觸控合二為一式的觸控探測技術,具有顯著的成本優 勢,對其改進後具有廣闊的發展前景。 【發明内容】 [0008] 本發明的目的是提供一種可排除觸控影響顯示的觸控顯 示器,解決如何排除觸控訊號(Signal)對顯示的影響問 題。 [0009] 為此,本發明提出的觸控顯示器包括主動式顯示器、顯 示驅動電路、觸控電路,以及使顯示器電極既用於顯示 驅動又用於觸控探測的顯示/觸控訊號選通輸出電路或顯 ❹ 示/觸控訊號載入電路;所述觸控電路具有觸控激勵源和 觸控訊號檢測電路;所述顯示/觸控訊號選通輸出電路使 顯示器電極或與顯示驅動電路連通傳輸顯示驅動訊號, 或與觸控電路連通傳輸觸控訊號,顯示驅動和觸控探測 多時分工顯示器電極;所述顯示/觸控訊號載入電路使顯 示器電極同時傳輸顯示驅動訊號和觸控訊號,顯示驅動 和觸控探測同時共用顯示器電極;在顯示器的一片基板 上具有主動式器件陣列和連接主動式器件陣列的列(R 〇 w ) 電極組和行(Column)電極組,在顯示器的另一片基板上 098142156 表單編號A0101 第5頁/共77頁 0993125345-0 201120844 -有a 電極,在顯示器電極傳輸顯示訊號的時間段裏 面:顯示驅動電路對顯示器上的列電極執行順序掃描, 顯^盗上的行電極、共用(⑽)電極配合輸出相應的顯示 訊號;每兩個顯示掃描時間段之間存在-㈣隱時間段 ,此%間段中顯示器不執行顯示驅動,對列電極掃描停 止’顯示驅動電路對所有的列電極均輸出非選擇訊號, ^丁電極、COM電極保持原來的輸出態或者某預設輸出訊號 ’顯示器上部分或全部的主動式器件處於截止狀態;在 顯不器電極傳輸觸控訊號的時段中,所施加的觸控訊號 在各電極之間所具有的暫態電位差,使顯示器上的主動 式器件保持戴止狀態,排除觸控訊號對顯示的影響。 [0010] [0011] [0012] [0013] [0014] 進一步地,在本發明的最佳實施例中: 其中,使顯示器上部分的主動式器件處於截止狀態,是 才曰使顯示器上與顯示像素直接相連接的主動式器件保持 截止狀態。 . ..... .. : 其中,排除觸控訊號對顳示的影響,臭在連接主動式器 件陣列的列電極組和行電極組各條電極線上所施加觸控 訊號的暫態電位差,使顯示器上全部的或部分的主動式 器件保持截止狀態。 其中,排除觸控訊號對顯示的影響,是在連接主動式器 件陣列的列電極組或行電極組中的部分電極線上和公共 電極上所施加觸控訊號的暫態電位差,使連接該部分電 極線的主動式器件保持截止狀態。 其中’顯示器基板上的主動式器件陣列是薄膜場效應電 098142156 表單編號A0101 第6頁/共77頁 0993125345-0 201120844 晶體圓陣列,列行電極線分別連接薄膜場效應電晶體 (TFT)的閘極和馳、或分別連接薄膜場效應電晶體 (TFT)的閘極和汲極,在連接薄膜場效應電晶體(㈣陣 列的列電極組和行電極組各條電極線上所施加觸控訊號 的暫態電位差’使顯示器上全部的或部分的薄膜場效應 電晶體(TFT)保持載止狀態。 _纟中’顯示器基板上的主動式器件陣列是薄膜場效應電 晶體(TFTW車列,列行電極線分別連接薄膜場效應電晶體 (TFT)的閘極和源極 '或分別連接薄膜場效應電晶體 (T F T )的閘極和汲極,赛列電極線或行電極線中連接薄膜 %效應電BB體(T F T )閘極的電極線上和公共電極上所施加 觸控訊號的暫態電位差,使顯示器上全部的或部分的主 動式器件保持截止狀態。 [0016] 其中,施加觸控訊號的各電極之間的觸控訊號關係,是 保持這些電極間電位差的平均值不變,使顯示效果不發 生可感知的變化。 - . .... - [0017] 其中,在顯示器電極傳輸觸控訊號的一個時段内,不同 電極組之間觸控訊號的電位差具有保持恆定的時段。 [0018] 其中,在顯示器電極傳輸觸控訊號的各個時段間,不同 電極組之間觸控訊號的電位差保持不變。 [0019] 其中,在列行電極組上或公共電極上施加的觸控訊號, 是交流訊號或是交流訊號和直流訊號的混合訊號。 [0020] 其中,觸控訊號中的交流訊號成份的波形是方波、正弦 波、三角波、鋸齒波等交流波形中的一種。 098142156 表單編號A0101 第7頁/共77頁 0993125345-0 201120844 [0021] 其中,觸控訊號中的交流訊號成份的頻率是在10kHz或 1 0 k Η z以上。 [0022] 其中,主動式顯示器是薄膜場效應電晶體液晶顯示器 (TFT-LCD)或其他主動式液晶顯示器、主動式有機發光 二極體顯示器、主動式納米碳管顯示器中的一種。 [0023] 承上所述,本發明之可排除觸控影響顯示的觸控顯示器 ,可具有一或多個下述優點: [0024] (1 )本發明所揭露的技術通過選擇合理的觸控激勵訊號方 案,在觸控探測狀態下保證了薄膜場效應電晶體(TFT)處 於截止狀態,讓顯示效果不受到觸控激勵訊號的影響, 至少把這個影響控制到可以忽略的程度,有效實現了顯 示器電極的分時多工(TDM)。 【實施方式】 [0025] 本發明適用於包括具有列(Row)電極和行(Co 1 umn)電極 的液晶顯示器(LCD)、有機發光二極體顯示器(0LED、AM 0LED)、等離子體顯示器(PDP)、納米碳管顯示器、電子 紙(e-paper)等平板顯示器。 [0026] 本說明書的内容以主動式液晶顯示器的典型代表薄膜場 效應電晶體液晶顯示器(Thin Film Transistor LCD, TFT-LCD)為物件進行闡述。 [0027] 薄膜場效應電晶體液晶顯示幕顯示器是主動式矩陣液晶 顯示器(AM LCD)的典型代表,它以基板上的薄膜場效應 電晶體(TFT)作為開關器件。薄膜場效應電晶體顯示器 (TFT-LCD)典型的一個結構如第1圖所示:110是薄膜場 098142156 表單編號A0101 第8頁/共77頁 0993125345-0 201120844 效應電晶體(ΤρΤ)液晶勞幕;12() 描列電極,121 199 疋液日日螢幕水平方向掃 列電極線);u〇是液晶營幕垂直方二2m是掃描電極線( …、Ι3η Η I械帝上 方向貝料行電極,131、 數據電極線(行電極線201120844 VI. Description of the invention: [Technology of the invention] _] The present invention relates to a touch panel (four) 11, in particular to a touch. Display. [Prior Art] _2] Touch screen development has been widely used in personal computers' smart phones, public information, smart home appliances, industrial control and other fields. In the current touch field, there are mainly resistive touch screens, photoelectric touch screens, ultrasonic touch power lines, and flat capacitive touch screens. In recent years, the projected capacitive touch screen has been insulted quickly. However, these touch screens have their own technical shortcomings, which have been widely used in some special occasions - a ; r δ s s-gi: i: ig. : 3⁄4 - 3⁄43⁄4, but difficult to use on ordinary displays Promotion should be '^ β [0003] display and touch screen is a twin product, in the current technology, usually the display and touch screen independently bear the display and touch task 8 currently this discrete touch function The flat panel display is composed of a display, a display driver, a touch screen, a touch signal (S i gna 1) detector, a backlight Q, and the like. The touch screen has a resistive, capacitive, and electromagnetic type using different game test principles. , ultrasonic and photoelectric, etc., displays have passive liquid crystal display (TN/STN-LCD), active liquid crystal display (TFT-LCD), organic light-emitting diode display (OLED, AM-0LED), plasma display (PDP) ), carbon nanotube display, electronic paper (e_paper), etc. A flat panel display with a touch screen is to position the cursor on the display to follow the touch point by splitting the touch screen and the display layer to the position of the touch point detected by the touch screen. The cascading of the touch screen and the display makes the touch panel display thicker and heavier and the cost increases 098142156 Form No. A0101 Page 3 / Total 77 Page 0993125345-0 201120844 : Touch screen feeling when the touch screen is placed in front of the display The reflection generated by the measuring electrode causes the display to be uneven and the display contrast to decrease in a strong external light environment, which affects the display effect. Integrating the touchpad and the display to make the flat-panel display with touch function lighter and thinner is the direction of people's efforts. [0004] Finding a solution to the above-mentioned structural complexity problem, improving the reliability of the flat panel display with touch control function, improving the display effect, compressing the thickness, and reducing the cost, and implementing the touch function of the flat panel display in a simple manner is necessary. [0005] The application form is CN20061 00948141, the name is "touch type flat panel display" and the application number is CN20061 0 1 065583, the name is "flat display with touch function" Chinese invention patent specification, respectively revealing a touch The connection between the detecting circuit and the display electrode, the display electrode transmits the display driving signal through the analog switch or the loading circuit, and transmits and senses the touch signal, and the display driving and the touch detecting time-multiplexed or simultaneously share the display The electrodes and display electrodes are used for both display driving and touch detection, thus innovatively introducing the concept of a "touch type flat panel display". [0006] The application number is CN20091 02035358, the Chinese invention patent specification entitled "Drive Implementation of a Touch Panel Display", the application number is CN20091 01 399060, and the name is "Drive Implementation of a Touch Panel Display" The invention patent specification, the application number of CN20081 013341 7X, the Chinese invention patent specification entitled "One Touch Panel Display", further improves the touch panel display. 098142156 Form No. A0101 Page 4 / 77 Page 0993125345-0 201120844 [0007] The basic working principle of the touch panel display disclosed in the above Chinese patent is to use two sets of intersecting electrodes on the display as touch The sensing electrode, each electrode line of the electrode group is connected to the touch excitation source, and the touch excitation source applies an alternating current or direct current touch excitation signal to the electrode line. When a person's finger or other touch object approaches or touches an electrode line, the touch circuit detects the change of the touch signal of each electrode line to find the position of the finger or other touch object on the display. This is a new touch detection technology that combines display and touch. It has a significant cost advantage and has broad development prospects. SUMMARY OF THE INVENTION [0008] An object of the present invention is to provide a touch display capable of eliminating a touch-sensitive display, and to solve the problem of how to eliminate the influence of a touch signal on a display. To this end, the touch display provided by the present invention includes an active display, a display driving circuit, a touch circuit, and a display/touch signal strobe output for the display electrode to be used for both display driving and touch detection. The circuit or the display/touch signal loading circuit; the touch circuit has a touch excitation source and a touch signal detection circuit; and the display/touch signal strobe output circuit connects the display electrode or the display drive circuit Transmitting a display driving signal, or communicating with the touch circuit to transmit a touch signal, the display driving and the touch detecting time-division display electrode; the display/touch signal loading circuit enables the display electrode to simultaneously transmit the display driving signal and the touch signal The display driver and the touch detection share the display electrode at the same time; the active device array and the column (R 〇w ) electrode group and the column electrode group connected to the active device array are arranged on one substrate of the display, and the display electrode is further 098142156 on a piece of substrate Form No. A0101 Page 5 / Total 77 Page 0993125345-0 201120844 - There is an electrode, passed on the display electrode During the time period in which the display signal is transmitted: the display drive circuit performs sequential scanning on the column electrodes on the display, and the row electrodes and the shared ((10)) electrodes on the display are combined to output corresponding display signals; between each display scan period There is - (4) hidden time period, in which the display does not perform display driving, and the column electrode scanning stops. The display driving circuit outputs a non-selection signal to all the column electrodes, and the D electrode and the COM electrode maintain the original output state or A preset output signal 'some or all of the active devices on the display are in an off state; during the period in which the display electrodes transmit the touch signals, the applied touch signals have a transient potential difference between the electrodes. Keep the active device on the display in a worn state, eliminating the effect of the touch signal on the display. [0014] [0014] Further, in a preferred embodiment of the present invention: wherein the active device of the upper portion of the display is in an off state, the display is displayed on the display Active devices with directly connected pixels remain off. ..... .. : where the influence of the touch signal on the display is excluded, and the transient potential difference of the touch signal applied to the electrode lines of the column electrode group and the row electrode group connected to the active device array is Keep all or part of the active device on the display off. The effect of eliminating the touch signal on the display is the transient potential difference of the touch signal applied to the partial electrode line and the common electrode in the column electrode group or the row electrode group connected to the active device array, so that the partial electrode is connected. The active device of the line remains off. The active device array on the display substrate is a thin film field effect transistor 098142156 Form No. A0101 Page 6 / 77 pages 0993125345-0 201120844 Crystal circular array, the column electrode lines are respectively connected to the gate of the thin film field effect transistor (TFT) a gate and a drain connected to a thin film field effect transistor (TFT), respectively, and a touch signal applied to each of the electrode lines of the column electrode group and the row electrode group of the (4) array. The transient potential difference' causes all or part of the thin film field effect transistor (TFT) on the display to remain in a loaded state. The active device array on the display substrate is a thin film field effect transistor (TFTW train, column row) The electrode wires are respectively connected to the gate and source of the thin film field effect transistor (TFT) or to the gate and drain of the thin film field effect transistor (TFT), respectively, and the connection film % effect in the row electrode or row electrode line The transient potential difference of the touch signal applied to the electrode line of the electric BB body (TFT) gate and the common electrode keeps all or part of the active device on the display off. 6] The touch signal relationship between the electrodes to which the touch signal is applied is to keep the average value of the potential difference between the electrodes unchanged, so that the display effect does not change appreciably. - . . . - [0017 Wherein, during a period in which the display electrode transmits the touch signal, the potential difference of the touch signals between the different electrode groups has a period of constant. [0018] wherein, during each period of the display electrode transmitting the touch signal, different electrodes The potential difference of the touch signals between the groups remains unchanged. [0019] The touch signals applied on the column electrode groups or on the common electrodes are mixed signals of AC signals or AC signals and DC signals. The waveform of the AC signal component in the touch signal is one of an AC waveform such as a square wave, a sine wave, a triangle wave, and a sawtooth wave. 098142156 Form No. A0101 Page 7 of 77 0993125345-0 201120844 [0021] The frequency of the AC signal component in the touch signal is above 10 kHz or 10 k Η z. [0022] wherein the active display is a thin film field effect transistor liquid crystal display (TFT) -LCD) or one of other active liquid crystal displays, active organic light emitting diode displays, and active carbon nanotube displays. [0023] As described above, the touch display of the present invention can eliminate the touch influence display The method disclosed in the present invention ensures that the thin film field effect transistor (TFT) is in the touch detection state by selecting a reasonable touch excitation signal scheme. The cut-off state allows the display effect to be unaffected by the touch excitation signal, and at least the effect is controlled to a negligible degree, effectively realizing the time division multiplexing (TDM) of the display electrodes. [Embodiment] The present invention is applicable to a liquid crystal display (LCD) including an anode electrode and a row electrode, an organic light emitting diode display (0LED, AM 0LED), and a plasma display ( Flat panel displays such as PDP), carbon nanotube displays, and e-paper. The content of the present specification is described by a typical representative thin film transistor LCD (TFT-LCD) of an active liquid crystal display. [0027] A thin film field effect transistor liquid crystal display screen display is a typical representative of an active matrix liquid crystal display (AM LCD), which uses a thin film field effect transistor (TFT) on a substrate as a switching device. A typical structure of a thin film field effect transistor display (TFT-LCD) is shown in Fig. 1: 110 is a film field 098142156 Form No. A0101 Page 8 / Total 77 Page 0993125345-0 201120844 Effect transistor (ΤρΤ) LCD screen ; 12 () trace electrode, 121 199 疋 liquid screen horizontally sweep the electrode line); u 〇 is the liquid crystal screen vertical square 2 2m is the scan electrode line ( ..., Ι 3η Η I machine up the direction of the shell material line Electrode, 131, data electrode line (row electrode line

電極'' ,140是共用電極(COM 參考電位.1ςηβ 疋作騎晶顯轉素像素的 讀,⑸疋液晶螢幕上的 其閘極(Gate)連接至水mi ^tmtaa|tTFT, 連接至垂… ㈣騎,源極 線,(Drai·接至顯示像 ΟThe electrode '', 140 is the common electrode (COM reference potential.1ςηβ 疋 for the reading of the pixel, and the gate of the liquid crystal screen is connected to the water mi ^tmtaa|tTFT, connected to the ... (4) Riding, source line, (Drai·connected to display image

=:1像素像素對應的液晶分子盒,在 放於—個電容,這個電容—般定義為CLC;170 疋儲存電容(Capacitance St〇ratt=: 1 pixel pixel corresponding to the liquid crystal molecule box, placed in a capacitor, this capacitor is generally defined as CLC; 170 疋 storage capacitor (Capacitance St〇ratt

Cs),用來存儲 顯不像素像素的資訊;180是公共電極電壓源,負責產生 公共電極參考電壓(V議Reference);i8i是薄膜場效 應電晶體顯示器(TFT-LCD)的閘極電極(列電極)驅動器 (Gate Driver),用來驅動水平方向掃描線;182是薄 膜場效應電晶體顯示器(TFT-LCD)的源極*極(行電極 )驅動器(Source Driver) 用來驅動垂直方向資料線 ;183疋時序控制器(Timing uContrro 11 er)負責接收來 自影像訊號(Signal)處理晶片的RGB資料、時鐘訊號 Clock、水平同步Hsync和垂直同步訊號vsync,並將這 些訊號轉換’用於控制源極(行電極)驅動器(S〇urceCs), used to store information on pixels that are not pixelated; 180 is the common electrode voltage source responsible for generating the common electrode reference voltage (VReference); i8i is the gate electrode of the thin film field effect transistor display (TFT-LCD) The column electrode driver is used to drive the horizontal scanning line; the 182 is the source field electrode driver of the thin film field effect transistor display (TFT-LCD) for driving the vertical direction data. Line; 183疋 timing controller (Timing uContrro 11 er) is responsible for receiving RGB data from the signal processing chip, clock signal Clock, horizontal sync Hsync and vertical sync signal vsync, and converting these signals to control source Pole (row electrode) driver (S〇urce

Driver)和閘極(列電極)驅動器(Gate Driver)協同 工作0 [〇〇28] 一個顯示像素一般由三個顯示紅、綠、藍三種原色的子 像素組成。一個顯示子像素的結構示意圖如第2圖所示: 098142156 表單煸號A0101 第9頁/共77頁 0993125345-0 201120844Driver) and gate (gate electrode) driver (Gate Driver) work together 0 [〇〇28] A display pixel is generally composed of three sub-pixels displaying three primary colors of red, green and blue. A schematic diagram of a display sub-pixel is shown in Figure 2: 098142156 Form nickname A0101 Page 9 of 77 0993125345-0 201120844

Gi代表水平方向列掃描電極線,也稱為列驅動電極線或 柵驅動電極線,Gi上的電位是Vg ; Sj代表垂直方向行資 料電極線,也稱為行驅動電極線或源驅動電極線,以上 的電位是Vs ; Dij代表TFT連接顯示像素的端子,稱為汲 極,Dij上的電位是Vd ’也稱為像素電位;每個顯示像素 均配置一個半導體開關器件-薄膜基板上場效應電晶體 (TFT),可以通過脈衝直接控制選通進行顯示掃描,因而 每個像素相對獨立。薄膜場效應電晶體(TFT)的閘極 (Gate)與源極(Source)間的電壓為Vgs,薄膜場效應電 晶體(TFT)的閘極(ce)與褒極(Drain)間的電壓為 ........ .... .... ::.Gi represents a horizontal direction column scan electrode line, also referred to as a column drive electrode line or a gate drive electrode line, and the potential on Gi is Vg; Sj represents a vertical direction data electrode line, also called a row drive electrode line or a source drive electrode line. The above potential is Vs; Dij represents the terminal of the TFT connected display pixel, called the drain, and the potential on Dij is Vd 'also called the pixel potential; each display pixel is configured with a semiconductor switching device - field effect on the thin film substrate A crystal (TFT) can be directly controlled by a pulse to perform a display scan, so each pixel is relatively independent. The voltage between the gate and the source of the thin film field effect transistor (TFT) is Vgs, and the voltage between the gate (ce) and the drain of the thin film field effect transistor (TFT) is ........ .... .... ::.

Vgd。薄膜場效應電晶體(TFT.)有NM0S型和PM0S型兩種 。目前絕大部分的薄膜場效應電晶體顧示器(TFT-LCD) 中所使用的薄膜場效應電晶體,是採用非晶矽 (amorphous silicon,a-Si)制程,其閘極絕緣層是氮 化矽(SiNx),容易攫取正電荷,要在非晶矽半導體層中 形成溝道,恰好利用氮化矽中的正電掎來幫助吸引電子 以形成溝道’因此使用非晶矽制程的薄膜場效應電晶體 (TFT)多為NM0S型。本說明書的内容主要是以NM0S型薄 膜場效應電晶體為代表進行闡述,PM0S型薄膜場效應電 晶體可遵循相通的原理,不再單獨列舉表述。 [0029] TFT-LCD液晶顯示器常規顯示驅動的時序如第3圖所示: 在顯示#描時間段(Display Time)裏面,顯示驅動電路 對列電極執行順序掃描顯示,行電極、共用(COM)電極配 合輸出相應的顯示訊號,讓顯示器處於顯示狀態;每兩個 顯示掃描時間段之間會有一幘消隱時間段(V e r t i c a 1 098142156 表單編號A0101 第10頁/共77頁 0993125345-0 201120844 g Time) ’此時間段裏面顯示器不執 二示驅動電路對列電極掃描停止,對所:動 輸出薄膜場效應電晶體(TFT)的非選擇訊號=均 ⑽電極保持原來的輪出態或者某預設輪出訊號^㈣ 效料晶體(TFT)處於截止狀態。本發明中的分時多、每 不器電極技術方案就是利用這個傾消隱時間段作為複 顯不器電極為檢測電極的時間段。 工顯 用 ΟVgd. The thin film field effect transistor (TFT.) has two types of NM0S type and PM0S type. At present, most of the thin film field effect transistor used in the thin film field effect transistor (TFT-LCD) adopts an amorphous silicon (a-Si) process, and the gate insulating layer is nitrogen. Silicon germanium (SiNx), which easily draws a positive charge, forms a channel in the amorphous germanium semiconductor layer, just using a positively charged germanium in tantalum nitride to help attract electrons to form a channel. Therefore, an amorphous germanium film is used. Field effect transistors (TFTs) are mostly of the NM0S type. The content of this specification is mainly described by the NM0S thin film field effect transistor. The PM0S type thin film field effect transistor can follow the principle of communication, and the description is not listed separately. [0029] The timing of the conventional display driving of the TFT-LCD liquid crystal display is as shown in FIG. 3: In the display #Display Time, the display driving circuit performs sequential scanning display on the column electrodes, row electrodes, sharing (COM) The electrode cooperates with the output of the corresponding display signal to put the display in a display state; there is a blanking period between every two display scan periods (V ertica 1 098142156 Form No. A0101 Page 10 / Total 77 Page 0993125345-0 201120844 g Time) 'In this period of time, the display does not control the display circuit to stop the column electrode scanning, and the non-selected signal of the dynamic output film field effect transistor (TFT) = (10) electrode maintains the original rounded state or some pre- Set the round signal ^ (4) The effect crystal (TFT) is off. In the present invention, the time-sharing and per-electrode technique is to use the de-emphasis time period as the time period in which the re-existing electrode is the detecting electrode. Work display

[0030] -種觸控電路通過㈣顯示輯電路和觸控電路協同工 作,讓顯*11電極或與顯示職電路連通傳輸顯示驅動 讯號、或與觸控電路連通傳輪觸控喊’顯示驅動和觸 控探測分時多工顯示器電極。在顯示時段,顯示器電極 連通顯示驅動電路傳輸顯示驅動訊號,.顯示器處於顯示 痞。在觸控探測時段,顯示器電極連通觸控電路傳輸觸 控訊號,並分別檢測流經各條列電極線和各條行電極線 的觸控訊號的變化,以觸控訊號變化達到某設定條件的 列電極線和行電極線為被觸電極線。由探測到的被觸列 電極線和被觸行電極線的交又點,確定出被觸點位置。 本發明實施例所列舉的具體實施方式十六到方式十九揭 示了相關的觸控訊號檢測電路結構。 [0031]除此之外,本發明實施例所列舉的具體實施方式一到方 式六是通過選擇合理的觸控激勵訊號方案,以避免觸控 激勵訊號影響顯示效果的例子,具體實施方式七到方式 十提出了避免顯示影響觸控的幾種解決方案,具體實施方 式十一到方式十三揭示了觸控激勵訊號頻率的選擇要求 ,具體實施方式十四和方式十五揭示了觸控探測時,對 098142156 表單編號A0101 第11頁/共77頁 0993125345-0 201120844 觸控Λ號進行檢測與所施加的觸控激勵訊號的同步關係 具體貝施方式_十到方式二十三揭示了多種單通道和 多通道的觸控檢測掃財式和順序。這些實施例是對觸 控书路其餘方面的改進,其採用與否不影響本發明技術 方案的實現’不影響本發明的保護範圍。 [0032] 以TFT LCD為顯不器的觸控顯示器糊的電氣連接關係如 第4圖所不。包括TFT-LCD顯示器41〇 ; TFT-LCD顯示器 水平方向的掃描列電極42〇,具有列電極線421..... 42m ; TFT-LCD顯示器垂直方向的資料行電極43〇,具有 . . ....... 行電極線431、…、43n ; TFT-L·顧沬器的公共電極層 (COM電極)440 ; TFT-LCD顯示器上的薄膜場效應電晶體 TFT 450 ’其閘極(Gate)連接至水平方向掃描列電極線 ’源極(Source)連接至垂直方向的資料行電極線,汲極 (Drain)則連接至像素電極;顯示像素對應的液晶盒460 ’在電氣上等效於一個電容,這個電容一般定義為CTp ; 儲存電容(Capacitance Storage,Cs)^470,用來存儲 像素的顯示資訊;COM的顯示驅動電路480,觸控探測狀 態時用於COM的觸控激勵源481,COM的COM訊號選通輸出 電路482 ;列電極的顯示掃描驅動電路483,列電極的觸 控電路(具有觸控激勵源和觸控訊號檢測電路)484,列電 極的列訊號選通輸出電路485 ;行電極的顯示資料驅動電 路486,行電極的觸控電路(具有觸控激勵源和觸控訊號 檢測電路)487,行電極的列訊號選通輸出電路488 ;時序 控制器(Timing Controller)489等。顯示掃描驅動電 路483與觸控電路484通過列訊號選通輸出電路485連接 098142156 表單編號A0101 第12頁/共77頁 0993125345-0 201120844 到列電極420 ;顯示資料驅動電路486與觸控電路487通 過行訊號選通輸出電路488連接到行電極430 ; COM顯示 驅動電路480與觸控激勵源481通過COM訊號選通輸出電 路482連接到COM電極440。 [0033] Ο 時序控制器489接收來自影像訊號處理晶片的RGB資料、 時鐘訊號Clock、水平同步Hsync和垂直同步訊號以丫此 ’並控制連接閘極的列顯示驅動電路483、連接源極的行 顯示驅動電路486和連接公共電極的COM顯示驅動電路 480協同工作;也控制連接源極的列觸控電路484、連接 閘極的行觸控電路487和連接公共電極的COM觸控激勵源 481協同工作;並讓觸控顯示器内的列選通電路485、行 選通電路488和COM訊號選通輸出電路482使顯示器電極 或與顯示媒動電路連通傳輸顯示驅動訊號、或與觸控電 路連通傳輸觸控訊號,顯示驅動和觸控探測分時多工顯 示器電極。 s [0034] Ο 在顯示時段,觸控顯示器400内的列選通電路485、行選 通電路488和COM訊號選通輸出電路482使顯示器列電極 420、行電極430和COM電極440 ’分別連通列顯示驅動電 路483、行顯示驅動電路486和COM顯示驅動電路480傳輸 顯示驅動訊號,顯示器410處於顯示態。 [0035] 在觸控探測時段,觸控顯示器400内的列選通電路485、 行選通電路488和COM訊號選通輸出電路482使顯示器列 電極420、行電極430和COM電極440,分別連通列觸控電 路484、行觸控電路487和COM觸控激勵源481傳輸觸控訊 號,並分別檢測流經各條列電極線和各條行電極線的觸 098142156 表單編號A0101 第13頁/共77頁 0993125345-0 201120844 化’ _示器騎電㈣換作為觸控感應電極 用以歹】觸控電路4 8 4和行觸控電路4 8 7檢測到流經的 觸控机號變化達到某設定條件的列電極線和行電極線為 被觸電極線。由探測到的被觸列f極線和被觸行電極線 的父又點’確定出觸摸點在顯示器410上的位置。 [0036] [0037] [0038] [0039] 第4圖示意的是典型的觸控顯示器的結構,下面對具體實 施方式的說明均建立在這個結構的基礎上。 具體實施方式一 第4圖所示的觸控顯示器,顯示器電極分時多工方案 的時序如第5圖所示。以每兩次顯示丨貞之間的丨貞消,隱時間 ^作為觸控探測時段,這個時間段裏面顯示器電極切換 為觸控感應f極使用’在顯施加觸控激勵訊 號’並檢測顯示器電極上觸控訊號的變化。 觸控激勵源為有直流底值或沒有直流底值的方波訊號源 。在觸控探測時,對如第2圖所示薄膜場效應電晶體 (TFT)的Gi ’ Sj,COM三個電極分別施加如第6圖所示觸 控激勵訊號,所施加的這三個觸控激勵訊號都是有直流 底值或沒有直流底值的方波,其頻率相同且相位一致。 在顯示器電極從顯示狀態切換到觸控探測狀態時,首先 讓對電極Gi與電極Sj施加的觸控激勵訊號的暫態電位^ Vgs = Vg-Vs低於讓TFT處於戴止狀態的載止電壓;其a 讓對COM電極和電極Gi施加合適的觸控激勵訊 & 彳更像 電極電位Vd與COM電極電位vcom的平均值均保持不 並使像素電位Vd符合Vgd = Vg-Vd的暫態電位差丨勺彳氏;= 098142156 表單編號A0101 第14頁/共77頁 〇993125345~〇 201120844 [0040] ^處於截止狀_截止„這—要求保證心和… 均低於讓薄膜場效應電晶體(TFT)處於截止狀態的截止電 壓’從而糾呆了薄膜場效應電晶體(tft)在觸控探測狀態 下能保持有效截止,並維持了顯示像素的電壓,讓顯示 效果不受觸控探測的影響。 觸控激勵輯擇為有直流底值或沒有錢絲的方波訊 號源,且這些方波訊號源的頻率和相位一致,跳變的幅 度也一致’使薄膜場效應電晶體(TFT)的Gi,Sj,COM三 〇 個電極施加的激勵訊號的差值為桓定的直流電位,事實 上觸控檢測時可以採用結構簡便的檢測電路就能得到良 好的檢測效果,並且訊號源的產生非常方便,有較高的 實用價值。 . [0041] 具體實施方式二 [0042] 本只施例與實施例一的不同在於:所施'加的這三個觸控 激勵訊號(如第7圖所示)的頻率是不相同的。 Q [〇〇43] 具體實施方式三 [0044] 本實施例與實施例一和實施例二的不同在於:所施的這 三個觸控激勵訊號都是有直流底值或沒有直流底值的方 波’其頻率相同但相位不一致,如第8圖所示。 - [0045] 具體實施方式四 ^ [0046] 本實施例與實施例一至實施例三所不同的是:在觸控探 測時’如第2圖所示tft的Gi,Sj,COM三個電極分別施 加如第9圖所示觸控激勵訊號,所施加的三個觸控激勵訊 098142156 表單編號A0101 第15頁/共77頁 0993125345-0 201120844 號都是有直流底值或者沒有直流底值的正弦波(注意實 施例一至三為方波而非正弦波)’其頻率相同和相位一 致。 [0047] 具體實施方式五 [0048] 本實施例與實施例一至實施例四所不同的是,在觸控探 測時,如第2圖所示TFT的Gi ’ Sj ’ COM三個電極分別施 加如第10圖所示觸控激勵訊號,所施加的三個觸控激勵 訊號都是有直流底值或者沒有直流底值的正弦波,頻率 和相位都相同,但波形交流部分的幅值不同的。 .... ....... :.. .. … ... ..........[0030] The touch circuit cooperates with (4) the display circuit and the touch circuit, so that the display electrode is connected to the display circuit, or the touch circuit is connected to the touch circuit to display the display. Drive and touch detection time-division multiplexer display electrodes. During the display period, the display electrode communicates with the display drive circuit to transmit the display drive signal. The display is in the display 痞. During the touch detection period, the display electrode is connected to the touch circuit to transmit the touch signal, and respectively detects the change of the touch signal flowing through each of the column electrode lines and each of the row electrode lines, so that the touch signal changes to a certain set condition. The column electrode line and the row electrode line are the touched electrode lines. The position of the contact is determined by the detected intersection of the touched electrode line and the touched electrode line. Embodiments 16 to 19 of the embodiments of the present invention disclose the structure of the related touch signal detecting circuit. [0031] In addition, the specific implementation manners of the first embodiment to the sixth embodiment of the present invention are examples of selecting a reasonable touch excitation signal scheme to avoid the influence of the touch excitation signal on the display effect. The tenth method proposes to avoid the display of several solutions that affect the touch. The specific embodiments 11 to 13 disclose the selection requirements of the touch excitation signal frequency. The specific implementation manners 14 and 15 disclose the touch detection. , 098142156 Form No. A0101 Page 11 / Total 77 Page 0993125345-0 201120844 Touch nickname to detect the synchronization relationship with the applied touch excitation signal Specific Besch method _ ten to twenty-three reveals a variety of single channel And multi-channel touch detection sweeping and ordering. These embodiments are improvements to the rest of the touch control path, and the use thereof does not affect the implementation of the technical solution of the present invention' without affecting the scope of protection of the present invention. [0032] The electrical connection relationship of the touch display paste using the TFT LCD as a display is as shown in FIG. The TFT-LCD display 41〇 includes a scanning column electrode 42〇 in the horizontal direction of the TFT-LCD display, and has column electrode lines 421.....42m; and a data row electrode 43〇 in the vertical direction of the TFT-LCD display, having . ...... row electrode lines 431, ..., 43n; TFT-L · common electrode layer (COM electrode) 440; thin film field effect transistor TFT 450 on TFT-LCD display Gate) is connected to the horizontal scanning column electrode line 'Source' is connected to the vertical data line electrode line, Drain is connected to the pixel electrode; the display pixel corresponding to the liquid crystal cell 460' is electrically equivalent For a capacitor, this capacitor is generally defined as CTp; storage capacitor (Capacitance Storage, Cs) ^ 470, used to store pixel display information; COM display driver circuit 480, touch excitation source for COM when touch detection state 481, COM COM signal strobe output circuit 482; column electrode display scan drive circuit 483, column electrode touch circuit (with touch excitation source and touch signal detection circuit) 484, column electrode column signal strobe output Circuit 485; display of row electrodes Feed driving circuit 486, the row electrodes of the touch control circuit (having a touch excitation source and a touch signal detection circuit) 487, column signal electrodes of the row strobe output circuit 488; a timing controller (Timing Controller) 489 and the like. The display scan driving circuit 483 and the touch control circuit 484 are connected through the column signal strobe output circuit 485. 098142156 Form No. A0101 Page 12/77 pages 0993125345-0 201120844 to the column electrode 420; the display data driving circuit 486 and the touch circuit 487 pass The line signal strobe output circuit 488 is connected to the row electrode 430; the COM display driver circuit 480 and the touch excitation source 481 are connected to the COM electrode 440 via the COM signal strobe output circuit 482. [0033] 时序 The timing controller 489 receives the RGB data, the clock signal Clock, the horizontal sync Hsync, and the vertical sync signal from the image signal processing chip to control the column display driving circuit 483 and the source connecting the gate. The display driving circuit 486 and the COM display driving circuit 480 connected to the common electrode cooperate; the column touch circuit 484 for connecting the source, the line touch circuit 487 for connecting the gate, and the COM touch excitation source 481 for connecting the common electrode cooperate. Working; and let the column strobe circuit 485, the row strobe circuit 488 and the COM signal strobe output circuit 482 in the touch display enable the display electrode or the display medium circuit to transmit the display driving signal or communicate with the touch circuit. Touch signal, display drive and touch detection time-division multiplexer display electrodes. [0034] 列 During the display period, the column strobe circuit 485, the row strobe circuit 488, and the COM signal strobe output circuit 482 in the touch display 400 respectively connect the display column electrode 420, the row electrode 430, and the COM electrode 440' The column display driving circuit 483, the row display driving circuit 486, and the COM display driving circuit 480 transmit display driving signals, and the display 410 is in a display state. [0035] During the touch detection period, the column strobe circuit 485, the row strobe circuit 488, and the COM signal strobe output circuit 482 in the touch display 400 respectively connect the display column electrode 420, the row electrode 430, and the COM electrode 440. The column touch circuit 484, the line touch circuit 487, and the COM touch excitation source 481 transmit the touch signals, and respectively detect the contacts 098142156 flowing through the column electrode lines and the respective row electrode lines. Form No. A0101 Page 13 / Total 77 pages 0993125345-0 201120844 The ''shower rides the electric (four) for the touch sensing electrode for the touch sensor 4 8 4 and the line touch circuit 4 8 7 detects the change of the touch machine number that reaches a certain The column electrode line and the row electrode line of the set condition are the touched electrode lines. The position of the touch point on the display 410 is determined by the detected touched f-polar line and the parent point of the touched electrode line. [0039] [0039] FIG. 4 illustrates the structure of a typical touch display, and the following description of specific embodiments is based on this structure. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the touch display shown in Fig. 4, the timing of the display electrode time division multiplexing scheme is as shown in Fig. 5. The display time between each display is used, and the hidden time is used as the touch detection period. During this time period, the display electrode is switched to the touch sensing f pole, and the display touch excitation signal is used to detect the display electrode. Changes in touch signals. The touch excitation source is a square wave signal source having a DC bottom value or no DC bottom value. In the touch detection, the three electrodes of the Gi ' Sj and COM electrodes of the thin film field effect transistor (TFT) shown in Fig. 2 are respectively applied with the touch excitation signals as shown in Fig. 6, and the three touches are applied. The control excitation signals are square waves with a DC bottom value or no DC bottom value, and the frequencies are the same and the phases are the same. When the display electrode is switched from the display state to the touch detection state, first, the transient potential of the touch excitation signal applied by the counter electrode Gi and the electrode Sj is lower than Vgs=Vg-Vs, which is lower than the load voltage for the TFT to be in the wearing state. A is to apply a suitable touch excitation to the COM electrode and the electrode Gi. The image sensor Vd and the COM electrode potential vcom are both kept at an average value and the pixel potential Vd is in compliance with the transient state of Vgd = Vg-Vd. The potential difference is 彳 ;; = 098142156 Form No. A0101 Page 14 of 77 〇 993125345~〇201120844 [0040] ^ is in the cut-off _ cutoff „this—requires to ensure that the heart and... are lower than the film field effect transistor ( TFT) is in the off-state cut-off voltage', so that the thin-film field-effect transistor (tft) can remain effectively cut off in the touch detection state, and the display pixel voltage is maintained, so that the display effect is not affected by the touch detection. The touch excitation is selected as a square wave signal source with a DC bottom value or no money, and the frequency and phase of these square wave signal sources are the same, and the amplitude of the jump is also the same 'making the thin film field effect transistor (TFT) Gi, Sj The difference between the excitation signals applied by the three electrodes of COM is the determined DC potential. In fact, the touch detection can use a simple detection circuit to obtain a good detection effect, and the signal source is very convenient to generate. [0041] The second embodiment differs from the first embodiment in that the three touch excitation signals (as shown in FIG. 7) are applied. The frequency is different. Q [〇〇43] Embodiment 3 [0044] The difference between this embodiment and Embodiment 1 and Embodiment 2 is that the three touch excitation signals are all having a DC bottom value. Or a square wave without a DC bottom value is the same but the phases are inconsistent, as shown in Fig. 8. - [0045] DETAILED DESCRIPTION OF THE INVENTION [0046] This embodiment differs from the first embodiment to the third embodiment in that: In the touch detection, as shown in Figure 2, the three electrodes of Gi, Sj, and COM of tft are respectively applied with the touch excitation signals as shown in Fig. 9, and the three touch excitation signals applied are 098142156. Form No. A0101 No. 15 Page / Total 77 Pages 0993125345-0 20112084 No. 4 is a sine wave having a DC bottom value or no DC bottom value (note that Embodiments 1 to 3 are square waves instead of sine waves) 'the frequency is the same and the phase is the same. [0048] Embodiment 5 [0048] This embodiment The difference from the first embodiment to the fourth embodiment is that, in the touch detection, the three electrodes of the Gi ' Sj ' COM of the TFT shown in FIG. 2 are respectively applied with the touch excitation signals as shown in FIG. 10 . The three touch excitation signals are sinusoidal waves with a DC bottom value or no DC bottom value, and the frequency and phase are the same, but the amplitude of the waveform AC portion is different. .... ....... :.. .. ... ... ..........

[0049] 具體實施方式六 [0050] 本實施例與實施例一至實施例五所不同的是,在觸控探 測時,對如第2圖所示TFT的Gi ’ Sj ’ com三個電極分別 施加如第11圖所示觸控激勵訊號,這種激勵訊號的組合 不使像素電極電位Vd與COM電極電位Vcom的平均值均保 . V ,: : . '; ::.: 持不變,但可以令兩者的電位差Vd~Vcom的平均值保持不 變,也能讓顯示效果不受觸控探測的影響。 [0051] 具體實施方式七 [0052] 第4圖所示的觸控顯示器400 ’顯示器採用TFT-LCD, TFT-LCD採用正性液晶材料。液晶材料介電係數各向異性 的特徵,使液晶盒内各處分佈電容隨各處液晶分子的排 列而變化。TFT-LCD内各處液晶分子的排列取決於該處驅 動電壓所累積的有效值,不同時刻不同位置累積的驅動 電壓有效值不同,液晶分子排列就不同,分佈電容也不 同’進列觸控探測的測量環境就不同。aTFT-LCD施加驅 098142156 表單編號A0101 第16頁/共77頁 201120844 [0053] 動電壓時,液晶分子排列狀態因驅動電場的作用^ Tnj 一 致 趨向平行於電場的方向。 顯示電極分時多工方案的又一時序如第12圖所示。、斤 兩次顯示幀之間的幀消隱時間段作為觸控探測時&。1 這一時間段裏面,先同時對顯示器所有列電極線 電極線Sj施加一個飽和的預置驅動(預驅動,Pl«e〜 〇 〇 driving),Gi、Sj和COM三個電極上的訊號攻形如第ι3 圖所示,觸控激勵訊號為有直流底值或沒有直流底值的 正弦波。Gi-Sj間的電位差Vgs在-10. 5V到-l7v之門 低於讓TFT處於截止狀寒的截止電壓;避免影響. Gi-COM間的電位差Vgc在-10. 5V到-12V之間、s j c⑽ 間的電位差Vsc是5V,都超過液晶分子的飽和趣動電壓 在所施加的飽和驅動電壓的作用下,液晶顯示 盗内列電 極和COM電極之間的液晶分子、行電極和c〇M電核之門的 液晶分子,排列方向都一敦迅速轉向趨向平行於電場的 方向。如第14圖所示’給正性液晶材料分孚施加電場e時 ,液晶分子的排列平行於電場方向的排列狀態。再分別 對顯示器列電極線Gi和行電極線Sj施加觸控激勵訊號, 並分別檢測流經各條列電極線和各條行電極線的觸控訊 號的變化;之前的飽和預驅動電壓使液晶分子排列一致 ,排除了液晶材料介電係數各向異性導致的分佈電容的 變化,檢測各條列電極線上和各條行電極線上觸控訊號 的變化時’不同時刻不同位置上的測量環境趨向於一致 ,有利於觸控探測結果的穩定性和一致性。 [0054] 對液晶外加電場時,由於液晶分子為無極性分子,如第 098142156 表單煸號A0101 第17頁/共77頁 0993125345-0 201120844 14圖液晶分子的排列不會受電場正負方向的影響,所以 在預驅動環節裏電極上的暫態電壓可正可負,只要保持 對液晶的飽和驅動即可。所以施加在顯示器同/電極上 的預驅動訊號和觸控激勵訊號的波形或頻率、幅值都可 以是相同的’甚至將預驅動訊號和觸控激勵訊號採用同 訊號。 [0055] 具體實施方式八 [0056] 與實施例七不同的是,本例中TFT-LCD採用負性浪晶材料 ,如第15圖所示。 . . . ...... .... ......[0049] Embodiment 6 [0050] This embodiment differs from Embodiment 1 to Embodiment 5 in that, in the touch detection, the three electrodes of Gi ' Sj ' com of the TFT shown in FIG. 2 are respectively applied as follows. In the touch excitation signal shown in Fig. 11, the combination of the excitation signals does not protect the average value of the pixel electrode potential Vd and the COM electrode potential Vcom. V , : : . '; :::: remains unchanged, but can Keeping the average value of the potential difference Vd~Vcom between the two remains unchanged, and the display effect is not affected by the touch detection. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [0052] The touch display 400' display shown in FIG. 4 employs a TFT-LCD, and the TFT-LCD uses a positive liquid crystal material. The anisotropy of the dielectric constant of the liquid crystal material causes the distributed capacitance in the liquid crystal cell to vary with the arrangement of the liquid crystal molecules. The arrangement of liquid crystal molecules in the TFT-LCD depends on the effective value accumulated by the driving voltage at the same place. The effective values of the driving voltages accumulated at different positions at different times are different, the liquid crystal molecules are arranged differently, and the distributed capacitance is also different. The measurement environment is different. a TFT-LCD application drive 098142156 Form No. A0101 Page 16 of 77 201120844 [0053] When the voltage is applied, the alignment state of the liquid crystal molecules is driven by the action of the electric field ^ Tnj tends to be parallel to the direction of the electric field. A further timing of the display electrode time division multiplexing scheme is shown in FIG. , kg Display the frame blanking period between frames twice as the touch detection time & 1 In this period of time, first apply a saturated preset drive (pre-drive, Pl«e~ 〇〇driving) to all the column electrode line Sj of the display, and signal on the three electrodes of Gi, Sj and COM. As shown in Figure ι3, the touch excitation signal is a sine wave with a DC bottom value or no DC bottom value. The potential difference Vgs between Gi-Sj is in the range of -10. 5V to -l7v is lower than the cut-off voltage for letting the TFT in the cut-off cold; avoiding the influence. The potential difference Vgc between the Gi-COM is between -10. 5V and -12V, The potential difference Vsc between sj c(10) is 5V, both exceeding the saturation voltage of the liquid crystal molecules. Under the action of the applied saturation driving voltage, the liquid crystal displays the liquid crystal molecules, the row electrodes and the c〇M between the inner electrode and the COM electrode. The liquid crystal molecules of the gate of the electric core are arranged in a direction that is rapidly turned toward a direction parallel to the electric field. As shown in Fig. 14, when the electric field e is applied to the positive liquid crystal material, the alignment of the liquid crystal molecules is parallel to the alignment of the electric field direction. And applying a touch excitation signal to the display column electrode line Gi and the row electrode line Sj, respectively, and detecting changes of the touch signals flowing through the column electrode lines and the respective row electrode lines; the previous saturated pre-drive voltage makes the liquid crystal The molecular arrangement is consistent, and the variation of the distributed capacitance caused by the dielectric anisotropy of the liquid crystal material is excluded, and when the change of the touch signal on each column electrode line and each row electrode line is detected, the measurement environment at different positions at different times tends to Consistent, it is conducive to the stability and consistency of the touch detection results. [0054] When an electric field is applied to the liquid crystal, since the liquid crystal molecules are non-polar molecules, such as No. 098142156, the nickname A0101, page 17 / page 77, 0993125345-0, 201120844 14 The arrangement of the liquid crystal molecules is not affected by the positive and negative directions of the electric field. Therefore, the transient voltage on the electrode in the pre-driver phase can be positive or negative, as long as the saturation drive of the liquid crystal is maintained. Therefore, the waveform or frequency and amplitude of the pre-drive signal and the touch excitation signal applied to the display/electrode of the display can be the same. Even the pre-drive signal and the touch excitation signal are the same signal. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [0056] Unlike Embodiment 7, the TFT-LCD in this example employs a negative wave material, as shown in FIG. . . . ...... .... ......

[0057] 具體實施方式九 ς Γ:,, [0058] 第4圖所示的觸控顯示器400 ,顯示器採用TFT-LCD ’由 於液晶顯示器的回應速度相對較低,在顯示高速畫面時 ,容易存在殘影、拖尾現象,為了解決這一問題,目前 的一種解決方案是提高顯示的幀頻,在每一個顯米巾貞後 面插入一個“黑幀,,’讓“黑幀,,阻斷之前顯禾内容的 殘影。所謂黑幀就是在這一幀内,在TFT處於導通的狀態 下,通過行電極Sj對顯示像素電極施加一個飽和驅動電 歷,讓顯示像素内液晶分子的排列一致處於與所加電場 垂直或平行的方向。在顯示像素内液晶分子排列處於一 致的情況下,液晶顯示器内行電極和COM電極之間液晶分 子的排列也將是一致的。由於列電極是掃描電極,各列 電極上的電壓有效值疋樣的’在行電極和COM電極之間 液晶分子排列處於一致的情況下,各列電極上的分佈電 容就基本是一致的。 098142156 表單編號A0101 第18頁/共77頁 0993125345-0 201120844 [0059]顯示電極分時多工方案的時序如第16圖所示。在黑幢之 €才分㈣顯示器列電極線Gi和行電極線Sj施加觸控激 勵訊號,並分別檢測流經各條列電極線和各條行電極線 • 的觸控訊號的變化。利用黑賴讓液晶分子排列處於一致 ’排除了液晶材料介電係數各向異性導致的分佈電容的 變化’檢測各條列電極線上和各條行電極線上觸控訊號 的變化時’不同時刻不同位置上的測量環境趨向於一致 ,有利於觸控探測結果的穩定性和一致性。 ^ [0060] 具體實施方式十 [讎]第4圖所示的觸控顯示器400 ’顯示器採用TFT-LCD,與 實施例九相同之處在於’也在每一個.顧I示傾後面插入一 - 個“黑幀”,讓“黑幀”阻斷之前顧示内容的殘影。 - [0062] 與實施例九不同的是,顯示電極分時多工方案的再一時 序如第17圖所示。在正常顯示幀之後和黑幀之後都分別 對顯示器列電極線Gi和行電極線Sj施加觸控激勵訊號’ 並分別檢測流經各條列電極線和各條行電極線的觸控訊 ^ 號的變化。這樣,既充分地利用了顯示幀間的t貞消隱時 間,在每一幀消隱時間都將顯示器電極切換為觸控感應 電極使用;又利用黑幀液晶分子排列一致’排除液晶材 料介電係數各向異性導致的分佈電容的變化;綜合判斷 - 來消除液晶分子排列不一致對檢測環境的影響。 [0063] 具體實施方式十一 [0064] 第4圖所示的觸控顯示器400,顯示器採用TFT-LCD,玻 璃基板厚度為0. 3mm。當人的手指觸摸顯示器表面時’手 0993125345-0 098142156 表單編號A0101 第19頁/共77頁 激勵細 Μ是 彻訊旒的觸控激勵源 挪電路的採樣電阻,M2卜《觸控電路内觸控訊號檢 的顯示器電極的等效電'㈣為觸控感應電極使用 極使用的顯示器電極相二^是-組作為觸控感應電 ,1831是手於盘―^ ·.、不态内其他電極的分佈電容 植間的輕合電容183^為觸控感應電極使用的顯示器電 示器電極與⑽電極^組作為觸控感應電極使用的顯 心間的電容。 [0065] :9通過基板玻璃片與顯示 •電路如第18圖所示 玉間形成-個耦合電容, 该n ° 181 0县姑丄&____DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [0058] [0058] [0058] The touch display 400 shown in FIG. 4, the display adopts TFT-LCD' because the response speed of the liquid crystal display is relatively low, and it is easy to exist when displaying a high-speed screen. Image remnant, smearing, in order to solve this problem, the current solution is to increase the frame rate of the display, insert a "black frame," after the display of each black frame, and let the black frame, before blocking The residual image of the content of the display. The so-called black frame is in this frame, in the state that the TFT is on, a saturated driving electric history is applied to the display pixel electrode through the row electrode Sj, so that the alignment of the liquid crystal molecules in the display pixel is consistent with the electric field or the parallel The direction. In the case where the alignment of the liquid crystal molecules in the display pixel is uniform, the arrangement of the liquid crystal molecules between the row electrode and the COM electrode in the liquid crystal display will also be uniform. Since the column electrodes are scan electrodes, the voltage effective value on each column electrode is the same. When the liquid crystal molecules are aligned in the row between the row electrode and the COM electrode, the distributed capacitances on the column electrodes are substantially uniform. 098142156 Form No. A0101 Page 18 of 77 0993125345-0 201120844 [0059] The timing of the display electrode time division multiplexing scheme is as shown in Fig. 16. The touch excitation signal is applied to the display column electrode line Gi and the row electrode line Sj of the black building, and the change of the touch signal flowing through each of the column electrode lines and the respective row electrode lines is respectively detected. Using black ray to make the alignment of the liquid crystal molecules in a uniform 'excluding the variation of the distributed capacitance caused by the anisotropy of the dielectric constant of the liquid crystal material', when detecting the change of the touch signals on each column electrode line and each row electrode line, different positions at different times The measurement environment on the trend tends to be consistent, which is beneficial to the stability and consistency of the touch detection results. [0060] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT 10 [雠] The touch display 400' display shown in FIG. 4 employs a TFT-LCD, which is the same as the embodiment IX in that 'there is also inserted after each one. A "black frame" that allows the "black frame" to block the image after the content. [0062] Unlike the ninth embodiment, the further timing of the display electrode time division multiplexing scheme is as shown in Fig. 17. Applying a touch excitation signal ' to the display column electrode line Gi and the row electrode line Sj after the normal display frame and after the black frame respectively, and detecting the touch signals flowing through the column electrode lines and the respective row electrode lines respectively The change. In this way, the t贞 blanking time between display frames is fully utilized, and the display electrodes are switched to the touch sensing electrodes in each frame blanking time; and the liquid crystal molecules are aligned in the black frame. The variation of the distributed capacitance caused by the coefficient anisotropy; comprehensive judgment - to eliminate the influence of the inconsistent alignment of liquid crystal molecules on the detection environment. 3mm。 The thickness of the glass substrate is 0. 3mm. The thickness of the glass substrate is 0. 3mm. When a person's finger touches the surface of the display, 'hand 0993125345-0 098142156 Form No. A0101 Page 19 of 77. The excitation is the sampling resistance of the touch excitation source circuit of Ms. ,, M2 卜 "Touch circuit internal touch The equivalent electric power of the display electrode of the control signal is 'four' is the display electrode of the touch sensing electrode. The second electrode is used as the touch sensing power, and the 1831 is the hand-in-disk. The light-combining capacitor 183^ of the distributed capacitance plant is the capacitance between the display electrode of the touch sensing electrode and the (10) electrode group used as the touch sensing electrode. [0065] : 9 through the substrate glass sheet and display • circuit as shown in Figure 18, forming a coupling capacitor between the jade, the n ° 181 0 county aunt & ____

Pk Μ與㈣為嘲控感應電極使用酌顯示器電極 、重疊見度在5mm以下,基板玻璃厚度為Q. 3咖,麵合 >1831就大約為10pF ;對於通常的TFT-LCD採樣電阻 1820和等效電阻1821之和約為3〇ΚΩ ,作為觸控感應電 極使用的顯示器電極上的觸控訊號部分地從耦合電容Pk Μ and (4) use the discreet display electrode for the singular control electrode, the overlap visibility is below 5mm, the thickness of the substrate glass is Q. 3 coffee, the surface is > 1831 is about 10pF; for the usual TFT-LCD sampling resistor 1820 and The sum of the equivalent resistors 1821 is about 3 〇ΚΩ, and the touch signals on the display electrodes used as the touch sensing electrodes are partially from the coupling capacitors.

1831洩漏出去到手指;當觸控激勵源輸出vrms=5V的正 弦波時,耦合電容1831導致的洩漏電流A i隨觸控激勵源 頻率變化的關係如第19圖所示。觸控激勵訊號的頻率對 耦合電容1831的容抗構成主要的影響’而容抗不同’電 流從手指洩漏出去的觸控訊號的大小就不同。頻率太低 ,耦合電容1831容抗太小,觸控顯示器400對觸控物的觸 控不敏感,容易產生觸控的漏判斷。觸控激勵訊號的頻 率選擇對觸控探測可靠性的影響較大’特別是當顯示器 前再加有保護面殼的情況下。 從第19圖可以看出,在實際的實驗結果中,觸控激勵源 的頻率低於ΙΟΚΗζ時,洩漏電流Δί較小,與環境雜訊比 098142156 表單編號Α0101 第20買/共77頁 0993125345-0 [0066] 201120844 較不夠明顯難於區分,將觸控激勵源頻率設置在ΙΟΚΗζ或 以上時,才是利用顯示器電極作為觸控感應電極使用的 合理電路參數。 - [0067] 具體實施方式十二 ' [0068] 第4圖所示的觸控顯示器400,顯示器採用TFT-LCD,玻 璃基板厚度為0.3mm。當液晶螢幕的COM電極設置在朝向 操作者的上基板玻璃上時,COM電極會在列電極和行電極 與操作者之間形成一定的遮罩效果。手指與顯示器COM電 〇 〇 極間形成一個耦合電容,COM電極與一組作為觸控感應電 極使用的顯示器電極間又存在耦合電容,等效電路如第 20圖所示。2010是對顯示器電極提供觸控激勵訊號的觸 控激勵源,2020是觸控電路内觸控訊號檢測電路的採樣 電阻,2021是一組作為觸控感應電極使用的顯示器電極 的等效電阻,2030是一組作為觸控感應電極使用的顯示 器電極相對顯示器内其他電極的分佈電容,2031是COM電 極與一組作為觸控感應電極使用的顯示器電極間的耦合 電容,2032是手指與顯示器COM電極間的耦合電容, 2040是激勵源和COM電極之間的等效電阻。 [0069] 通常,手指與一組作為觸控感應電極使用的顯示器電極 間的重疊寬度在5 mm以下,基板玻璃厚度為0. 3mm,搞合 電容2032就大約為10pF ;對於通常的TFT-LCD採樣電阻 2020和等效電阻2021之和約為30ΚΩ。人的手指觸摸觸 摸顯示器表面時,由於耦合電容2031和2032的存在,作 為觸控感應電極使用的顯示器電極上的觸控訊號部分地 從耦合電容2031流到COM電極,再從COM電極與手指的耦 098142156 表單編號A0101 第21頁/共77頁 0993125345-0 201120844 。電合2032部分茂漏出去到手指。選用高頻的觸控激勵 號打從耦合電容2031和2〇32洩漏的電流Δί就較大 ,觸控訊號«⑽€極鮮•力就㈣,可獲得比較 好的觸控探測能力。 [0070] [0071] [0072] 具體實施方式十三 第4圖所不的觸控顯示器400 ’顯示器採用TFT-LCD。液 曰曰材料介電係數各向異性的特徵,使m内各處分佈 電谷隨各處液晶分子的排列而變化。TFT LCD内各處液晶 分子的排列取糾該處驅動電壓㈣義有效值不同 時刻不同位置累積的驅動電壓有效值不同,液晶分子排 列就不同’分佈電容也不同,進行觸控探測的測量環境 就不同。但液晶材料介電係.數的各向異性存在隨頻率變 化的色散效應,通常在5〇〇KHz或以上電訊號的作用下, 其介電係數的各向異性基本不能體現。 對顯示器列電極線Gi和行電極線S j施加頻率在1MHz或以 上的觸控激勵訊號,並分別檢測流經各條列電極線和各 條行電極線的觸控訊號的變化。雖然TFT_LCD的不同位置 上液日a /;子的排列不盡一致,但由於液晶材料介電係數 的各向異性的色散效應,對於1MHz或以上的觸控激勵訊 號,仍排除了液晶材料介電係數各向異性導致的分佈電 容的變化,檢測各條列電極線上和各條行電極線上觸控 訊號的變化時,不同時刻不同位置上的測量環境趨向於 一致,有利於觸控探測結果的穩定性和一致性。 具體實施方式十四 098142156 表單編號A0101 第22頁/共77頁 0993125345-0 [0073] 201120844 [0074] ❹1831 leaks out to the finger; when the touch excitation source outputs a sine wave with vrms=5V, the relationship between the leakage current A i caused by the coupling capacitor 1831 and the frequency of the touch excitation source is as shown in Fig. 19. The frequency of the touch excitation signal has a major influence on the capacitive reactance of the coupling capacitor 1831, and the magnitude of the touch signal that the leakage current leaks from the finger is different. The frequency is too low, the coupling capacitance of the coupling capacitor 1831 is too small, and the touch display 400 is insensitive to the touch control of the touch object, and the touch leakage judgment is easily generated. The frequency selection of the touch excitation signal has a greater impact on the reliability of the touch detection, especially in the case where a protective cover is added in front of the display. It can be seen from Fig. 19 that in the actual experimental results, when the frequency of the touch excitation source is lower than ΙΟΚΗζ, the leakage current Δί is small, and the environmental noise ratio is 098142156. Form number Α0101 20th buy/total 77 pages 0993125345- 0 [0066] 201120844 is not obvious enough to distinguish, when the touch excitation source frequency is set to ΙΟΚΗζ or above, it is the reasonable circuit parameter used by the display electrode as the touch sensing electrode. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [0068] The touch display 400 shown in FIG. 4 has a TFT-LCD display and a glass substrate having a thickness of 0.3 mm. When the COM electrode of the liquid crystal screen is disposed on the upper substrate glass facing the operator, the COM electrode forms a certain masking effect between the column electrode and the row electrode and the operator. A coupling capacitor is formed between the finger and the display COM, and a coupling capacitor is formed between the COM electrode and a set of display electrodes used as the touch sensing electrode. The equivalent circuit is shown in FIG. 2010 is a touch excitation source for providing a touch excitation signal to the display electrode, 2020 is a sampling resistor of the touch signal detection circuit in the touch circuit, and 2021 is a set of equivalent resistance of the display electrode used as the touch sensing electrode, 2030 It is a distributed capacitance of a set of display electrodes used as touch sensing electrodes with respect to other electrodes in the display. 2031 is a coupling capacitance between a COM electrode and a set of display electrodes used as a touch sensing electrode, and 2032 is a finger and a display COM electrode. The coupling capacitor, 2040, is the equivalent resistance between the excitation source and the COM electrode. [0069] Generally, the overlap width between the finger and a set of display electrodes used as the touch sensing electrodes is less than 5 mm, the thickness of the substrate glass is 0.3 mm, and the capacitance 2032 is approximately 10 pF; for the usual TFT-LCD The sum of the sampling resistor 2020 and the equivalent resistance 2021 is about 30 ΚΩ. When a human finger touches the surface of the touch display, due to the presence of the coupling capacitors 2031 and 2032, the touch signal on the display electrode used as the touch sensing electrode partially flows from the coupling capacitor 2031 to the COM electrode, and then from the COM electrode to the finger. Coupling 098142156 Form No. A0101 Page 21 of 77 Page 99993125345-0 201120844. The 2032 part of the electricity leaked out to the fingers. The high-frequency touch excitation signal is used to make the leakage current Δί from the coupling capacitors 2031 and 2〇32 larger, and the touch signal «(10)€ is very fresh (force) (four), which can obtain better touch detection capability. [0072] DETAILED DESCRIPTION OF THE INVENTION [13] The touch display 400' display shown in FIG. 4 employs a TFT-LCD. The anisotropy of the dielectric constant of the liquid helium material causes the distribution of electric valleys in m to vary with the arrangement of liquid crystal molecules. The arrangement of liquid crystal molecules in the TFT LCD takes the driving voltage at the same place. (IV) The effective value of the driving voltage is different at different times and at different times. The liquid crystal molecules are arranged differently. The distribution capacitance is also different. The measurement environment for touch detection is different. However, the anisotropy of the dielectric material of the liquid crystal material has a dispersion effect with frequency, and the anisotropy of the dielectric constant is generally not reflected by the electric signal of 5 〇〇 KHz or above. A touch excitation signal having a frequency of 1 MHz or more is applied to the display column electrode line Gi and the row electrode line S j , and changes in the touch signals flowing through the respective column electrode lines and the respective row electrode lines are respectively detected. Although the arrangement of liquid a/s is not uniform at different positions of the TFT_LCD, due to the anisotropic dispersion effect of the dielectric constant of the liquid crystal material, the liquid crystal material dielectric is excluded for the touch excitation signal of 1 MHz or more. When the variation of the distributed capacitance caused by the coefficient anisotropy is detected, when the change of the touch signal on each column electrode line and each row electrode line is detected, the measurement environments at different positions at different times tend to be uniform, which is favorable for the stability of the touch detection result. Sex and consistency. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Fourteen 098142156 Form No. A0101 Page 22 of 77 0993125345-0 [0073] 201120844 [0074] ❹

G 第4圖所示的觸控顯示器400,顯示器採用TFT-LCD。實 際進列觸控探測時,通常是以電壓訊號為檢測物件來進 行測量。測量的等效電路如第18圖所示。1810是對顯示 器電極提供觸控激勵訊號的觸控激勵源,1820是觸控電 路内觸控訊號檢測電路的採樣電阻,1821是一組作為觸 控感應電極使用的顯示器電極的等效電阻,1830是一組 作為觸控感應電極使用的顯示器電極相對顯示器内其他 電極的分佈電容,1831是手指與一組作為觸控感應電極 使用的顯示器電極間的耦合電容,1832是一組作為觸控感 應電極使用的顯示器電極與COM電極之間的電容,1841是 測量觸控訊號電壓變化的觸控訊號採樣點,1 840是測量 觸控訊號電壓變化的檢測參考點,這裏是選擇觸控激勵 源1810的輸出端作為參考點,事實上還可以選擇其他的 電位點為參考點,如觸控電路的地端、或觸控電路的正 電源端、或觸控電路的負電源端、或對比電路中的一點 、或觸控螢幕上另一組電極線等都能有不錯的檢測效果 。觸控激勵源1810為方波訊號,由於1 830和1831是電容 負載,觸控激勵的方波訊號在這兩個電容上出現充放電 波形。觸控激勵源1810的輸出波形和觸控訊號採樣點 1841的觸控訊號波形如第21圖所示。 [0075] 本實施方式對觸控訊號的檢測方法採用瞬時值測量法, 測量觸控訊號採樣點1841在某一特定相位點上的電位, 比較不同的幀消隱時間段内所檢測到的這個特定相位點 電位的變化,來獲取觸控資訊;所述的某一特定相位點 是指相對於觸控激勵源1810輸出端波形的特定相位點。 098142156 表單編號A0101 第23頁/共77頁 0993125345-0 201120844 第18圖所示電路以激勵源訊號為電路源、採樣電阻所在 的支路上是183〇和1831兩個電容並聯再與182〇和1821 兩個電阻串聯的RC回路。在觸控探測時段,對第18圖所 示電路施加觸控激勵訊號,電路就會對電容產生充放電 過程。第21圖中阳⑴段為適合採樣的相位區間在觸 控訊號採樣點叫1上T1的相位區間是電容開始充電到充 電完成的時間段,T2的相位區間是電容開始放電到放電 元成的時間段。 [酬為確紐每—切觸控訊靜仙都處於相對於觸控激 勵源1810輸出端波形祕定相位點上,需要保持嚴格的 一系列的同步關係》這裏的同步關係由三項同步關係組 成:顯示_步、觸控激勵脈衝數同步、觸控激勵波形 4同步顯示幀同步:每次開始施加觸控激勵訊號都 是在兩次顯示悄之間的傾消隱時間段内的$一固定時刻 :激勵脈衝個數同步:從開始施加觸控激勵訊號到作為 觸控感應電極使用的顯示器電極上,開始計算觸控激勵 訊號脈衝數,每次獲取採樣資料的時刻都是在相同序號 的觸控激勵訊號脈衝數上;激勵波形相位同步:每次獲 取採樣資料的時刻都處在觸控激勵源輸出端波形的特定 相位點上,而這個特定相位點的位置選擇在T1或T2這兩 個相位區間内。一個完整的同步過程如第22圖a、第22圖 b、第22圖c所示。第22圖a是顯示器分時多工的時序圖, 顯示器的列電極、行電極、COM電極在顯示掃描時間段裏 面,配合輸出相應的顯示訊號,順序進行顯示掃描,而 在顯示器的列電極、行電極、COM電極在幀消隱時間段( 098142156 表單編號A0101 第24頁/共77頁 0993125345-0 201120844 Ο [0077] [0078] 〇 [0079] 098142156 0993125345-0 Η段和Κ段)内複用在觸控檢測態時,按檢測要求施加方 波觸控激勵訊號並進行檢測;第22圖b是第22圖a中Η段和 Κ段(幀消隱時間段)的放大示意圖,如第22圖b所示顯 示器電極在幀消隱時間段内的同一固定時刻開始施加方 波觸控激勵訊號,實現幀同步;第22圖c是第22圖b中X段 (載入激勵訊號並檢測時間段)的放大示意圖,在顯示 幀消隱時間段裏面經過幀同步後,開始施加觸控激勵訊 號,同時也開始計算激勵訊號脈衝個數,每次採樣檢測 都是控制在相同序號的觸控激勵訊號脈衝數上,以實現 觸控激勵脈衝個數同步;在此觸控激勵訊號脈衝裏面, 每次獲取採樣資料的時刻都處在觸控激勵輸出端波形的 某特定相位上,以實現與觸控激勵,波形相位的同步。 具體實施方式十五 與實施例十四不同的是,觸控激勵源1810為正弦波訊號 ,由於1830和1831是電容負載,正弦波的觸控激勵源帶 上電容負載後,在觸控訊號採樣點上的波形還是正弦波 .....f ,但發生了幅度和相位的變化,觸控激勵源181〇的輸出 波形和觸控訊號採樣點的觸控訊號波形如第23圖所示。 本實施方式對觸控訊號的檢測方法採用相移測量法,比 較不同的幀消隱時間段上觸控訊號採樣點18 41某一特定 相位點的相位移動,來獲取觸控資訊;所述的某一特定 相位點是指相對於觸控激勵源181〇輸出端波形的特定相 位點。第18圖所示以觸控激勵源訊號為電路源、採樣電 阻所在的支路上是1 830和1831兩個電容並聯再與182〇和 1821兩個電阻串聯的耽回路。在觸控探測時段,對第 表單編號A0101 第25更/共77頁 201120844 圖所示電路施加觸控激勵訊號,正弦波通過RC回路會發 生幅值的下降和相位的延遲;手指觸摸顯示器時,耦合 電容1831引起了 RC回路中C的變化,在觸控訊號採樣點測 量正弦波過零點相對觸控激勵源1810輸出端波形過零點 時間差的變化,來判斷觸控是否發生。測量觸控訊號採 樣點上觸控訊號波形相位移動的變化’也可以在正弦波 的峰值點上或其他相位點上進行測量。 [0080] 同樣,為確保每一次對觸控訊號的檢測都處於相對於觸 控激勵源1810輸出端波形的特定相位點上’需要保持嚴 格的一系列的同步關係。這裏的同步關係由三項同步關 係組成:顯示幀同步、觸控漱勵脈衝數同步、觸控激勵 波形相位同步。顯示幀同步:每次開始施加觸控激勵訊 號都是在兩次顯示幀之間的幀消隱時間段内的某一固定 時刻;激勵脈衝個數同步:從開始施加觸控激勵訊號到 作為觸控感應電極使用的顯示器電極上’開始計算觸控 激勵訊號脈衝數,每次獲取採樣資料的時刻都是在相同 序號的觸控激勵訊號脈衝數上;激勵波形相位同步:將 測量觸控訊號採樣點上觸控訊號波形的特定相位點,與 觸控激勵源輸出端波形相同相位點進行時間的比較;正 弦波的相移資訊是全相位的,故只要每次都是看同一個 特定相位點的移動即可。一個完整的同步過程如第24圖& 、第24圖b、第24圖c所示。第24圖&是顯示器分時多工 的時序圖,顯示器的列電極、行電極、c〇M電極在顯示掃 描時間段裏面,配合輸出相應的顯示訊號,順序進行顯 示掃描,而在顯示器的列電極、行電極、c〇M電極在顯示 098142156 表單編號A0101 第26頁/共77 頁 0993125345-0 201120844 的幀消隱時間段(Η段和K段)内複用在觸控檢測態時’ 按檢測要求載入正弦波激勵訊號並進行檢測,第2 4圖b疋 第24圖a中Η段和K段(顯示的幀消隱時間段)的放大示意 圖,如第24圖b所示顯示器電極在顯示的幀消隱時間段内 的同一固定時刻開始施加正弦波觸控激勵訊號,實現幢 同步;第24圖c是第24圖b中X段(施加觸控激勵訊號並檢 測時間段)的放大示意圖’在顯示的幀消隱時間段裏面 經過幀同步後,開始施加正弦波觸控激勵訊號,同時也 開始計算觸控激勵訊號脈衝個數,每次採樣檢測都是控 〇 制在相同序號的觸控激勵訊號脈衝數上,以實現激勵脈 衝個數同步;在此正弦波觸控激勵訊號脈衝裏面,每次 獲取採樣資料的時刻都處在觸控激勵輸出端波形的相同 • 的某特定相位點上’以實現與觸控激勵波形相位的同步 - 〇 [0081] 具體實施方式十六 [0082] 具體實施方式十四和方式十五都是用瞬時值測量法,來 〇 對第4圖的觸控顧示器400進行觸控探測。這種瞬時值測 量法是在特定相位點的極短時間段内進行對觸控訊號的 檢測,其主要特點就是檢測速度快。實現瞬時值測量法 觸控訊號檢測的三種電路結構如第25圖、第26圖和第27 圖所示。觸控訊號檢測電路結構都是由訊號檢測通道、 資料採樣通道和資料處理和時序控制電路組成。訊號檢 測通道具有緩衝器、第一級差分放大電路和第二級差分 放大電路;資料採樣通道具有模數轉換電路;資料處理 和時序控制電路是具有資料運算能力、資料輸出輸入介 098142156 表單編號A0101 第27頁/共77頁 0993125345-0 201120844 面的'中央處理器(CPU、MCU) ’中央處理器具有控制軟體 、資料處理軟體。 [0083] 第25圖所示是一種瞬時值測量法的觸控訊號檢測電路結 構圖,2510是觸控訊號採樣點的訊號,2511是檢測參考 點的訊號,觸控訊號採樣點的訊號2510和檢測參考點的 訊號2511分別經過緩衝器2520和緩衝器2521緩衝後,作 為第一級差分放大器2522的輸入訊號;第一級差分放大 器2522的輸出再作為第二級差分放大器252 3的其中一個 輸入,2524是調節電壓輸出,其作為棊準電位,連接第 二級差分放大器2523病另一個輸入’用來減去第一級差 分放大電路輸出訊號的底值;.第二級差分放大器2523輸 出到類比數位轉換器2525,2525在中央處理器(CPU、 MPU) 2526輸出的同步控制訊號2530的控制下進行同步 採樣,採樣的轉換結果發送到中央處理器(CPU、MPU) 2526,再由中央處理器進行資料處理及觸控判斷。 [0084] 第26圖所示是一種瞬時值谢量法的觸控訊號檢測電路結 構圖,2610是觸控訊號採樣點的訊舞,2611是檢測參考 點的訊號,觸控訊號採樣點的訊號2610和檢測參考點的 訊號2611分別經過緩衝器2620和緩衝器2621缓衝後’作 為第一級差分放大器2622的輸入訊號;第一級差分放大 器2622的輸出再作為第二級差分放大器2623的其中一個 輸入,回饋調節類比電路2624用第二級差分放大器2623 的輸出作為回饋輸入訊號並自動調節輸出電壓,其作為 基準電位,連接第二級差分放大器2623的另一個輸入, 用來減去第一級差分放大電路輸出訊號的底值;第二級 098142156 表單編號A0101 第28頁/共77頁 0993125345-0 201120844 差分放大器2623輸出到類比數位轉換器2625,2625在中 央處理器(CPU、MPU) 2626輸出的同步控制訊號2630的 控制下進行同步採樣’採樣的轉換結果發送到中央處理 器(CPU ' MPU) 2626,再由中央處理器進行資料處理及 觸控判斷。 [0085] Ο ο 第27圖所示是一種瞬時值測量法的觸控訊號檢測電路結 構圖’ 2710是觸控訊號採樣點的訊號,2711是檢測參考 點的訊號’觸控訊號採樣點的訊號2710和檢測參考點的 訊號2711分別經過緩衝器2720和緩街器2721緩衝後,作 為第一級差分放大器2722的輸入訊號;第一級差分放大 器2722的輸出再作為第二級差分放大器2723的其中一個 輸入’中央處理器(CPU、MPU) 27:26板據觸控運算結果 送出調節資料到數位類比轉換器2724,2724的輸出電壓 作為基準電位,連接第二級差分放大器2723的另一個輸 入,用來減去第一級差分放大電路輸出訊號的底值;第 二級差分放大器2723輸出到類比數位轉換器2725,2725 在中央處理器(CPU、MPU) 2726輸出的同步控制訊號 2730的控制下進行同步採樣,採樣的轉換結果發送到中 央處理器(CPU、MPU ) 2726,再由中央處理器進行資料 處理及觸控判斷。 [0086] 第25圖、第26圖、第27圖所示的三種瞬時值測量法觸控 訊號檢測電路的區別在於:第25圖所示方案是手動的方 法給二次差分電路設置一個基準電位,對二次差分電路 具有基本的調節能力;第26圖所示方案是二次差分電路 的輸出端訊號經類比電路再回饋給二次差分電路作為基 098142156 表單煸號A0101 第29頁/共77頁 0993125345-0 201120844G The touch display 400 shown in Fig. 4 uses a TFT-LCD. In actual touch detection, the voltage signal is usually used as the detection object to measure. The equivalent circuit of the measurement is shown in Figure 18. The 1810 is a touch excitation source for providing a touch excitation signal to the display electrode, the 1820 is a sampling resistor of the touch signal detection circuit in the touch circuit, and the 1821 is an equivalent resistance of the display electrode used as the touch sensing electrode, 1830 It is a distributed capacitance of a set of display electrodes used as touch sensing electrodes with respect to other electrodes in the display. 1831 is a coupling capacitance between a finger and a set of display electrodes used as a touch sensing electrode, and 1832 is a set of touch sensing electrodes. The capacitance between the display electrode and the COM electrode is used. The 1841 is a touch signal sampling point for measuring the change of the touch signal voltage, and the 1840 is a detection reference point for measuring the change of the touch signal voltage. Here, the touch excitation source 1810 is selected. The output terminal serves as a reference point. In fact, other potential points can be selected as reference points, such as the ground of the touch circuit, the positive power terminal of the touch circuit, or the negative power terminal of the touch circuit, or the comparison circuit. A little, or another set of electrode lines on the touch screen can have a good detection effect. The touch excitation source 1810 is a square wave signal. Since the 1 830 and the 1831 are capacitive loads, the square wave signal of the touch excitation generates a charge and discharge waveform on the two capacitors. The output waveform of the touch excitation source 1810 and the touch signal waveform of the touch signal sampling point 1841 are as shown in FIG. [0075] In the embodiment, the method for detecting a touch signal uses an instantaneous value measurement method to measure the potential of the touch signal sampling point 1841 at a specific phase point, and compare the detected ones in different frame blanking periods. The change of the potential of the specific phase point is used to obtain the touch information; the specific phase point refers to a specific phase point of the waveform of the output end of the touch excitation source 1810. 098142156 Form No. A0101 Page 23 / Total 77 Page 0993125345-0 201120844 The circuit shown in Figure 18 uses the excitation source signal as the circuit source. The branch where the sampling resistor is located is 183〇 and 1831. The two capacitors are connected in parallel with 182〇 and 1821. Two resistors in series with the RC loop. During the touch detection period, a touch excitation signal is applied to the circuit shown in Fig. 18, and the circuit generates and charges a capacitor. In the 21st picture, the phase (1) is suitable for sampling. The phase interval at the touch signal sampling point is 1 and the phase interval of T1 is the time period from the start of charging to the completion of charging. The phase interval of T2 is the discharge of the capacitor to the discharge element. period. [Remuneration for each button---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Composition: display _ step, touch excitation pulse number synchronization, touch excitation waveform 4 synchronous display frame synchronization: each time the touch actuation signal is applied is $1 in the depreciation period between the two displays Fixed time: the number of excitation pulses is synchronized: from the start of applying the touch excitation signal to the display electrode used as the touch sensing electrode, the number of touch excitation signal pulses is calculated, and the time of each sampling data is in the same serial number. The number of touch excitation signal pulses; phase synchronization of the excitation waveform: each time the sample data is acquired is at a specific phase point of the waveform of the output end of the touch excitation source, and the position of the specific phase point is selected at T1 or T2. Within the phase interval. A complete synchronization process is shown in Figure 22, Figure 22, and Figure 22c. Figure 22a is a timing diagram of time division multiplexing of the display. The column electrode, the row electrode and the COM electrode of the display are in the display scanning period, and the corresponding display signals are outputted, and the display scanning is performed sequentially, and the column electrodes of the display are The row electrode and the COM electrode are in the frame blanking period ( 098142156 Form No. A0101 Page 24 / Total 77 Page 0993125345-0 201120844 Ο [0077] [0078] 〇 [0079] 098142156 0993125345-0 Η Κ and Κ ) When used in the touch detection state, the square wave touch excitation signal is applied and detected according to the detection requirement; FIG. 22b is an enlarged schematic view of the Η segment and the Κ segment (frame blanking period) in FIG. 22a, such as 22 The display electrode shown in FIG. b starts to apply the square wave touch excitation signal at the same fixed time in the frame blanking period to realize frame synchronization; FIG. 22c is the X segment in FIG. 22b (loading the excitation signal and detecting The enlarged schematic diagram of the time period) starts to apply the touch excitation signal after the frame synchronization in the display frame blanking period, and also starts counting the number of excitation signal pulses, and each sampling detection is controlled by the same serial number. Controlling the number of excitation signal pulses to achieve synchronization of the number of touch excitation pulses; in the touch excitation signal pulse, each time the sample data is acquired is at a specific phase of the waveform of the touch excitation output end, to achieve Synchronize with the touch excitation and waveform phase. The fifteenth embodiment is different from the fourteenth embodiment. The touch excitation source 1810 is a sinusoidal signal. Since the 1830 and 1831 are capacitive loads, the sinusoidal touch excitation source is charged with a capacitive load, and the touch signal is sampled. The waveform on the point is still a sine wave.....f, but the amplitude and phase change occur. The output waveform of the touch excitation source 181〇 and the touch signal waveform of the touch signal sampling point are as shown in Fig. 23. In the method for detecting a touch signal, the phase shift measurement method is used to compare the phase shift of a specific phase point of the touch signal sampling point 18 41 on different frame blanking periods to obtain touch information; A particular phase point refers to a particular phase point relative to the output of the touch excitation source 181〇. In Fig. 18, the touch excitation source signal is used as the circuit source, and the branch circuit where the sampling resistor is located is a parallel circuit in which two capacitors of 1 830 and 1831 are connected in parallel and then connected with two resistors of 182 〇 and 1821. During the touch detection period, the touch excitation signal is applied to the circuit shown in the figure No. A0101, No. 25/2011, page 201120844, and the sine wave will have a decrease in amplitude and a phase delay through the RC loop; when the finger touches the display, The coupling capacitor 1831 causes a change in C in the RC loop, and measures the change of the time difference between the zero-crossing point of the sine wave and the zero-crossing point of the output end of the touch excitation source 1810 at the touch signal sampling point to determine whether the touch occurs. Measuring the phase shift of the touch signal waveform on the touch signal sampling point can also be measured at the peak point of the sine wave or at other phase points. [0080] Again, to ensure that each detection of the touch signal is at a particular phase point relative to the waveform of the output of the touch excitation source 1810, a series of synchronization relationships need to be maintained. The synchronization relationship here consists of three synchronization relationships: display frame synchronization, touch excitation pulse number synchronization, and touch excitation waveform phase synchronization. Display frame synchronization: each time the touch actuation signal is applied is a fixed time in the frame blanking period between two display frames; the number of excitation pulses is synchronized: from the start of applying the touch excitation signal to the touch The display electrode used to control the sensing electrode starts to calculate the number of touch excitation signal pulses. Each time the sampling data is acquired, the number of touch excitation signal pulses of the same serial number is used; the excitation waveform phase synchronization: the measurement of the touch signal is measured. The specific phase point of the touch signal waveform is compared with the waveform of the output end of the touch excitation source for time comparison; the phase shift information of the sine wave is all phase, so that each time the same specific phase point is seen Just move. A complete synchronization process is shown in Figures 24 & 24, Figure 24 and Figure 24c. Figure 24 & is a timing diagram of the display time division multiplexing, the column electrode, the row electrode, and the c〇M electrode of the display are in the display scanning time period, and the corresponding display signals are outputted, and the display scanning is performed sequentially, while in the display The column electrode, the row electrode, and the c〇M electrode are multiplexed in the touch detection state during the frame blanking period (Η and K segments) of 098142156 Form No. A0101 Page 26/77 pages 0993125345-0 201120844' The sine wave excitation signal is loaded and detected according to the detection requirement, and the enlarged view of the Η segment and the K segment (the displayed frame blanking period) in Fig. 24, Fig. 24, Fig. 24, the display shown in Fig. 24b The electrode starts to apply a sine wave touch excitation signal at the same fixed time in the displayed frame blanking period to realize the synchronization of the building; FIG. 24c is the X segment in the 24th figure b (applying the touch excitation signal and detecting the time period) The enlarged schematic diagram 'after the frame synchronization in the displayed frame blanking period, the sine wave touch excitation signal is applied, and the number of touch excitation signal pulses is also calculated. Each sampling detection is controlled by the phase. The number of the excitation signal pulses of the same serial number is used to realize the synchronization of the number of excitation pulses; in this sinusoidal touch excitation signal pulse, each time the sampling data is acquired, the waveform of the touch excitation output is the same. At a certain phase point to achieve synchronization with the phase of the touch excitation waveform - 〇 [0081] Embodiment 16 [0082] The fourteenth embodiment and the fifteenth method are all using the instantaneous value measurement method The touch monitor 400 of FIG. 4 performs touch detection. This instantaneous value measurement method detects the touch signal in a very short period of time at a specific phase point, and its main feature is that the detection speed is fast. Realizing instantaneous value measurement The three circuit configurations of touch signal detection are shown in Figure 25, Figure 26 and Figure 27. The structure of the touch signal detection circuit is composed of a signal detection channel, a data sampling channel, and a data processing and timing control circuit. The signal detection channel has a buffer, a first-stage differential amplifying circuit and a second-stage differential amplifying circuit; the data sampling channel has an analog-to-digital conversion circuit; the data processing and timing control circuit has a data computing capability, a data output input interface 098142156, a form number A0101 Page 27 of 77 Page 0993125345-0 201120844 The 'Central Processing Unit (CPU, MCU)' central processing unit has control software and data processing software. [0083] FIG. 25 is a structural diagram of a touch signal detecting circuit of an instantaneous value measuring method, 2510 is a signal of a touch signal sampling point, 2511 is a signal for detecting a reference point, a signal 2510 of a touch signal sampling point, and The signal 2511 for detecting the reference point is buffered by the buffer 2520 and the buffer 2521, respectively, as an input signal of the first stage differential amplifier 2522; the output of the first stage differential amplifier 2522 is used as one of the inputs of the second stage differential amplifier 252 3 , 2524 is the regulated voltage output, which is used as the pseudo potential, and is connected to the second stage differential amplifier 2523. The other input ' is used to subtract the bottom value of the output signal of the first stage differential amplifying circuit; the second stage differential amplifier 2523 outputs to The analog digital converters 2525, 2525 are synchronously sampled under the control of the synchronous control signal 2530 outputted by the central processing unit (CPU, MPU) 2526, and the sampled conversion result is sent to the central processing unit (CPU, MPU) 2526, and then processed by the central processing. Data processing and touch judgment. [0084] FIG. 26 is a structural diagram of a touch signal detecting circuit of an instantaneous value sensing method, 2610 is a signal dance of a touch signal sampling point, 2611 is a signal for detecting a reference point, and a signal 2610 of a touch signal sampling point and The signal 2611 of the detection reference point is buffered by the buffer 2620 and the buffer 2621, respectively, as the input signal of the first stage differential amplifier 2622; the output of the first stage differential amplifier 2622 is used as one of the inputs of the second stage differential amplifier 2623. The feedback adjustment analog circuit 2624 uses the output of the second stage differential amplifier 2623 as a feedback input signal and automatically adjusts the output voltage, which serves as a reference potential and is connected to the other input of the second stage differential amplifier 2623 for subtracting the first stage difference. The bottom value of the output signal of the amplifying circuit; the second stage 098142156 Form No. A0101 Page 28 of 77 0993125345-0 201120844 The output of the differential amplifier 2623 is output to the analog converter 2625, 2625 at the central processing unit (CPU, MPU) 2626 Simultaneous sampling under the control of the synchronization control signal 2630 'Sampling conversion result is sent to the central processing unit (CPU ' MP U) 2626, and then the central processing unit for data processing and touch judgment. [0085] ο ο Figure 27 is a structure of the touch signal detection circuit of the instantaneous value measurement method. 2710 is the signal of the touch signal sampling point, and 2711 is the signal for detecting the reference point signal of the touch signal sampling point. 2710 and the detection reference point signal 2711 are buffered by the buffer 2720 and the buffer 2721, respectively, as the input signal of the first stage differential amplifier 2722; the output of the first stage differential amplifier 2722 is used as one of the second stage differential amplifiers 2723. Input 'Central Processing Unit (CPU, MPU) 27:26 board according to the touch operation result to send the adjustment data to the analog converter of the digital analog converter 2724, 2724 as the reference potential, connected to the other input of the second stage differential amplifier 2723, The bottom value of the output signal of the first stage differential amplifying circuit is subtracted; the second stage differential amplifier 2723 is output to the analog digital converter 2725, 2725 under the control of the synchronous control signal 2730 outputted by the central processing unit (CPU, MPU) 2726. Simultaneous sampling, the sampling conversion result is sent to the central processing unit (CPU, MPU) 2726, and then the central processing unit performs data processing and touch Off. [0086] The difference between the three kinds of instantaneous value measurement touch signal detecting circuits shown in FIG. 25, FIG. 26, and FIG. 27 is that the scheme shown in FIG. 25 is a manual method for setting a reference potential to the second differential circuit. The basic differential regulation circuit has the basic adjustment capability; the scheme shown in Fig. 26 is that the output signal of the secondary differential circuit is fed back to the secondary differential circuit via the analog circuit as the base 098142156. Form No. A0101 Page 29 of 77 Page 0993125345-0 201120844

準電位,對二士 I八I 刀電路具有自動跟蹤的調節能力;第 27圖所示方案异脾巾 吊 電路回饋认二、处理器運算後的結果經數模轉換 一人差为電路作為基準電位’對二次差分電 /、有#慧化的調節能力。 5寸及解析度的顯示器,其電極的電阻-般在2Κα 檢測電路與觸控絲上電極線的連接點上,因檢測 的輪入阻抗而對觸控訊號分流,檢測電路的輸入阻 抗越大’對觸控訊號的分流作用越小。當檢測電路的輪 入阻抗為2. 5倍以上時,觸控訊號都能反映出觸摸動作資The quasi-potential has the ability to adjust the automatic tracking of the two-way I-eight I-knife circuit; the scheme shown in Figure 27 is the feedback of the spleen towel hanging circuit. The result of the processor operation is converted by digital-to-analog to the circuit as the reference potential. 'The ability to adjust the secondary differential electric /, has #慧化. The 5-inch and resolution display, the resistance of the electrode is generally on the connection point between the 2Κα detection circuit and the electrode line on the touch wire, and the touch signal is shunted due to the detected wheel-in impedance. The input impedance of the detection circuit is larger. 'The smaller the shunting effect on the touch signal. When the detection circuit has a wheel impedance of 2.5 times or more, the touch signal can reflect the touch action

訊的所以要求訊號檢測通道對電極線的輸入阻抗在5 κ Ω或5ΚΩ以上’如第25圖、26,2?在差分放大電路與觸 控螢幕上電極線的連接點之間加上緩衝器就是為了增大 檢測電路的輸入阻抗。 曰 [0087] [0088] 098142156 具體實施方式十七 具體實施方式十四和方式卡五也可以使用平均值測量法 ’來對第4圖_控顯*器_進行峨_ q種平均 值測量法是在—定的時間區段内進行對觸控訊號的檢測 ’獲得觸控訊號的平均值作為測量結I。平均值測量法 雖比瞬時值測量法慢,但其主要特點就是可以消除部分 高頻干擾’測量資料更平穩有利於觸控的判斷。有效刀 是平均值中的-種1現平均值測料軸控訊號= 的二種電路結構如第28圖、第29圖和第 〇U圖所示。其趨 控訊號檢測電路結構都是由訊號檢測通道、資料衫、 道、資料處理和時序控制電路組成1藏檢測通= 緩衝器、第一級差分放大電路、有效值蜊量電路和第一 表單編號Α0101 第30頁/共77頁 0993125345-0 201120844 級差分放大電路;資料採樣通道具有模數轉換電路;資 料處理和時序控制電路是具有資料運算能力、資料輸出 輸入介面的中央處理器(CPU、MCU),中央處理器具有控 制軟體、資料處理軟體。 [0089] ❹ ❹ 第2 8圖所示是一種平均值測量法的觸控訊號檢測電路結 構圖’ 2810是觸控訊號採樣點的訊號’ 2811是檢測參考 點的訊號’觸控訊號採樣點的訊號2810和檢測參考點的 訊號2811分別經過緩衝器282〇和緩衝器2821缓衝後,作 為第一級差分差分放大電路單元2822的輸入訊號;第一 級差分差分放大電赂單元2822内含頻率選通電路,選通 電路的選通頻率為激勵源觸控訊號的頻率,其對差分放 大的輸出進行選通’選通後的輸出再作為有效值轉換器 2823的輸入,2823的有效值輸出作為第二級差分放大器 2824的輸入;2825是調節電壓輸出’其作為基準電位, 連接到第二級差分放大器2824的另一個輸A端,用來減 去2823的有效值輸出訊號的底值;第二級差分放大器 2824輸出到類比數位轉換器'2826,2826在中央處理器( CPU、MPU) 2827輸出的同步控制訊號2830的控制下進行 同步採樣,採樣的轉換結果發送到中央處理器(CPU、 MPU) 2827 ’再由中央處理器進行資料處理及觸控判斷。 [0090] 第29圖所示是一種平均值測量法的觸控訊號檢測電路結 構圖,2910是觸控訊號採樣點的訊號,2911是檢測參考 點的訊说’觸控訊號採樣點的訊號2 91 〇和檢測參考點的 訊號2911分別經過緩衝器2920和緩衝器2921緩衝後,作 為第一級差分差分放大電路單元2922的輪入訊號;第一 098142156 表單編號A0101 第31頁/共77頁 0993125345-0 201120844 級差分差分放大電路單元2922内含頻率選通電路,選通 電路的選通頻率為激勵源觸控訊號的頻率,其對差分放 大的輸出進行選通,選通後的輸出再作為有效值轉換器 2923的輸入,2923的有效值輸出作為第二級差分放大器 2924的輸入;回饋調節類比電路2925用第二級差分放大 器2924的輸出作為回饋輸入訊號並自動調節輸出電壓, 其作為基準電位,連接到第二級差分放大器2924的另一 個輸入端,用來減去2923的有效值輸出訊號的底值;第 二級差分放大器2924輸出到類比數位轉換器2926,2926 在中央處理器(CPU、MPU) 2927輸出的同步控制訊號 2930的控制下進行同步採樣,採樣的轉換結果發送到中 央處理器(CPU、MPU) 2927,再由中央處理器進行資料 處理及觸控判斷。 [0091] 第30圖所示是一種平均值測量法的觸控訊號檢測電路結 構圖,3010是觸控訊號採樣點的訊號,3011是檢測參考 點的訊號,觸控訊號採樣點的訊號3010和檢測參考點的 訊號3011分別經過緩衝器3020和緩衝器3021緩衝後,作 為第一級差分差分放大電路單元3022的輸入訊號;第一 級差分差分放大電路單元3022内含頻率選通電路,選通 電路的選通頻率為激勵源觸控訊號的頻率,其對差分放 大的輸出進行選通,選通後的輸出再作為有效值轉換器 3023的輸入,3023的有效值輸出作為第二級差分放大器 3024的輸入;中央處理器(CPU、MPU) 3027根據觸控運 算結果送出調節資料到數位類比轉換器3025,3025的輸 出電壓作為基準電位,連接到第二級差分放大器3024的 098142156 表單編號A0101 第32頁/共77頁 0993125345-0 201120844 另—個輸入端,用來減去3023的有效值輸出訊號的底值 ’第一級差分放大器3024輸出到類比數位轉換器3026, 3026在中央處理器(CPU、MPU) 3027輸出的同步控制訊 號3030的控制下進行同步採樣,採樣的轉換結果發送到 中央處理器(CPU、MPU) 3027,再由中央處理器進行資 料處理及觸控判斷, [0092] Ο 第28圖、第29圖和第30圖所示的三種平均值測量法觸控 訊號檢測電路的區別在於:第28圖所示方案是手動的方 法給二次差分電路設置一個基準電位,對二次差分電路 具有基本的調節能力;第29圖所示方案是二次差分電路 的輸出端訊號經類比電路再回饋給二次差分電路作為基 準電位’對二次差分電路具有自動跟蹤的調節能力;第 30圖所示方案是將中央處理器運算後的結果經數模轉換 電路回饋給二次差分電路作為基準電位,對二次差分電 路具有智慧化的調節能力。 [0093] 〇 不同尺寸及解析度的顯示豸:,其電極的電阻一般在2Κ以Therefore, the input impedance of the signal detection channel to the electrode line is required to be 5 κ Ω or more. As shown in Fig. 25, 26, 2, a buffer is added between the connection point of the differential amplifier circuit and the touch screen electrode line. It is to increase the input impedance of the detection circuit. 098 098 098 098 098 098 098 098 098 098 098 098 098 具体 具体 具体 具体 具体 具体 具体 具体 具体 具体 具体 具体 具体 十四 具体 具体 十四 十四 十四 十四 十四 十四 十四 十四 十四 十四 十四 十四 十四 十四 十四 十四 平均值 平均值 平均值 平均值 平均值 平均值The detection of the touch signal is performed within a predetermined time period. The average value of the touch signal is obtained as the measurement result I. The average measurement method is slower than the instantaneous value measurement method, but its main feature is that it can eliminate some of the high-frequency interference' measurement data is more stable and favorable for touch judgment. The effective knives are the two circuit configurations of the average value of the average value of the shaft control signal = as shown in Fig. 28, Fig. 29, and Fig. The structure of the control signal detection circuit is composed of a signal detection channel, a data shirt, a track, a data processing and a timing control circuit. The detection detection pass = buffer, the first stage differential amplification circuit, the RMS measurement circuit and the first form No. 1010101 Page 30/77 pages 0993125345-0 201120844 Class differential amplifier circuit; data sampling channel has analog-to-digital conversion circuit; data processing and timing control circuit is a central processing unit (CPU, data processing input interface) MCU), the central processing unit has control software and data processing software. [0089] ❹ ❹ Figure 28 shows a structure of the touch signal detection circuit of the average value measurement method. '2810 is the signal of the touch signal sampling point' 2811 is the signal for detecting the reference point 'touch signal sampling point The signal 2810 and the signal 2811 for detecting the reference point are buffered by the buffer 282 and the buffer 2821, respectively, as the input signal of the first stage differential differential amplifying circuit unit 2822; the first stage differential differential amplifying unit 2022 contains the frequency The strobe circuit, the strobe frequency of the strobe circuit is the frequency of the excitation source touch signal, and the output of the differential amplification is strobed and the strobed output is used as the input of the RMS converter 2823, and the effective value of the 2823 is output. As an input of the second stage differential amplifier 2824; 2825 is a regulated voltage output 'which serves as a reference potential and is connected to the other input A terminal of the second stage differential amplifier 2824 for subtracting the bottom value of the effective value output signal of 2823; The second stage differential amplifier 2824 outputs to the analog digital converter '2826, 2826 which is controlled by the synchronous control signal 2830 outputted by the central processing unit (CPU, MPU) 2827. Conversion result of the sampling, the sample is sent to a central processing unit (CPU, MPU) 2827 'further data processing and touch determination by the central processor. [0090] FIG. 29 is a structural diagram of a touch signal detecting circuit of an average value measuring method, 2910 is a signal of a touch signal sampling point, and 2911 is a signal for detecting a reference point of a touch signal sampling point 2 91 〇 and the detection reference point signal 2911 is buffered by the buffer 2920 and the buffer 2921, respectively, as the first stage differential differential amplifying circuit unit 2922 rounding signal; first 098142156 form number A0101 page 31 / a total of 77 pages 0993125345 -0 201120844 differential differential amplifier circuit unit 2922 contains a frequency strobe circuit. The strobe frequency of the strobe circuit is the frequency of the excitation source touch signal, which strobes the output of the differential amplification, and the output after strobing is used as The input of the rms converter 2923, the rms output of 2923 is the input of the second stage differential amplifier 2924; the feedback adjustment analog circuit 2925 uses the output of the second stage differential amplifier 2924 as the feedback input signal and automatically adjusts the output voltage as a reference. a potential connected to the other input of the second stage differential amplifier 2924 for subtracting the bottom value of the effective value output signal of 2923; The stage differential amplifier 2924 outputs to the analog-to-digital converter 2926, and the 2926 performs synchronous sampling under the control of the synchronous control signal 2930 outputted by the central processing unit (CPU, MPU) 2927, and the sampled conversion result is sent to the central processing unit (CPU, MPU). 2927, then the central processing unit for data processing and touch judgment. [0091] FIG. 30 is a structural diagram of a touch signal detecting circuit of an average value measuring method, 3010 is a signal of a touch signal sampling point, 3011 is a signal for detecting a reference point, and a signal 3010 of a touch signal sampling point is The signal 3011 of the detection reference point is buffered by the buffer 3020 and the buffer 3021, respectively, as an input signal of the first-stage differential differential amplifying circuit unit 3022; the first-stage differential differential amplifying circuit unit 3022 includes a frequency strobing circuit, and the strobe The strobe frequency of the circuit is the frequency of the excitation source touch signal, and the output of the differential amplification is gated, the strobed output is used as the input of the rms converter 3023, and the RMS output of 3023 is used as the second stage differential amplifier. 3024 input; central processing unit (CPU, MPU) 3027 sends the adjustment data to the digital analog converter 3025, 3025 according to the touch operation result as the reference potential, connected to the second stage differential amplifier 3024 098142156 Form No. A0101 32 pages / a total of 77 pages 0993125345-0 201120844 Another input, used to subtract the effective value of 3023 output signal bottom value 'first level The differential amplifier 3024 outputs to the analog-to-digital converters 3026, 3026 for simultaneous sampling under the control of the synchronous control signal 3030 outputted by the central processing unit (CPU, MPU) 3027, and the sampled conversion result is sent to the central processing unit (CPU, MPU) 3027. Then, the central processor performs data processing and touch judgment, [0092] Ο The difference between the three average measurement touch signal detection circuits shown in Figs. 28, 29, and 30 is: Figure 28 The scheme is a manual method to set a reference potential for the secondary differential circuit, and has basic adjustment capability for the second differential circuit; the scheme shown in FIG. 29 is that the output signal of the secondary differential circuit is fed back to the second by the analog circuit. The differential circuit as the reference potential 'has the ability to adjust the automatic tracking of the second differential circuit; the scheme shown in Fig. 30 is to return the result of the central processor operation to the second differential circuit as the reference potential through the digital-to-analog conversion circuit. The sub-differential circuit has intelligent adjustment capabilities. [0093] 豸 Display of different sizes and resolutions: the resistance of the electrodes is generally 2Κ

:s : 沐 4.. I 上’檢測電路與觸控螢幕電極線的連接點上,因檢測 電路的輸入阻抗而對觸控訊號分流,檢測電路的輸入阻 抗越大’對觸控訊號的分流作用越小《當檢測電路的輸 入阻抗為2. 5倍以上時,觸控訊號都能反映出觸摸動作資 訊的’所以要求訊號檢測通道對電極線的輸入阻抗在5K Ω或5ΚΩ以上,如第28圖、29,30在差分放大電路與觸 控螢幕上電極線的連接點之間加上緩衝器就是為了增大 檢測電路的輸入阻抗。 具體實施方式十八 098142156 表單編號A0101 第33頁/共77真 0993125345-0 [0094] 201120844 [0095] [0096] [0097] 在介紹實施例十四時我們撻釗楚4阁祕_ X ]杈到,第4圖所不的觸控顯示器 400,顯示器採用TFT~LCD,挪量的等效電路如第18圖所 示。觸控激勵源1810為方波訊號,由於183〇和1831是電 谷負載,觸控激勵的方波訊號在這兩個電容上出現充放 電波形。觸控激勵賴1G的輪出波形和觸控訊號採樣點 1841的觸控訊號波形如第21圖所示,為了說明本實施例 ,現重新對第21圖標號,如第31圖所示。 本實施方式對觸控訊號的檢測方法採用時間特徵測量法 ,測量觸控訊號採樣點1 8 41充放電過程中兩個既定電位 間的時間間隔的變化’來!獲取觸控資訊。如第31圖所示 ,測量觸控訊號採樣點1 841波形的充電過程中兩個既定 電位V 4 2 2和V 4 21之間的時間τ4 2 3,放電過程中兩個既定 電位V421和V422之間的時間T424,可以反映這個電容負 載的變化。當手指觸摸顯示器時第18圖等效電路的耦合 電容1831就會產生’改變了電路的電容負載以及時間常 數,兩個既定電位間的時間間隔T423和T424也就發生了 改變。測量時間間隔T 4 2 3 4 g 4的變化就可以獲得觸控 的資訊,既定電位V421和V422選取充放電過程中採樣點 1841的兩個電位。 實現時間特徵測量法觸控訊號檢測的電路結構如第32圖 和第33圖所示。其觸控訊號檢測電路結構都是由訊號檢 測及資料採樣通道、資料處理和時序控制電路組成。訊 號檢測及資料採樣通道具有緩衝器、數模轉換電路或電 壓調節輸出單元、比較器、記數器;資料處理和時序控 制電路是具有資料運算能力、資料輸出輸入介面的中央 098142156 表單編號A0101 第34頁/共77頁 0993125345-0 201120844 處理器(CPU、MCU),中央處理器具有控制軟體、資料處 理軟體。 [0098] 第3 2圖是一種時間特徵測量法的觸控訊號檢測電路結構 圖,3210是觸控訊號採樣點的訊號,3211是一個既定電 位(V421),由電壓調節輸出單元3220來產生,3212是 一個既定電位(V422 ),由電壓調節輸出單元3221來產 生;觸控訊號採樣點的訊號3210經過緩衝器3230緩衝輸 出,與3211這個既定電位進入比較器3232進行比較;觸 〇 控訊號採樣點的訊號3210經過緩衝器3231緩衝輸出,與 3212這個既定電位進入比較器3233進行比較;中央處理 器(CPU、MC103235產生計數器3234的記數脈衝訊號 3240,比較器3233的輸出電也作;為計數器3234的啟動記 數訊號,比較器3232的輸出電位作為計數器3234的停止 記數訊號,計數器3234停止記數後的讀..數由中央處理器 (CPU、MCU)3235讀取’護數完畢後由中央處理器(cpu 、MCU)3235送出清零訊號3.,241清零計數器3234,為下 一次讀數做好準備並:由中央中..央處理器(cpu、 MCU)3235進行資料處理及觸控判斷。 [0099] 第3 3圖是一種時間特徵測量法的觸控訊號檢測電路結構 圖,3310疋觸控訊號採樣點的訊號,中央處理器(cpu、 MCU)3327通過程式預置或歷史檢測判斷而輸出相應資料 到數位類比轉換器3320輸出一個既定電位mu (M21 ) ,也輸出資料到數位類比轉換器3321輸出一個既定電位 3312 (V422 );觸控訊號採樣點的訊號331〇經過緩衝器 3322缓衝輸出,與3311這個既定電位進入比較器3324 ; 098142156 表單編號A0101 第35頁/共77頁 0993125345-0 201120844 觸控訊號採樣點的訊號3310經過緩衝器3323缓衝輪出, 與3312這個既定電位進入比較器3325 ;中央處理器(CPU 、MCU)3327產生計數器3326的記數脈衝訊號3330,比 較器3325的輸出電位作為計數器3326的啟動記數訊號, 比較器3324的輸出電位作為計數器3326的停止記數訊號 ;計數器3326停止記數後的讀數由中央處理器(cpu、 MCU )332 7讀取,讀數完畢後由中央處理器(cpu、 MCU)3327送出清零訊號3331清零計數器3326,為下一 次讀數做好準備,並由中央中央疼理器(CPU、MCU)3327 .... : : . 進行資料處理及觸控判斷、 [0100] 第32圖和第33圖所示的兩種踌間特徵測量法觸控訊號檢 測的區別在於.第3 2圖所示方案是手動的方法給比較器 設置兩個既定電位V421和V422 ;第33圖所示方案是由中 央處理器給比較器設置兩個既定電位V421和V422,中央 處理器通過程式預置或將之前的測量結果運算後輸出對 應資料到數模轉換電路,使其輸出作“既走比較電位, 對既定比較電位V421和V422的設置具有智慧化的調節能 力。 [0101] 具體實施方式十九 [0102] 與實施例十八不同,本例中觸控激勵源1810為正弦波訊 號’由於1830和1831是電容負載’正弦波的觸控激勵源 帶上電容負載後,在觸控訊號採樣點上的波形還是正弦 波’但發生了幅度和相位的變化’觸控激勵源181〇的輸 出波形和觸控訊號採樣點1841的觸控訊號波形如第23圖 所示。 098142156 表單編號A0101 第36頁/共77頁 0993125345-0 201120844 [0103] 本實施方式對觸控訊號的檢測方法採用相移測量法,比 較不同的幀消隱時間段上觸控訊號採樣點丨8 4丨上特定相 位點的相位移動,來獲取觸控資訊。可以看出可以通過 . 測量相位的改變來反映這個觸摸電容的影響,而相位的 改變也可以從測量時間間隔來反映,這個時間間隔的檢 測示意圖亦見如第23圖所示,顯示器無手指觸摸時,由 於第18圖中的分佈電容1830的存在,檢測觸控訊號採樣 點1841上的觸控訊號波形相對觸控激勵源輸出端184〇的 波形有相位的延遲;當手指觸摸顯示器時第18圖所示等 〇 效電路的耦合電容1831就會產生,増大了電路的電容負 載’觸控訊號採樣點1841上的過零點與激勵源之間的過 零點之間的時間T500會變大,即產生進—步的相移。測 量時間T5G0的變化就可獲得觸控的資訊。根據觸控激勵 - 源波形的不同’特定相位點對應的電位可以是零點或者 是其他電位點。 I L , 1 [0104] 實現相移測量法觸控訊號檢測的電路結構如第34圖和第 〇 35圖所*。其_訊號制電路結構都是由訊號檢測及 資料採樣通道、資料處理和時序控制電路組成。訊號檢 測及資料採樣通道具有緩衝器、數模轉換電路或電壓調 節輸出單元、比較器、記數器;資料處理和時序控制電 路是具有資料運算能力、資料輪出輪入介面的中央處理 器(CPU ' MCU),中央處理器具有控制軟體、資料處理軟 體。 [0105] 第3 4圖是一種相移特徵測量法的觸控訊號檢測電路結構 圖,3410是觸控訊號採樣點的訊號,3411是檢測參考點 098142156 表單煸號A0101 0993125345-0 201120844 的訊號’ 341 2是由電壓調節輸出單元342〇產生的對應一 個特定相位點時的電位;觸控訊號採樣點的訊號341〇經 過缓衝器3430緩衝輸出,與3412這個特定相位點對應的 電位進入比較器3432進行比較;觸控訊號採樣點的訊號 3411經過緩衝器3431緩衝輸出,與3412這個特定相位點 對應的電位進入比較器3433進行比較;中央處理器(CPU 、MCU)3435產生計數器3434的記數脈衝訊號3440,比 較器3433的輸出電位作為計數器3434的啟動記數訊號, 比較器3432的輸出電位作為計數器3434的停止記數訊號 ;計數器3434記數停止後的讀數由中央處理器(CPU、 MCU)3435讀取,讀數完畢後由中央處理器(CPU、 MCU)3435送出清零訊號3441请零計數器3434,為下一 次讀數做好準備,並由中央中央處理器(CPlJ、MCU)3435 進行資料處理及觸控判斷。 [0106]第3 5圖是一種相移特徵測量法的觸控訊號檢測電路結構 圖’ 3510是觸控訊號採樣點的訊號,3511是檢測參考點 的訊號’中央處理器(CPU、MCU)3526根據程式預設或者 歷史檢測判斷而輸出相應資料到數位類比轉換器3520, 特定相位點對應的電位3512即是數位類比轉換器3520的 輸出電位;觸控訊號採樣點的訊號3510經過緩衝器3521 緩衝輸出’與3512這個特定相位點對應的電位進入比較 器3523進行比較;觸控訊號採樣點的訊號3511經過緩衝 器3522緩衝輸出,與3512這個特定相位點對應的電位進 入比較器3524進行比較;中央處理器(CPU、MCU)3526 產生計數器3525的記數脈衝訊號3530,比較器3524的輸 098142156 表單編號A0101 第38頁/共77頁 0993125345-0 201120844 出電位作為計數器3525的啟動記數訊號,比較器3523的 輸出電位作為计數益3525的停止記數訊號;計數器3525 記數停止後的讀數由中央處理器(cpu、MCU)3526讀取, 讀數完畢後由中央處理器(CPU、Mcu)3526送出清零訊號 3531清零計數器3525,為下一次讀數做好準備,並由中 央中央處理器(CPU、MCU)3526進行資料處理及觸控判斷 〇 [0107] 第34圖和第35圖所示的兩種相移測量法觸控訊號檢測的 區別在於:第34圖所示方案是甩手動的方法設定特定相 位點對應的電位;第3 5圖所示方案是由中央處理器通過 數位類比轉換器來設定特定相位點對應的電位,中央處 理器通過程式預設或將之前的測量結果運算後經數位類 比轉換器回饋作為特定相位點對應的電位,對特定相位 點的設置具有智慧化的調節能力》 [0108] 本實施方式所測量的觸控訊號相拉特徵實質上也是時間 特徵的一種》 [0109] 具體實施方式二十 [0110] 第4圖所示的觸控顯示器4〇〇,分時多工顯示器電極來完 成觸控功能。觸控顯示器4〇〇以部分的或全部的N條顯示 器電極線分時多工作觸控感應電極線,以單通道順序掃 描的檢測方式進行觸控探測:觸控訊號檢測電路具有一 個觸控訊號檢測通道或一個資料採樣通道,以掃描的方 式依次順序檢測N條觸控感應電極線中的第一條、第二條 .....直至最後的第N條觸控感應電極線,從而完成一個 098142156 表單編號A0101 第39頁/共77頁 0993125345-0 201120844 探測幀的全部檢測過程,如第3 6圖所示。 [0111] 這也是最常規和自然的觸控檢測方式。 [0112] 具體實施方式二十一 [0113] 與實施例二十不同,本例中是按某一既定的間隔i以掃描 的方式檢測N條觸控感應電極中的第一條電極、第i + Ι條 、第2i + l條.....直至到最後的第N條觸控感應電極線, 從而完成一個探測幀的全部檢測過程。 [0114] i = 2時,即間隔一條觸控感應電極線的檢測掃描示意圖如 第37圖所示。 [0115] 具體實施方式二十二 [0116] 與實施例二十一和二十二不同的是,本例是以單通道粗 掃加細掃的檢測方式進行觸控探測:觸控訊號檢測電路 具有一個檢測通道或一個資料採樣通道,把觸控感應電 極線按每i條一區劃分為幾個分區,每傭分區選取一條或 多條觸控感應電極線作為該分區觸控感應電極線的觸控 感應代表電極一起進行觸控檢測,最好的方法是把每個 分區裏面全部的觸控感應電極線並聯作為一條觸控感應 代表電極;先按區對觸控感應代表電極進行檢測,確定 觸控動作發生的區域;再在有觸控動作發生的區域裏面 進行細分掃描檢測,獲得更具體的觸控資訊。此方法的 目的是為了節省觸控檢測的時間。 [0117] i=3時,單通道粗掃加細掃的檢測掃描示意圖如第38 圖所示。 0993125345-0 098142156 表單編號A0101 第40頁/共77頁 201120844 [0118] 具體實施方式二十三 [0119] 本例以多通道順序掃描的檢測方式進行觸控探測:觸控 訊號檢測電路具有多個觸控訊號檢測通道和多個資料採 樣通道,把全邹的觸控感應電極線分為跟觸控訊號檢測 通道數目相同的組數,每一個觸控訊號檢測通道負責一 個觸控感應電極組内的檢測。 [0120] 一種方案是各觸控訊號檢測通道同時分別在各自組内進 〇 行順序掃描檢測’綜合全部觸控訊號檢測通道的檢測結 果’獲得全螢幕的觸賊訊。第39圖是三個觸控訊號檢 測通道時的掃描順序示意圖。 [0121] 另-種方案是各難訊號檢騎道同時分财各自組内 進行間隔掃描檢測’综合全部觸控訊號檢測通道的檢測 結果,獲得全螢幕的觸控資訊。第40圖赢個觸控訊號 檢測通道時的掃描順序示意圖。 [0122] 再種方案疋各觸控訊號轉測通道同時分別在各自組内 〇 進行粗掃加細掃細·!,综合全部觸控訊號檢測通道的檢 别結果,獲得全祕_控資訊。第41圖是三個觸控訊 號檢測通道時的掃描順序示意圖。 [0123] 以上所述僅為舉例性,而非為限制性者。任何未脫離本 發明之精神與料,㈣其進行之等效似或變更,均 應包含於後附之申請專利範圍中。 [0124] 【圖式簡單說明】 第1圖係為本發明之W-LCD顯示器典型的結構圖; 第2圖係為本發明之m一⑽的顯示子像素的結構示意圖 098142156 表單編號麵 ^ 41 77 M 〇993125345-0 201120844 第3圖係為本發明之TFT-LCD液晶顯示器常規顯示驅動的 時序圖; 第4圖係為本發明之TFT-LCD顯示器的觸控顯示器的結構 圖; 第5圖係為本發明之分時多工顯示器電極的時序圖; 第6圖係為本發明之具體實施方式一的觸控激勵訊號波形 圖; 第7圖係為本發明之具體實施方式二的觸控激勵訊號波形 圖; 第8圖係為本發明之具體實施方式三的觸控激勵訊號波形 圖; 第9圖係為本發明之具體實施方式四的觸控激勵訊號波形 圖, 第10圖係為本發明之具體實施方式五的觸控激勵訊號波 形圖; 第11圖係為本發明之具體實施方式六的觸控激勵訊號波 形圖; 第12圖係為本發明之具體實施方式七、方式八的分時多 工顯示器電極的時序圖; 第13圖係為本發明之具體實施方式七、方式八的觸控激 勵訊號波形圖; 第14圖係為本發明之在外場下正性液晶材料分子排列順 序圖; 第15圖係為本發明之在外場下負性液晶材料分子排列順 序圖; 098142156 表單編號A0101 第42頁/共77頁 0993125345-0 201120844 第16圖係為本發明之具體實施方式九的分時多工顯示器 電極時序圖, 第17圖係為本發明之具體實施方式十的分時多工顯示器 電極時序圖; 第18圖係為本發明之手指觸摸顯示器時的等效電路圖; 第19圖係為本發明之觸摸所產生的觸控訊號洩漏電流△i 隨頻率變化的曲線圖; 第20圖係為本發明之COM電極設置在上基板玻璃上時,手 指觸摸顯示器時的等效電路圖; 第21圖係為本發明之觸控激勵訊號為方波時,觸控激勵 源和觸控訊號採樣點的觸控訊號波形圖; 第22a、22b、22c圖係為本發明之觸控激勵訊號為方波 時,觸控探測的完整同步過程示意圖; 第23圖係為本發明之觸控激勵訊號為正弦波時,觸控激 勵源和觸控訊號採樣點的觸控訊號波形圖; 第24a、24b、24c圖係為本發明之觸控激勵訊號為正弦 波時,觸控探測的完整同步過程示意圖; 第25圖係為本發明之瞬時值測量法的觸控訊號檢測電路 結構圖; 第26圖係為本發明之瞬時值測量法的觸控訊號檢測電路 結構圖; 第2 7圖係為本發明之瞬時值測量法的觸控訊號檢測電路 結構圖; 第28圖係為本發明之有效值測量法的觸控訊號檢測電路 結構圖; 第29圖係為本發明之有效值測量法的觸控訊號檢測電路 098142156 表單編號A0101 第43頁/共77頁 0993125345-0 201120844 結構圖; 第30圖係為本發明之有效值測量法的觸控訊號檢測電路 結構圖; 第31圖係為本發明之觸控激勵訊號為方波,觸控訊號採 樣點觸控訊號的時間特徵; 第3 2圖係為本發明之時間特徵測量法的觸控訊號檢測電 路結構圖; 第33圖係為本發明之時間特徵測量法的觸控訊號檢測電 路結構圖; 第34圖係為本發明之相移測量法的觸控訊號檢測電路結 構圖; 第3 5圖係為本發明之相移測量法的觸控訊號檢測電路結 構圖; 第36圖係為本發明之單通道順序掃描的觸控檢測方式檢 測順序示意圖; 第37圖係為本發明之單通道間隔掃描的觸控檢測方式檢 測順序示意圖; 第38圖係為本發明之單通道粗掃加細掃的觸控檢測方式 檢測順序不意圖, 第3 9圖係為本發明之多通道順序掃描的觸控檢測方式檢 測順序示意圖; 第40圖係為本發明之多通道間隔掃描的觸控檢測方式檢 測順序示意圖;以及 第41圖係為本發明之多通道粗掃加細掃的觸控檢測方式 檢測順序示意圖。 【主要元件符號說明】 表單編號A0101 098142156 第44頁/共77頁 0993125345-0 201120844 [0125] 1、2、3、4、N-1、N、i + 1、2i + l、N+1、N + 2、N + 3、 N + Q、N + Q-l、N + Q-2、3N、3N-1、3N-2 :檢測掃描序號 f . 100 : TFT-LCD顯示器; 110 : TFT液晶螢幕; 120 :液晶螢幕水平方向掃描列電極; 121、122、12m-l及12m :掃描電極線(列電極線); 130 :液晶螢幕垂直方向資料行電極; 131及13η :數據電極線(行電極線); 〇 140 :公共電極(COM電極); 150 :液晶螢幕上的薄膜電晶體TFT ; 160 :顯示像素對應的液晶分子盒; 170 :儲存電容; 180 :公共電極電壓源; 181 : TFT-LCD的閘極電極; 182 : TFT-LCD的源極電極(行電極)驅動器; 183 :時序控制器; 〇 ^ 400 :觸控顯示器; 410 : TFT-LCD顯示器; 420 : TFT-LCD顯示器水平方向的掃描列電極; 421 42m :行電極線; 430 : TFT-LCD顯示器垂直方向的資料行電極; 431及43η :行電極線; 440 : TFT-LCD顯示器的公共電極層(COM電極); 450 : TFT-LCD顯示器上的薄膜場效應電晶體TFT ; 460 :顯示像素對應的液晶盒; 098142156 表單編號A0101 第45頁/共77頁 0993125345-0 201120844 470 :儲存電容; 480 : COM電極的顯示驅動電路; 481 :觸控激勵源; 482 : COM訊號選通輸出電路; 483 :列電極的顯示掃描驅動電路; 484 :列電極的觸控電路; 485 :列電極的列訊號選通輸出電路; 486 :行電極的顯示資料驅動電路; 487 :行電極的觸控電路; 488 :行電極的行訊號選通輸出電路; 489 :時序控制器; 1810 :觸控激勵源; 1 820 :採樣電阻; 1821 :等效電阻; 1830 :分佈電容; 1831 :耦合電容; 1 832 :顯示器電極與COM電極之間的電容; 1840 :檢測參考點; 1841 :訊號採樣點; 2020 :採樣電阻; 2 0 21 :等效電阻; 2030 :分佈電容; 2031 :耦合電容; 2032 :耦合電容; 2040 :等效電阻; 2510 :觸控訊號採樣點的訊號; 098142156 表單編號A0101 第46頁/共77頁 0993125345-0 201120844 2511 :檢測參考點的訊號; 2520及2521 :緩衝器; 2522 :第一級差分放大器; 2523 :第二級差分放大器; 2524 :調節電壓輸出; 2525 :類比數位轉換器; 2526 :中央處理器; 2530 :同步控制訊號; 2610 :觸控訊號採樣點的訊號; 2611 :檢測參考點的訊號; 2620及2621 :緩衝器; 2622 :第一級差分放大器; 躺 2623:第二級差分放大器;1 2624 :類比電路; 2625 :類比數位轉換器; 2626 ··中央處理器; 2630 :控制訊號; 2710 :觸控訊號採樣點的訊號; 2711 :檢測參考點的訊號; 2720及2721 :緩衝器; 2722 :第一級差分放大器; 2723 :第二級差分放大器; 2724及2725 :類比數位轉換器; 2726 :中央處理器; 2730 :同步控制訊號; 2810 :觸控訊號採樣點的訊號; 098142156 表單編號A0101 第47頁/共77頁 0993125345-0 201120844 2811 :檢測參考點的訊號; 2820及2821 :緩衝器; 2822 :第一級差分差分放大電路單元; 2823 :轉換器; 2824 :第二級差分放大器; 2825 :調節電壓輸出; 2826 :類比數位轉換器; 2827 :中央處理器; 2830 :同步控制訊號; 2910 :觸控訊號採樣點的訊號; 2911 :檢測參考點的訊號; 2920及2921 :緩衝器; 2922 :第一級差分差分放大電路單元; 2923 :有效值轉換器; 2924 :第二級差分放大器; 2925 :回饋調節類比電路;’ 2926 :類比數位轉換器; 2927 :中央處理器; 2930 :同步控制訊號; 3010 :觸控訊號採樣點的訊號; 3011 :檢測參考點的訊號; 3020及3021 :緩衝器; 3022 :第一級差分差分放大電路單元; 3023 :有效值轉換器; 3024 :第二級差分放大器; 3025 :數位類比轉換器; 098142156 表單編號A0101 第48頁/共77頁 0993125345-0 201120844 3026 :類比數位轉換器; 3027 :中央處理器; 3030 :同步控制訊號; 3210 :觸控訊號採樣點的訊號; 3211 :既定電位(V421 ); 3212 :既定電位(V422 ); 3220及3221 :電壓調節輸出單元; 3231 :緩衝器; 3232及3233 :比較器;:s : Mu 4.. I on the connection point between the detection circuit and the touch screen electrode line, the touch signal is shunted due to the input impedance of the detection circuit, and the input impedance of the detection circuit is larger, the shunt of the touch signal The smaller the effect is, "When the input impedance of the detection circuit is 2.5 times or more, the touch signal can reflect the touch action information." Therefore, the input impedance of the signal detection channel to the electrode line is required to be 5K Ω or more. 28, 29, 30 add a buffer between the differential amplifier circuit and the connection point of the electrode line on the touch screen to increase the input impedance of the detection circuit. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT 18 098142156 Form No. A0101 Page 33 / Total 77 True 0993125345-0 [0094] 201120844 [0096] [0097] In the introduction of the fourteenth embodiment, we are obsessed with four cabinet secrets _ X ] 杈To the touch display 400 in Fig. 4, the display adopts TFT~LCD, and the equivalent circuit of the shift is shown in Fig. 18. The touch excitation source 1810 is a square wave signal. Since the 183 〇 and 1831 are valley loads, the touch-activated square wave signal has a charge and discharge waveform on the two capacitors. The touch signal waveform of the touch excitation ray 1G and the touch signal waveform of the touch signal sampling point 1841 are as shown in Fig. 21. For the purpose of explaining the present embodiment, the 21st icon number is now re-displayed as shown in Fig. 31. In this embodiment, the time characteristic measurement method is adopted for the detection method of the touch signal, and the change of the time interval between two predetermined potentials during the charging and discharging of the touch signal sampling point 1 8 41 is measured to obtain the touch information. As shown in Fig. 31, the time τ4 2 3 between two predetermined potentials V 4 2 2 and V 4 21 during charging of the touch signal sampling point 1 841 is measured, and two predetermined potentials V421 and V422 during discharge. The time between time T424 can reflect this change in capacitive load. When the finger touches the display, the coupling capacitor 1831 of the equivalent circuit of Fig. 18 produces a change in the capacitive load of the circuit and the time constant, and the time intervals T423 and T424 between the two predetermined potentials also change. The information of the touch can be obtained by measuring the change of the time interval T 4 2 3 4 g 4 , and the predetermined potentials V421 and V422 select two potentials of the sampling point 1841 during the charging and discharging process. The circuit structure for realizing the time characteristic measurement touch signal detection is as shown in Figs. 32 and 33. The structure of the touch signal detection circuit is composed of signal detection and data sampling channels, data processing and timing control circuits. The signal detection and data sampling channel has a buffer, a digital-to-analog conversion circuit or a voltage-regulating output unit, a comparator, and a counter; the data processing and timing control circuit is a central processing unit having a data computing capability and a data output input interface. 098142156 Form No. A0101 34 pages / a total of 77 pages 0993125345-0 201120844 processor (CPU, MCU), the central processing unit with control software, data processing software. [0098] FIG. 3 is a structural diagram of a touch signal detecting circuit of a time characteristic measuring method, 3210 is a signal of a touch signal sampling point, and 3211 is a predetermined potential (V421), which is generated by a voltage adjusting output unit 3220, 3212 is a predetermined potential (V422) generated by the voltage adjustment output unit 3221; the signal 3210 of the touch signal sampling point is buffered and outputted through the buffer 3230, and compared with the predetermined potential of 3211 to enter the comparator 3232; the touch signal sampling is performed. The signal 3210 of the point is buffered and outputted through the buffer 3231, and is compared with the predetermined potential of 3212 into the comparator 3233; the central processing unit (CPU, MC103235 generates the counting pulse signal 3240 of the counter 3234, and the output of the comparator 3233 is also made; The start signal of the counter 3234, the output potential of the comparator 3232 is used as the stop count signal of the counter 3234, and the counter 3234 stops reading after counting. The number is read by the central processing unit (CPU, MCU) 3235. After the central processor (cpu, MCU) 3235 sends a clear signal 3., 241 clears the counter 3234, ready for the next reading and: by The central processing unit (cpu, MCU) 3235 performs data processing and touch judgment. [0099] FIG. 3 is a structural diagram of the touch signal detecting circuit of the time characteristic measuring method, and the 3310疋 touch signal sampling point The signal, the central processing unit (cpu, MCU) 3327 outputs the corresponding data to the digital analog converter 3320 through a program preset or history detection to output a predetermined potential mu (M21), and also outputs the data to the digital analog converter 3321 to output an established signal. Potential 3312 (V422); the signal 331 of the touch signal sampling point is buffered and outputted through the buffer 3322, and enters the comparator 3324 with the predetermined potential of 3311; 098142156 Form No. A0101 Page 35 / Total 77 Page 0993125345-0 201120844 Touch The signal 3310 of the signal sampling point is buffered by the buffer 3323, and enters the comparator 3325 with the predetermined potential of 3312. The central processing unit (CPU, MCU) 3327 generates the counting pulse signal 3330 of the counter 3326, and the output potential of the comparator 3325. As the start count signal of the counter 3326, the output potential of the comparator 3324 is used as the stop count signal of the counter 3326; the counter 3326 stops the reading after the count It is read by the central processing unit (cpu, MCU) 332 7. After the reading is completed, the central processing unit (cpu, MCU) 3327 sends the clearing signal 3331 to clear the counter 3326, ready for the next reading, and is damaged by the central central Processor (CPU, MCU) 3327 .... : : . Data processing and touch judgment, [0100] The difference between the two types of daytime feature measurement touch signal detection shown in Fig. 32 and Fig. 33 is The scheme shown in Figure 3 is a manual method to set two preset potentials V421 and V422 to the comparator; the scheme shown in Figure 33 is to set the two predetermined potentials V421 and V422 to the comparator by the central processing unit, the central processing unit. After the program is preset or the previous measurement result is calculated, the corresponding data is output to the digital-to-analog conversion circuit, and the output is made to "go to the comparison potential, and the adjustment of the predetermined comparison potentials V421 and V422 is intelligent." [0101] Embodiment 19 [0102] Unlike Embodiment 18, in this example, the touch excitation source 1810 is a sinusoidal signal 'Because the 1830 and 1831 are capacitive loads' sinusoidal touch excitation source with capacitive load After that, the waveform on the touch signal sampling point is still a sine wave 'but the amplitude and phase change occur'. The output waveform of the touch excitation source 181〇 and the touch signal waveform of the touch signal sampling point 1841 are as shown in FIG. Show. 098142156 Form No. A0101 Page 36 / Total 77 Page 0993125345-0 201120844 [0103] This embodiment uses a phase shift measurement method for the touch signal detection method to compare touch signal sampling points on different frame blanking periods 丨8 4 The phase shift of a specific phase point is used to obtain touch information. It can be seen that the influence of the touch capacitance can be reflected by the change of the measured phase, and the phase change can also be reflected from the measurement time interval. The detection diagram of this time interval is also shown in Fig. 23, and the display has no finger touch. When the distributed capacitance 1830 in FIG. 18 exists, the touch signal waveform on the touch signal sampling point 1841 is detected to have a phase delay relative to the waveform of the touch excitation source output terminal 184〇; when the finger touches the display, the 18th The coupling capacitor 1831 of the equivalent circuit shown in the figure will be generated, and the capacitance load of the circuit will increase. The time T500 between the zero-crossing point on the touch signal sampling point 1841 and the zero-crossing point between the excitation sources will become larger, that is, Produce a phase shift of the step. Touch information can be obtained by measuring the change in time T5G0. Depending on the touch excitation - source waveform difference, the potential corresponding to a particular phase point can be zero or other potential point. I L , 1 [0104] The circuit structure for realizing the phase shift measurement touch signal detection is as shown in FIG. 34 and FIG. The _ signal system structure is composed of signal detection and data sampling channels, data processing and timing control circuits. The signal detection and data sampling channel has a buffer, a digital-to-analog conversion circuit or a voltage-regulating output unit, a comparator, and a counter; the data processing and timing control circuit is a central processing unit with data computing capability and data wheel-in interface ( CPU ' MCU ), the central processing unit has control software and data processing software. [0105] FIG. 4 is a structural diagram of a touch signal detecting circuit of a phase shift characteristic measuring method, 3410 is a signal of a touch signal sampling point, and 3411 is a signal of a detecting reference point 098142156 form nickname A0101 0993125345-0 201120844' 341 2 is a potential corresponding to a specific phase point generated by the voltage adjustment output unit 342 ;; the signal 341 触控 of the touch signal sampling point is buffered and outputted through the buffer 3430, and the potential corresponding to the specific phase point of 3412 enters the comparator. 3432 compares; the signal 3411 of the touch signal sampling point is buffered and outputted through the buffer 3431, and the potential corresponding to the specific phase point of 3412 enters the comparator 3433 for comparison; the central processing unit (CPU, MCU) 3435 generates the count of the counter 3434. The pulse signal 3440, the output potential of the comparator 3433 is used as the start count signal of the counter 3434, the output potential of the comparator 3432 is used as the stop count signal of the counter 3434; the counter 3434 counts the stop reading by the central processing unit (CPU, MCU) ) 3435 read, after the reading is completed, the central processor (CPU, MCU) 3435 sends out the clear signal 3441, please zero counter 3434 Ready for the next readings by the central central processor (CPlJ, MCU) 3435 perform data processing and touch determination. [0106] FIG. 3 is a structure diagram of a touch signal detecting circuit of a phase shift characteristic measuring method, '3510 is a signal of a touch signal sampling point, and 3511 is a signal for detecting a reference point 'CPU (CPU, MCU) 3526 The corresponding data is output to the digital analog converter 3520 according to the program preset or the history detection judgment, and the potential 3512 corresponding to the specific phase point is the output potential of the digital analog converter 3520; the signal 3510 of the touch signal sampling point is buffered by the buffer 3521 The output 'the potential corresponding to the specific phase point of 3512 enters the comparator 3523 for comparison; the signal 3511 of the touch signal sampling point is buffered and outputted through the buffer 3522, and the potential corresponding to the specific phase point of 3512 enters the comparator 3524 for comparison; The processor (CPU, MCU) 3526 generates the counter pulse signal 3530 of the counter 3525, the input of the comparator 3524 098142156, the form number A0101, the 38th page, the total 77 page, the 0993125345-0 201120844, the potential as the counter 3525, the start count signal, compare The output potential of the device 3523 is used as the stop count signal of the count benefit 3525; the counter 3525 counts the read after the stop The central processing unit (cpu, MCU) 3526 reads, after the reading is completed, the central processing unit (CPU, Mcu) 3526 sends a clear signal 3531 clearing counter 3525, ready for the next reading, and is controlled by the central processing unit ( CPU, MCU) 3526 for data processing and touch determination 〇 [0107] The difference between the two phase shift measurement touch signal detections shown in Figures 34 and 35 is that the scheme shown in Figure 34 is manual. The method sets the potential corresponding to a specific phase point; the solution shown in FIG. 5 is that the central processor sets the potential corresponding to the specific phase point through the digital analog converter, and the central processor calculates the previous measurement result or calculates the previous measurement result. The digital analog converter feeds back the potential corresponding to the specific phase point, and has intelligent adjustment capability for the setting of the specific phase point. [0108] The touch signal phase-sliding feature measured in this embodiment is also a kind of time characteristic. [0109] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT [0110] The touch display 4 shown in FIG. 4, the time division multiplexed display electrode to complete the touch function. The touch display device 4 uses a part or all of the N display electrode lines to divide and operate the touch sensing electrode lines, and performs touch detection in a single channel sequential scanning detection mode: the touch signal detecting circuit has a touch signal Detecting a channel or a data sampling channel, sequentially detecting the first one and the second one of the N touch sensing electrode lines in a scanning manner, until the last Nth touch sensing electrode line, thereby completing A 098142156 Form No. A0101 Page 39 / 77 Page 0993125345-0 201120844 The entire detection process of the probe frame, as shown in Figure 36. [0111] This is also the most common and natural touch detection method. [0112] Embodiment 21 [0113] Different from Embodiment 20, in this example, the first electrode of the N touch sensing electrodes is detected by scanning at a predetermined interval i, i + Ι, 2i + l..... until the last Nth touch sensing electrode line, thus completing the entire detection process of a sounding frame. [0114] When i=2, a schematic diagram of the detection scan of a touch sensing electrode line is shown in FIG. [0115] Embodiment 22 [0116] Different from Embodiments 21 and 22, this example uses a single channel coarse sweep and fine sweep detection method for touch detection: touch signal detection circuit Having a detection channel or a data sampling channel, the touch sensing electrode line is divided into several zones according to each i-zone, and one or more touch sensing electrode lines are selected as the zone touch sensing electrode wire for each zone The touch sensing represents the touch detection together with the electrodes. The best method is to connect all the touch sensing electrodes in each partition in parallel as a touch sensing representative electrode; firstly, the touch sensing representative electrodes are detected by the area to determine The area where the touch action occurs; then the subdivision scan detection is performed in the area where the touch action occurs, thereby obtaining more specific touch information. The purpose of this method is to save time in touch detection. [0117] When i=3, the detection scan of the single-channel coarse sweep plus fine sweep is as shown in FIG. 38. 0993125345-0 098142156 Form No. A0101 Page 40 of 77 201120844 [0118] Embodiment 23 [0119] This example performs touch detection by using a multi-channel sequential scanning detection method: the touch signal detecting circuit has multiple The touch signal detecting channel and the plurality of data sampling channels divide the touch sensing electrode line of the whole Zou into the same number of groups as the touch signal detecting channel, and each touch signal detecting channel is responsible for one touch sensing electrode group Detection. [0120] One solution is that each touch signal detection channel simultaneously performs a sequential scan detection in the respective groups to "detect the detection results of all the touch signal detection channels" to obtain a full-screen touch thief. Figure 39 is a schematic diagram of the scanning sequence when three touch signal detection channels are used. [0121] Another scheme is to perform interval scan detection in the respective groups of the imaginary signals and to separate the detection results of all the touch signal detection channels, and obtain the touch information of the full screen. Figure 40 Wins a touch signal Schematic diagram of the scanning sequence when detecting channels. [0122] In another embodiment, each of the touch signal transduction channels is simultaneously subjected to coarse scanning and fine scanning in each group, and the detection results of all the touch signal detection channels are integrated to obtain the full secret control information. Figure 41 is a schematic diagram of the scanning sequence when three touch signal detection channels are used. The above description is by way of example only and not as a limitation. Any equivalents or modifications made without departing from the spirit and scope of the present invention should be included in the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a typical structural view of a W-LCD display of the present invention; FIG. 2 is a schematic structural view of a display sub-pixel of m-(10) of the present invention 098142156 Form number surface 41 77 M 〇 993125345-0 201120844 FIG. 3 is a timing diagram of a conventional display driving of the TFT-LCD liquid crystal display of the present invention; FIG. 4 is a structural diagram of a touch display of the TFT-LCD display of the present invention; The timing diagram of the time-division multiplexed display electrode of the present invention; FIG. 6 is a waveform diagram of the touch excitation signal according to the first embodiment of the present invention; FIG. 7 is a touch diagram of the second embodiment of the present invention. FIG. 8 is a waveform diagram of a touch excitation signal according to a third embodiment of the present invention; FIG. 9 is a waveform diagram of a touch excitation signal according to a fourth embodiment of the present invention, and FIG. 10 is a waveform diagram of The touch excitation signal waveform diagram of the fifth embodiment of the present invention; FIG. 11 is a waveform diagram of the touch excitation signal according to the sixth embodiment of the present invention; FIG. 12 is a seventh embodiment of the present invention. of FIG. 13 is a waveform diagram of a touch excitation signal according to a seventh embodiment of the present invention; FIG. 14 is a molecular arrangement of a positive liquid crystal material in an external field according to the present invention; Figure 15 is a sequence diagram of the molecular arrangement of the negative liquid crystal material in the external field of the present invention; 098142156 Form No. A0101 Page 42 of 77 0993125345-0 201120844 Figure 16 is a specific embodiment of the present invention FIG. 17 is a timing diagram of a time-division multiplexed display electrode according to a tenth embodiment of the present invention; FIG. 18 is an equivalent circuit diagram of the finger touch display of the present invention; Figure 19 is a graph showing the leakage current Δi of the touch signal generated by the touch of the present invention as a function of frequency; Figure 20 is the equivalent of the finger when the COM electrode of the present invention is placed on the upper substrate glass when the finger touches the display Figure 21 is a touch signal waveform diagram of the touch excitation source and the touch signal sampling point when the touch excitation signal of the present invention is a square wave; the 22a, 22b, 22c diagrams are The schematic diagram of the complete synchronization process of the touch detection when the touch excitation signal of the invention is a square wave; and the touch of the touch excitation source and the touch signal sampling point when the touch excitation signal of the invention is a sine wave Signal waveform diagram; 24a, 24b, and 24c are schematic diagrams of a complete synchronization process of touch detection when the touch excitation signal of the present invention is a sine wave; FIG. 25 is a touch signal of the instantaneous value measurement method of the present invention. FIG. 26 is a structural diagram of a touch signal detecting circuit of the instantaneous value measuring method of the present invention; FIG. 27 is a structural diagram of a touch signal detecting circuit of the instantaneous value measuring method of the present invention; The figure is a structural diagram of the touch signal detecting circuit of the rms measuring method of the present invention; FIG. 29 is a touch signal detecting circuit 098142156 of the rms measuring method of the present invention. Form No. A0101 Page 43 of 77 0993125345- 0 201120844 structure diagram; FIG. 30 is a structural diagram of the touch signal detection circuit of the rms measurement method of the present invention; FIG. 31 is a square wave of the touch excitation signal of the present invention, and the touch signal sampling point is The time characteristic of the touch signal; FIG. 3 is a structural diagram of the touch signal detecting circuit of the time feature measuring method of the present invention; and FIG. 33 is a structural diagram of the touch signal detecting circuit of the time characteristic measuring method of the present invention; Figure 34 is a structural diagram of a touch signal detecting circuit of the phase shift measuring method of the present invention; Figure 35 is a structural diagram of a touch signal detecting circuit of the phase shift measuring method of the present invention; A schematic diagram of the detection sequence of the touch detection mode of the single channel sequential scanning; FIG. 37 is a schematic diagram of the detection sequence of the touch detection mode of the single channel interval scanning of the present invention; FIG. 38 is a single channel coarse sweep and fine sweep of the present invention. The touch detection mode detection sequence is not intended, and the third figure is a schematic diagram of the detection sequence of the touch detection mode of the multi-channel sequential scan of the present invention; FIG. 40 is the touch detection mode detection of the multi-channel interval scan of the present invention. The sequence diagram is shown in FIG. 41; and FIG. 41 is a schematic diagram of the detection sequence of the multi-channel coarse sweep and fine sweep touch detection method of the present invention. [Description of main component symbols] Form No. A0101 098142156 Page 44 of 77 0993125345-0 201120844 [0125] 1, 2, 3, 4, N-1, N, i + 1, 2i + l, N+1, N + 2, N + 3, N + Q, N + Ql, N + Q-2, 3N, 3N-1, 3N-2: detection scan number f. 100 : TFT-LCD display; 110 : TFT liquid crystal screen; 120: The liquid crystal screen scans the column electrodes horizontally; 121, 122, 12m-1, and 12m: scan electrode lines (column electrode lines); 130: liquid crystal screen vertical direction data row electrodes; 131 and 13n: data electrode lines (row electrode lines) 〇140: common electrode (COM electrode); 150: thin film transistor TFT on liquid crystal screen; 160: liquid crystal molecular box corresponding to display pixel; 170: storage capacitor; 180: common electrode voltage source; 181: TFT-LCD Gate electrode; 182: TFT-LCD source electrode (row electrode) driver; 183: timing controller; 〇^400: touch display; 410: TFT-LCD display; 420: TFT-LCD display horizontally Scanning column electrode; 421 42m: row electrode line; 430: data line electrode of vertical direction of TFT-LCD display; 431 and 43η: line Electrode wire; 440: common electrode layer of TFT-LCD display (COM electrode); 450: thin film field effect transistor TFT on TFT-LCD display; 460: liquid crystal cell corresponding to display pixel; 098142156 Form No. A0101 Page 45/ 77 pages 0993125345-0 201120844 470: storage capacitor; 480: COM drive display drive circuit; 481: touch excitation source; 482: COM signal strobe output circuit; 483: column electrode display scan drive circuit; 484: column Touch circuit of electrode; 485: column signal strobe output circuit of column electrode; 486: display data drive circuit of row electrode; 487: touch circuit of row electrode; 488: line signal strobe output circuit of row electrode; 489 : timing controller; 1810: touch excitation source; 1 820: sampling resistance; 1821: equivalent resistance; 1830: distributed capacitance; 1831: coupling capacitance; 1 832: capacitance between display electrode and COM electrode; 1840: detection Reference point; 1841: signal sampling point; 2020: sampling resistance; 2 0 21 : equivalent resistance; 2030: distributed capacitance; 2031: coupling capacitor; 2032: coupling capacitor; 2040: equivalent resistance; 2510: touch Signal number of the sampling point; 098142156 Form number A0101 Page 46/77 pages 0993125345-0 201120844 2511: Signal for detecting the reference point; 2520 and 2521: Buffer; 2522: First stage differential amplifier; 2523: Second stage difference Amplifier; 2524: regulated voltage output; 2525: analog digital converter; 2526: central processing unit; 2530: synchronous control signal; 2610: touch signal sampling point signal; 2611: detection reference point signal; 2620 and 2621: buffer 2622: first stage differential amplifier; lying 2623: second stage differential amplifier; 1 2624: analog circuit; 2625: analog digital converter; 2626 · · central processing unit; 2630: control signal; 2710: touch signal sampling Point signal; 2711: signal for detecting reference point; 2720 and 2721: buffer; 2722: first stage differential amplifier; 2723: second stage differential amplifier; 2724 and 2725: analog digital converter; 2726: central processing unit; 2730: synchronous control signal; 2810: signal of touch signal sampling point; 098142156 form number A0101 page 47/77 page 0993125345-0 201120844 2811: detection reference point 2820 and 2821: buffer; 2822: first stage differential differential amplifier unit; 2823: converter; 2824: second stage differential amplifier; 2825: regulated voltage output; 2826: analog digital converter; 2827: central Processor; 2830: synchronous control signal; 2910: signal for touch signal sampling point; 2911: signal for detecting reference point; 2920 and 2921: buffer; 2922: first stage differential differential amplifier unit; 2923: RMS conversion 2924: second stage differential amplifier; 2925: feedback adjustment analog circuit; '2926: analog digital converter; 2927: central processing unit; 2930: synchronous control signal; 3010: touch signal sampling point signal; 3011: detection Reference point signal; 3020 and 3021: buffer; 3022: first stage differential differential amplifier unit; 3023: rms converter; 3024: second stage differential amplifier; 3025: digital analog converter; 098142156 form number A0101 48 pages/total 77 pages 0993125345-0 201120844 3026: analog to digital converter; 3027: central processing unit; 3030: synchronous control signal; 3210: touch signal The signal samples; 3211: given potential (V421); 3212: given potential (V422); 3220 and 3221: the voltage regulator output unit; 3231: a buffer; 3232 and 3233: comparator;

3234 :計數器; 3235 :中央處理器; 3241 :清零訊號; 3310 :觸控訊號採樣點的訊號; 3311 :既定電位(V421 ); 3312 :既定電位(V422 ); 3320及3321 :數位類比轉換器厂 3322及3323 :緩衝器; 3324及3325 :比較器; 3326 :計數器; 3327 :中央處理器;以及 3331 :清零訊號。 0993125345-0 098142156 表單編號A0101 第49頁/共77頁3234: counter; 3235: central processing unit; 3241: clear signal; 3310: signal of touch signal sampling point; 3311: set potential (V421); 3312: set potential (V422); 3320 and 3321: digital analog converter Plants 3322 and 3323: buffers; 3324 and 3325: comparators; 3326: counters; 3327: central processing unit; and 3331: clearing signals. 0993125345-0 098142156 Form No. A0101 Page 49 of 77

Claims (1)

201120844 七、申請專利範圍: 1 . 一種可排除觸控影響顯示的觸控顯示器,包括一主動式顯 示器、一顯示驅動電路、一觸控電路,以及一使顯示器電 極係用於顯示驅動及觸控探測的一顯示/觸控訊號選通輸 出電路或一顯示/觸控訊號載入電路;該觸控電路具有一 觸控激勵源和一觸控訊號檢測電路;該顯示/觸控訊號選 通輸出電路使一顯示器電極或與一顯示驅動電路連通傳輸 顯示驅動訊號,或與一觸控電路連通傳輸觸控訊號,一顯 示驅動和觸控探測分時多工顯示器電極;該顯示/觸控訊 號載入電路使該顯示器電極同時傳輸一顯示驅動訊號和一 觸控訊號,該顯示驅動和該觸控探測同時共用顯示器電極 ;在該主動式顯示器的一片基板上具有一主動式器件陣列 和連接該主動式器件陣列的一列電極組和一行電極組,在 該主動式顯示器的另一片基板上具有一公共電極;在該顯 示器電極傳輸一顯示訊號的時間段裏面,顯示該驅動電路 對該主動式顯示器上的一列電極執行順序掃描,該主動式 顯示器上的一行電極、一共用電極配合輸出相應的該顯示 訊號;每兩個顯示掃描時間段之間存在一幀消隱時間段, 該幀消隱時間段中該主動式顯示器不執行顯示驅動,對該 列電極掃描停止,該顯示驅動電路對所有的該列電極均輸 出一非選擇訊號,該行電極、該共用電極保持原來的輸出 態或者某預設輸出訊號,該主動式顯示器上部分或全部的 主動式器件處於截止狀態; 其中,在該主動式顯示器之電極傳輸該觸控訊號的時段中 ,所施加的該觸控訊號在各電極之間所具有的暫態電位差 098142156 表單編號A0101 第50頁/共77頁 0993125345-0 201120844 ’使該主動式顯示器上的主動式器件保持截止狀態,排除 該觸控訊號對顯示的影響。 如申请專利範圍第1項所述之可排除觸控影響顯示的觸控 顯示器’其中使該主動式顯示器上部分的該主動式器件處 於截止狀態’是指使該主動式顯示器上與一顯示單元直接 相連接的該主動式器件保持截止狀態。 Ο 5201120844 VII. Patent application scope: 1. A touch display capable of eliminating touch-sensitive display, comprising an active display, a display driving circuit, a touch circuit, and a display electrode for display driving and touch a display/touch signal strobe output circuit or a display/touch signal loading circuit; the touch circuit has a touch excitation source and a touch signal detection circuit; the display/touch signal strobe output The circuit connects a display electrode or a display driving circuit to transmit a display driving signal, or communicates with a touch circuit to transmit a touch signal, a display driving and a touch detecting time-division multiplex display electrode; the display/touch signal carries The input circuit causes the display electrode to simultaneously transmit a display driving signal and a touch signal, and the display driving and the touch detecting share the display electrode at the same time; having an active device array and connecting the active on a substrate of the active display a row of electrode sets and a row of electrode sets of the device array having a common on another substrate of the active display a common electrode; during the period in which the display electrode transmits a display signal, the driving circuit is configured to perform sequential scanning on a column of electrodes on the active display, and a row of electrodes and a common electrode on the active display cooperate to output corresponding Displaying a signal; there is a frame blanking period between every two display scanning periods, in which the active display does not perform display driving, the column electrode scanning stops, and the display driving circuit applies to all The column electrodes each output a non-selection signal, the row electrode, the common electrode maintains an original output state or a predetermined output signal, and some or all of the active devices on the active display are in an off state; wherein, the active During the period in which the electrode of the display transmits the touch signal, the applied touch signal has a transient potential difference between the electrodes 098142156. Form No. A0101 Page 50 / Total 77 Page 0993125345-0 201120844 'Make the initiative The active device on the display remains off, excluding the touch signal for display ring. The touch display capable of eliminating the touch influence display according to the first aspect of the patent application, wherein the active device in the upper portion of the active display is in an off state means that the active display is directly connected to a display unit The active device connected is kept in an off state. Ο 5 如專利申請範圍第1項所述之可排除觸控影響顯示的觸控 顯不器,其中排除該觸控訊號對顯示的影響,是在連接該 主動式器件陣列的該列電極組和該行電極組各條電極線上 所施加該觸控訊號的暫態電位差,使該顯示器上全部的或 部分的該主動式器件保持截止狀態。 如專利申請範圍第1項所述之5•排除觸g影響顯示的觸控 顯示器,其中排除該觸控訊號對顯示的影響,是在連接該 主動式器件陣列的該列電極組或該行電&組中的部分電極 線上和該公共電極上所施加該觸控訊號的暫態電位差,使 連接該部分電極線的該主動式器体保奏截止狀態。 如專利申請範圍第1項所述之可排除觸控影響顯示的觸栌 顯示器,其中該主動顯示器之該基板上的該主動式芎件陣 列是一薄膜場效應電晶體陣列,列行電極線分別連接該薄 膜場效應電晶體的閘極和源極、或分別連接該薄膜場效應 電晶體的閘極和汲極,在連接該薄臈場效應電晶體陣列的 該列電極組和該行電極組該各條電極線上所施加該觸控訊 號的暫態電位差,使該主動式顯示器上全部的或部分的該 薄膜場效應電晶體保持截止狀態。 098142156 如專利申請範圍第1項所述之可排除觸控影響顯示的觸^ 顯示器,其中該顯示器基板上的主動式器件陣列是一薄膜 表單編號A0101 第51頁/共77頁 0993125345-0 6 . 201120844 場效應電晶體陣列5該列行電極線分別連接該薄膜場效應 電晶體的閘極和源極、或分別連接該薄膜場效應電晶體的 閘極和汲極,在該列電極線或該行電極線中連接該薄膜場 效應電晶體的閘極的電極線上和公共電極上所施加該觸控 訊號的暫態電位差,使該顯示器上全部的或部分的主動式 器件保持截止狀態。 7 .如專利申請範圍第1項或第6項所述之可排除觸控影響顯示 的觸控顯示器,其中施加該觸控訊號的各電極之間的該觸 控訊號之關係,是保持各該電極間電位差的平均值不變, 使顯示效果不發生可感知的變化。 8 .如專利申請範圍第1項所述之可排除觸控影響顯示的觸控 顯示器,其中在該主動式顯示器電極傳輸該觸控訊號的一 個時段内,不同電極組之間該觸控訊號的電位差具有保持 固定的時段。 9 .如專利申請範圍第1項所述之可排除觸控影響顯示的觸控 顯示器,其中在該主動式顯示器電極傳輸該觸控訊號的各 個時段間,不同電極組之間該觸控訊號的電位差保持不變 〇 10 .如專利申請範圍第1項所述之可排除觸控影響顯示的觸控 顯示器,其中在該列電極、行電極組上或該公共電極上施 加的該觸控訊號,是交流訊號,或是交流訊號和直流訊號 的混合訊號。 11 .如專利申請範圍第10項所述之可排除觸控影響顯示的觸控 顯示器,其中該觸控訊號中的交流訊號成份的波形是方波 、正弦波、三角波、鋸齒波等交流波形中的一種。 12 .如專利申請範圍第10項所述之可排除觸控影響顯示的觸控 098142156 表單編號A0101 第52頁/共77頁 0993125345-0 201120844 顯示器,其中該觸控訊號中的交流訊號成份的頻率是在 10kHz 或 10kHz 以上。 13 .如專利申請範圍第1項所述之可排除觸控影響顯示的觸控 顯示器,其中該主動式顯示器是薄膜場效應電晶體液晶顯 示器或其他主動式液晶顯示器、主動式有機發光二極體顯 示器、主動式納米碳管顯示器中的一種。 ❹ 0993125345-0 098142156 表單編號A0101 第53頁/共77頁The touch display device capable of eliminating the touch-sensitive display according to the first aspect of the patent application, wherein excluding the influence of the touch signal on the display is connecting the column electrode group of the active device array and the row The transient potential difference of the touch signal applied to each electrode line of the electrode group causes all or part of the active device on the display to remain off. According to the fifth aspect of the patent application, the touch display of the touch-sensitive display is excluded, wherein the influence of the touch signal on the display is excluded, and the column electrode group or the row of electricity connected to the active device array is connected. The transient potential difference of the touch signal applied to the partial electrode line in the & group and the common electrode is such that the active body connected to the partial electrode line is in an off state. The touch-sensitive display capable of eliminating the touch-sensitive display according to the first aspect of the patent application, wherein the active device array on the substrate of the active display is a thin film field effect transistor array, and the column electrode lines are respectively Connecting a gate and a source of the thin film field effect transistor, or respectively connecting a gate and a drain of the thin film field effect transistor, and connecting the column electrode group and the row electrode group of the thin field effect transistor array Transient potential differences of the touch signals applied to the respective electrode lines maintain all or part of the thin film field effect transistors on the active display in an off state. 098142156 The touch display capable of eliminating the touch influence display according to the first aspect of the patent application, wherein the active device array on the display substrate is a film form number A0101 page 51 / page 77 0993125345-0 6 . 201120844 Field effect transistor array 5, the column electrode lines are respectively connected to the gate and source of the thin film field effect transistor, or respectively connected to the gate and the drain of the thin film field effect transistor, in the column electrode line or the The transient potential difference of the touch signal applied to the electrode line connecting the gate of the thin film field effect transistor and the common electrode in the row electrode line keeps all or part of the active device on the display in an off state. 7. The touch display capable of eliminating the touch-sensitive display according to the first or sixth aspect of the patent application, wherein the relationship between the touch signals between the electrodes applying the touch signal is maintained. The average value of the potential difference between the electrodes does not change, so that the display effect does not change appreciably. The touch display capable of eliminating the touch-sensitive display according to the first aspect of the patent application, wherein the touch signal is between the different electrode groups during a period in which the active display electrode transmits the touch signal The potential difference has a period of time that remains fixed. The touch display capable of eliminating the touch-sensitive display according to the first aspect of the patent application, wherein the touch signal is between different electrode groups during each period of the active display electrode transmitting the touch signal The touch display can be excluded from the touch-sensitive display, wherein the touch signal is applied to the column electrode, the row electrode group or the common electrode, as described in claim 1 of the patent application. It is an alternating signal, or a mixed signal of alternating signal and direct current signal. 11. The touch display capable of eliminating the touch influence display according to claim 10, wherein the waveform of the alternating signal component in the touch signal is a square wave, a sine wave, a triangle wave, a sawtooth wave, and the like. One kind. 12. Touch 098142156 which can eliminate the touch influence display as described in the scope of patent application No. 10 Form No. A0101 Page 52 / Total 77 Page 0993125345-0 201120844 Display, wherein the frequency of the AC signal component in the touch signal It is above 10kHz or 10kHz. 13. The touch display capable of eliminating a touch influence display according to the first aspect of the patent application, wherein the active display is a thin film field effect transistor liquid crystal display or other active liquid crystal display, an active organic light emitting diode One of a display, an active carbon nanotube display. ❹ 0993125345-0 098142156 Form No. A0101 Page 53 of 77
TW98142156A 2009-12-09 2009-12-09 Touch-control display capable of removing touch-control impact on display. TW201120844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98142156A TW201120844A (en) 2009-12-09 2009-12-09 Touch-control display capable of removing touch-control impact on display.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98142156A TW201120844A (en) 2009-12-09 2009-12-09 Touch-control display capable of removing touch-control impact on display.

Publications (1)

Publication Number Publication Date
TW201120844A true TW201120844A (en) 2011-06-16

Family

ID=45045341

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98142156A TW201120844A (en) 2009-12-09 2009-12-09 Touch-control display capable of removing touch-control impact on display.

Country Status (1)

Country Link
TW (1) TW201120844A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107369415A (en) * 2016-05-11 2017-11-21 思博半导体股份有限公司 Image communicating device
TWI621047B (en) * 2016-02-19 2018-04-11 禾瑞亞科技股份有限公司 Method, touch sensitive apparatus and electronic system for reducing interference on touch sensitive lcd from touch driving signals
CN108351724A (en) * 2015-11-02 2018-07-31 硅工厂股份有限公司 Touch driving device
TWI637184B (en) * 2017-07-28 2018-10-01 大陸商北京集創北方科技股份有限公司 Touch screen test method, touch screen test system and automatic test device
TWI729776B (en) * 2020-04-17 2021-06-01 敦泰電子股份有限公司 Amoled display driver with frame rate switching
TWI735068B (en) * 2019-08-08 2021-08-01 大陸商敦泰電子(深圳)有限公司 Touch detection method, driver, and touch display device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108351724A (en) * 2015-11-02 2018-07-31 硅工厂股份有限公司 Touch driving device
TWI621047B (en) * 2016-02-19 2018-04-11 禾瑞亞科技股份有限公司 Method, touch sensitive apparatus and electronic system for reducing interference on touch sensitive lcd from touch driving signals
CN107369415A (en) * 2016-05-11 2017-11-21 思博半导体股份有限公司 Image communicating device
TWI637184B (en) * 2017-07-28 2018-10-01 大陸商北京集創北方科技股份有限公司 Touch screen test method, touch screen test system and automatic test device
TWI735068B (en) * 2019-08-08 2021-08-01 大陸商敦泰電子(深圳)有限公司 Touch detection method, driver, and touch display device
TWI729776B (en) * 2020-04-17 2021-06-01 敦泰電子股份有限公司 Amoled display driver with frame rate switching

Similar Documents

Publication Publication Date Title
JP5481740B2 (en) Touch display that can eliminate the effects of touch on the display
WO2011035489A1 (en) Touch control display
WO2011035485A1 (en) Touch control display able to remove touch control impact on display
EP2333642A1 (en) Touch control screen
US9465497B2 (en) Touch sensing system
US9665221B2 (en) Touch sensing system
CN201590059U (en) Touch control circuit
US9619073B2 (en) Touch screen driver including out-of-phase driving signals simultaneously supplied to adjacent TX lines for reducing noise from a display panel, and method for driving the same
CN107665052B (en) Touch pen, touch sensing system and driving method thereof
US10324567B2 (en) Touch sensing system and method of reducing latency thereof
KR102102881B1 (en) Touch sensing system and method of controlling power consumption
KR101475124B1 (en) Apparatus and method for driving touch screen
TW201120698A (en) Touch display.
KR20170039053A (en) Display device and driving method of the same
TW201120507A (en) Touch-controlled screen.
TW201445383A (en) Low noise and time division multiplexing technology of in-cell multi-touch panel and driving method
TW201120844A (en) Touch-control display capable of removing touch-control impact on display.
KR101503106B1 (en) Apparatus and method for driving touch screen
KR20130033562A (en) Apparatus and method for driving touch screen
KR20140065602A (en) Touch sensing system and driving method thereof
KR102390170B1 (en) Display device and driving method thereof
TW201120845A (en) Touch-control display capable of removing touch-control impact on display.
KR20140071056A (en) Electronic device having a touch sensor and driving method thereof
KR101798662B1 (en) Apparatus and method for driving touch screen
WO2013037117A1 (en) Touch displayer capable of excluding display influence touch