201120507 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種觸控螢幕和觸控顯示螢幕,特 別是有關於一種電容式觸控螢幕和觸控顯示螢幕。 【先前技術】 ,目刖,觸控螢幕發展至今已廣泛用於個人電腦、智 慧型=話、公共資訊、智慧家電、工業控制等幕多領域。 在目前的觸,領域,主要有電阻式觸控榮幕、光電式觸 控螢幕、超聲波式觸控螢幕、平面電容式觸控營幕,近 年來投射電谷式觸控螢幕發展迅速。但目前這些觸控螢 幕句〃有各自的技術缺點,造成它們雖然在某些特殊場 合已廣為採用,但難以在普通顯示螢幕上推廣應用。 ,示螢幕朗控⑽是對孿生產品,财技術中, 幕與觸控螢幕各自獨立承擔顯示和觸控任 干螢種分立式的具有觸控功能的平面顯示器以顯 驅動器、觸控螢幕、觸控訊號檢測器、背 構成:觸控螢幕有應用不同感測原理的電阻 工電谷式、電磁式、超聲波式 有無源液晶顯示螢幕(TN/ST ;,顯不螢幕 fTFT T rm I CD)、有源液晶顯示螢幕 1=、二發光二極㈣示勞幕(〇咖 幕、電子^ 體絲#幕(咖)、奈料管顯示勞 f電子、4(e·卿…等。帶有觸, 將分體的觸控勞幕與顯示營幕層疊在-起,通過:控^ 201120507 。測到觸摸點的平面位置,再使顯示螢幕上的游標 二觸摸點定位。觸控螢幕與顯示螢幕的層疊使得觸^ :面顯示器變厚變重成本增加;在觸控螢幕置於顯^ 幕前面時,觸控螢幕感測電極產生的反射又會使得I 不均勻和在強外界光環境τ顯示對比度的下降,影 果。將觸控板和顯示螢幕集成為一體,使“ 功此的平板顯示器變得更加輕薄,是人們努力的方向。二 找出一種解決上述的結構複雜問題的方案, 容式觸控螢幕的可靠性、改#_效果、壓縮厚度回 低成本,以簡潔的方法實現平板顯示器觸控功 的。 文 申請號為2GG61_48141、名稱為《觸控式平 不器》和申請號為薦101065583、名稱為《具有觸控 功能的平板顯示器》的中國發明專利說明書,分別 了-種觸控探測電路與顯示螢幕電極之間的連接不 =過類比開關或載人電路使顯示螢幕電極既傳輸顯示驅 動心虎,又傳輸並感測觸控訊號,顯示驅動和觸控 :分複用或同時共用顯示螢幕電極,顯示螢幕電極既用 於顯示驅動又用於觸控探測,從而創新性地提出了 控式平板顯示器”的概念。 申請號為2_102035358、名稱為《-種觸控式平 板顯示器的驅動實現》的中國發明專利說明堂 =鹽删60、名稱為《一種觸控式平板顯示。 驅動實現》的中國發明專利說明書,申請號為 4 201120507 :=的=書’則又對觸控式平板顯示_了 申請號為200910140965X、名箍盔// 容觸控榮幕》的中國發明專利說二提=字= 方式定位,提高了定位的精度螢幕在千面上以數位化的 所揭示的這類觸控式平面顯示器或觸 控螢幕基本工作原理是,利用顯示螢 =為觸控傳感電極,電極組的各條 連ς控 向電極線施加交流或直流的觸控激發 時鋪:觸控物靠近或接觸某條電極線 : 工^通過捸測各條電極線觸控訊號變化的大 小’從而找出手指或其他觸控物在顯示螢幕上的位置。 【發明内容】 有鑑於上述習知技藝之問題,本發明之目的就是在 ^供一種㈣將’以解決檢測各條電極線JL觸控訊號 的順序問題。 人緣疋,為達上述目的,依本發明之觸控螢幕,其包 3為此,本發明提出的觸控螢幕包括基板和觸控電路, 在基板上設置有不少於兩組相交的行電極組和列電極 組;所述缝電路具有觸控激發源和觸控訊號檢測電 路’所述觸控訊號檢測電路具有訊號檢測通道、資料採 201120507 樣通道二資料處理和時序控制電路;所述訊號檢測通道 具有緩衝器、放大電路等;所述資料採樣通道具有類比/ ,位轉換電路’·資料處理和時序控制電路是具有資料運 异能力、資料輸出輸入介面的中央處理器(cpu、M , 中央處理器具有控制軟體、資料處理軟體;所述觸控電 2過對订電極組或列電極組中的某條電極線施加觸控 ^ ’並檢測該電極線上觸控崎的變化,來探測該電 否被觸碰;所述觸控電路的每—個訊號檢測通道或 貝科採樣通道’對所述行電極組和列電極"各條電^ 訊制訊肋咖序或㈣㈣财是以掃描 段對不同電極線上的觸控訊號進行 進一步地,在本發明的較佳實施例中: 其中,觸控螢幕是電容式觸控榮幕或觸控顯示營幕。 其中’觸控電路對電極缓的搞 電極線作為-次掃描物=㈣M m條或多條 電極的其空線的掃描順序,是依據 螢幕ίΐ按對各條電極線的掃描順序,在整個 踅綦上疋按電極的空間 正個 進行的,在螢幕的某個 干條的順序 疋按電極的空間排列依次 6 201120507 順序進行的。 2,觸控電路對各條電極㈣掃描順序,在整個 ^按電極的空間排列以間隔一條或若干條的順序 仃、,在螢幕的某個區域内也是按電極的空間排列以 間隔一條或若干條的順序進行的。 料採^道觸控電路具有多個訊號檢測通道和/或多個資 所述觸控電路的多個訊號檢測通道或多個資料採樣 別對觸控螢幕上不同區域電極線上的觸控訊號 進仃訊號檢測或資料採樣。 點:承上所述,依本發明之觸控螢幕,其可具有下述優 ^發明揭示了多種單通道和多通道的觸控檢測掃描 =式和順序。將顯示螢幕分成數個區域,並同時探測觸 控’在平面顯示器短暫的顯干洁哼昧門 個&時間 完成探測整 固:員不螢幕上觸摸點的觸控,讓觸控式平面顯示器不產 生顯示的閃爍。 兹為使貴審查委員對本發明之技術特徵及所達到 功效有更進-步之瞭解與認識,謹佐以較佳之實施例 及配合詳細之說明如後。 實施方式】 之 以下將參照相_式,說明依本發明較佳實施例 201120507 觸控營幕,為使便於理解,下述實施财之 以相同之符號標示來說明。 件係 本發明適用於包括具有行電極和列電 螢幕(释,機發光二極體顯示 ?曰顯示 〇LED)、等離子體顯示螢幕(pDp)、奈米碳管顯示整^ 電子紙(e-paper)等平面顯示器。 愛幕、 t〇r LCD, 本說明書的内容以有源液晶顯示器的典 場效應電晶體液晶顯示器(Thin Film加如戈表相 TFT-LCD)為物件進行闡述。 薄膜場效應電晶體液晶顯示螢幕是有源矩陣液 :器(AMLCD)的典型代表,它以基板上的薄膜場:: 曰曰體(TFT)作為開關器件。TFT_LCD顯示器典型的一個 結構如第1圖所示:110是TFT液晶螢幕;12〇是液晶 螢幕水平方向掃描行電極,121、122、.、、12^ 是掃描電極線(行電極線);13〇是液晶螢幕垂直方向資料 列電極’ 131、…、13n是數據電極線(列電極線);140 是公共電極(COM電極),公共電極連接的電位是作為液 晶顯示晝素的參考電位;15〇是液晶螢幕上的薄膜電晶 體TFT ’其栅極(Gate)連接至水平方向掃描線,源極 (Source)連接至垂直方向的資料線,汲極(Drain)則連接至 顯示晝素電極;160是顯示晝素對應的液晶分子盒,在 電氣上等效於一個電容,這個電容一般定義為CLC; 170 是鍺存電容(Capacitance Storage ,Cs),用來儲存顯示 晝素的資訊;180是公共電極電壓源,負責產生公共電 8 201120507 極參考電壓(Vcom Reference) ; 181是TFT-LCD的栅極 電極(行電極)驅動器(Gate Driver),用來驅動水平方向掃 描線;182是TFT-LCD的源極電極(列電極)驅動器 (Source Driver),用來驅動垂直方向資料線;183是時序 控制器(Timing Controller)負責接收來自影像訊號處理 晶片的RGB資料、時鐘訊號Clock、水平同步Hsync和 垂直同步訊號Vsync ’並將這些訊號轉換,用於控制源 極(列電極)驅動器(Source Driver)和栅極(行電極)驅動 器(Gate Driver)協同工作。 一個顯示晝素一般由三個顯示紅、綠、藍三種原色 的子晝素組成。一個顯示子晝素的結構示意圖如第2圖 所示:Gi代表水平方向行掃描電極線,也稱為行驅動電 極線或栅驅動電極線,Gi上的電位是Vg ; Sj代表垂直 方向列h料電極線’也稱為列驅動電極線或源驅動電極 線’ Sj上的電位是Vs ; Dij代表TFT連接顯示晝素的端 子’稱為汲·極’ Dij上的電位是vd,也稱為晝素電位; 每個顯示晝素均配置一個半導體開關器件·薄膜基板上 場效應電晶體(TFT) ’可以通過脈衝直接控制選通進行顯 示掃描,因而每個晝素相對獨立。TFT的栅極(Gate)與源 極(Source)間的電壓為Vgs,tft的柵極(Gate)與汲極 (Drain)間的電壓為Vgd。薄膜場效應電晶體(tft)有 NMOS型和PMOS型兩種。目前絕大部分的tft—LCD 中所使用的薄膜場效應電晶體,是採用非晶石夕 (amorphous silicon,a-Si)製程,其柵極絕緣層是氮化矽 (SiNx),容易獲取正電荷’要在非晶矽半導體層中形成 201120507 通道’恰好利用氮切中的正電荷來幫助吸引電子以形 f通道’因=使用非晶石夕製程❾TFT多為麵〇8型。本 表進行闡述,maS 場效應電晶體為代 原理,不再單獨列舉^膜场效應電晶體可遵循相通的 TFT_LCD液日日日_絲常規顯* =示:在顯示掃描時間段(Disp =序二第3 動電路對行電極執行順序掃描顯示,列電:、C0M;: 配合輸出相應的顯示訊號,讓 ° 每兩個顯示掃描時間段之:输顯示狀態; 行 保持原來的輸出態或者^; Λ 電極 狀態。本發明中的時==λτρτ處於截止 利用這個幀消隱時間段作為複用顯示華^術方案就是 極的時間段。 ·'…、螢幕電極為檢測電 一種觸控電路通過控制顯 同:Γ讓顯示螢幕電極或與顯示驅動路協 =動訊號、或與觸控電路連通通傳輸顯 動和觸控探測時分複用顯示 工訊唬,顯示驅 =電極連通顯示堪動電 ;段’顯 觸控電路傳輪觸控訊號,並分 201120507 和各條列電極線的觸控訊號的變化,以觸控訊號變化達 到某設定條件的行電極線和列電極線為被觸電極線。由 铋測到的被觸行電極線和被觸列電極線的交叉點,確定 出被觸點位置。 本發明實施例所列舉的具體實施方式十六到方式十 九揭示了相關的觸控訊號檢測電路結構。 除此之外,本發明實施例所列舉的具體實施方式一 到方式六是通過選擇合理_錢發職讀,以避免 5激發訊號影響顯示效果的例子,具體實施方式七到 2十提出了避免顯示影響觸控㈣種解決方案,具體 樓式+ Wπ式十二揭不了觸控激發訊號頻率的選 時對網^體實施方式十四和方式十五揭示了觸控探測 進行檢測與所施加的觸控激發訊號的同 2係’具體實施方式二十到方式二十三揭示了多種單 二:二觸控檢測掃描方式和順序。這些實施例 明技術^Μ餘方面的改進,其採用與否不影響本發 Κ案的實ί見,不影響本發明的保護範圍。 4D2 Γ示螢幕水平方向的掃描行電:=幕:行 430 J卩LCD顯示螢幕垂直方向的資 列電極線 431、.一;丁™ 螢幕的公共電極層(C〇M電極)44〇; „τ_ 的薄膜場效應電晶體抓45〇,其栅極_)連接 201120507 至水平方向掃描行電極線,源極(Source)連接至垂直方向 的資料列電極線,汲極(Drain)則連接至晝素電極;顯示 畫素對應的液晶盒460,在電氣上等效於一個電容,這 個電容一般定義為CLC ;儲存電容(Capacitance Storage ’ Cs)470 ’用來存儲畫素的顯示資訊;c〇M電極 的顯示驅動電路480,觸控探測狀態時用於COM電極的 觸控激發源481,COM電極的COM訊號選通輸出電路 482 ;行電極的顯示掃描驅動電路483,行電極的觸控電 路(具有觸控激發源和觸控訊號檢測電路)484,行電極的 行訊號選通輸出電路485;列電極的顯示資料驅動電路 486,列電極的觸控電路(具有觸控激激發源和觸控訊號 檢測電路)487,列電極的列訊號選通輸出電路488 ;時序 控制器(Timing Controller)489等。顯示掃描驅動電路483 與觸控電路484通過行訊號選通輸出電路連接到行 電極420 ;顯示資料驅動電路486與觸控電路487通過 列號選通輸出電路488連接到列電極430 ; COM顯示 驅動電路480與觸控激發源481通過c〇M訊號選通輪 出電路482連接到COM電極440。 h•序控制器489接收來自影像訊號處理晶片的RGb 資料、時鐘sK號Clock、水平同步jjsync和垂直同步訊 號Vsync,並控制連接柵極的行顯示驅動電路483、連接 源極的列顯示驅動電路486和連接公共電極的c〇M顯 示驅動電路協同丄作;也控制連接源極的行觸控電 路484、連接柵極的列觸控電路487和連接公共電極的 COM觸控激發源481協同工作;並讓觸控顯示器内的行 12 201120507 選通電路485、列選通電路488和COM訊號選通輸出電 路482使顯示螢幕電極或與顯示驅動電路連通傳輸顯示 驅動訊號、或與觸控電路連通傳輸觸控訊號,顯示驅動 和觸控探測時分複用顯示螢幕電極。 在顯示時段,觸控顯示器400内的行選通電路485、 列選通電路488和COM訊號選通輸出電路482使顯示 螢幕行電極420、列電極430和COM電極440,分別連 通行顯示驅動電路483、列顯示驅動電路486和COM顯 示驅動電路480傳輸顯示驅動訊號,顯示螢幕410處於 顯示態。 在觸控探測時段,觸控顯示器400内的行選通電路 485、列選通電路488和COM訊號選通輸出電路482使 顯示螢幕行電極420、列電極430和COM電極440,分 別連通行觸控電路484、列觸控電路487和COM觸控激 發源481傳輸觸控訊號,並分別檢測流經各條行電極線 和各條列電極線的觸控訊號的變化,顯示螢幕行列電極 切換作為觸控感應電極使用;以行觸控電路484和列觸 控電路487檢測到流經的觸控訊號變化達到某設定條件 的行電極線和列電極線為被觸電極線。由探測到的被觸 行電極線和被觸列電極線的交又點,確定出觸摸點在顯 示螢幕410上的位置。 第4圖示意的是典型的觸控顯示器的結構,下面對 具體實施方式的說明均建立在這個結構的基礎上。 具體實施方式一 13 201120507 第4圖所示的觸控顯示器400,顯示螢幕電極時分 複用方案的時序如第5圖所示。以每兩次顯示幀之間的 幀消隱時間段作為觸控探測時段,這個時間段裏面顯示 螢幕電極切換為觸控感應電極使用,在顯示螢幕電極上 施加觸控激發訊號,並檢測顯示螢幕電極上觸控訊號的 變化。 觸控激發源為有直流底值或沒有直流底值的方波訊 號源。在觸控探測時,對如第2圖所示TFT的Gi,Sj, COM三個電極分別施加如第6圖所示觸控激發訊號,所 施加的這三個觸控激發訊號都是有直流底值或沒有直流 底值的方波,其頻率相同且相位一致。在顯示螢幕電極 從顯示狀態切換到觸控探測狀態時,首先讓對電極Gi 與電極Sj施加的觸控激發訊號的暫態電位差Vgs=Vg-Vs 低於讓TFT處於截止狀態的截止電壓;其次再讓對COM 電極和電極Gi施加合適的觸控激發訊號,使晝素電極電 位Vd與COM電極電位Vcom的平均值均保持不變,並 使晝素電位Vd符合Vgd=Vg-Vd的暫態電位差均低於讓 TFT處於截止狀態的截止電壓這一要求,保證Vgs和Vgd 均低於讓TFT處於截止狀態的截止電壓,從而確保了 TFT在觸控探測狀態下能保持有效截止,並維持了顯示 晝素的電壓,讓顯示效果不受觸控探測的影響。 觸控激發源選擇為有直流底值或沒有直流底值的方 波訊號源,且這些方波訊號源的頻率和相位一致,跳變 的幅度也一致,使TFT的Gi,Sj,COM三個電極施加 201120507 平’事實上觸控檢測 能得到良好的檢測效 有較高的實用價值。 的激發訊號的差值為恒定的直流電 時可以採用結構簡便的檢測電路就 果’並且訊號源的產生非常方便, 具體實施方式二 2 =與實施例一的不同在於:所施加的這三個 觸控激發訊唬(如第7圖所示)的頻率是不相同的。 具體實施方式三 一本實施例與實施例一和實施例二的不同在於:所施 的這三個觸控激發訊號都是有直流底值或沒有直流底值 的方波,其頻率相同但相位不一致,如第8圖所示。 具體實施方式四 本實施例與實施例一至實施例三所不同的是:在觸 控探測時,如第2圖所示TFT的Gi,Sj,COM三個電 極分別施加如第9圖所示觸控激發訊號,所施加的三個 觸控激發訊號都是有直流底值或者沒有直流底值的正弦 波(注意實施例一至三為方波而非正弦波),其頻率相同 和相位一致。 具體實施方式五 本貝細*例與實施例一至實施例四所不同的是,在觸 控探測時’如第2圖所示TFT的Gi,Sj,COM三個電 極分別施加如第10圖所示觸控激發訊號’所施加的三個 觸控激發訊號都是有直流底值或者沒有直流底值的正弦 波’頻率和相位都相同,但波形交流部分的幅值是不同 15 201120507 的0 具體實施方式六 控探= = :至實施例五所不同的是’在觸 號的組合不使發訊號’這種激發訊 66巫格括…旦素電極電位…與⑺崖電極電位Vc〇m ㈣^ 持不變,但可以令兩者的電位差Vd_V_ 響::保持不變,也能讓顯示效果不受觸控探測的影 具體實施方式七 第4圖所示的觸控顯示@ 4〇〇,顯示器採用 ZLCD,TFT_LCD採用正性液晶材料。液晶材料介電 係數各向異性的特徵,使液晶盒内各處分佈電容隨各處 液晶分子的排列而變化。TFT_LCD内域液晶分子的排 列取決於該處驅動㈣所累積的有效值,不同時刻不同 位置累積的驅動電壓有效值不同,液晶分子排列就不 同,分佈電容也不同,進行觸控探測的測量環境就不同。 對TFT-LCD施加驅動電壓時,液晶分子排列狀態因驅動 電場的作用而一致趨向平行於電場的方向。 一顯,電極時分複用方案的又一時序如第12圖所 示^以每兩次顯示幀之間的幀消隱時間段作為觸控探測 時段。在這一時間段裏面,先同時對顯示螢幕所有行電 極線Gi和列電極線力’施加一個飽和的預置驅動(預驅 動,pre-driving),Gi、Sj和c〇M三個電極上的訊號波 201120507 13圖所示’觸控激發訊號為有直流底值或沒 :二值的正弦波。〇峋間的電位差%在,Μ到 =間,低於讓TFT處於截止狀㈣截止電壓 顯不;Gi-COM間的電位差Vgc在]〇 5v到-12v =曰、 位差Μ是5V ’都超過液晶分子的飽和 動電壓。在所施加的飽和驅動電壓的作用下, 示螢幕内行電極和(Χ)Μ妹之間的液晶分子、列=極 2 COM電極之間的液晶分子’排列方向都—致迅速轉 向趨向平行於電場的方向。如帛14圖所示,給正性液曰 材料分子施加電場E時,液晶分子的排列平行於電場= 向的排列狀態。再分別對顯示螢幕行電極線G丨和列電極 線Sj施加觸控激發訊號,並分別檢測流經各條行電極線 和各條列電極線的觸控訊號的變化;之前的飽和預驅動 電壓使液晶分子排列一致,排除了液晶材料介電係數各 向異性導致的分佈電容的變化,檢測各條行電極線上和 各條列電極線上觸控訊號的變化時,不同時刻不同位置 上的測量環境趨向於一致,有利於觸控探測結果的穩定 性和一致性。 對液BB外加電%時’由於液晶分子為無極性分子, 如第14圖液晶分子的排列不會受電場正負方向的影 響,所以在預驅動環節裏電極上的暫態電壓可正可負, 只要保持對液晶的飽和驅動即可。所以施加在顯示榮幕 同一電極上的預驅動訊號和觸控激發訊號的波形或頻 率、幅值都可以是相同的,甚至將預驅動訊號和觸控發 訊號採用同一訊號。 17 201120507 具體實施方式八 與實施例七不同的是, 晶材料,如第15圖所示。 本例中TFT-LCD採用負性液 具體實施方式九 TFTfrn4圖所示的觸控顯示$侧,顯示器採用 _ ’由於液晶顯示H的回應速度相對較低,在顯 不㈣’容易存在殘影、拖尾現象,為了解決這 -問題’目前的—種解決方案是提高顯示的巾貞頻,在每 :個,示t貞後面插人—個“職”,讓“黑t貞,,阻斷之前顯 示内谷的殘衫。所§胃黑幀就是在這一幀内’在TFT處於 導通的狀態下,通過列電極Sj對顯示畫素電極施加一個 飽矛驅動電壓’讓顯示晝素内液晶分子的排列一致處於 與所加電場垂直或平行的方向。在顯示晝素内液晶分子 排列處於一致的情況下,液晶顯示螢幕内列電極和c〇M =極之間液晶分子的排列也將是一致的。由於行電極是 掃描電極,各行電極上的電壓有效值是一樣的,在列電 極和COM電極之間液晶分子排列處於一致的情況下, 各行電極上的分佈電容就基本是一致的。 顯示電極時分複用方案的時序如第16圖所示。在黑 幀之後才分別對顯示螢幕行電極線Gi和列電極線幻施 加觸控激發訊號’並分別檢測流經各條行電極線和各條 列電極線的觸控訊號的變化。利用黑幀讓液晶分子排列 處於一致,排除了液晶材料介電係數各向異性導致的分 佈電容的變化’檢測各條行電極線上和各條列電極線上 201120507 觸控訊號的變化時’不同時刻不同位置上的測量環境趨 向於一致,有利於觸控探測結果的穩定性和一致性。 具體實施方式十 第4圖所示的觸控顯示器4〇〇,顯示器採用 TFT-LCD,與實施例九相同之處在於’也在每一個顯示 幀後面插入一個“黑幀”,讓“黑幀,,阻斷之前顯示内容的 殘影。 與實施例九不同的是,顯示電極時分複用方案的再 一時序如第17圖所示。在正常顯示幀之後和黑幀之後都 分別對顯示螢幕行電極線Gi和列電極線Sj施加觸控激 發訊號,並分別檢測流經各條行電極線和各條列電極線 的觸控訊號的變化。這樣,既充分地利用了顯示幀間的 幀消隱時間,在每一幀消隱時間都將顯示螢幕電極切換 為觸控感應電極使用;又利用黑幀液晶分子排列一致, 排除液晶材料介電係數各向異性導致的分佈電容的變 化;綜合判斷來消除液晶分子排列不一致對檢測環境的 影響。 具體實施方式十一 第4圖所示的觸控顯示器400,顯示器採用 TFT-LCD ’玻璃基板厚度為〇.3mm。當人的手措觸摸顯 不螢幕表面時,手指通過基板玻璃片與顯示螢幕電極間 形成一個耦合電容,等效電路如第18圖所示。181〇是 對顯示螢幕電極提供觸控激發訊號的觸控激發源,1820 是觸控電路内觸控訊號檢測電路的採樣電阻,1821是一 201120507 組作為觸控感應電極使用的顯示螢幕電極的等 刪是-組作為觸控感應電極使用的顯示螢幕電極相 對顯示螢幕内其他電極的分佈電容,1831是手指與—組 作為觸控感應電極使用的顯示螢幕電極間的輕合^容、、且 1832是-組作為觸控感應電極使用的顯示瑩幕電極| COM電極之間的電容。 /' 通常,手指與-組作為觸控感應電極使用的顯示營 幕電極間的重疊寬度在5mm以下,基板玻璃厚度為 〇.3mm’輕合電容1831就大約為1〇pF;對於通常的 TFT-LCD採樣電阻職和等效電阻助之和約為 30ΚΩ’作為觸控感應電極使用的顯示螢幕電極上的觸# 訊號部分地從耦合電容183丨洩漏出去到手指;當觸控^ 發源輸出Vms=5V的正弦波時,耦合電容1831導致的 洩漏電流Δί隨觸控激發源頻率變化的關係如第圖所 示。觸控激激發訊號的頻率對耦合電容1831的容抗構成 主要的影響,而容抗不同’電流從手指洩漏出去的觸控 訊號的大小就不同。頻率太低,耦合電容1831容抗太 小,觸控顯示器400對觸控物的觸控不敏感,容易產生 觸控的漏判斷。觸控激發訊號的頻率選擇對觸控探測可 靠性的影響較大,特別是#顯示器前再加有保護面殼的 情況下。 從第19圖可以看出,在實際的實驗結果中,觸控激 發源的頻率低於1 〇ΚΗζ時’茂漏電流&較小,與環境 雜訊比較不夠明顯難於區分,將觸控激發源頻率設置在 201120507 ΙΟΚΗζ或以上時,才是利用顯示螢幕電極作為觸控感應 電極使用的合理電路參數。 具體實施方式十二 第4圖所示的觸控顯示器400,顯示器採用 TFT-LCD,玻璃基板厚度為0.3mm。當液晶螢幕的COM 電極設置在朝向操作者的上基板玻璃上時,COM電極會 在行電極和列電極與操作者之間形成一定的遮罩效果。 手指與顯示螢幕COM電極間形成一個耦合電容,COM 電極與一組作為觸控感應電極使用的顯示螢幕電極間又 存在耦合電容,等效電路如第20圖所示。2010是對顯 示螢幕電極提供觸控激發訊號的觸控激發源,2020是觸 控電路内觸控訊號檢測電路的採樣電阻,2021是一組作 為觸控感應電極使用的顯示螢幕電極的等效電阻,2030 是一組作為觸控感應電極使用的顯示螢幕電極相對顯示 螢幕内其他電極的分佈電容,2031是COM電極與一組 作為觸控感應電極使用的顯示螢幕電極間的耦合電容, 2032是手指與顯示螢幕COM電極間的耦合電容,2040 是激發源和C Ο Μ電極之間的等效電阻。 通常,手指與一組作為觸控感應電極使用的顯示螢 幕電極間的重疊寬度在5mm以下,基板玻璃厚度為 0.3mm,耗合電容2032就大約為10pF ;對於通常的 TFT-LCD採樣電阻2020和等效電阻2021之和約為 30ΚΩ。人的手指觸摸觸摸顯示螢幕表面時,由於耦合電 容2031和2032的存在,作為觸控感應電極使用的顯示 21 201120507 螢幕電極上的觸控訊號部分地從輕合 COM電極’再從⑶極與手指㈣合電容則= _^ 到手指。選用高頻的觸控激發訊號時,從耦人 和2G32茂漏的電流Ai就較大,觸控訊號穿透 電極遮罩的能力就較強,可獲得比較好的觸控 月&力。 具體實施方式十三 TF丄4圖所示的觸控顯示器400 ’顯示器採用 _ CD。液晶材料介電係數各向異性的特徵,使液晶 盈内各處分佈電容隨各處液晶分子的排列而變化。 =T-LCD内各處液晶分子的排列取決於該處驅動電壓所 累積的有效值,不同時刻不同位置累積的驅動電塵有效 值不同,液晶分子排列就不同,分佈電容也不同, 觸控探測的測量環境就不同。但液晶材料介電係數的各 向異性存在_率變化的色散效應,通常在卿kh 以上電訊制仙下’其介㈣數的各向異性基本不能 體現。 對顯不螢幕行電極線Gi和列電極線Sj施加頻率在 :MHz或以上的觸控激發訊號’並分別檢測流經各條行 電極線和各條列電極線的觸控訊號的變化。雖铁 TFT-LCD的不同位置上液晶分子的排列不盡一致,但由 於液晶材料介電係數的各向異性的色散效應,對於1MHz 或以上的職激發訊號,仍排除了液晶材料介電係數各 向異性導致的分佈電容的變化,檢測各條行電極線上和 22 201120507 各條列電極線上觸控訊號的 上的測量環境趨向於一致, 性和一致性。 變化時,不同時刻不同位置 有利於觸控探測結果的穩定 具體實施方式十四 TFT ^ 1所示的觸控顯示器4〇0,顯示器採用 _ CD。Λ際進行觸控探測時, 1891 « ,上電路内觸控訊號檢測電路的採樣電阻, 二—,=r—=應:=示_極的 指與-組作電極的分佈電容,1831是手 合電容,是使用的顯示螢幕電極間的輕 電極與cmi電極之Hi錢電極使料顯示螢幕 壓變化的觸控訊號採=1841是測量觸控訊號電 化的檢測參考點,這裏3空1840是測量觸控訊號電壓變 作為參考點,事實擇觸控激發源1810的輸出端 點,如觸控電料㈣mm的電㈣為參考 、:對==電= ==在===:= 、 出波形和觸控訊號採樣點1841的觸控訊 23 201120507 號波形如第21圖所示。 本實施方式對觸控訊號的檢測方法採用瞬時值測量 法’測量觸控訊號採樣點1841在某一特定相位點上的電 位’比較不同的幀消隱時間段内所檢測到的這個特定相 位點電位的變化,來獲取觸控資訊;所述的某一特定相 位點是指相對於觸控激發源1810輸出端波形的特定相 位點。第18圖所示電路以激發源訊號為電路源、採樣電 阻所在的支路上是1830和1831兩個電容並聯再與182〇 和1821兩個電阻串聯的rc回路。在觸控探測時段,對 第18圖所示電路施加觸控激發訊號,電路就會對電容產 生充放電過程。第21圖中T1和T2段為適合採樣的相 位區間’在觸控訊號採樣點1841上τΐ的相位區間是電 容開始充電到充電完成的時間段,T2的相位區間是電容 開始放電到放電完成的時間段。 為確保證每一次對觸控訊號的檢測都處於相對於觸 控激發源1810輸出端波形的特定相位點上,需要保持嚴 格的一系列的同步關係。這裏的同步關係由三項同步關 係組成:顯示幀同步、觸控激發脈衝數同步、觸控激發 波形相位同步。顯示幀同步:每次開始施加觸控激發訊 號都是在兩次顯示幀之間的幀消隱時間段内的某一固定 時刻;激發脈衝個數同步:從開始施加觸控激發訊號到 作為觸控感應電極使用的顯示螢幕電極上,開始計算觸 控激發訊號脈衝數’每次獲取採樣資料的時刻都是在相 同序號的觸控激發訊號脈衝數上;激發波形相位同步: 24 201120507 每次,取採樣資料的時刻都處在觸控激發源輸出端波形 的特疋相位點上,而這個特定相位點的位置選擇在π 或T2這兩個相位區間内。一個完整的同步過程如第22a Η第22b圖、第22c圖所示。第22a圖是顯示螢幕時 分複用的時序圖,顯示螢幕的行電極、列電極、COM電 極在顯示掃描時間段裏面,配合輸出相應的顯示訊號, 順序進行顯示掃描,而在顯示螢幕的行電極、列電極、 COM電極在幀消隱時間段(H段和反段)内複用在觸控 檢測態時,按檢測要求施加方波觸控激發訊號並進行檢 測;第22b圖是第22a圖中Η段和K段(幀消隱時間段) 的放大示意圖,如第22b圖所示顯示螢幕電極在幀消隱 時間#又内的同一固定時刻開始施加方波觸控激發訊號, 實現幀同步;第22c圖是第22b圖中X段(載入激發訊 5虎並h測時間段)的放大示意圖,在顯示幢消隱時間段 晨面經過幀同步後’開始施加觸控激發訊號,同時也開 始計算激發訊號脈衝個數,每次採樣檢測都是控制在相 同序號的觸控激發訊號脈衝數上,以實現觸控激發脈衝 個數同步;在此觸控激發訊號脈衝裏面,每次獲取採樣 資料的時刻都處在觸控激發輸出端波形的某特定相位 上,以實現與觸控激發波形相位的同步。 具體實施方式十五 與實施例十四不同的是,觸控激發源1810為正弦波 訊號’由於1830和1831是電容負載,正弦波的觸控激 發源帶上電容負載後,在觸控訊號採樣點上的波形還是 25 201120507 正弦波,但發生了幅度和相位的變化,觸控激發源刪 的輸出波形和觸控訊號採樣點的觸控訊號波形如第23 圖所示。 本實施方式對觸控訊號的檢測方法採用相移測量 法,比較不同的幀消隱時間段上觸控訊號採樣點i84i 某一特定相位點的相位移動,來獲取觸控資訊;所述的 某一特定相位點是指相對於觸控激發源181〇輸出端波 形的特疋相位點。第18圖所示以觸控激發源訊號為電路 源、採樣電阻所在的支路上是183〇和1831兩個電容並 聯再與1820和1821兩個電阻串聯的RC回路。在觸控 探測時段,對第18圖所示電路施加觸控激發訊號,正弦 波通過RC回路會發生幅值的下降和相位的延遲;手指 ,摸顯示螢幕時,耦合電容1831引起了 RC回路中c的 憂化,在觸控訊號採樣點測量正弦波過零點相對觸控激 心源1810輸出%波形過零點時間差的變化,來判斷觸控 是否發生。測量觸控訊號採樣點上觸控訊號波形相位移 動的變化,也可以在正弦波的峰值點上或其他相位點上 進行測量。 同樣’為確保每一次對觸控訊號的檢測都處於相對 於,控激發源181〇輸出端波形的特定相位點上,需要保 持嚴格的-系列的同步關係。這裏的同步關係由三項同 步關係組成:顯示幀同步、觸控激發脈衝數同步、觸控 激發j皮形相位同步。顯示幀同步:每次開始施加觸控激 發訊號都是在兩次顯示幀之間的幀消隱時間段内的某一 26 201120507 固疋時刻,激發脈衝個數同步:從開始施加觸控激發訊 號到作為觸控感應電極使用的顯示螢幕電極上,開始計 算觸控激發訊號脈衝數,每次獲取採樣資料的時刻都是 在相同序號的觸控激發訊號脈衝數上;激發波形相位同 步.將測量觸控訊號採樣點上觸控訊號波形的特定相位 點,與觸控激發源輸出端波形相同相位點進行時間的比 較,正弦波的相移資訊是全相位的,故只要每次都是看 同一個特定相位點的移動即可。一個完整的同步過程如 第24a圖、第24b圖、第24c圖所示。第24a圖是顯示 螢幕時分複用的時序圖,顯示螢幕的行電極、列電極、 COM電極在顯示掃描時間段裏面,配合輸出相應的顯示 訊號,順序進行顯示掃描,而在顯示螢幕的行電極、列 電極、COM電極在顯示的幀消隱時間段(η段和κ段) 内複用在觸控檢測態時,按檢測要求載入正弦波激發訊 號並進行檢測;第24b圖是第24a圖中Η段和Κ段(顯 示的幀消隱時間段)的放大示意圖,如第24b圖所示顯 示螢幕電極在顯示的幀消隱時間段内的同一固定時刻開 始施加正弦波觸控激發訊號,實現幀同步;第24c圖是 第24b圖中X段(施加觸控激發訊號並檢測時間段)的 放大示意圖’在顯示的幀消隱時間段裏面經過幀同步 後,開始施加正弦波觸控激發訊號,同時也開始計算觸 控激發訊號脈衝個數,每次採樣檢測都是控制在相同序 號的觸控激發訊號脈衝數上,以實現激發脈衝個數同 步;在此正弦波觸控激發訊號脈衝裏面,每次獲取採樣 資料的時刻都處在觸控激發輸出端波形的相同的某特定 27 201120507 相位點上,以實現與觸控激發波形相位的同步。 具體實施方式十六 具體實施方式十四和方式十五都是用瞬時值測量 法,來對第4圖的觸控顯示器4〇〇進行觸控探測◊這種 瞬時值測量法是在特定相位點的極短時間段内進行對觸 控訊號的檢測’其主要特點就是檢測速度快。實現瞬時 值測量法觸控訊號檢測的三種電路結構如第25圖、第 %圖和® 27圖所示。觸控訊號檢測電路結構都是由訊 號檢測通道、資料採樣通道和資料處理和時序控制電路 組成。訊號檢測通道具有緩衝器、第一級差分放大電路 和第二級差分放大電路;資料採樣通道具有類比/數位轉 換電路;資料處理和時序控制電路是具有資料運算能 力、資料輸出輸入介面的中央處理器(cpu、MCU)了中 央處理器具有控制軟體、資料處理軟體。 第25圖所示是一種瞬時值測量法的觸控訊號檢測 電路結構圖’测是觸控訊號採樣點的訊號,2511是檢 測參考點的訊號,觸控訊號採樣點的訊號251〇和檢測參 考點的訊號2511分別經過緩衝^ 252()和缓衝器2521緩 ,後,作為第—級差分放大器2522的輸人訊號;第一級 刀放大ϋ 2522的輸出再作為第:級差分放大器2功 的其卜個輸人’⑽是調節電壓輸出,其作為基準電 二連接第二級差分放大器2523的另-個輸人,用來減 +一級差分放大電路輸出訊號的底值;第二級差分放 2U3輸出到類比/數位轉換器乃在中央處 28 201120507 理器(CPU、MPU) 2526輸出的同步控制訊號2530的 控制下進行同步採樣,採樣的轉換結果發送到中央處理 器(CPU、MPU) 2526,再由中央處理器進行資料處理 及觸控判斷。 第26圖所示是一種瞬時值測量法的觸控訊號檢測 電路結構圖,2610是觸控訊號採樣點的訊號,2611是檢 測參考點的訊號,觸控訊號採樣點的訊號2610和檢測參 考點的訊號2611分別經過緩衝器2620和緩衝器2621緩 衝後,作為第一級差分放大器2622的輸入訊號;第一級 差分放大器2622的輸出再作為第二級差分放大器2623 的其中一個輸入,回饋調節類比電路2624用第二級差分 放大器2623的輸出作為回饋輸入訊號並自動調節輸出 電壓,其作為基準電位,連接第二級差分放大器2623 的另一個輸入,用來減去第一級差分放大電路輸出訊號 的底值;第二級差分放大器2623輸出到類比/數位轉換 器2625,2625在中央處理器(CPU、MPU) 2626輸出 的同步控制訊號2630的控制下進行同步採樣,採樣的轉 換結果發送到中央處理器(CPU、MPU) 2626,再由中 央處理器進行資料處理及觸控判斷。 第27圖所示是一種瞬時值測量法的觸控訊號檢測 電路結構圖,2710是觸控訊號採樣點的訊號,2711是檢 測參考點的訊號,觸控訊號採樣點的訊號2710和檢測參 考點的訊號2711分別經過緩衝器2720和緩衝器2721緣 衝後,作為第一級差分放大器2722的輸入訊號;第一級 29 201120507 差分放大器2722的輸出再作為第二級差分放大器2723 的其中一個輸入,中央處理器(CPU、MPU) 2726根據 觸控運算結果送出調節資料到數位/類比轉換器2724, 2724的輸出電壓作為基準電位,連接第二級差分放大器 2723的另一個輸入,用來減去第一級差分放大電路輸出 訊號的底值;第二級差分放大器2723輸出到類比/數位 轉換器2725,2725在中央處理器(CPU、MPU) 2726 輸出的同步控制訊號2730的控制下進行同步採樣,採樣 的轉換結果發送到中央處理器(CPU、MPU) 2726,再 由中央處理器進行資料處理及觸控判斷。 第25圖、第26圖、第27圖所示的三種瞬時值測量 法觸控訊號檢測電路的區別在於:第25圖所示方案是手 動的方法給二次差分電路設置一個基準電位,對二次差 分電路具有基本的調節能力;第26圖所示方案是二次差 分電路的輸出端訊號經類比電路再回饋給二次差分電路 作為基準電位,對二次差分電路具有自動跟蹤的調節能 力;第27圖所示方案是將中央處理器運算後的結果經數 位/類比轉換電路回饋給二次差分電路作為基準電位,對 二次差分電路具有智慧化的調節能力。 不同尺寸及解析度的顯示螢幕,其電極的電阻一般 在2K以上,檢測電路與觸控螢幕上電極線的連接點上, 因檢測電路的輸入阻抗而對觸控訊號分流,檢測電路的 輸入阻抗越大,對觸控訊號的分流作用越小。當檢測電 路的輸入阻抗為2.5倍以上時,觸控訊號都能反映出觸 201120507 摸動作資訊的,所以要灰邙 阻抗在腦或⑽m撿=道對電極線的輸入 大電路與觸控螢幕上電極線的,拿垃"26,27在差分放 是A ㈣ 線的連接點之間加上緩衝器就 疋為了增大檢測電路的輸入阻抗。 具體實施方式十七 曰本具f實施方式十四和方式十五也可以使用平均值測 $法,來對第4圖的觸抻gg + w j 種平妁佶、目丨丨旦土 θ a控頌不态400進行觸控探測。這 種千句值測里法疋在一定的時間區段 ,獲得觸控訊號的平均值作為測量結果 雖比瞬時值測量法慢,但其主要特點就是可以消 刀向頻干擾,測量資料更平穩有利於觸控的判斷。 2值是平均值中的—種。實現平均㈣量法對觸控訊 说檢測的三種電路結構如帛2 8圖、帛2 9圖和帛3 〇圖所 :。其觸控訊號檢測電路結構都是由訊號檢測通道、資 料知樣通、貢料處理和時序控制電路組成。訊號檢測 通道具有緩肺、第-級差分放大電路、有效值測量電 路和第二級差分放大電路;資料採樣通道具有類比/數位 轉換1路;資料處理和時序控制電路是具有資料運算能 力、=貝料輸出輸入介面的中央處理器(CPU、MCU),中 央處理器具有控制軟體、資料處理軟體。 ,第28圖所示是一種平均值測量法的觸控訊號檢測 電路結構圖,2810是觸控訊號採樣點的訊號,2811是檢 测參考點的訊號,觸控訊號採樣點的訊號28丨〇和檢測參 考點的訊號2811分別經過緩衝器282〇和緩衝器2821緩 31 201120507 衝後,作為第一級差分差分放大電路單元2822的輸入訊 號;第一級差分差分放大電路單元2822内含頻率選通電 路,選通電路的選通頻率為激發源觸控訊號的頻率,其 對差分放大的輸出進行選通,選通後的輸出再作為有效 值轉換器2823的輸入,2823的有效值輸出作為第二級 差分放大器2824的輸入;2825是調節電壓輸出,其作 為基準電位,連接到第二級差分放大器2824的另一個輸 入端,用來減去2823的有效值輸出訊號的底值;第二級 差分放大器2824輸出到類比/數位轉換器2826,2826在 中央處理器(CPU、MPU)2827輸出的同步控制訊號2830 的控制下進行同步採樣,採樣的轉換結果發送到中央處 理器(CPU、MPU) 2827,再由中央處理器進行資料處 理及觸控判斷。 第29圖所示是一種平均值測量法的觸控訊號檢測 電路結構圖,2910是觸控訊號採樣點的訊號,2911是檢 測參考點的訊號,觸控訊號採樣點的訊號2910和檢測參 考點的訊號2911分別經過緩衝器2920和緩衝器2921緩 衝後,作為第一級差分差分放大電路單元2922的輸入訊 號;第一級差分差分放大電路單元2922内含頻率選通電 路,選通電路的選通頻率為激發源觸控訊號的頻率,其 對差分放大的輸出進行選通,選通後的輸出再作為有效 值轉換器2923的輸入,2923的有效值輸出作為第二級 差分放大器2924的輸入;回饋調節類比電路2925用第 二級差分放大器2924的輸出作為回饋輸入訊號並自動 調節輸出電壓,其作為基準電位,連接到第二級差分放 32 201120507 大器2924的另一個輸入端,用來減去2923的有效值輸 出訊號的底值;第二級差分放大器2924輸出到類比/數 位轉換器2926 ’ 2926在中央處理器(CPU、MPU ) 2927 輸出的同步控制訊號2930的控制下進行同步採樣,採樣 的轉換結果發送到中央處理器(CPU、MPU) 2927,再 由中央處理器進行資料處理及觸控判斷。 第30圖所示是一種平均值測量法的觸控訊號檢測 電路結構圖’ 3010是觸控訊號採樣點的訊號,3〇 11是檢 測參考點的訊號,觸控訊號採樣點的訊號3 〇 1 〇和檢測參 考點的訊號3011分別經過緩衝器3020和緩衝器3021緩 衝後,作為第一級差分差分放大電路單元3022的輸入訊 號;第一級差分差分放大電路單元3022内含頻率選通電 路,選通電路的選通頻率為激發源觸控訊號的頻率,其 對差分放大的輸出進行選通,選通後的輸出再作為有效 值轉換器3023的輸入’ 3023的有效值輸出作為第二級 差分放大器3024的輸入;中央處理器(cpu、MPU) 3027 根據觸控運算結果送出調節資料到數位/類比轉換器 3025, 3025的輸出電壓作為基準電位,連接到第二級 差分放大器3024的另一個輸入端,用來減去3〇23的有 效值輸出訊號的底值;第二級差分放大器3〇24輸出到類 比/數位轉換器3026 ’ 3026在中央處理器(cpu、MPU) 3027輸出的同步控制訊號3〇3〇的控制下進行同步採 樣’採樣的轉換結果發送到中央處理器(Cpu、MPU ) 3027,再由中央處理器進行資料處理及觸控判斷。 33 201120507 第28圖、第29圖和第30圖所示的三種平均值 法觸控訊號檢測電路的區別在於:第28圖所示β : 動的方法給二次差分電路設置一個基準電位,對二: 为電路具有基本的調節能力;第29圖所示方案是二^差 2 =輸出端訊號經類比電路再回饋給二;;差分“ 为位’對—次差分電路具有自動跟縱的調節能 ,第3G圖所不方案是將中央處理器運算後的結果經數 位/類比轉換電路回饋給二次差分電路作為基準電位,對 一次差分電路具有智慧化的調節能力。 不同尺寸及解析度的顯示螢幕,其電極的電阻一般 在2Κ以上,檢測電路與觸控螢幕上電極線的連接點上, 因檢測電路的輸人阻抗輯觸控訊號分流,檢測電路的 輸入阻抗越大,對觸控訊號的分流作用越小。當檢測電 路的輸入阻抗為2.5倍以上時,觸控訊號都能反映出觸 摸動作資訊的,所以要求訊號檢測通道對電極線的輸入 阻抗在5ΚΩ或5ΚΩ以上,如第28圖、29,30在差分放 ^電路與觸控螢幕上電極線的連接點之間加上緩衝器就 疋為了增大檢測電路的輸入阻抗。 具體實施方式十八 在介紹實施例十四時我們提到,第4圖所示的觸控 顯示器400,顯示器採用TFT_LCD,測量的等效電路如 第18圖所示。觸控激發源181〇為方波訊號,由於183〇 和1831疋電谷負載,觸控激發的方波訊號在這兩個電容 上出現充放電波形。觸控激發源1810的輸出波形和觸控 34 201120507 訊號採樣點1841的觸控訊號波形如第21圖所示, 說明本實施例,現重新對第21圖標號,如第31^所,示了。201120507 VI. Description of the Invention: [Technical Field] The present invention relates to a touch screen and a touch display screen, and more particularly to a capacitive touch screen and a touch display screen. [Prior Art], witnessed, touch screen development has been widely used in personal computers, intelligent = words, public information, smart home appliances, industrial control and other fields. In the current touch field, there are mainly resistive touch screens, photoelectric touch screens, ultrasonic touch screens, and flat capacitive touch screens. In recent years, the projected electric valley touch screens have developed rapidly. However, these touch screen sentences currently have their own technical shortcomings, which makes them widely used in some special occasions, but it is difficult to promote the application on the ordinary display screen. The display screen control (10) is for the twin products, the financial technology, the screen and the touch screen are independently responsible for the display and the touch of the dry fluorescent type of discrete flat display with touch function to display the drive, touch screen, Touch signal detector and back structure: The touch screen has a resistor electric valley type, electromagnetic type, ultrasonic type passive liquid crystal display screen (TN/ST;, display screen fTFT T rm I CD) with different sensing principles. Active liquid crystal display screen 1=, two light-emitting diodes (four) display screens (〇 幕 screen, electronic ^ body silk # screen (coffee), Nai tube display labor f electronics, 4 (e·qing...etc. Touch, layer the touch screen and the display screen at the same time, through: control ^ 201120507. Measure the plane position of the touch point, and then position the cursor two touch points on the display screen. Touch screen and display The cascading of the screen makes the touch: the surface display becomes thicker and heavier and the cost increases; when the touch screen is placed in front of the display screen, the reflection generated by the touch screen sensing electrode causes the I to be uneven and in a strong external light environment τ Display contrast drop, effect. Touchpad and display The integration of the screen makes the “flat-panel display become lighter and thinner, which is the direction of people's efforts. Second, find a solution to solve the above-mentioned complex structural problems, the reliability of the capacitive touch screen, change #_ effect, The thickness of the compression is reduced to a low cost, and the touch function of the flat panel display is realized in a simple manner. The application number is 2GG61_48141, the name is "touch type flat" and the application number is 101065583, and the name is "table with touch function". The Chinese invention patent specification of the display, respectively, the connection between the touch detection circuit and the display screen electrode is not = analog switch or manned circuit so that the display screen electrode transmits both the display drive heart and the transmission and sense touch Control signal, display driver and touch: sub-multiplex or share the display screen electrode at the same time, display screen electrode is used for both display drive and touch detection, thus innovatively proposed the concept of a controlled flat panel display. For the invention of 2_102035358, the name "Driver-type flat panel display drive implementation" Chinese invention patent description hall = salt deletion 60, the name is " Touch-type flat panel display. Drive implementation of the Chinese invention patent specification, application number 4 201120507: = = book 'is also displayed on the touch panel _ application number 200910140965X, name hoop helmet / / touch The Chinese invention patent of "Gold Curtain" said that the second working method of the touch-sensitive flat panel display or the touch screen disclosed in the digitized display of the screen is improved. Displaying the flashing light is the touch sensing electrode, and each strip of the electrode group is connected to the electrode line by applying an alternating current or direct current touch excitation: the touch object approaches or contacts an electrode line: The size of the electrode line touch signal changes 'to find out the position of the finger or other touch object on the display screen. SUMMARY OF THE INVENTION In view of the above-mentioned problems of the prior art, the object of the present invention is to provide a method for solving the problem of detecting the order of the touch signals of the respective electrode lines JL. According to the touch screen of the present invention, the touch screen of the present invention comprises a substrate and a touch circuit, and no less than two sets of intersecting row electrodes are disposed on the substrate. The group and the column electrode group; the slit circuit has a touch excitation source and a touch signal detecting circuit. The touch signal detecting circuit has a signal detecting channel, and the data is collected by the 201120507 channel 2 data processing and timing control circuit; The detection channel has a buffer, an amplifying circuit, etc.; the data sampling channel has an analog/bit conversion circuit'. The data processing and timing control circuit is a central processing unit (cpu, M, which has a data transmission capability and a data output input interface). The central processing unit has a control software and a data processing software; the touch control 2 applies a touch to a certain electrode line in the set of electrode groups or column electrodes, and detects a change in the touch line on the electrode line to detect Whether the electric power is touched; each of the signal detecting channels or the Bec sampling channel of the touch circuit 'for the row electrode group and the column electrode " each electric signal In the preferred embodiment of the present invention, the touch screen is a capacitive touch screen or a touch display. Further, in the preferred embodiment of the present invention, the touch screen is a capacitive touch screen or a touch display. The camping screen. The scanning sequence of the touch line on the electrode line as the sub-scanner = (four) M m strip or the strips of the plurality of electrodes is in accordance with the scan order of the screen lines according to the screen. The entire space of the electrodes is performed on the entire surface of the electrode, and the order of a certain dry line of the screen is sequentially arranged according to the space of the electrodes. The order of the touch circuits for each electrode (four) is The space of the electrodes is arranged in the order of one or several strips, and in a certain area of the screen, the space of the electrodes is also arranged in the order of one or several strips. A plurality of signal detection channels and/or a plurality of signal detection channels or a plurality of data samples for the touch circuit are used to detect the touch signals on the electrode lines on different areas of the touch screen. Measure or data sampling. Point: According to the above, the touch screen according to the present invention can have the following advantages. The invention discloses various single-channel and multi-channel touch detection scans=types and sequences. Several areas, and at the same time detect the touch 'on the flat display, the short-term display of the door and the time to complete the detection and consolidation: the touch of the touch point on the screen, so that the touch-type flat panel display does not produce the flashing of the display In order to enable the reviewing committee to have a better understanding and understanding of the technical features and the efficacies of the present invention, the preferred embodiments and the detailed description are as follows. The following is a description of the preferred embodiment of the present invention. In order to facilitate understanding, the following implementations are labeled with the same reference numerals. The present invention is applicable to including a row electrode and a column screen (release) , machine LED display?曰 Display 〇LED), plasma display screen (pDp), carbon nanotube display, e-paper, etc. Love screen, t〇r LCD, the content of this manual is described by the field effect transistor liquid crystal display (Thin Film plus the TFT-LCD) of the active liquid crystal display. The thin film field effect transistor liquid crystal display screen is a typical representative of an active matrix liquid crystal device (AMLCD), which uses a thin film field on a substrate: a germanium body (TFT) as a switching device. A typical structure of the TFT_LCD display is as shown in Fig. 1 : 110 is a TFT liquid crystal screen; 12 〇 is a liquid crystal screen horizontal scanning line electrode, 121, 122,. , 12^ is the scanning electrode line (row electrode line); 13〇 is the liquid crystal screen vertical direction data column electrode '131, ..., 13n is the data electrode line (column electrode line); 140 is the common electrode (COM electrode), common The potential of the electrode connection is the reference potential of the liquid crystal display pixel; 15〇 is the thin film transistor TFT on the liquid crystal screen. The gate is connected to the horizontal scanning line, and the source is connected to the vertical direction. The line, the drain (Drain) is connected to the display halogen electrode; the 160 is a liquid crystal molecular box corresponding to the halogen, which is electrically equivalent to a capacitor, which is generally defined as CLC; 170 is a storage capacitor (Capacitance Storage) , Cs), used to store information showing the halogen; 180 is the common electrode voltage source, responsible for generating the common electricity 8 201120507 pole reference voltage (Vcom Reference); 181 is the TFT-LCD gate electrode (row electrode) driver (Gate Driver) for driving the horizontal scanning line; 182 is the source electrode of the TFT-LCD (Source Driver) for driving the vertical data line; 183 is the timing control The Timing Controller is responsible for receiving RGB data from the image signal processing chip, clock signal Clock, horizontal sync Hsync and vertical sync signal Vsync ' and converting these signals for controlling the source (column) driver (Source Driver) and The gate (row electrode) drivers (Gate Drivers) work together. One shows that alizarin is generally composed of three sub-halogens showing three primary colors of red, green and blue. A schematic diagram showing the structure of the sub-tendin is as shown in Fig. 2: Gi represents a horizontal scanning line, which is also called a row driving electrode line or a gate driving electrode line, and the potential on Gi is Vg; Sj represents a vertical direction column h The potential of the electrode line 'also referred to as the column drive electrode line or the source drive electrode line' Sj is Vs; Dij represents the terminal of the TFT connection display of the pixel 'called 汲·pole' The potential on Dij is vd, also called The halogen potential; each display element is equipped with a semiconductor switching device. The field effect transistor (TFT) on the film substrate can be directly controlled by pulse to perform display scanning, so each element is relatively independent. The voltage between the gate and the source of the TFT is Vgs, and the voltage between the gate and the drain of the tft is Vgd. The thin film field effect transistor (tft) has two types, NMOS type and PMOS type. At present, most of the thin-film field-effect transistors used in tft-LCD use an amorphous silicon (a-Si) process, and the gate insulating layer is tantalum nitride (SiNx), which is easy to obtain positive. The charge 'to form the 201120507 channel in the amorphous germanium semiconductor layer' just uses the positive charge in the nitrogen cut to help attract electrons to form the f channel' because the use of amorphous austenitic process ❾ TFT is more than the type 。8. This table illustrates that the maS field effect transistor is the generation principle, and is not listed separately. The film field effect transistor can follow the same TFT_LCD liquid day and day _ silk conventional display * = display: in the display scan time period (Disp = order The second 3rd moving circuit performs sequential scanning display on the row electrodes, and the column power: C0M;: cooperates with the output of the corresponding display signal, so that every two display scanning time periods: the display state; the line maintains the original output state or ^ Λ Electrode state. In the present invention, the time == λτρτ is at the end of the use of the frame blanking period as a multiplexed display, and the time period is extremely extreme. · '..., the screen electrode is a detection type of a touch circuit. Control display: ΓLet the display screen electrode or the display drive circuit cooperate with the signal, or communicate with the touch circuit to transmit the display and touch detection time division multiplexing display display, display drive = electrode connection display is moving The "segment" touch-control circuit transmits the touch signal, and the change of the touch signal of the 201120507 and each column electrode line is touched by the row electrode line and the column electrode line whose touch signal changes to a certain set condition. The position of the contact point is determined by the intersection of the touched electrode line and the touched electrode line. The specific embodiment 16 to 19 of the embodiments of the present invention disclose related The structure of the touch signal detecting circuit is different. In addition, the specific embodiments 1 to 6 listed in the embodiments of the present invention are examples of selecting a reasonable _ money to read the reading to avoid the effect of the 5 excitation signal on the display effect. Seven to twenty-eight proposed to avoid the display of touch (four) solutions, the specific floor + Wπ type 12 can not reveal the timing of the touch-excited signal frequency to the network body 14 and the way to reveal the touch The detection is performed in the same manner as the applied touch excitation signal. The specific embodiment 20 to 23 reveals a plurality of single two: two touch detection scanning modes and sequences. These embodiments show the technical aspects. The improvement, its adoption does not affect the actual situation of the present invention, does not affect the scope of protection of the present invention. 4D2 shows the horizontal scanning power of the screen: = screen: line 430 J 卩 LCD display screen Owned direction column electrode lines 431 ,. One; the common electrode layer of the D-TM screen (C〇M electrode) 44〇; the film field effect transistor of „τ_ grabs 45〇, its gate_) connects 201120507 to the horizontal scanning line electrode line, source (Source) Connected to the data line electrode line in the vertical direction, Drain is connected to the pixel electrode; the liquid crystal cell 460 corresponding to the pixel is electrically equivalent to a capacitor, which is generally defined as CLC; storage capacitor ( Capacitance Storage ' Cs) 470 ' is used to store display information of pixels; c 〇 M electrode display drive circuit 480, touch excitation source 481 for COM electrodes in touch detection state, COM signal strobe output of COM electrodes Circuit 482; row electrode display scan drive circuit 483, row electrode touch circuit (with touch excitation source and touch signal detection circuit) 484, row electrode line signal strobe output circuit 485; column electrode display data drive Circuit 486, column electrode touch circuit (with touch excitation source and touch signal detection circuit) 487, column electrode column signal strobe output circuit 488; timing controller (Timing Controller) 489, etc. display sweep The driving circuit 483 and the touch circuit 484 are connected to the row electrode 420 through the line signal strobe output circuit; the display data driving circuit 486 and the touch circuit 487 are connected to the column electrode 430 through the column number strobe output circuit 488; the COM display driving circuit 480 And the touch excitation source 481 is connected to the COM electrode 440 through the c〇M signal gate circuit 482. The h-order controller 489 receives the RGb data from the image signal processing chip, the clock sK number Clock, the horizontal synchronization jjsync, and the vertical synchronization. The signal Vsync, and the row display driving circuit 483 for controlling the connection gate, the column display driving circuit 486 for connecting the source, and the c〇M display driving circuit for connecting the common electrode cooperate; the row touch circuit 484 for connecting the source is also controlled. The column touch control circuit 487 connecting the gates and the COM touch excitation source 481 connected to the common electrode cooperate with each other; and let the row 12 201120507 strobe circuit 485, the column strobe circuit 488 and the COM signal strobe output in the touch display The circuit 482 enables the display screen electrode or the display driving circuit to transmit the display driving signal or communicate with the touch circuit to transmit the touch signal, the display driving and the touch The time-division multiplexed display screen electrodes are displayed. During the display period, the row strobe circuit 485, the column strobe circuit 488, and the COM signal strobe output circuit 482 in the touch display 400 cause the display screen row electrode 420, the column electrode 430, and the COM. The electrode 440 is connected to the row display driving circuit 483, the column display driving circuit 486, and the COM display driving circuit 480 to transmit display driving signals, and the display screen 410 is in a display state. During the touch detection period, the row strobe circuit 485, the column strobe circuit 488, and the COM signal strobe output circuit 482 in the touch display 400 cause the display screen row electrode 420, the column electrode 430, and the COM electrode 440 to communicate with each other. The control circuit 484, the column touch circuit 487 and the COM touch excitation source 481 transmit the touch signals, and respectively detect the changes of the touch signals flowing through the row electrode lines and the column electrode lines, and display the screen row electrode switching as The touch sensing electrodes are used; and the row touch electrodes 484 and the column touch circuits 487 detect that the row electrode lines and the column electrode lines that have passed the touch signal change to reach a certain set condition are the touched electrode lines. From the detected intersection of the touched electrode line and the touched electrode line, the position of the touched point on the display screen 410 is determined. Fig. 4 is a view showing the structure of a typical touch display, and the following description of the specific embodiments is based on this structure. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT 13 201120507 The touch display 400 shown in Fig. 4 shows the timing of the time division multiplexing scheme of the screen electrode as shown in Fig. 5. The frame blanking period between each display frame is used as a touch detection period. In this period, the screen electrode is switched to be used as a touch sensing electrode, a touch excitation signal is applied on the display screen electrode, and the display screen is detected. The change of the touch signal on the electrode. The touch excitation source is a square wave signal source with or without a DC bottom value. In the touch detection, the three touch electrodes of the Gi, Sj, and COM electrodes of the TFT shown in FIG. 2 are respectively applied with the touch excitation signals as shown in FIG. 6, and the three touch excitation signals applied are DC. The base value or a square wave without a DC bottom value has the same frequency and a uniform phase. When the display screen is switched from the display state to the touch detection state, the transient potential difference Vgs=Vg-Vs of the touch excitation signal applied to the counter electrode Gi and the electrode Sj is lower than the cutoff voltage for turning the TFT off; Then, a suitable touch excitation signal is applied to the COM electrode and the electrode Gi, so that the average value of the pixel electrode potential Vd and the COM electrode potential Vcom are kept constant, and the halogen potential Vd is in compliance with the transient state of Vgd=Vg-Vd. The potential difference is lower than the cut-off voltage for turning off the TFT, ensuring that both Vgs and Vgd are lower than the cutoff voltage for turning off the TFT, thereby ensuring that the TFT remains effectively cut off during touch detection and maintains Display the voltage of the pixel, so that the display effect is not affected by the touch detection. The touch excitation source is selected as a square wave signal source having a DC bottom value or no DC bottom value, and the frequency and phase of the square wave signal sources are the same, and the amplitude of the jump is also the same, so that the TFTs Gi, Sj, and COM are three. The electrode application 201120507 flat 'in fact touch detection can get good detection effect has higher practical value. The difference between the excitation signals is a constant direct current, and the structure of the detection circuit can be used as a result. And the generation of the signal source is very convenient. The specific embodiment 2 2 is different from the first embodiment in that the three touches are applied. The frequency of the control excitation signal (as shown in Figure 7) is different. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT The present embodiment is different from the first embodiment and the second embodiment in that the three touch excitation signals are all square waves having a DC bottom value or no DC bottom value, and the frequencies are the same but the phases are the same. Inconsistent, as shown in Figure 8. The fourth embodiment differs from the first embodiment to the third embodiment in that, in the touch detection, the three electrodes of the Gi, Sj, and COM electrodes of the TFT shown in FIG. 2 are respectively touched as shown in FIG. The control excitation signal, the three touch excitation signals applied are sine waves with a DC bottom value or no DC bottom value (note that Embodiments 1 to 3 are square waves instead of sine waves), and the frequencies are the same and the phases are the same. The fifth embodiment of the present invention differs from the first embodiment to the fourth embodiment in that, in the touch detection, the three electrodes of the Gi, Sj, and COM electrodes of the TFT shown in FIG. 2 are respectively applied as shown in FIG. The three touch excitation signals applied by the touch excitation signal are both dc waves with a DC bottom value or no DC bottom value. The amplitude and phase are the same, but the amplitude of the waveform AC portion is different 15 201120507 0 specific Embodiment 6 Controlling ==: The difference from the fifth embodiment is that 'the combination of the tactile numbers does not make the signal number'. This kind of excitation signal 66 wraps the electrode potential... and (7) the cliff electrode potential Vc〇m (four)^ The same is true, but the potential difference between the two can be made Vd_V_:: remains unchanged, and the display effect is not affected by the touch detection. The touch display shown in Figure 4 is shown in Figure 4. With ZLCD, TFT_LCD uses a positive liquid crystal material. The anisotropy of the dielectric constant of the liquid crystal material causes the distributed capacitance in the liquid crystal cell to vary with the arrangement of the liquid crystal molecules. The arrangement of the liquid crystal molecules in the TFT_LCD depends on the effective value accumulated in the driving (4). The effective values of the driving voltages accumulated at different positions at different times are different, the liquid crystal molecules are arranged differently, and the distributed capacitance is different. The measurement environment for the touch detection is different. When a driving voltage is applied to the TFT-LCD, the alignment state of the liquid crystal molecules tends to be parallel to the direction of the electric field due to the action of the driving electric field. In one display, another timing of the electrode time division multiplexing scheme is as shown in Fig. 12 as the touch detection period of the frame between each two display frames. During this period of time, a saturated preset drive (pre-driving), Gi, Sj and c〇M are applied to all the row electrode lines Gi and the column electrode forces of the display screen simultaneously. The signal wave 201120507 13 shows that the touch-sensing signal is a sine wave with a DC bottom value or no: binary value. The potential difference between the turns is between Μ and =, which is lower than the cut-off voltage of the TFT (four); the potential difference Vgc between Gi-COM is 〇5v to -12v = 曰, and the difference Μ is 5V ' Exceeding the saturation dynamic voltage of the liquid crystal molecules. Under the action of the applied saturation driving voltage, the liquid crystal molecules between the liquid crystal molecules between the row electrode and the (Χ) sister are arranged in the direction of alignment, and the direction of the liquid crystal molecules is rapidly turned to be parallel to the electric field. The direction. As shown in Fig. 14, when the electric field E is applied to the molecules of the positive liquid helium material, the arrangement of the liquid crystal molecules is parallel to the arrangement state of the electric field = direction. Then, a touch excitation signal is applied to the display screen electrode line G丨 and the column electrode line Sj, and the change of the touch signal flowing through each of the row electrode lines and each column electrode line is separately detected; the previous saturated pre-drive voltage The liquid crystal molecules are aligned, the distribution capacitance change caused by the dielectric anisotropy of the liquid crystal material is excluded, and the measurement environment at different positions and at different positions is detected when detecting the change of the touch signals on each row electrode line and each column electrode line. The trend is consistent, which is conducive to the stability and consistency of the touch detection results. When the liquid BB is applied with a % of electricity, 'the liquid crystal molecules are non-polar molecules. For example, the arrangement of the liquid crystal molecules in FIG. 14 is not affected by the positive and negative directions of the electric field, so the transient voltage on the electrodes in the pre-drive section can be positive or negative. Just keep the saturation drive of the liquid crystal. Therefore, the waveform or frequency and amplitude of the pre-drive signal and the touch excitation signal applied to the same electrode of the display screen can be the same, and even the pre-drive signal and the touch signal are the same signal. 17 201120507 DETAILED DESCRIPTION OF THE INVENTION Eighth is different from the seventh embodiment in that the crystal material is as shown in Fig. 15. In this example, the TFT-LCD adopts a negative liquid. The touch display $ side shown in the figure of the TFTFn4 is used. The display adopts _ 'since the response speed of the liquid crystal display H is relatively low, it is easy to have residual image in the display. The tailing phenomenon, in order to solve this problem, the current solution is to increase the frequency of the display, in each:, after the t贞 insert a person - a "job", let "black t贞,, block The residual shirt of the inner valley was previously displayed. The black frame of the stomach is in this frame 'in the state where the TFT is on, a full-spiral driving voltage is applied to the display pixel electrode through the column electrode Sj' to display the liquid crystal inside the pixel. The alignment of the molecules is in a direction perpendicular or parallel to the applied electric field. In the case where the arrangement of the liquid crystal molecules in the halogen is uniform, the arrangement of the liquid crystal molecules between the liquid crystal display column electrode and the c〇M= pole will also be Consistent. Since the row electrode is the scan electrode, the effective value of the voltage on each row of electrodes is the same. When the alignment of the liquid crystal molecules between the column electrode and the COM electrode is uniform, the distributed capacitance on each row of electrodes is basically The timing of the display electrode time division multiplexing scheme is as shown in Fig. 16. After the black frame, the touch excitation signal is applied to the display screen electrode line Gi and the column electrode line respectively, and the respective flows are detected. The change of the touch signal of the row electrode line and each column electrode line. The arrangement of the liquid crystal molecules is uniform by using the black frame, and the variation of the distributed capacitance caused by the dielectric anisotropy of the liquid crystal material is excluded. When the touch signals are changed on each of the column electrodes, the measurement environment at different positions at different times tends to be consistent, which is beneficial to the stability and consistency of the touch detection results. The display 4 is a TFT-LCD display, which is the same as the embodiment nin in that 'a black frame is also inserted after each display frame, so that the black frame is blocked from the image of the previously displayed content. Different from the embodiment 9, the timing of the display electrode time division multiplexing scheme is as shown in Fig. 17. Applying a touch excitation signal to the display screen electrode line Gi and the column electrode line Sj after the normal display frame and after the black frame, respectively, and detecting the touch signals flowing through the respective row electrode lines and the respective column electrode lines Variety. In this way, the frame blanking time between display frames is fully utilized, and the display screen electrode is switched to the touch sensing electrode in each frame blanking time; and the black frame liquid crystal molecules are aligned uniformly, and the liquid crystal material dielectric is excluded. The variation of the distributed capacitance caused by the coefficient anisotropy; comprehensive judgment to eliminate the influence of the inconsistent alignment of liquid crystal molecules on the detection environment. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT 11 The touch display 400 shown in FIG. 4 has a TFT-LCD glass substrate thickness of 显示器. 3mm. When the human hand touches the surface of the screen, the finger forms a coupling capacitor between the substrate glass and the display screen electrode, and the equivalent circuit is as shown in Fig. 18. 181〇 is a touch excitation source that provides a touch excitation signal to the display screen electrode, 1820 is a sampling resistance of the touch signal detection circuit in the touch circuit, and 1821 is a display screen electrode used as a touch sensing electrode in the 201120507 group. Delete is the distribution capacitance of the display screen electrode used as the touch sensing electrode relative to the other electrodes in the display screen, and 1831 is the light combination between the display screen electrodes used by the finger and the group as the touch sensing electrode, and 1832 Yes - Group as the touch sensing electrode used to display the screen electrode | COM capacitor between the electrodes. /' Generally, the overlap width between the display screen electrodes used by the finger and the group as the touch sensing electrodes is less than 5 mm, and the thickness of the substrate glass is 〇. The 3mm' light-compression capacitor 1831 is about 1〇pF; for the normal TFT-LCD sampling resistor and the equivalent resistance is about 30ΚΩ, the touch-signal on the display screen electrode used as the touch-sensing electrode is partially Leakage from the coupling capacitor 183丨 to the finger; when the touch source outputs a sine wave of Vms=5V, the relationship between the leakage current Δί caused by the coupling capacitor 1831 and the frequency of the touch excitation source is as shown in the figure. The frequency of the touch excitation signal has a major influence on the capacitive reactance of the coupling capacitor 1831, and the magnitude of the touch signal that the capacitive reactance leaks out from the finger is different. The frequency is too low, the coupling capacitance of the coupling capacitor 1831 is too small, and the touch display 400 is insensitive to the touch of the touch object, and the touch leakage judgment is easily generated. The frequency selection of the touch excitation signal has a great influence on the reliability of the touch detection, especially in the case where the protection surface is added before the display. It can be seen from Fig. 19 that in the actual experimental results, when the frequency of the touch excitation source is lower than 1 ', the 'leakage current & is small, and compared with the environmental noise is not obvious enough to distinguish, the touch excitation When the source frequency is set to 201120507 ΙΟΚΗζ or above, it is a reasonable circuit parameter that uses the display screen electrode as the touch sensing electrode. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT 12 In the touch display 400 shown in FIG. 4, the display adopts a TFT-LCD, and the thickness of the glass substrate is 0. 3mm. When the COM electrode of the liquid crystal screen is disposed on the upper substrate glass facing the operator, the COM electrode forms a certain masking effect between the row electrode and the column electrode and the operator. A coupling capacitor is formed between the finger and the display COM electrode, and a coupling capacitor exists between the COM electrode and a set of display screen electrodes used as the touch sensing electrode. The equivalent circuit is shown in FIG. 2010 is a touch excitation source for providing a touch excitation signal to a display screen electrode, 2020 is a sampling resistance of a touch signal detection circuit in a touch circuit, and 2021 is an equivalent resistance of a display screen electrode used as a touch sensing electrode. 2030 is a distributed capacitance of a display screen electrode used as a touch sensing electrode with respect to other electrodes in the display screen. 2031 is a coupling capacitance between a COM electrode and a display screen electrode used as a touch sensing electrode, and 2032 is a finger. With the coupling capacitance between the display COM electrodes, 2040 is the equivalent resistance between the excitation source and the C Ο Μ electrode. Generally, the overlap width between the finger and a set of display screen electrodes used as the touch sensing electrodes is less than 5 mm, and the thickness of the substrate glass is 0. 3mm, the consumption capacitor 2032 is about 10pF; for a typical TFT-LCD sampling resistor 2020 and the equivalent resistance 2021 is about 30 Κ Ω. When a human finger touches and displays the screen surface, the display 21 used as the touch sensing electrode due to the presence of the coupling capacitors 2031 and 2032, the touch signal on the screen electrode is partially from the light COM electrode 'and the (3) pole and the finger (4) Combined capacitance = _^ to the finger. When the high-frequency touch excitation signal is selected, the current Ai from the coupler and the 2G32 is large, and the ability of the touch signal to penetrate the electrode mask is stronger, and a better touch month & force can be obtained. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT 13 The touch display 400' display shown in the TF丄4 diagram uses _CD. The anisotropy of the dielectric constant of the liquid crystal material causes the distributed capacitance of the liquid crystal to vary with the arrangement of the liquid crystal molecules. = The arrangement of liquid crystal molecules in the T-LCD depends on the effective value accumulated by the driving voltage at that place. The effective values of the driving dust accumulated at different positions at different times are different, the liquid crystal molecules are arranged differently, and the distributed capacitance is also different. The measurement environment is different. However, the anisotropy of the dielectric constant of the liquid crystal material has a dispersion effect of _ rate change, and the anisotropy of the number of the four (four) numbers is generally not reflected in the above-mentioned telecommunications system. A touch excitation signal ' having a frequency of : MHz or more is applied to the display line electrode line Gi and the column electrode line Sj and the change of the touch signal flowing through each of the row electrode lines and the respective column electrode lines is detected, respectively. Although the arrangement of liquid crystal molecules is not uniform at different positions of the iron TFT-LCD, due to the anisotropic dispersion effect of the dielectric constant of the liquid crystal material, the dielectric constant of the liquid crystal material is excluded for the excitation signal of 1 MHz or more. The variation of the distributed capacitance caused by the opposite sex, the detection environment on the touch line signals on each of the row electrode lines and the 22 201120507 column lines tends to be consistent, uniform and consistent. When changing, different positions at different times are beneficial to the stability of the touch detection result. Embodiment 14 The touch display shown in TFT ^ 1 is 4〇0, and the display adopts _ CD. When performing touch detection, 1891 « , the sampling resistance of the touch signal detection circuit in the upper circuit, two -, = r - = should: = show the _ pole finger and - group as the distributed capacitance of the electrode, 1831 is the hand The capacitance is the touch signal used to display the light electrode between the screen electrode and the Hi-mo electrode of the cmi electrode to display the change of the screen pressure. The touch control signal is the measurement reference point for measuring the electrification of the touch signal. Here, the space 1840 is the measurement touch. The control signal voltage is changed as a reference point, and the output terminal of the touch excitation source 1810 is selected as the reference, such as the touch electric material (four) mm electric (four) as a reference,: ===electric=== at ===:=, the waveform and The touch signal 23 of the touch signal sampling point 1841 is shown in Fig. 21 as the waveform of 201120507. In the embodiment, the method for detecting the touch signal uses the instantaneous value measurement method to measure the potential of the touch signal sampling point 1841 at a specific phase point to compare the specific phase point detected in the different frame blanking period. The change in potential is used to obtain touch information; the specific phase point is a specific phase point relative to the waveform of the output end of the touch excitation source 1810. The circuit shown in Figure 18 uses the excitation source signal as the circuit source. The branch where the sampling resistor is located is the RC loop in which the 1830 and 1831 capacitors are connected in parallel and then connected in series with the 182〇 and 1821 resistors. During the touch detection period, a touch excitation signal is applied to the circuit shown in Fig. 18, and the circuit generates and discharges a capacitor. In the 21st picture, the T1 and T2 segments are phase intervals suitable for sampling. The phase interval of τ 在 on the touch signal sampling point 1841 is the time period from when the capacitor starts charging to the completion of charging, and the phase interval of T2 is the capacitor begins to discharge until the discharge is completed. period. To ensure that each detection of the touch signal is at a particular phase point relative to the waveform of the output of the touch excitation source 1810, a rigorous series of synchronization relationships need to be maintained. The synchronization relationship here consists of three synchronization relationships: display frame synchronization, touch excitation pulse number synchronization, and touch excitation waveform phase synchronization. Display frame synchronization: Each time the touch activation signal is applied, it is a fixed time in the frame blanking period between two display frames; the number of excitation pulses is synchronized: from the start of applying the touch excitation signal to the touch On the display screen electrode used to control the sensing electrode, start counting the number of touch excitation signal pulses. The time at which the sampling data is acquired is the number of touch excitation signal pulses of the same number; the phase of the excitation waveform is synchronized: 24 201120507 Every time, The time at which the sampled data is taken is at the characteristic phase point of the waveform of the output end of the touch excitation source, and the position of the specific phase point is selected in the two phase intervals of π or T2. A complete synchronization process is shown in Figures 22a, 22b, and 22c. Figure 22a is a timing diagram showing the time division multiplexing of the screen. The row electrode, the column electrode and the COM electrode of the screen are displayed in the display scanning period, and the corresponding display signals are outputted, and the display scanning is performed sequentially, while the display screen is displayed. When the electrode, the column electrode, and the COM electrode are multiplexed in the touch detection state in the frame blanking period (H segment and reverse segment), the square wave touch excitation signal is applied and detected according to the detection requirement; the 22b is the 22a In the figure, the enlarged view of the segment and the K segment (frame blanking period), as shown in Fig. 22b, shows that the screen electrode starts to apply the square wave touch excitation signal at the same fixed time in the frame blanking time #, and realizes the frame. Synchronization; Figure 22c is an enlarged view of the X segment (loading the excitation signal 5 and the h measurement period) in the 22bth picture. After the frame blanking of the display block blanking period, the touch trigger signal is started. At the same time, the number of excitation signal pulses is also calculated. Each sampling detection is controlled by the number of touch excitation signal pulses of the same serial number to realize the synchronization of the number of touch excitation pulses; in the touch excitation signal pulse The time at which the sampled data is acquired is at a specific phase of the waveform of the touch excitation output to achieve synchronization with the phase of the touch excitation waveform. The fifteenth embodiment is different from the fourteenth embodiment. The touch excitation source 1810 is a sinusoidal signal. Since the 1830 and 1831 are capacitive loads, the touch excitation source of the sine wave is charged with a capacitive load, and the touch signal is sampled. The waveform on the point is still 25 201120507 sine wave, but the amplitude and phase changes occur. The output waveform of the touch excitation source and the touch signal waveform of the touch signal sampling point are shown in Fig. 23. In the method for detecting a touch signal, the phase shift measurement method is used to compare phase shifts of a specific phase point of the touch signal sampling point i84i on different frame blanking periods to obtain touch information; A particular phase point refers to a characteristic phase point relative to the output of the touch excitation source 181〇. In Figure 18, the touch excitation source signal is used as the circuit source, and the branch where the sampling resistor is located is an RC loop in which two capacitors of 183 〇 and 1831 are connected in parallel with two resistors 1820 and 1821. During the touch detection period, the touch excitation signal is applied to the circuit shown in FIG. 18, and the sine wave will have a falling amplitude and a phase delay through the RC loop; when the finger touches the display screen, the coupling capacitor 1831 causes the RC loop. The worry of c is to measure the change of the sine wave zero-crossing point relative to the time difference of the output waveform zero-crossing of the touch excitation source 1810 at the touch signal sampling point to determine whether the touch occurs. Measuring the phase shift of the touch signal waveform at the touch signal sampling point can also be measured at the peak point of the sine wave or at other phase points. Similarly, in order to ensure that each touch signal is detected at a specific phase point relative to the output of the excitation source 181, it is necessary to maintain a strict-series synchronization relationship. The synchronization relationship here consists of three synchronization relationships: display frame synchronization, touch excitation pulse number synchronization, and touch excitation j-skin phase synchronization. Display frame synchronization: Each time the touch trigger signal is applied, it is a certain 26 201120507 solid time in the frame blanking period between two display frames. The number of excitation pulses is synchronized: the touch excitation signal is applied from the beginning. On the display screen electrode used as the touch sensing electrode, the number of touch excitation signal pulses is calculated, and each time the sample data is acquired is on the same number of touch excitation signal pulses; the excitation waveform phase is synchronized. The specific phase point of the touch signal waveform on the touch signal sampling point is measured, and the phase point of the waveform of the output end of the touch excitation source is compared, and the phase shift information of the sine wave is all phase, so as long as it is Just look at the movement of the same specific phase point. A complete synchronization process is shown in Figure 24a, Figure 24b, and Figure 24c. Figure 24a is a timing diagram showing the time division multiplexing of the screen, showing the row electrode, the column electrode, and the COM electrode of the screen in the display scanning period, and outputting the corresponding display signal, sequentially performing display scanning, and displaying the screen in the line. When the electrode, the column electrode, and the COM electrode are multiplexed in the frame blanking period (n segment and κ segment) in the touch detection state, the sine wave excitation signal is loaded and detected according to the detection requirement; FIG. 24b is the first An enlarged view of the Η segment and the Κ segment (displayed frame blanking period) in Figure 24a, as shown in Figure 24b, showing that the screen electrode begins to apply sine wave touch excitation at the same fixed time in the displayed frame blanking period. Signal, to achieve frame synchronization; Figure 24c is an enlarged view of the X segment (applying the touch excitation signal and detecting the time period) in Figure 24b. 'After the frame synchronization in the displayed frame blanking period, the sine wave touch is applied. Control the excitation signal, and also start to calculate the number of touch excitation signal pulses. Each sampling detection is controlled by the number of touch excitation signal pulses of the same serial number to realize the excitation pulse. Number synchronization; in this sine wave touch excitation signal pulse, each time the sample data is acquired is at the same specific 27 201120507 phase point of the touch excitation output waveform to achieve phase with the touch excitation waveform Synchronize. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Sixteenth embodiment and fourteenth embodiment are all using the instantaneous value measurement method to perform touch detection on the touch display device 4 of FIG. 4, and the instantaneous value measurement method is at a specific phase point. The detection of touch signals in a very short period of time's main feature is that the detection speed is fast. The three circuit configurations for implementing the instantaneous value measurement touch signal detection are shown in Figures 25, %, and 27. The structure of the touch signal detecting circuit is composed of a signal detecting channel, a data sampling channel, and a data processing and timing control circuit. The signal detection channel has a buffer, a first stage differential amplifying circuit and a second stage differential amplifying circuit; the data sampling channel has an analog/digital conversion circuit; the data processing and timing control circuit is a central processing with data computing capability and data output input interface. (cpu, MCU) The central processing unit has control software and data processing software. Figure 25 shows the structure of the touch signal detection circuit of the instantaneous value measurement method. The measurement is the signal of the touch signal sampling point, the 2511 is the signal for detecting the reference point, the signal of the touch signal sampling point 251〇 and the detection reference. The signal 2511 of the dot is buffered by the buffer 252() and the buffer 2521, respectively, and then used as the input signal of the first-stage differential amplifier 2522; the output of the first-stage knife amplifier ϋ 2522 is used as the first-stage differential amplifier 2 The input of the '(10) is the regulated voltage output, which is used as the reference electric two to connect the other input of the second stage differential amplifier 2523, and is used to reduce the bottom value of the output signal of the first stage differential amplifying circuit; the second stage differential The 2U3 output to the analog/digital converter is synchronously sampled under the control of the synchronous control signal 2530 outputted by the central unit 28 201120507 processor (CPU, MPU) 2526, and the sampled conversion result is sent to the central processing unit (CPU, MPU) 2526. Then, the central processor performs data processing and touch judgment. Figure 26 is a block diagram of the touch signal detection circuit of the instantaneous value measurement method. 2610 is the signal of the touch signal sampling point, 2611 is the signal for detecting the reference point, the signal 2610 of the touch signal sampling point and the detection reference point. The signal 2611 is buffered by the buffer 2620 and the buffer 2621 as the input signal of the first stage differential amplifier 2622; the output of the first stage differential amplifier 2622 is used as one of the inputs of the second stage differential amplifier 2623, and the feedback adjustment analogy The circuit 2624 uses the output of the second stage differential amplifier 2623 as a feedback input signal and automatically adjusts the output voltage, which serves as a reference potential and is coupled to the other input of the second stage differential amplifier 2623 for subtracting the output signal of the first stage differential amplifying circuit. The bottom value of the second stage differential amplifier 2623 is output to the analog/digital converters 2625, 2625 for simultaneous sampling under the control of the synchronous control signal 2630 outputted by the central processing unit (CPU, MPU) 2626, and the sampled conversion result is sent to the center. Processor (CPU, MPU) 2626, and then the central processing unit for data processing and touch judgment. Figure 27 shows the structure of the touch signal detection circuit of the instantaneous value measurement method. 2710 is the signal of the touch signal sampling point, 2711 is the signal for detecting the reference point, the signal 2710 of the touch signal sampling point and the detection reference point. The signal 2711 is buffered by the buffer 2720 and the buffer 2721, respectively, as an input signal of the first stage differential amplifier 2722; the output of the first stage 29 201120507 differential amplifier 2722 is used as one of the inputs of the second stage differential amplifier 2723. The central processing unit (CPU, MPU) 2726 sends the adjustment data to the digital/analog converter 2724 according to the result of the touch operation, and the output voltage of the 2724 is used as the reference potential, and is connected to the other input of the second stage differential amplifier 2723 for subtracting the first The first stage differential amplifier circuit outputs a bottom value of the signal; the second stage differential amplifier 2723 outputs to the analog/digital converter 2725, and the 2725 performs simultaneous sampling under the control of the synchronous control signal 2730 outputted by the central processing unit (CPU, MPU) 2726. The sampling conversion result is sent to the central processing unit (CPU, MPU) 2726, and then the central processing unit performs data processing and touch Off. The difference between the three types of instantaneous value measurement touch signal detection circuits shown in Fig. 25, Fig. 26, and Fig. 27 is that the scheme shown in Fig. 25 is a manual method for setting a reference potential to the second difference circuit, The secondary differential circuit has basic adjustment capability; the scheme shown in FIG. 26 is that the output signal of the secondary differential circuit is fed back to the secondary differential circuit as a reference potential through the analog circuit, and has an automatic tracking adjustment capability for the secondary differential circuit; The scheme shown in Fig. 27 is that the result of the calculation by the central processing unit is fed back to the secondary differential circuit as a reference potential by the digital/analog conversion circuit, and the second differential circuit has an intelligent adjustment capability. The display screens of different sizes and resolutions generally have a resistance of more than 2K. The connection between the detection circuit and the electrode line on the touch screen is shunted by the input impedance of the detection circuit, and the input impedance of the detection circuit is The larger, the smaller the shunting effect on the touch signal. When the input impedance of the detection circuit is 2. When the signal is more than 5 times, the touch signal can reflect the touch information of 201120507, so the impedance of the ash is in the brain or (10)m捡=the input circuit of the electrode line and the electrode line on the touch screen. ; 26,27 Add a buffer between the connection points of the A (four) line in the differential discharge to increase the input impedance of the detection circuit. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The seventeenth embodiment of the present invention and the fifteenth embodiment can also use the mean value measurement method, to the touch map gg + wj of the fourth figure, the θ a control颂 400 400 for touch detection. In the case of a certain time period, the average value of the touch signal is obtained as a measurement result. Although the measurement result is slower than the instantaneous value measurement method, the main feature is that it can eliminate the channel-to-frequency interference and the measurement data is more stable. Conducive to the judgment of touch. The 2 value is the one in the average value. The three circuit structures that implement the average (four) method for touch detection are as shown in Fig. 28, Fig. 2, and Fig. 3: The structure of the touch signal detecting circuit is composed of a signal detecting channel, a data source, a tribute processing and a timing control circuit. The signal detection channel has a slow lung, a first-stage differential amplification circuit, an RMS measurement circuit and a second-stage differential amplification circuit; the data sampling channel has an analog/digital conversion circuit; the data processing and timing control circuit has a data operation capability, The central processing unit (CPU, MCU) of the output interface of the billet, the central processing unit has control software and data processing software. Figure 28 shows the structure of the touch signal detection circuit of the average value measurement method. 2810 is the signal of the touch signal sampling point, 2811 is the signal for detecting the reference point, and the signal of the touch signal sampling point is 28丨〇 The signal 2811 of the detection reference point is buffered by the buffer 282 and the buffer 2821, respectively, and is used as the input signal of the first-stage differential differential amplifying circuit unit 2822; the first-stage differential differential amplifying circuit unit 2822 includes the frequency selection. Through circuit, the strobe frequency of the strobe circuit is the frequency of the excitation source touch signal, and the strobe output is strobed, the strobed output is used as the input of the RMS converter 2823, and the effective value of the 2823 is output as The input of the second stage differential amplifier 2824; 2825 is a regulated voltage output that is connected as a reference potential to the other input of the second stage differential amplifier 2824 to subtract the bottom value of the 2823 rms output signal; The stage differential amplifier 2824 outputs to the analog/digital converter 2826, which performs the same control under the control of the synchronous control signal 2830 output from the central processing unit (CPU, MPU) 2827. Conversion result of the sampling, the sample is sent to the central processing unit (CPU, MPU) 2827, and then processing the touch information determined by the central processor. Figure 29 shows the structure of the touch signal detection circuit of the average value measurement method. 2910 is the signal of the touch signal sampling point, 2911 is the signal for detecting the reference point, the signal 2910 of the touch signal sampling point and the detection reference point. The signal 2911 is buffered by the buffer 2920 and the buffer 2921 respectively, and is used as an input signal of the first-stage differential differential amplifying circuit unit 2922; the first-stage differential differential amplifying circuit unit 2922 includes a frequency strobe circuit, and the strobe circuit is selected. The pass frequency is the frequency of the excitation source touch signal, and the output of the differential amplifier is gated, the output after the gate is used as the input of the rms converter 2923, and the RMS output of 2923 is used as the input of the second stage differential amplifier 2924. The feedback adjustment analog circuit 2925 uses the output of the second stage differential amplifier 2924 as a feedback input signal and automatically adjusts the output voltage, which is used as a reference potential and is connected to the other input of the second stage differential 32242020 Subtract the bottom value of the 2923 rms output signal; the second stage differential amplifier 2924 outputs to the analog/digital converter 2926 '292 6 Synchronous sampling is performed under the control of the synchronous control signal 2930 outputted by the central processing unit (CPU, MPU) 2927, and the sampling conversion result is sent to the central processing unit (CPU, MPU) 2927, and then processed and touched by the central processing unit. Control judgment. Figure 30 shows the structure of the touch signal detection circuit of the average value measurement method. '3010 is the signal of the touch signal sampling point, and 3〇11 is the signal for detecting the reference point. The signal of the touch signal sampling point is 3 〇1. The signal 3011 of the detection and reference point is buffered by the buffer 3020 and the buffer 3021, respectively, as an input signal of the first-stage differential differential amplifying circuit unit 3022; the first-stage differential differential amplifying circuit unit 3022 includes a frequency gating circuit. The strobe frequency of the strobe circuit is the frequency of the excitation source touch signal, and the strobe output is strobed, and the strobed output is output as the rms value of the input '3023' of the rms converter 3023 as the second stage. The input of the differential amplifier 3024; the central processing unit (cpu, MPU) 3027 sends the adjustment data to the digital/analog converter 3025 according to the result of the touch operation, and the output voltage of the 3025 is used as the reference potential, and is connected to the other of the second stage differential amplifier 3024. The input terminal is used to subtract the bottom value of the RMS output signal of 3〇23; the second stage differential amplifier 3〇24 is output to the analog/digital converter 3026. 3026 performs synchronous sampling under the control of the synchronous control signal 3〇3〇 outputted by the central processing unit (cpu, MPU) 3027. The sampling result is sent to the central processing unit (Cpu, MPU) 3027, and then the data is processed by the central processing unit. Processing and touch judgment. 33 201120507 The difference between the three average method touch signal detection circuits shown in Fig. 28, Fig. 29 and Fig. 30 is that the β: motion method shown in Fig. 28 sets a reference potential to the second difference circuit. Two: The basic adjustment ability for the circuit; the scheme shown in Figure 29 is two difference 2 = the output signal is fed back to the second by the analog circuit; the differential "in-bit"-secondary differential circuit has automatic vertical adjustment Yes, the 3G diagram does not use the digital processor/analog conversion circuit to feed back the secondary differential circuit as a reference potential, and has an intelligent adjustment capability for the primary differential circuit. Different sizes and resolutions. Display screen, the resistance of the electrode is generally above 2Κ, the connection point between the detection circuit and the electrode line on the touch screen, due to the input impedance of the detection circuit, the touch signal is shunted, the input impedance of the detection circuit is larger, and the touch is The smaller the shunting effect of the signal, the input impedance of the detection circuit is 2. When the touch signal is more than 5 times, the touch signal can reflect the touch action information. Therefore, the input impedance of the signal detection channel to the electrode line is required to be 5 Κ or 5 Ω or more, as shown in Fig. 28, 29, and 30. A buffer is added between the connection points of the upper electrode lines to increase the input impedance of the detection circuit. BEST MODE FOR CARRYING OUT THE INVENTION In the fourteenth embodiment, we refer to the touch display 400 shown in Fig. 4, which uses TFT_LCD, and the equivalent circuit of the measurement is shown in Fig. 18. The touch excitation source 181 is a square wave signal. Due to the 183 〇 and 1831 疋 electric valley load, the touch-excited square wave signal appears on both capacitors. The output waveform of the touch excitation source 1810 and the touch signal waveform of the touch signal 34 201120507 signal sampling point 1841 are as shown in FIG. 21, and the present embodiment is now re-applied to the 21st icon number, as shown in the 31st. .
=控式訊對號觸 ==,用時間特徵測 點1841波形的充電過程中兩 之間的時間T423,放電過程 中兩個既定電位V421和V422之間的時間τ424,可以 反映這個電容負載的變化。當手指觸摸顯示螢幕時第Μ ,等效電路的耦合電容1831就會產生,改變了電路的電 容負載以及時間常數,兩個既定電位間的時間間隔Τ423 和Τ424也就發生了改變。測量時間間隔Τ423和mm 的變化就可以獲得觸控的資訊,既定電位V42i和VO) 選取充放電過程中採樣點1841的兩個電位。 實現時間特徵測量法觸控訊號檢測的電路結構如第 32。圖和第33圖所示。其觸控訊號檢測電路結構都是由 訊號檢測及資料採樣通道、資料處理和時序控制電路組 成。訊號檢測及資料採樣通道具有缓衝器、數位/類比轉 換電路或電壓調節輸出單it、比較器、記數器;資料處 理和時序控制電路是具有資料運算能力、資料輸出輸入 ”面的中央處理器(CPU、MCU),中央處理器具有控制 軟體、資料處理軟體。 第32圖是一種時間特徵測量法的觸控訊號檢測電 路結構圖’ 3210是觸控訊號採樣點的訊號,3211是一個 35 201120507 既定電位(V421),由電壓調節輸出單元3220來產生, 3212是一個既定電位(V422),由電壓調節輸出單元3221 來產生;觸控訊號採樣點的訊號3210經過緩衝器3230 緩衝輸出,與3211這個既定電位進入比較器3232進行 比較;觸控訊號採樣點的訊號3210經過緩衝器3231緩 衝輸出,與3212這個既定電位進入比較器3233進行比 較;中央處理器(CPU、MCU)3235產生計數器3234的記 數脈衝訊號3240,比較器3233的輸出電位作為計數器 3234的啟動記數訊號,比較器3232的輸出電位作為計 數器3234的停止記數訊號;計數器3234停止記數後的 讀數由中央處理器(CPU、MCU)3235讀取,讀數完畢後 由中央處理器(CPU、MCU)3235送出歸零訊號3241歸零 計數器3234,為下一次讀數做好準備,並由中央中央處 理器(CPU、MCU)3235進行資料處理及觸控判斷。 第33圖是一種時間特徵測量法的觸控訊號檢測電 路結構圖’ 3 310是觸控訊號採樣點的訊號,中央處理号 (CPU、MCU)3327通過程式預置或歷史檢測判斷而輸出 相應資料到數位/類比轉換器332〇輸出一個既定電位 3311 ( V421 ) ’也輸出資料到數位/類比轉換器3321輸出 —個既定電位331XV422);觸控訊號採樣點的訊號331〇 經過緩衝器3322緩衝輸出’與3311這個既定電位進入 比較器3324 ;觸控訊號採樣點的訊號3310經過緩衝器 3323緩衝輸出,與3312這個既定電位進入比較器3325; 中央處理器(CPU、MCU)3327產生計數器3326的記數脈 衝訊號3330,比較器3325的輸出電位作為計數器3326 36 201120507 的啟動記數訊號,比較器3324的輸出電位作為計數器 3326的停止記數訊號;計數器%%停止記數後的讀數 由中央處理器(CPU、MCU)3327讀取,讀數完畢後由中 央處理器(cpu、MCU)3327送出歸零訊號3331歸零計數 器3326,為下一次讀數做好準備,並由中央中央處理器 (CPU、MCU)3327進行資料處理及觸控判斷。 第32圖和第33圖所示的兩種時間特徵測量法觸控 訊號,測的區別在於:第32圖所示方案是手動的方法ς 比較器設置兩個既定電位V421和V422 ;第33圖所示 方案疋由中央處理器給比較器設置兩個既定電位V421 和J422,中央處理器通過程式預置或將之前的測量結果 運算後輸出對應資料到數位/類比轉換電路,使其輸出作 為既定比較電位,對既定比較電位V421和V422的設置 具有智慧化的調節能力。 具體實施方式十九 與實施例十八不同,本例中觸控激發源181〇為正 弦波訊號,由於1830和1831是電容負載,正弦波的觸 控激發源帶上電容負載後,在觸控訊號採樣點上的波形 還是正弦波,但發生了幅度和相位的變化,觸控激發源 1810的輸出波形和觸控訊號採樣點1841的觸控訊號波 形如第2 3圖所示。 ' 本實施方式對觸控訊號的檢測方法採用相移測量 法’比較不同的幀消隱時間段上觸控訊號採樣點1841 上特定相位點的相位移動,來獲取觸控資訊。可以看出 37 201120507 可以通過測量相位的改變來反映這個觸摸電容的影響, 而相位的改變也可以從測量時_隔來反映,這個^間 間隔的檢測示意圖亦見如第2 3圖所示,顯示螢幕無手 指觸摸時,由於第18圖中的分佈電容1830的存在了拾 測觸控訊號採樣點1841上的觸控訊號波形相對觸控激 端mo的波形有相位的延遲;當手指觸摸顯示 、’ 18圖所不等效電路的耦合電容1831就會產 生,增大了電路的電容負載,觸控訊號採樣點1841上的 過零點與激發源之間的過零點之間的時間T500會變 大’即產生進-步的相移。測量時間丁5〇〇的變化就可庐 根據觸控激發源波形的不同,特定相: 點對應的電位可以是零點或者是其他電位點。 相移測量法觸控訊號檢測的電路結構如第34 ®所不。其觸控訊號檢測電^ ^ ^ ^ ^ 檢測及資料採樣通道、資料處理和_=:號 及資料採樣通道具有緩衝器、數位/類比轉換電 出單元、比較器、記數器;資料處理和 時序控制電路疋具有資料運算能力、資料輸 的中央處理器(CPU、MOJ),中+ g iS % s + ' 資料處理軟體。 中央處理器具有控制軟體、 路種相移特徵測量法的觸控訊號檢測電 來: = 控訊號採樣點的訊號,3411是檢測 的對應-個特定相位點時的電輸出單元3420產生 位點時的電位,觸控訊號採樣點的訊 38 201120507 號3410經過緩衝器3430緩衝輸出,與3412這個特定相 位點對應的電位進入比較器3432進行比較;觸控訊號採 樣點的訊號3411經過緩衝器3431緩衝輸出,與3412這 個特定相位點對應的電位進入比較器3433進行比較;中 央處理器(CPU、MCU)3435產生計數器3434的記數脈衝 訊號3440 ’比較器3433的輸出電位作為計數器3434的 啟動記數訊號,比較器3432的輸出電位作為計數器3434 的停止記數訊號;計數器3434記數停止後的讀數由中央 處理器(CPU、MCU)3435讀取,讀數完畢後由中央處理 器(CPU、MCU)3435送出歸零訊號3441歸零計數器 3434,為下一次讀數做好準備,並由中央處理器(CPU、 MCU)3435進行資料處理及觸控判斷。 第35圖是一種相移特徵測量法的觸控訊號檢測電 路結構圖,3510是觸控訊號採樣點的訊號,3511是檢測 參考點的訊號,中央處理器(CPU、MCU)3526根據程式 預設或者歷史檢測判斷而輸出相應資料到數位/類比轉 換器3520,特定相位點對應的電位3512即是數位/類比 轉換器3520的輸出電位;觸控訊號採樣點的訊號3510 經過緩衝器3521緩衝輸出,與3512這個特定相位點對 應的電位進入比較器3523進行比較;觸控訊號採樣點的 訊號3511經過緩衝器3522緩衝輸出,與3512這個特定 相位點對應的電位進入比較器3524進行比較;中央處理 器(CPU、MCU)3526產生計數器3525的記數脈衝訊號 3530 ’比較器3524的輸出電位作為計數器3525的啟動 記數訊號,比較器3523的輸出電位作為計數器3525的 39 201120507 停止記數訊號;計數器3525記數停止後的讀數由中央處 理器(CPU、MCU)3526讀取,讀數完畢後由中央處理器 (CPU、MCU)3526送出歸零訊號3531歸零計數器3525, 為下-次讀數做好準備,並由中央中央處理器(cpu、 MCU)3526進行資料處理及觸控判斷。 第34圖和第35圖所示的兩種相移測量法觸控訊號 檢測的區別在於:第34圖所示方案是用手動的方法設定 特定相位點對應的電位;第35圖所示方案是由中央處理 器通過數位/類比轉換器來設定特定相位點對應的電 位’中央處理器通過程式預設或將之前的測量結果運算 後經數位/類比轉換器回饋作為肖定相位點對應的電 位,對特定相位點的設置具有智慧化的調節能力。 本實施H所測#_控訊餘則 時間特徵的一種。 貝貝工吧疋 具體實施方式二十 第4圖所示的觸控顯示器4〇〇,時分 電極來完成觸控功能。觸抻海-.、…、營幕 單通線時分複用作觸控感應電極線,以 =測?進行觸控探測:觸控訊號檢 的第欠順序檢測μ觸控感= 極哚,:而a :、…直至最後的第n條觸控感應電 =示Γ而元成一個探測㈣全部檢測過程,如第36 201120507 這也是最常規和自然的觸控檢測方式。 具體實施方式二十一 與實施例二十不同,本例中是按某一既定的間隔i 以掃描的方式檢測N條觸控感應電極中的第一條電極、 第1+1條、第2i+l條、…、直至到最後的第^^條觸控感 應電極線,從而完成一個探測幀的全部檢測過程。 i 2時,即間隔一條觸控感應電極線的檢測掃描示意 圖如第37圖所示。 八體實施方式一十一與實施例二十一和二十二不同 的疋,本例是以單通道粗掃加細掃的檢測方式進行觸控 探測:觸控訊號檢測電路具有一個檢測通道或一個資才= 採樣通道,把觸控感應電極線按每i條一區劃分為幾個 为每個分區選取一條或多條觸控感應電極線作為該 分區觸控感應電極線的觸控感應代表電極一起進行觸控 檢測,最好的方法是把每個分區裏面全部的觸控感應電 極線並聯作為一條觸控感應代表電極;先按區對觸控感 應代表電極進行檢測,確定觸控動作發生的區域;再在 有觸控動作發生的區域裏面進行細分掃描檢測,獲得更 具體的觸控資訊。此方法的目的是為了節省觸控檢 時間。 1=3時,單通道粗掃加細掃的檢測掃描示意圖 如第38圖所示。= control signal contact ==, using the time characteristic to measure the time between the two stages of the charging process of the 1841 waveform T423, the time between the two established potentials V421 and V422 during the discharge τ424, can reflect the capacitive load Variety. When the finger touches the display screen, the coupling capacitor 1831 of the equivalent circuit is generated, changing the capacitance load and time constant of the circuit, and the time intervals Τ423 and Τ424 between the two established potentials are also changed. The measurement of the time interval Τ 423 and mm can obtain the touch information, and the predetermined potentials V42i and VO) select the two potentials of the sampling point 1841 during the charging and discharging process. The circuit structure for realizing the time characteristic measurement touch signal detection is as shown in the 32nd. Figure and Figure 33. The structure of the touch signal detection circuit is composed of signal detection and data sampling channels, data processing and timing control circuits. The signal detection and data sampling channel has a buffer, a digital/analog conversion circuit or a voltage regulation output single it, a comparator, and a counter; the data processing and timing control circuit is a central processing with data computing capability and data output input. (CPU, MCU), the central processing unit has control software, data processing software. Figure 32 is a time characteristic measurement method of the touch signal detection circuit structure '3210 is the signal of the touch signal sampling point, 3211 is a 35 201120507 The predetermined potential (V421) is generated by the voltage regulation output unit 3220, 3212 is a predetermined potential (V422), which is generated by the voltage adjustment output unit 3221; the signal 3210 of the touch signal sampling point is buffered and outputted through the buffer 3230, and The predetermined potential of 3211 enters comparator 3232 for comparison; the signal 3210 of the touch signal sampling point is buffered and outputted through the buffer 3231, and is compared with the predetermined potential of 3212 into the comparator 3233; the central processor (CPU, MCU) 3235 generates the counter 3234. The count pulse signal 3240, the output potential of the comparator 3233 is activated as the counter 3234 The signal is counted, the output potential of the comparator 3232 is used as the stop count signal of the counter 3234; the reading after the counter 3234 stops counting is read by the central processing unit (CPU, MCU) 3235, and the central processor (CPU, MCU) 3235 sends the zeroing signal 3241 to zero counter 3234, ready for the next reading, and the central processing unit (CPU, MCU) 3235 for data processing and touch judgment. Figure 33 is a time feature measurement method The structure of the touch signal detection circuit '3 310 is the signal of the touch signal sampling point, and the central processing number (CPU, MCU) 3327 outputs the corresponding data to the digital/analog converter 332 by the program preset or the history detection judgment. A predetermined potential 3311 ( V421 ) ' also outputs data to the digital/analog converter 3321 output - a predetermined potential 331XV422); the signal 331 of the touch signal sampling point buffers the output through the buffer 3322 'and the predetermined potential of 3311 enters the comparator 3324; the signal 3310 of the touch signal sampling point is buffered and outputted through the buffer 3323, and enters the comparator 3325 with the predetermined potential of 3312; the central processing unit (CPU The MCU) 3327 generates the counter pulse signal 3330 of the counter 3326, the output potential of the comparator 3325 is used as the start count signal of the counter 3326 36 201120507, and the output potential of the comparator 3324 is used as the stop count signal of the counter 3326; the counter %% stops recording The reading after the number is read by the central processing unit (CPU, MCU) 3327. After the reading is completed, the central processing unit (cpu, MCU) 3327 sends the return-to-zero signal 3331 to the zero counter 3326 to prepare for the next reading. The central processing unit (CPU, MCU) 3327 performs data processing and touch determination. The two time feature measurement touch signals shown in Fig. 32 and Fig. 33 are different in that the scheme shown in Fig. 32 is a manual method. The comparator sets two predetermined potentials V421 and V422; Fig. 33 In the scheme shown, the central processor sets two preset potentials V421 and J422 to the comparator, and the central processor outputs the corresponding data to the digital/analog conversion circuit through the program preset or the previous measurement result, so that the output is set as the predetermined The comparison potential has an intelligent adjustment capability for the setting of the predetermined comparison potentials V421 and V422. The nineteenth embodiment is different from the eighteenth embodiment. In this example, the touch excitation source 181 is a sinusoidal signal. Since the 1830 and 1831 are capacitive loads, the touch excitation source of the sine wave is charged with a capacitive load. The waveform at the signal sampling point is still a sine wave, but the amplitude and phase change occur. The output waveform of the touch excitation source 1810 and the touch signal waveform of the touch signal sampling point 1841 are as shown in FIG. In the present embodiment, the phase shift measurement method is used to detect the phase shift of a specific phase point on the touch signal sampling point 1841 on different frame blanking periods to obtain touch information. It can be seen that 37 201120507 can reflect the influence of this touch capacitance by measuring the phase change, and the phase change can also be reflected from the measurement time interval. The detection diagram of the interval between the two is also shown in Figure 2 3 . When the display screen has no finger touch, due to the presence of the distributed capacitance 1830 in FIG. 18, there is a phase delay of the touch signal waveform on the touch signal sampling point 1841 relative to the waveform of the touch terminal mo; when the finger touches the display The coupling capacitor 1831 of the non-equivalent circuit of Fig. 18 is generated, which increases the capacitive load of the circuit. The time T500 between the zero-crossing point on the touch signal sampling point 1841 and the zero-crossing point between the excitation sources changes. Large 'is a phase shift that produces an advance. The measurement time 丁5〇〇 can be changed. Depending on the waveform of the touch excitation source, the specific phase: the potential corresponding to the point can be zero or other potential points. The circuit structure of the phase shift measurement touch signal detection is as shown in Section 34®. The touch signal detection circuit ^ ^ ^ ^ ^ detection and data sampling channel, data processing and _=: number and data sampling channel have buffer, digital / analog conversion output unit, comparator, counter; data processing and The timing control circuit has a data processing capability, a central processing unit (CPU, MOJ) for data transmission, and a + g iS % s + ' data processing software. The central processing unit has a touch signal detection circuit for controlling the software and the phase shift characteristic measurement method: = the signal of the control signal sampling point, 3411 is the corresponding position of the detected corresponding specific phase point when the electrical output unit 3420 generates the position The potential, the touch signal sampling point signal 38 201120507 No. 3410 buffer output through the buffer 3430, and the potential corresponding to the specific phase point of 3412 enters the comparator 3432 for comparison; the signal 3411 of the touch signal sampling point is buffered by the buffer 3431 Output, the potential corresponding to the specific phase point of 3412 enters the comparator 3433 for comparison; the central processing unit (CPU, MCU) 3435 generates the counter pulse signal of the counter 3434 3440 'the output potential of the comparator 3433 as the starting count of the counter 3434 The signal, the output potential of the comparator 3432 is used as the stop count signal of the counter 3434; the counter 3434 counts the reading after the stop is read by the central processing unit (CPU, MCU) 3435, and the central processor (CPU, MCU) is read after the reading is completed. 3435 sends a zeroing signal 3441 to zero counter 3434, ready for the next reading, and is controlled by the central processing unit (CPU, MC U) 3435 for data processing and touch judgment. Figure 35 is a structure diagram of a touch signal detecting circuit of a phase shift characteristic measuring method, 3510 is a signal of a touch signal sampling point, 3511 is a signal for detecting a reference point, and a central processing unit (CPU, MCU) 3526 is preset according to a program. Or the history detection determines and outputs the corresponding data to the digital/analog converter 3520. The potential 3512 corresponding to the specific phase point is the output potential of the digital/analog converter 3520; the signal 3510 of the touch signal sampling point is buffered and output through the buffer 3521. The potential corresponding to the specific phase point of 3512 enters the comparator 3523 for comparison; the signal 3511 of the touch signal sampling point is buffered and outputted through the buffer 3522, and the potential corresponding to the specific phase point of 3512 enters the comparator 3524 for comparison; the central processing unit (CPU, MCU) 3526 generates the counter pulse signal 3530 of the counter 3525. The output potential of the comparator 3524 is used as the start count signal of the counter 3525, and the output potential of the comparator 3523 is used as the counter 3525. The 201120507 stop count signal; the counter 3525 The reading after the count is stopped is read by the central processing unit (CPU, MCU) 3526. The central processing unit (CPU, MCU) 3526 sends a zeroing signal 3531 to the zero counter 3525 to prepare for the next reading, and the central processing unit (cpu, MCU) 3526 performs data processing and touch determination. The difference between the two phase shift measurement touch signal detections shown in Fig. 34 and Fig. 35 is that the scheme shown in Fig. 34 is to manually set the potential corresponding to a specific phase point; the scheme shown in Fig. 35 is The central processor uses a digital/analog converter to set the potential corresponding to a specific phase point. The central processor performs a preset by the program or calculates the previous measurement result and then returns it as a potential corresponding to the phase point by the digital/analog converter. Intelligent adjustment of the setting of specific phase points. In this implementation, H measures one of the time characteristics of the #_ control remainder. The Bayer Workbench 疋 The second embodiment of the touch display shown in Figure 4, the time-division electrode to complete the touch function. Touching the sea-.,..., the camping single-pass line is used as the touch sensing electrode line, to test? Touch detection: the first under-order detection of the touch signal detection μ touch sense = extremely 哚,: and a:, ... until the last nth touch sensing power = Γ Γ and then a probe (four) all detection process Such as the 36th 201120507 This is also the most common and natural touch detection method. The twenty-first embodiment is different from the twenty-first embodiment. In this example, the first electrode, the first +1, and the second one of the N touch sensing electrodes are detected by scanning at a predetermined interval i. +l, ..., until the last ^^ touch sensing electrode line, thus completing the entire detection process of a probe frame. At i 2, the detection scan of a touch sensing electrode line is shown in Fig. 37. The eight-body embodiment 11 is different from the twenty-one and twenty-two embodiments. In this example, the single-channel coarse sweep and fine sweep detection method is used for touch detection: the touch signal detection circuit has a detection channel or A resource = sampling channel, the touch sensing electrode line is divided into several sections per i, and one or more touch sensing electrode lines are selected for each partition as a touch sensing representative of the partitioning touch sensing electrode line. The best way to perform touch detection with the electrodes is to connect all the touch sensing electrodes in each partition in parallel as a touch sensing representative electrode; firstly, the touch sensing representative electrodes are detected by the area to determine that the touch action occurs. The area is subdivided and scanned in the area where the touch action occurs, to obtain more specific touch information. The purpose of this method is to save touch detection time. When 1=3, the single-channel coarse sweep plus fine sweep detection scan is shown in Figure 38.
I 具體實施方式二十三 201120507 本例以多通道順序掃描的檢測方式進行觸控探測: ,控訊號檢測電路具有多個觸控訊號檢測通道和多個資 料·採樣通道’把全部的觸控感應電極線分為跟觸控訊號 檢測通道數目相同的組數,每—個觸控訊號檢測通道負 責一個觸控感應電極组内的檢測。 、:種方案是各觸控訊號檢測通道同時分別在各自組 内進仃順序掃描檢測,綜合全部觸控訊號檢測通道的檢 ,釔果,獲知全螢幕的觸控資訊。第39圖是三個觸控訊 號檢測通道時的掃描順序示意圖。 另一種方案是各觸控訊號檢測通道同時分別在各自 、、且内進行間隔掃描檢測’綜合全部觸控訊號檢測通道的 檢測結果,獲得全螢幕的觸控資訊。第4G圖是三個觸控 訊號檢測通道時的掃描順序示意圖。 再一種方案是各觸控訊號檢測通道同時分別在各自 組内進行粗掃加細掃檢測,綜合全部觸控訊號檢測通道 的檢測結果’獲得全螢幕的驗資訊。第41圖是三個 控訊號檢測通道時的掃描順序示意圖。 以上内容是結合具體的優選實施方式對本發明所作 的進一步詳細說明,不能認定本發明的具體實施 於這些㈣。躲本發明所屬技術偶㈣通技術人員 來說,在不脫離本發明構思的前提下,還可以 簡單推演或替換,都應當視為屬於本發明的保護範圍。 以上所述僅為舉例性, 離本發明之精神與範噚, 而非為限制性者。任何未脫 =對其進行之等效修改或變 201120507 更,均應包含於後附之申請專利範圍中。 43 201120507 【圖式簡單說明】 第1圖是一種TFT-LCD顯示器典型的結構圖。 圖 第2圖是-種TFTVLCD的顯示子晝素的結構示意 第3圖是-種TFT-LCD液晶顯示螢幕常規顯示驅動 的時序圖。 第4圖是一種TFT-LCD顯示營幕的觸控顯示器的結 構圖。 第5圖是一種時分複用|具示螢幕電極的時序圖。 第6圖是具體實施方式—的觸控激發訊號波形圖。 第7圖是具體實施方式二的觸控讀文發訊號波形圖。 第8圖疋具體實施方式三的觸控激發訊號波形圖。 第9圖是具體實施方式四的觸控激發訊號波形圖。 第10圖是具體實施方式五的觸控激發訊號波形圖。 第丨1圖是具體實施方式六的觸控激發訊號波形圖。 第12圖是具體實施方式七、方式八的時分複用顯示 螢幕電極的時序圖。 第13圖是具體實施方式七、方式八的觸控激發訊號 波形圖。 第14圖是在外場下正性液晶材料分子排列順序圖。 44 201120507 第15圖是在外場下負性液晶材料分子排列順序圖。 第16圖是具體實施方式九的時分複用顯示 極時序圖。 黍電 第17圖是具體實施方式十的時分複用顯示螢幕 極時序圖。 第18圖是手指觸摸顯示螢幕時的等效電路圖。 第19圖是觸摸所產生的觸控訊號洩漏電流Ai隨頻 率變化的曲線圖。 第20圖是COM電極設置在上基板玻璃上時,手指 觸摸顯示螢幕時的等效電路圖。 第21圖是觸控激發訊號為方波時,觸控激發源和觸 控訊號採樣點的觸控訊號波形圖。 第22a、22b、22c圖是觸控激發訊號為方波時,觸 控探測的完整同步過程示意圖。 第23圖是觸控激發訊號為正弦波時,觸控激發源和 觸控訊號採樣點的觸控訊號波形圖。 第24a、24b、24c圖是觸控激發訊號為正弦波時, 觸控探測的完整同步過程示意圖。 第25圖是一種瞬時值測量法的觸控訊號檢測電路 結構圖。 第26圖是一種瞬時值測量法的觸控訊號檢測電路 結構圖。 45 201120507 第27圖是一種瞬時值測量法的觸控訊號檢測電路 結構圖。 第28圖疋一種有效值測量法的觸控訊號檢測電路 結構圖。 第29圖疋一種有效值測量法的觸控訊號檢測電路 結構圖。 第30圖是一種有效值測量法的觸控訊號檢測電路 結構圖。 第31圖是觸控激發訊號為方波,觸控訊號採樣點觸 控訊號的時間特徵。 第32圖是一種時間特徵測量法的觸控訊號檢測電 路結構圖。 第33圖是—種時間特徵測量法的觸控訊號檢測電 路結構圖。 第34圖是一種相移測量法的觸控訊號檢測電路結 構圖。 第35圖是一種相移測量法的觸控訊號檢測電路結 構圖。 第36圖是一種單通道順序掃描的觸控檢測方式檢 測順序示意圖。 7圖是一種單通道間隔掃描的觸控檢測方式檢 剩順序示意圖。 46 201120507 第3 8圖是一種單通道粗掃加細掃的觸控檢測方式 檢測順序不意圖。 第39圖是-種多通道順序掃描的觸控檢測 測順序示意圖。 第40圖是一種多通、首 測順序示意圖。 ^間隔掃描的觸控檢測方式檢 第41圖是一種多、 檢’則順序示意圖。、報掃〜細掃的觸控檢測方式 201120507 【主要元件符號說明】 100 : TFT-LCD 顯示器; 110 : TFT液晶螢幕; 120 :行電極; 121、122、...、12m-l、12m :電極線; 130 :資料列電極; 131、…、13η :數據電極線; 140 :公共電極; 150 :薄膜電晶體TFT ; 160 :液晶分子盒; 170 :儲存電容; 180 :公共電極電壓源; 181 :栅極電極驅動器; 182 :源極電極驅動器; 183 :時序控制器; 400 :觸控顯示器; 410 : TFT-LCD顯示螢幕; 420 :行電極; 421、...、42m :行電極線; 430 :列電極線; 431、...、43η :列電極線; 440 公共電極層; 450 薄膜場效應電晶體, 460 液晶盒, 470 儲存電容; 201120507 480 :顯示驅動電路; 481 :觸控激發源; 482 :輸出電路; 483 :顯示掃描驅動電路; 484 :行電極的觸控電路; 485 :行訊號選通輸出電路; 486 :顯示資料驅動電路; 487 :列電極的觸控電路; 488 :列訊號選通輸出電路; 489 :時序控制器; 1810 :觸控激發源; 1820 :採樣電阻; 1821 :等效電阻; 1830 :分佈電容; 1831 :耦合電容; 1832 :電容; 1840 :檢測參考點; 1841 :觸控訊號採樣點; 2010 :觸控激發源; 2020 :採樣電阻; 2021 :等效電阻; 2030 :分佈電容; 2031 :耦合電容; 2032 :耦合電容; 2040 :等效電阻; 201120507 2510 :採樣點訊號; 2511 :參考點訊號; 2520 :緩衝器; 2521 :緩衝器; 2522 :第一級差分放大器; 2523 :第二級差分放大器; 2524 :調節電壓輸出; 2525 :類比/數位轉換器; 2526 :中央處理器; 2530 :同步控制訊號; 2610 :採樣點訊號; 2611 :參考點訊號; 2620 :緩衝器; 2621 :緩衝器; 2622 :第一級差分放大器; 2623 :第二級差分放大器; 2624 :調節電壓輸出; 2625 :類比/數位轉換器; 2626 :中央處理器; 2630 :同步控制訊號; 2710 :採樣點訊號; 2711 :參考點訊號; 2720 :緩衝器; 2721 :緩衝器; 2722 :第一級差分放大器; 50 201120507 2723 :第二級差分放大器; 2724 :調節電壓輸出; 2725 :類比/數位轉換器; 2726 :中央處理器; 2730 :同步控制訊號; 2810 :採樣點訊號; 2811 :參考點訊號; 2820 :緩衝器; 2821 :緩衝器; 2822 :第一級差分放大器; 2823 :第二級差分放大器; 2824 :調節電壓輸出; 2825 :類比/數位轉換器; 2826 :中央處理器; 2830 :同步控制訊號; 2910 :採樣點訊號; 2911 :參考點訊號; 2920 :緩衝器; 2921 :緩衝器; 2922 :第一級差分放大器; 2923 :第二級差分放大器; 2924 :調節電壓輸出; 2925 :類比/數位轉換器; 2926 :中央處理器; 2930 :同步控制訊號; 201120507 3010 :採樣點訊號; 3011 :參考點訊號; 3020 :緩衝器; 3021 :緩衝器; 3022 :第一級差分放大器; 3023 :第二級差分放大器; 3024 :調節電壓輸出; 3025 :類比/數位轉換器; 3026 :中央處理器; 3030 :同步控制訊號; 3210 :採樣點訊號; 3211 :既定電位(V421); 3212 :既定電位(V422); 3220 :電壓調節輸出單元; 3221 :電壓調節輸出單元; 3230 :緩衝器; 3231 :緩衝器; 3232 :比較器; 3233 :比較器; 3234 :計數器; 3235 :中央處理器; 3240 ··記數脈衝訊號; 3241 :歸零訊號; 3310 :採樣點訊號; 3311 :既定電位(V421 ); 52 201120507 3312 :既定電位(V422); 3320 :數位/類比轉換器; 3321 :數位/類比轉換器; 3322 :緩衝器; 3323 :緩衝器; 3224 :比較器; 3225 :比較器; 3326 :計數器; 3327 :中央處理器; 3330 :記數脈衝訊號; 3331 :歸零訊號; 3410 :採樣點訊號; 3411 :參考點訊號; 3412 :電位; 3420 :電壓調節輸出單元; 3430 :缓衝器; 3431 :緩衝器; 3432 :比較器; 3433 ··比較器; 3434 :計數器; 3435 :中央處理器; 3440 :記數脈衝訊號; 3441 :歸零訊號; 3510 :採樣點訊號; 3511 :參考點訊號; 201120507 3512 :電位; 3520 :數位/類比轉換器; 3521 :緩衝器; 3522 :緩衝器; 3523 :比較器; 3524 :比較器; 3525 :計數器; 3526 :中央處理器; 3530 :記數脈衝訊號;以及 3531 :歸零訊號。 54I. Embodiment 23: 201120507 In this example, the touch detection is performed by using a multi-channel sequential scanning detection method: the control signal detection circuit has a plurality of touch signal detection channels and a plurality of data and sampling channels' The electrode line is divided into the same number of groups as the touch signal detection channel, and each touch signal detection channel is responsible for detecting in a touch sensing electrode group. The scheme is that each touch signal detection channel is simultaneously scanned and detected in each group, and all the touch signal detection channels are comprehensively detected, and the touch information of the full screen is obtained. Figure 39 is a schematic diagram of the scanning sequence when three touch signal detection channels are used. In another solution, each touch signal detection channel simultaneously performs interval scan detection on each of the touch detection channels to synthesize the detection results of all the touch signal detection channels to obtain the touch information of the full screen. Figure 4G is a schematic diagram of the scanning sequence when three touch signal detection channels are used. In another solution, each touch signal detection channel simultaneously performs coarse scan and fine scan detection in each group, and comprehensively detects the detection results of all touch signal detection channels to obtain full screen inspection information. Figure 41 is a schematic diagram of the scanning sequence when three control signals are detected. The above is a further detailed description of the present invention in connection with the specific preferred embodiments, and the specific embodiments of the present invention are not to be construed as being. The technical personnel of the present invention can be easily deduced or replaced without departing from the inventive concept, and should be considered as belonging to the protection scope of the present invention. The above description is only illustrative, and is not intended to be limiting. Any change or change to the equivalent of 201120507 shall be included in the scope of the patent application attached. 43 201120507 [Simple description of the drawing] Fig. 1 is a typical structural diagram of a TFT-LCD display. Fig. 2 is a schematic diagram showing the structure of a display sub-element of a TFTVLCD. Fig. 3 is a timing chart of a conventional display driving of a TFT-LCD liquid crystal display. Fig. 4 is a view showing the structure of a touch display of a TFT-LCD display screen. Figure 5 is a timing diagram of a time division multiplexed | display screen electrode. Fig. 6 is a waveform diagram of a touch excitation signal according to a specific embodiment. Figure 7 is a waveform diagram of the touch-reading text signal of the second embodiment. FIG. 8 is a waveform diagram of a touch excitation signal according to a third embodiment. FIG. 9 is a waveform diagram of a touch excitation signal according to Embodiment 4. FIG. 10 is a waveform diagram of a touch excitation signal according to Embodiment 5. FIG. 1 is a waveform diagram of a touch excitation signal according to Embodiment 6. Fig. 12 is a timing chart showing the time-division multiplexed display screen electrodes of the seventh embodiment and the eighth embodiment. Figure 13 is a waveform diagram of the touch excitation signal of the seventh embodiment and the eighth mode. Figure 14 is a sequence diagram of the molecular arrangement of positive liquid crystal materials in the external field. 44 201120507 Figure 15 is a sequence diagram of the molecular arrangement of negative liquid crystal materials in the external field. Fig. 16 is a timing chart showing the time division multiplexing display of the ninth embodiment. Fig. 17 is a timing chart of the time division multiplexing display screen of the tenth embodiment. Figure 18 is an equivalent circuit diagram when a finger touches the display screen. Fig. 19 is a graph showing the change of the leakage current Ai of the touch signal generated by the touch with the frequency. Fig. 20 is an equivalent circuit diagram when the finger is touched to display the screen when the COM electrode is placed on the upper substrate glass. Figure 21 is a waveform diagram of the touch signal of the touch excitation source and the touch signal sampling point when the touch excitation signal is a square wave. The 22a, 22b, and 22c are schematic diagrams of the complete synchronization process of the touch detection when the touch excitation signal is a square wave. Figure 23 is a waveform diagram of the touch signal of the touch excitation source and the touch signal sampling point when the touch excitation signal is a sine wave. The 24a, 24b, and 24c diagrams are schematic diagrams of the complete synchronization process of the touch detection when the touch excitation signal is a sine wave. Figure 25 is a block diagram of a touch signal detecting circuit for instantaneous value measurement. Figure 26 is a block diagram of a touch signal detecting circuit for instantaneous value measurement. 45 201120507 Figure 27 is a block diagram of the touch signal detection circuit of the instantaneous value measurement method. Figure 28 is a block diagram of a touch signal detection circuit for rms measurement. Figure 29 is a block diagram of a touch signal detection circuit for rms measurement. Figure 30 is a structural diagram of a touch signal detecting circuit of an effective value measuring method. Figure 31 is a time characteristic of the touch excitation signal being a square wave and the touch signal sampling point of the touch signal. Figure 32 is a structural diagram of a touch signal detecting circuit of a time characteristic measuring method. Figure 33 is a structural diagram of the touch signal detecting circuit of the time characteristic measuring method. Figure 34 is a diagram showing the structure of a touch signal detecting circuit of a phase shift measuring method. Figure 35 is a diagram showing the structure of a touch signal detecting circuit of a phase shift measuring method. Figure 36 is a schematic diagram of a touch detection mode detection sequence for single-channel sequential scanning. Figure 7 is a schematic diagram of the sequence of the touch detection method for single-channel interval scanning. 46 201120507 Figure 3 8 is a single-channel coarse sweep and fine sweep touch detection method. Figure 39 is a schematic diagram of a touch detection sequence of a multi-channel sequential scan. Figure 40 is a schematic diagram of a multi-pass, first measurement sequence. ^ Touch detection mode detection of interval scanning Fig. 41 is a schematic diagram of a multi-detection. , Sweep ~ fine scan touch detection method 201120507 [Main component symbol description] 100: TFT-LCD display; 110: TFT liquid crystal screen; 120: row electrode; 121, 122, ..., 12m-l, 12m: Electrode line; 130: data column electrode; 131, ..., 13n: data electrode line; 140: common electrode; 150: thin film transistor TFT; 160: liquid crystal molecule box; 170: storage capacitor; 180: common electrode voltage source; : gate electrode driver; 182: source electrode driver; 183: timing controller; 400: touch display; 410: TFT-LCD display screen; 420: row electrode; 421, ..., 42m: row electrode line; 430: column electrode line; 431, ..., 43n: column electrode line; 440 common electrode layer; 450 thin film field effect transistor, 460 liquid crystal cell, 470 storage capacitor; 201120507 480: display drive circuit; 481: touch excitation Source; 482: output circuit; 483: display scan drive circuit; 484: touch circuit of row electrode; 485: line signal strobe output circuit; 486: display data drive circuit; 487: touch circuit of column electrode; Column signal strobe output circuit 489: timing controller; 1810: touch excitation source; 1820: sampling resistance; 1821: equivalent resistance; 1830: distributed capacitance; 1831: coupling capacitor; 1832: capacitance; 1840: detection reference point; 1841: touch signal sampling Point; 2010: touch excitation source; 2020: sampling resistance; 2021: equivalent resistance; 2030: distributed capacitance; 2031: coupling capacitance; 2032: coupling capacitance; 2040: equivalent resistance; 201120507 2510: sampling point signal; Reference point signal; 2520: buffer; 2521: buffer; 2522: first stage differential amplifier; 2523: second stage differential amplifier; 2524: regulated voltage output; 2525: analog/digital converter; 2526: central processing unit; 2530: synchronous control signal; 2610: sampling point signal; 2611: reference point signal; 2620: buffer; 2621: buffer; 2622: first stage differential amplifier; 2623: second stage differential amplifier; 2624: regulated voltage output; 2625: analog/digital converter; 2626: central processing unit; 2630: synchronous control signal; 2710: sampling point signal; 2711: reference point signal; 2720: buffer; 2721: buffer 2722: first stage differential amplifier; 50 201120507 2723: second stage differential amplifier; 2724: regulated voltage output; 2725: analog/digital converter; 2726: central processing unit; 2730: synchronous control signal; 2810: sampling point signal 2811: reference point signal; 2820: buffer; 2821: buffer; 2822: first stage differential amplifier; 2823: second stage differential amplifier; 2824: regulated voltage output; 2825: analog/digital converter; Processor; 2830: synchronous control signal; 2910: sampling point signal; 2911: reference point signal; 2920: buffer; 2921: buffer; 2922: first stage differential amplifier; 2923: second stage differential amplifier; Voltage output; 2925: analog/digital converter; 2926: central processing unit; 2930: synchronous control signal; 201120507 3010: sampling point signal; 3011: reference point signal; 3020: buffer; 3021: buffer; 3022: first Stage differential amplifier; 3023: second stage differential amplifier; 3024: regulated voltage output; 3025: analog/digital converter; 3026: central processing unit; 3030: synchronous Signal number; 3210: sample point signal; 3211: set potential (V421); 3212: set potential (V422); 3220: voltage regulation output unit; 3221: voltage regulation output unit; 3230: buffer; 3231: buffer; : Comparator; 3233: Comparator; 3234: Counter; 3235: Central Processing Unit; 3240 · Counting Pulse Signal; 3241: Zeroing Signal; 3310: Sampling Point Signal; 3311: Established Potential (V421); 52 201120507 3312 : set potential (V422); 3320: digital/analog converter; 3321: digital/analog converter; 3322: buffer; 3323: buffer; 3224: comparator; 3225: comparator; 3326: counter; Processor; 3330: counting pulse signal; 3331: zeroing signal; 3410: sampling point signal; 3411: reference point signal; 3412: potential; 3420: voltage regulating output unit; 3430: buffer; 3431: buffer; 3432: comparator; 3433 · comparator; 3434: counter; 3435: central processing unit; 3440: counting pulse signal; 3441: zeroing signal; 3510: sampling point signal; 3511: reference point signal; 201120507 3 512: potential; 3520: digital/analog converter; 3521: buffer; 3522: buffer; 3523: comparator; 3524: comparator; 3525: counter; 3526: central processing unit; 3530: counting pulse signal; 3531: Zero signal. 54