TW201120845A - Touch-control display capable of removing touch-control impact on display. - Google Patents

Touch-control display capable of removing touch-control impact on display. Download PDF

Info

Publication number
TW201120845A
TW201120845A TW98142369A TW98142369A TW201120845A TW 201120845 A TW201120845 A TW 201120845A TW 98142369 A TW98142369 A TW 98142369A TW 98142369 A TW98142369 A TW 98142369A TW 201120845 A TW201120845 A TW 201120845A
Authority
TW
Taiwan
Prior art keywords
touch
display
signal
liquid crystal
electrode
Prior art date
Application number
TW98142369A
Other languages
Chinese (zh)
Inventor
qi-liang Chen
Hai-Ping Liu
de-hai Li
Original Assignee
Intellectual Point Of Technology Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intellectual Point Of Technology Shenzhen Co Ltd filed Critical Intellectual Point Of Technology Shenzhen Co Ltd
Priority to TW98142369A priority Critical patent/TW201120845A/en
Publication of TW201120845A publication Critical patent/TW201120845A/en

Links

Abstract

The present invention discloses a touch-control display capable of removing touch-control impact on display, which includes: an active liquid crystal display, a display driving circuit, a touch-control circuit and a display/touch-control signal strobe output circuit or a display/touch-control signal load circuit. At least one substrate of the active liquid crystal display is provided with an active device array and a row and column electrode set connected with the active device array. Another substrate of the display is provided with a common electrode. After finishing a normal display period, a liquid crystal pre-driving signal is applied on some or all of row and column electrode lines and the common electrode of the display. The liquid crystal pre-driving signal enables the potential difference to be not less than a saturation driving voltage of the liquid crystal between the row and column electrode line applied with the liquid crystal pre-driving signal and the common electrode, and enables the liquid crystal molecule between the row and column electrode line applied with the liquid crystal pre-driving signal and the common electrode to be in a certain arrange state, and enables to remove the impact on the touch-control signal detection due to the change of the display content.

Description

201120845 π、货明說明: 【發明所屬之技術領域】 [0001] 本發明涉及雜螢幕和平板顯㈣,尤其涉及— 顯示器 二 [0002] 【先前技術】 觸控營幕發展至今已廣泛用於個人電腦、智慧型電話、 公共資訊、智慧家電、卫業控制等眾多領域 曰别的 觸控領域’主要有電卩且式觸控螢幕、光電式觸控榮幕、 超聲波式觸控螢幕、平面電容式職螢幕,近年來投射 電容式觸控螢幕發展迅迷。但目前這些觸控螢幕均具有 各自的技術缺癫,造成它押某些森殊場合已廣為 採用,但難以在普通顯示器|^廣應用。’ ’’、 [0003] 1 _ 顯示器與觸控螢幕是對攣生產品,現有技辨中,通常顯 示器與觸控螢幕各自獨立承擔顯示和觸控任務。目前這 種分立式的具有觸控功能的平板顯示器以琴示器、顯示 驅動器、觸筚螢幕、觸控訊螂器、背光源等部件構 成,觸控螢幕有應用不同感-測原理的電J!且式、電容式、 電磁式、超聲波式和光電式等,顯示器有被動式液晶顯 示器(TN/STN-LCD)、主動式液晶顯示器(TFT_LCD)、有 機發光二極體顯示器(〇LED、AM-OLED)、電漿顯示器 (PDP)、納米碳管顯示器、電子紙(e_ paper)等。具有 觸控螢幕的平板顯示器是將分體的觸控螢幕與顯示器層 疊在一起’通過觸控螢幕探測到觸摸點的平面位置,再 使顯示器上的游標跟隨觸撰點定位。觸控螢幕與顯示器 的層疊使得觸控式平板顯示器變厚變重成本增加;在觸 098142369 表單編號Α0101 第3頁/共77頁 0993125395-0 201120845 控螢幕置於顯示器前面時,觸控螢幕感測電極產生的反 射又會使得顯示不均勻和在強外界光環境下顯示對比度 的下降,影響顯示效果。將觸控板和顯示器集成為一體 ,使具有觸控功能的平板顯示器變得更加輕薄,是人們 努力的方向。 [0004] 找出一種解決上述的結構複雜問題的方案,提高具有觸 控功能的平板顯示器的可靠性、改善顯示效果、壓縮厚 度、降低成本,以簡潔的方法實現平板顯示器觸控功能 是必要的^。 [0005] 申請號為CN20061 00948141、名稱為《觸控式平板顯示 器》和申請號為CN20061 0 1065583、名稱為《具有觸控 功能的平板顯示器》的中國發明專利說明書,分別揭示 了一種觸控探測電路與顯示器電極之間的連接方式,通 過類比開關或載入電路使顯示器電極或傳輸顯示驅動訊 號,或傳輸並感測觸控訊號,顯示驅動和觸控探測分時 多工(TDM)或同時共用顯示器電極,顯示器電極既用於顯 示驅動又用於觸控探測,從而創新性地提出了“觸控式 平板顯示器”的概念。 [0006] 申請號為CN20091 02035358、名稱為《一種觸控式平板 顯示器的驅動實現》的中國發明專利說明書,申請號為 CN20091 01 399060、名稱為《一種觸控式平板顯示器的 驅動實現》的中國發明專利說明書,申請號為 CN20081 013341 7X、名稱為《一種觸控式平板顯示器》 的中國發明專利說明書,則又對觸控式平板顯示器做出 了進一步的改進。 098142369 表單編號A0101 第4頁/共77頁 0993125395-0 201120845 -=國專利所揭示的這類觸控式平板顯示 利用顯示器上兩組相交的電極作為觸控傳感電 各條電極線連接觸控激勵源,觸控激勒源 。、極線施加交流或直流的觸控激勵訊號。當人的手指 =其他觸控物#近或制某條電極線時,觸控電路通過 、測各條電極線觸控訊號變化的大小,從而找出手指或 其他觸控物在顯示器上的位置。 國這是-種转__觸控二合為—式_控探測技術 ’具有顯著的成本錢,對其改進後具有廣_發展前 景。本發明就是對其提出的在排除顯示内容變化對觸控 訊號檢測的影#方面的一種改;進。::,,, t - Vl ^ 、 【發明内容】 、 'y ' ;ςΛ _9]纟發明的目的是提供一種可排除顯示影響觸控的觸控顯 不器’解決如何排除顯示内容不同對觸蠢訊號檢測的影 響的問題。 , [0010]本發明提出一種可排除顯示影響觸控的觸控顯示器,包 括主動式液晶顯示器、顯示艇動電路、觸控電路,以及 使顯示器電極既用於顯示驅動又用於觸控探測的顯示/觸 控訊號選通輸出電路或顯示/觸控訊號載入電路;所述觸 控電路具有觸控激勵源和觸控訊號檢測電路;所述顯示/ 觸控訊號選通輸出電路使顯示器電極或與顯示驅動電路 連通傳輸顯示驅動訊號,或與觸控探測電路連通傳輸觸 控訊號’顯示驅動和觸控探測分時多工顯示器電極;所 述顯示/觸控訊號栽入電路使顯示器電極同時傳輸顯示驅 動訊號和觸控訊號,顯示驅動和觸控探測同時共用顯示 098142369 表單編號A0101 第5頁/共T7頁 0993125395-0 201120845 器電極;在主動式液晶顯示器的至少一片基板上具有主 動式器件陣列和連接主動式器件陣列的列電極組、行電 極組,在顯示器的另一片基板上具有公共電極;正常顯 示時段結束後,在顯示器部分或全部行列電極線上和公 共電極上施加液晶預驅動訊號,液晶預驅動訊號的大小 是要讓施加有液晶預驅動訊號的行列電極線相對公共電 極之間所具有的電位差不小於液晶的飽和驅動電壓,使 施加有液晶預驅動訊號的行列電極線與公共電極之間的 液晶分子處於確定的排列狀態,排除顯示内容變化對觸 控訊號檢測的影響。 [0011] 進一步地,在本發明的最佳實施例中: 其中,在顯示器部分或全部行列電極線上和公共電極上 所施加的液晶預驅動訊號,是同時或不同時施加在不同 的行列電極線上;在行列電極線上施加有液晶預驅動訊 號的時段内,在公共電極上也有施加液晶預驅動訊號的 時刻。 [0012] 其中,在顯示器部分或全部行列電極線上和公共電極上 所施加的液晶預驅動訊號,是在對顯示器部分或全部行 列電極線上和公共電極上施加液晶預驅動訊號後,再對 施加過液晶預驅動訊號的行列電極線施加觸控訊號,並 檢測電極線上觸控訊號的變化。 [0013] 其中,在顯示器部分或全部行列電極線上和公共電極上 所施加的液晶預驅動訊號,是在對行列電極線施加觸控 訊號的同時,或在對行列電極線施加觸控訊號之後,對 顯示器部分或全部行列電極線上和公共電極上施加液晶 098142369 表單編號A0101 第6頁/共77頁 0993125395-0 201120845 預驅動訊號;在施加液晶預驅動訊號後,再檢測施加過 液晶預驅動訊號的電極線上觸控訊號的變化0 [0014] 其中’顯示器上的主動式器件陣列是薄膜場效應電晶體 (TFT)陣列’行列電極線分別連接薄膜場效應電晶體的閘 極和源極、或分別連接薄膜場效應電晶體閘極和沒極, 對連薄膜場效應電晶體源極或汲極的行電極線具有同時 施加液晶預驅動訊號的時段〇 [0015] 其中,對顯示器部分或全部行列電極線上和公共電極上 施加液晶預驅動訊號,是在顯示器上全部的或部分的行 列電極線與顯f像素相連的主動式器件處兮載止狀態的 時段。 心 一 .:V 夕 擊 , [ooie]其中,液晶預驅動訊號是在顯示器上輿顧策像素相連的 主動式器件的導通狀態時段施加。 [0017]其中,液晶預驅動訊號和觸控訊號是在顯示器上與顯示 像素相連的主動式器件的導通狀態時段同時施加。 ;:t - 1 ^v A , \ - [〇〇18]其中,顯不器上的主動式器,件'陣列芩薄膜場效應電晶體 陣列,在與顯示像素相連的薄膜場效應電晶體的導通狀 態時段,對連接薄膜場效應電晶體源極或汲極的行電極 線和公共電極施加液晶預驅動訊號。 [_]其巾’在行朗電極組上〇共電極上施加的液晶預驅 動訊號,疋交流訊號、直流訊號、交流和直流混合訊號 中的一種。 [0_纟中’施加在顯示器同一電極上的液晶預驅動訊號和觸 098142369 表單編號A0101 第7頁/共77頁 0993125395-0 201120845 控訊號是頻率或波形相同的交流訊號。 [0021] [0022] [0023] [0024] [0025] 其中,液晶預驅動訊號的頻率是10kHz或10KHz以上。 承上所述,本發明之可排除觸控影響顯示的觸控顯示器 ,可具有一或多個下述優點: (1)本發明所揭示的方式通過設置飽和預驅動過程,讓浪 晶顯示器内列電極和共用(COM)電極之間、行電極和共用 電極之間的液晶分子排列趨於一致,為觸控探測提供了 一個具有一致性的測量環境,避免了觸控探測受顯示内 容的影響。 【實施方式】 , 气〜_ s 1 : 本發明適用於包括具有列(R0W)電極和行(cblumn)電極 的液晶顯示器(LCD)、有機發光二極體顯^器(〇LED、Ag OLED)、電漿顯示器(pdp)、納米碳管顯条器 ' 電子紙 (e-paper)等平板顯示器。201120845 π, the description of the goods: [Technical field of the invention] [0001] The present invention relates to a miscellaneous screen and a flat display (four), in particular, - display two [0002] [Prior Art] Touch screen development has been widely used for personal Computers, smart phones, public information, smart home appliances, health control and many other areas of the touch field's main areas are electric touch screens, photoelectric touch screens, ultrasonic touch screens, plane capacitors In recent years, the projected capacitive touch screen has developed rapidly. However, at present, these touch screens have their own technical deficiencies, which has led to the adoption of some of them. However, it is difficult to apply them in ordinary displays. ’ ’’, [0003] 1 _ The display and touch screen are for twin products. In the prior art, the display and touch screens are usually independently performed by the display and the touch screen. At present, the discrete flat panel display with touch function is composed of a display device, a display driver, a touch screen, a touch signal device, a backlight, and the like, and the touch screen has a different sense-measurement principle. J! Parallel, capacitive, electromagnetic, ultrasonic and photoelectric, etc., displays passive liquid crystal display (TN/STN-LCD), active liquid crystal display (TFT_LCD), organic light emitting diode display (〇LED, AM - OLED), plasma display (PDP), carbon nanotube display, electronic paper (e_paper), and the like. A flat panel display with a touch screen overlays the split touch screen with the display layer. The position of the touch point is detected by the touch screen, and the cursor on the display is followed by the touch point. The cascading of the touch screen and the display makes the touch-type flat panel display thicker and heavier and the cost increases; at the touch 098142369 Form No. 1010101 Page 3/77 Page 0993125395-0 201120845 Touch screen sensing when the control screen is placed in front of the display The reflection generated by the electrode causes the display to be uneven and the display contrast to decrease in a strong external light environment, which affects the display effect. Integrating the touchpad and the display to make the flat panel display with touch function lighter and thinner is the direction of people's efforts. [0004] Find a solution to solve the above-mentioned structural complexity problem, improve the reliability of the flat panel display with touch function, improve the display effect, compress the thickness, reduce the cost, and realize the touch function of the flat panel display in a simple manner. ^. [0005] The application number is CN20061 00948141, the name is "touch type flat panel display" and the application number is CN20061 0 1065583, the name is "flat-screen display with touch function" Chinese invention patent specification, respectively revealing a touch detection The connection between the circuit and the display electrode, through the analog switch or the loading circuit, the display electrode or the transmission display driving signal, or the transmission and sensing of the touch signal, the display driving and the touch detection time division multiplexing (TDM) or both The display electrodes are shared, and the display electrodes are used for both display driving and touch detection, thereby innovatively introducing the concept of a "touch type flat panel display". [0006] The application number is CN20091 02035358, the Chinese invention patent specification entitled "Drive Implementation of a Touch Panel Display", the application number is CN20091 01 399060, and the name is "Drive Implementation of a Touch Panel Display" The invention patent specification, the application number of CN20081 013341 7X, the Chinese invention patent specification entitled "One Touch Panel Display", further improves the touch panel display. 098142369 Form No. A0101 Page 4 / Total 77 Page 0993125395-0 201120845 -= This type of touch panel display disclosed in the national patent uses two sets of intersecting electrodes on the display as touch sensing electrodes to connect the touch excitation Source, touch source. The polar line applies an AC or DC touch excitation signal. When the finger of the person=other touch object# is near or makes an electrode line, the touch circuit passes and measures the size of the touch signal change of each electrode line, thereby finding the position of the finger or other touch object on the display. . This is a kind of __ touch two-in-one-style detection technology ‘has significant cost of money, and it has a broad development prospect. The present invention is a modification of the method for eliminating the change of the display content to the touch signal detection. ::,,, t - Vl ^, [Summary], 'y'; ςΛ _9] The purpose of the invention is to provide a touch display that can eliminate the display affecting touches. The problem of the impact of stupid signal detection. [0010] The present invention provides a touch display capable of eliminating display effects, including an active liquid crystal display, a display boat circuit, a touch circuit, and a display electrode for both display driving and touch detection. a display/touch signal strobe output circuit or a display/touch signal loading circuit; the touch circuit has a touch excitation source and a touch signal detection circuit; and the display/touch signal strobe output circuit enables the display electrode Or communicating with the display driving circuit to transmit the display driving signal, or communicating with the touch detecting circuit to transmit the touch signal 'display driving and touch detecting time-division multiplexed display electrodes; the display/touch signal is implanted into the circuit to simultaneously display the electrodes Transmission display drive signal and touch signal, display drive and touch detection simultaneously display 098142369 Form No. A0101 Page 5 / Total T7 page 0993125395-0 201120845 Electrode; Active device on at least one substrate of active LCD The array and the column electrode group and the row electrode group connecting the active device array are on another substrate of the display Having a common electrode; after the end of the normal display period, a liquid crystal pre-drive signal is applied to some or all of the row and column electrode lines of the display and the common electrode, and the size of the liquid crystal pre-drive signal is such that the row and column electrode lines to which the liquid crystal pre-drive signal is applied are opposite to the common electrode The potential difference between the electrodes is not less than the saturation driving voltage of the liquid crystal, so that the liquid crystal molecules between the row electrode line and the common electrode to which the liquid crystal pre-driving signal is applied are in a certain arrangement state, thereby eliminating the influence of the display content change on the touch signal detection. . [0011] Further, in a preferred embodiment of the present invention, wherein the liquid crystal pre-drive signals applied on part or all of the row and column electrode lines and the common electrode are applied to different row and column electrode lines at the same time or at different times. During the period in which the liquid crystal pre-drive signal is applied to the row and column electrode lines, there is also a time at which the liquid crystal pre-drive signal is applied to the common electrode. [0012] wherein, the liquid crystal pre-drive signal applied on part or all of the row and column electrode lines of the display and the common electrode is applied after applying a liquid crystal pre-drive signal to part or all of the row and column electrode lines and the common electrode of the display. The row and electrode lines of the liquid crystal pre-drive signal apply a touch signal, and detect a change of the touch signal on the electrode line. [0013] wherein the liquid crystal pre-drive signal applied on part or all of the row and column electrode lines and the common electrode of the display is performed by applying a touch signal to the row and column electrode lines or after applying a touch signal to the row and column electrode lines. Applying liquid crystal 098142369 to part or all of the row and column electrode lines of the display. Form No. A0101 Page 6 of 77 0993125395-0 201120845 Pre-drive signal; after applying the liquid crystal pre-drive signal, it detects the application of the liquid crystal pre-drive signal. The change of the touch signal on the electrode line is 0 [0014] wherein the active device array on the display is a thin film field effect transistor (TFT) array, and the row and electrode lines are respectively connected to the gate and source of the thin film field effect transistor, or respectively Connecting the thin film field effect transistor gate and the immersion, the row electrode line connecting the source or the drain of the thin film field effect transistor has a period of simultaneously applying the liquid crystal pre-drive signal 〇 [0015] wherein some or all of the rows and columns of the display are Applying a liquid crystal pre-drive signal to the line and the common electrode, which is all or part of the row and column electrodes on the display Xi carrier locked state active period at the device connected to the significant pixel f.心一::V 夕 , [ooie] where the liquid crystal pre-drive signal is applied on the display during the on-state period of the active device connected to the pixel. [0017] wherein the liquid crystal pre-drive signal and the touch signal are simultaneously applied during the on-state period of the active device connected to the display pixel on the display. ;:t - 1 ^v A , \ - [〇〇18] where the active device on the display, the 'Array 芩 thin film field effect transistor array, in the thin film field effect transistor connected to the display pixel During the on-state period, a liquid crystal pre-drive signal is applied to the row and common electrodes of the source or drain of the thin film field effect transistor. [_]The liquid crystal pre-drive signal applied to the common electrode on the row electrode group, one of the alternating current signal, the direct current signal, the alternating current and the direct current mixed signal. [0_纟中] Liquid crystal pre-drive signal and touch applied to the same electrode of the display 098142369 Form No. A0101 Page 7 of 77 0993125395-0 201120845 The control signal is an AC signal with the same frequency or waveform. [0025] [0024] wherein the frequency of the liquid crystal pre-drive signal is 10 kHz or more. As described above, the touch display capable of eliminating the touch-sensitive display of the present invention may have one or more of the following advantages: (1) The method disclosed in the present invention allows the wave crystal display to be placed by setting a saturation pre-drive process. The arrangement of liquid crystal molecules between the column electrode and the common (COM) electrode and between the row electrode and the common electrode tends to be uniform, which provides a consistent measurement environment for touch detection, and avoids the influence of touch detection on the display content. . [Embodiment], gas ~_s 1 : The present invention is applicable to a liquid crystal display (LCD) including an array (R0W) electrode and a cblumn electrode, an organic light emitting diode display (〇LED, Ag OLED) , plasma display (pdp), carbon nanotubes, e-paper (e-paper) and other flat panel displays.

本說明書的内容以主動式液晶顯示器的典型代表薄膜場 效應電晶體液晶顯示器(Thin Fil-m TransistQr_ LCP ,TFT-LCD)為物件進行姑述。 薄膜場效應電晶體液晶㈣器是主動式矩輪晶顯示器 (AM LCD)的典型代表’它以基板上的薄膜場效應電晶艘 (TFT)作為開關器件。TFT_LCD顯示器1〇〇典型的一個結 構如第1圖所示:11〇是TFT液晶螢幕;12〇是液晶螢幕水 平方向掃描列電極,121、122.....12m-l、12m是掃描 電極線(列電極線);13〇是液晶螢幕垂直方向資料行電極 ,131、…、Un是數據電極線(行電極線);140是公共 098142369 表單編號A0101 第8頁/共77頁 0993125395-0 201120845 電極(⑽電極),公共電極連接的電位是作為液晶顯示像 素的參考電位,150是液晶榮幕上的薄膜電晶體m,苴 閉極(Gate)連接至水平方向掃描線,源極(—a)連接 至垂直方向的資料線1極(Drain)則連接至顯示像素電 極;16G是顯轉素對應的液晶分子盒,錢氣上等效於 -個電容’這個電容-般定義為Clc;17〇是儲存電容 (Capacitance Storage ,Cs),用來儲存顯示像素的 資訊;18G是公共電極電壓源,負責產生公共電極參考電 壓(Vcom Reference) ; 181 是 TFT_LCD 的閘極電極(列 電極)驅動器(Gate Drivei〇,用來 ;182是TFT-LCD的源極電'極汉行電極)磕考器(s〇urce Dr i ver),用來驅動垂直方向:,資科線:;4 83^時序控制器 (Timing Controller)負責接.收来自卷像訊號處理晶片 的RGB資料、時鐘訊號Clock、水平同步Hsync*垂直同 步訊號Vsync,並將這些訊號轉彳奐,用於控制源極(行電 極〕驅動器(Source DriverX和.閉極(列電極)驅動器 (Gate Driver)協同工作。 [0026] 一個顧不像素一般由二個顯不紅、綠、藍三種原色的子 像素組成。一個顯示子像素的結構示意圖如第2圖所示:The content of this specification is described by a typical representative thin film field effect transistor liquid crystal display (Thin Fil-m Transist Qr_LCP, TFT-LCD) of an active liquid crystal display. The thin film field effect transistor liquid crystal (IV) is a typical representative of an active moment crystal display (AM LCD). It uses a thin film field effect transistor (TFT) on a substrate as a switching device. A typical structure of the TFT_LCD display 1 is as shown in Fig. 1: 11〇 is a TFT liquid crystal screen; 12〇 is a liquid crystal screen horizontal scanning column electrode, 121, 122.....12m-1, 12m is a scanning electrode Line (column electrode line); 13〇 is the liquid crystal screen vertical direction data row electrode, 131, ..., Un is the data electrode line (row electrode line); 140 is common 098142369 Form No. A0101 Page 8 / Total 77 Page 0993125395-0 201120845 Electrode ((10) electrode), the potential of the common electrode connection is used as the reference potential of the liquid crystal display pixel, 150 is the thin film transistor m on the liquid crystal screen, and the gate is connected to the horizontal scanning line, the source ( a) connected to the vertical direction of the data line 1 (Drain) is connected to the display pixel electrode; 16G is the liquid crystal molecule box corresponding to the display of the transilin, the equivalent of a capacitor on the money - this capacitance is generally defined as Clc; 17〇 is the storage capacitor (Csaccitance Storage, Cs), which is used to store the information of the display pixels; 18G is the common electrode voltage source, which is responsible for generating the common electrode reference voltage (Vcom Reference); 181 is the gate electrode of the TFT_LCD (column electrode) ) Driver (Gate Drivei〇, used; 182 is the source of the TFT-LCD 'electrode' electrode) s〇urce Dr i ver, used to drive the vertical direction:, credit line:; 4 The 83^ Timing Controller is responsible for receiving and receiving the RGB data from the volume signal processing chip, the clock signal Clock, the horizontal sync Hsync* vertical sync signal Vsync, and converting these signals for controlling the source ( The row electrode driver (Source DriverX and the gate electrode driver (Gate Driver) work together. [0026] A pixel is generally composed of two sub-pixels that display three primary colors of red, green, and blue. The structure of the sub-pixel is shown in Figure 2:

Gi代表水平方向列掃描電極線’也稱為列驅動電極線或 閘驅動電極線’ Gi上的電位是Vg ; Sj代表垂直方向行資 料電極線’也稱為行驅動電極線或源驅動電極線,Sj•上 的電位是Vs ; Dij代表TFT連接顯示像素的端子,稱為汲 極,Dij上的電位是Vd,也稱為像素電位;每個顯示像素 均配置一個半導體開關器件-薄膜基板上場效應電晶體 098142369 表單編號A0101 0993125395-0 201120845 (TFT) ’可以通過脈衝直接控制選通進行顯示掃描,因而 每個像素相對獨立。TFT的閘極(Gate)與源極(Source) 間的電磨為Vgs,TFT的閘極(Gate)與汲極(Drain) 間的電壓為Vgd。薄膜場效應電晶體(TFT)有NM0S型和 PM〇S型兩種。目前絕大部分的TFT - LCD中所使用的薄膜 野效應屯甜體’是採用非晶石夕(amorphous silicon, a-Si)制程’其閘極絕緣層是氮化矽(SiNx),容易擭取 正電荷’要在非晶矽半導體層中形成溝道,恰好利用氮 化石夕中的正電荷來幫助吸引電子以形成溝道,因此使用 非晶石夕制程的TFT多為NM0S型。本說明書的内容主要是以 丽0S型薄膜場效應電晶體為戥表進行闡織乂PM0S型薄膜 場效應電晶體可遵循相通的原理,不再:單獨列舉表述。 [0027] TFT-LCD液晶顯示器常規顯示驅動的時序如第3圖所示: 在顯示掃描時間段(Display Time)裏面,顯示驅動電路 對列電極執行順序掃描顯示,行電極、c〇M電極配合輸出 相應的顯示訊號’讓顯示器處於顯示狀態;每兩個顯示 掃描時間段之間會有一個幘,消隱時間段(Vertical Blanking Time),這個時間段裏面顯示器不執行顯示驅 動,顯示驅動電路對列電極掃描停止,對所有的列電極 均輸出TFT的非選擇訊號,行電極、COM電極保持原來的 輸出態或者某預設輸出訊號,TFT處於截止狀態。本發明 中的为時多工顯示器電極技術方案就是利用這個幢消隱 時間段作為多工顯示器電極為檢測電極的時間段。 一種觸控電路通過控制顯示驅動電路和觸控電路協同工 作’讓顯示器電極或與顯示驅動電路連通傳輸顯示驅動 098142369 表單編號Α0101 第10頁/共77頁 0993125395-0 [0028] 201120845 [0029] [0030] [0031] 098142369 0993125395-0 訊號、或與觸控電路連通傳輪觸控訊號,顯示驅動和觸 控探測分時多工顯示器電極。在顯示時段,顯示器電極 連通顯示驅動電路傳輸顯示驅動訊號,顯示器處於顯示 態。在觸控探測時段,顯示器電極連通觸控電路傳輪觸 控訊號,並分別檢測流經各條列電極線和各條行電極線 的觸控訊號的變化,以觸控訊號變化達到某設定條件的 列電極線和行電極線為被觸電極線。由探測到的被觸列 電極線和被觸行電極線的交又點,確定出被觸點位置。 本發明實施例所列舉的具體實施方式十六到方式十九揭 示了相關的觸控訊號檢測電路結構。 除此之外,本發明實_所列舉的^方式一到方 式六是通過選擇合理的觸控.激勵訊號:方、:,拟避免觸控 激勵訊號影響顯示效果的例子,具體實施方式七到方^ 十提出了避錢示影響觸㈣_解決方案,具體實施 方式十-到方式十三揭示了觸控轉訊卿率的選擇要 求’具體實施方式十四和方式十:五料&控探測時, 對觸控訊號進行檢測與所政機觸控激勵訊號的同步關 係’具體實施方式二十到方式二十三揭示了多種單通道 和多通道賴減晴描方式和順序。這些實施例是對 觸控電路其餘方面的改進’其採用與否不影響本發明技 術方案的實現,不影響本發明的保護範圍。 以TFT-LCD為顯示器的觸控顯示器_的電氣連接關係如 第4圖所示。包括TFT-LCD顯示器41Q ; Tn_L議示器 水平方向的掃描列電極420 ’具有列電極線421、…、 42m ; m_IXD㈣⑭直方㈣資料行電極糊,具有 表單編號A0101 第1;[頁/共77頁 201120845 行電極線431、…、43η,TFT-LCD顯示器的公共電極層 (COM電極)440; TFT-LCD顯示器上的薄膜場效應電晶體 TFT 450,其閘極(Gate)連接至水平方向掃描列電極線 ’源極(Source)連接至垂直方向的資料行電極線,汲極 (Drain)則連接至像素電極;顯示像素對應的液晶盒4 ,在電氣上等效於一個電容,這個電容一般定義為C ;Gi represents the horizontal direction column scan electrode line 'also referred to as column drive electrode line or gate drive electrode line'. The potential on Gi is Vg; Sj represents the vertical direction line data electrode line 'also referred to as row drive electrode line or source drive electrode line The potential on Sj• is Vs; Dij represents the terminal of the TFT connected display pixel, called the drain, the potential on Dij is Vd, also called the pixel potential; each display pixel is equipped with a semiconductor switching device-film substrate Effect Transistor 098142369 Form Number A0101 0993125395-0 201120845 (TFT) 'The scan can be directly controlled by the pulse to gate the display, so each pixel is relatively independent. The electric grind between the gate and the source of the TFT is Vgs, and the voltage between the gate and the drain of the TFT is Vgd. Thin film field effect transistors (TFTs) are available in both NM0S and PM〇S types. At present, most of the film-effects of the TFT-LCD are made of amorphous silicon (a-Si) process, whose gate insulating layer is tantalum nitride (SiNx), which is easy to be used. Taking a positive charge 'to form a channel in the amorphous germanium semiconductor layer, just using the positive charge in the nitrite to help attract electrons to form a channel, so the TFT using the amorphous process is mostly of the NM0S type. The content of this manual is mainly based on the 00S type thin film field effect transistor as the 戥 进行 乂 乂 乂 乂 乂 乂 乂 乂 乂 乂 乂 乂 乂 场 场 场 场 场 场 场 场 场 场 场 场 场 场 场 场 场 场 场 场 场[0027] The timing of the conventional display driving of the TFT-LCD liquid crystal display is as shown in FIG. 3: In the display scanning time period, the display driving circuit performs sequential scanning display on the column electrodes, and the row electrode and the c〇M electrode cooperate. Output the corresponding display signal 'Let the display be in the display state; there will be a 帻, blank blanking period (Vertical Blanking Time) between each two display scanning time periods, in which the display does not perform display driving, the display drive circuit pairs The column electrode scanning stops, and the non-selection signal of the TFT is outputted to all the column electrodes, and the row electrode and the COM electrode maintain the original output state or a certain preset output signal, and the TFT is in an off state. The technical solution of the multiplexed display electrode in the present invention is to use the blanking time period of the building as the time period of the multiplexed display electrode as the detecting electrode. A touch circuit works by controlling a display driving circuit and a touch circuit to 'connect a display electrode or a display driving circuit to transmit a display driver 098142369 Form No. 1010101 Page 10/77 pages 0993125395-0 [0028] 201120845 [0029] [ 0030] [0031] 098142369 0993125395-0 Signal, or connected to the touch circuit with the transmission touch signal, display drive and touch detection time-division multiplex display electrode. During the display period, the display electrode communicates with the display driving circuit to transmit the display driving signal, and the display is in the display state. During the touch detection period, the display electrode is connected to the touch circuit driving touch signal, and respectively detects the change of the touch signal flowing through each column electrode line and each row electrode line, and the touch signal changes to reach a certain setting condition. The column electrode line and the row electrode line are the touched electrode lines. The position of the contact is determined by the detected intersection of the touched electrode line and the touched electrode line. Embodiments 16 to 19 of the embodiments of the present invention disclose the structure of the related touch signal detecting circuit. In addition, the method of the present invention is based on the selection of a reasonable touch. The excitation signal: square, :, is intended to avoid the effect of the touch excitation signal affecting the display effect, the specific implementation method is seven Fang ^ ten proposed to avoid the impact of the impact of the touch (four) _ solution, the specific implementation of the ten - to the way thirteen reveals the selection requirements of the touch-transfer clearing rate 'specific implementation fourteen and ten: five materials & control During the detection, the synchronization of the touch signal is detected and the synchronization of the touch signal of the government machine. The specific implementation method 20 to 23 reveals various single-channel and multi-channel reduction methods and sequences. These embodiments are improvements to the rest of the touch circuit. The use thereof does not affect the implementation of the technical solution of the present invention, and does not affect the scope of protection of the present invention. The electrical connection relationship of the touch display with TFT-LCD as the display is as shown in Fig. 4. The TFT-LCD display 41Q is included; the scanning column electrode 420' of the horizontal direction of the Tn_L speaker has column electrode lines 421, ..., 42m; m_IXD (four) 14 square (four) data row electrode paste, having the form number A0101 first; [Page/total 77 pages 201120845 row electrode lines 431, ..., 43n, common electrode layer (COM electrode) 440 of TFT-LCD display; thin film field effect transistor TFT 450 on TFT-LCD display, gate connected to horizontal scanning column The electrode line 'source' is connected to the vertical data line electrode line, and the drain (Drain) is connected to the pixel electrode; the liquid crystal cell 4 corresponding to the display pixel is electrically equivalent to a capacitor, and the capacitance is generally defined. For C;

L C 儲存電容(Capacitance Storage,Cs)470,用來儲存 像素的顯示資訊,COM電極的顯示驅動電路48〇,觸控探 測狀態時用於COM電極的觸控激勵源481,COM電極的COM 訊號選通輸出電路482 ;列電極的顯示掃描驅動電路483 ,列電極的觸控電路(具有觸赛激勵源和觸控訊號檢測電 路)484 ’列電極的列訊號達^缔出'電路485Ί.行電極的顯 示資料驅動電路486 ’行電極^的觸控電疮:(纟真有觸控激勵 源和觸控訊號檢測電路)487,行電極的行訊號選通輪出 電路488 ;時序控制器(Timing Contr.oller)489 等。 顯示掃描驅動電路483與觸〖控電路484通遶列訊號選通輸 出電路485連接到列電極420 T顯示資料驅動電路486與 觸控電路487通過行訊號選通輸出電路488連接到行電極 430 ; COM顯示驅動電路480與觸控激勵源481通過COM訊 號選通輸出電路482連接到COM電極440。 [0032]時序控制器489接收來自影像訊號處理晶片的RGB資料、 時鐘訊號Clock、水平同步Hsync和垂直同步訊號VSync ,並控制連接閘極的列顯示驅動電路483、連接源極的行 顯示驅動電路486和連接公共電極的COM顯示驅動電路 480協同工作;也控制連接源極的列觸控電路484、連接 098142369 表單编號A0101 第12頁/共77頁 0993125395-0 201120845 [0033] [0034] [0035] [0036] 閘極的行觸控電路487和連接公共電極的c〇M觸控激勵源 481協同工作;並讓觸控顯示器内的列選通電路485、行 選通電路48 8和COM訊號選通輸出電路482使顯示器電極 或與顯示驅動電路連通傳輸顯示驅動訊號、或與觸控電 路連通傳輸觸控訊號,顯示驅動和觸控探測分時多工顯 示器電極。 在顯示時段,觸控顯示器4〇〇内的列選通電路485、行選 通包路488和COM訊號選通輸出電路482使顯示器列電極 420、行電極430和COM電極440,分別連通列顯示驅動電 路483、行顯示驅動電路486和COM顯示驅動電路480傳輸 顯示驅動訊號,顯示器41 釦示、。‘,, 在觸控探測時段,觸控顯示&4〇0内$先聲通電路485、 行選通電路488和COM訊號選通輸出電路482使顯示器列 電極420、行電極43〇和⑽電極44〇,分別連通列觸控電 路484、行觸控電路術和⑶控激勵源481傳輸觸控訊 號,並分別檢測流經各條对極線和各條行電極線的觸 控訊號的變化m行列:魏減作為職感應電極 使用;以列觸控電路484和行觸控電路487檢測到流經的 觸控訊號變化相某肢條件的列電極線和行電極線為 被觸電極線。由探測刺被㈣電極線和被觸行電極線 的交叉點’確定出觸摸點在顯示器41q上的位置。 第4圖示意的是典型的觸控顯示器的結構,下面對具體實 施方式的說明均建立在這個結構的基礎上。 具體實施方式一 098142369 表單編號A0101 第13頁/共77頁 0993125395-0 201120845 第4圖所示的觸控顯示器4〇〇,顯示器電極分時多 的時序如第5圖所示。以每凾韶_ ” ^ 母兩一人顯不幀之間的幀消隱時間 奴作為觸控探測時段,這個時間 杈晨面頒不器電極切換 ^控感應咖上絲觸控激勵訊 就,並檢咖示器電極上觸控訊號的變化。 [0037] 觸控激勵源為有直流底值或沒有直流底值的方波訊號源 。在觸控探測時’對如第2圖所示TFT的Gl,Sj,c〇M三 個電極分別施加如第6圖所示觸控激勵訊號,所施加的這 三個觸控激勵《較有直流錄或沒有錢底值的方 、,、頻率相同且相位H在顯示器電極從顯示狀態 切換到觸控探測狀態時,貧f*對電極_電極Sj施加 的觸控激勵訊號的暫態電位:|Vgs警Js低於讓TFT處於 截止狀態賴止電壓;其切讓對⑽電極和電極Gi施加 合適的觸控激勵訊號M吏像素電極電位嫩C0M電極電位 vcom的平均值均保持不^並倮像素電位yd符合 Vgd Vg Vd的暫錢輯均低於讓tft處#截止狀態的截 止電壓這-要求’辆Vgs#,均低於讓m處於截止 狀、、的截止免麗’從而確保了 Tft在觸控探測狀態下能保 夺有效截jh ϋ維持了顯示像素的電壓,讓顯示效果不 受觸控探測的影響。 [0038] 觸控激勵闕擇為有直流底值或沒有直流底值的方波訊 號源J·這二方波訊號源的頻率和相位—致,跳變 U卿)的幅度也一致,使TFT的Gi,Sj,COM三個電極 施加的激勵訊號㈣值為恒定的直流電位〇evei),事實 上觸控賴時可以採用結構簡便的檢測電路就能得到良 098142369 表單編號A0101 第14頁/共77頁 0993125395-0 201120845 好的檢測效果,並且訊號源的產生非常方便,有較高的 實用價值。 [0039] 具體實施方式二 本實施例與實施例一的不同在於:所施加的這三個觸控 激勵訊號(如第7圖所示)的頻率是不相同的。 [0040] 具體實施方式三 本實施例與實施例一和實例二的不同在於:所施的這三 個觸控激勵訊號都是有直流底值或沒有直流底值的方波 ’其頻率相同但相位不.一'致、,.如.第8圖所示。 [0041] 具體實施方式四 本實施例與實施例一至實施例三所不同的是:在觸控探 測時,如第2圖所示TFT的Gi,Sj,COM三個電極分別施 加如第9圖所示觸控激勵訊號,所施加的三個觸控激勵訊 號都是有直流底值或者沒有直流底值的正弦波(注意實 施例一至三為方波而非正弦波),其頻率相同和相位一 致。 [0042] 具體實施方式五 本實施例與實施例一至實施例四所不同的是,在觸控探 測時,如第2圖所示TFT的Gi,Sj,COM三個電極分別施 加如第10圖所示觸控激勵訊號,所施加的三個觸控激勵 訊號都是有直流底值或者沒有直流底值的正弦波,頻率 和相位都相同,但波形交流部分的幅值是不同的。 [0043] 具體實施方式六 本實施例與實施例一至實施例五所不同的是,在觸控探 098142369 表單編號A0101 第15頁/共77頁 0993125395-0 201120845 測時,對如第2圖所示TFT的Gi,Sj,c〇M三個電極分別 施加如第11圖所示觸控激勵訊號,這種激勵訊號的組合 不使像素電極電位V(mc〇M電極電位以〇1]1的平均值均保 持不變’但可以令兩者的電位差Vd_VeQ_平均值保持不 變,也能讓顯示效果不受觸控探測的影響。 [0044] 具體實施方式七 第4圖所示的觸控顯示器4〇〇,顯示器採用tft —lcd, tft-lcd採用正性液晶材料。液晶材料介電係數各向異性 的特徵’使液晶盒内各處分佈電轉各歧晶分子的排 J而變化。TFT-LCD内各處液晶分子的排列取決於該處驅 動電遷所累積湯效值,不#時刻不同位-累積的驅動 «有效值不同,液晶分子歲列身肉,分饰電容也不 同,進行觸控探測的測量環境就不同。對TFT_LCD施加驅 動电壓時’液晶分子排列狀態因驅動電場的作用而一致 趨向平行於電場的方向》 [0045] 顯示電極分時多工方漆的又一時:序如第12圖所示。以每 ^欠顯示幢之間的幢消隱時間段作為觸控探測時段。在 ,時間段面’先同時對顯示器所有列電極線Gi和行 電極線Sj施加一個飽和的預置驅動(預驅動,pre一 抒iving),Gi、Sj*c〇M三個電極上的訊號波形如第13 圖所示,觸控激勵訊號為有直流底值或沒有直流底值的 正弦波。 [0046]The LC storage capacitor (Capacitance Storage, Cs) 470 is used to store the display information of the pixel, the display driving circuit 48 of the COM electrode, the touch excitation source 481 for the COM electrode in the touch detection state, and the COM signal selection of the COM electrode. Through-output circuit 482; display scan drive circuit 483 of column electrode, touch circuit of column electrode (with touch excitation source and touch signal detection circuit) 484 'column of column electrode reaches ^ circuit 485 Ί. row electrode Display data drive circuit 486 'line electrode ^ touch electric sore: (纟 true touch excitation source and touch signal detection circuit) 487, row electrode line signal strobe circuit 488; timing controller (Timing Contr .oller) 489 and so on. The display scan driving circuit 483 and the touch control circuit 484 are connected to the column electrode 420. The display data driving circuit 486 and the touch circuit 487 are connected to the row electrode 430 through the line signal output circuit 488; The COM display driving circuit 480 and the touch excitation source 481 are connected to the COM electrode 440 through the COM signal strobe output circuit 482. [0032] The timing controller 489 receives the RGB data from the image signal processing chip, the clock signal Clock, the horizontal synchronization Hsync, and the vertical synchronization signal VSync, and controls the column display driving circuit 483 connecting the gates and the row display driving circuit connected to the source. 486 and COM display driving circuit 480 connected to the common electrode work together; also control column touch circuit 484 connecting the source, connection 098142369 Form No. A0101 Page 12 / 77 pages 0993125395-0 201120845 [0033] [0034] [0036] The gate touch circuit 487 of the gate and the c〇M touch excitation source 481 connected to the common electrode cooperate; and the column gate circuit 485, the row gate circuit 48 8 and the COM in the touch display The signal strobe output circuit 482 enables the display electrode to communicate with the display drive circuit to transmit a display drive signal, or to communicate with the touch circuit to transmit a touch signal, display drive and touch detection time-division multiplex display electrodes. During the display period, the column strobe circuit 485, the row strobe path 488, and the COM signal strobe output circuit 482 in the touch display 4A respectively connect the display column electrode 420, the row electrode 430, and the COM electrode 440 to the column display. The drive circuit 483, the line display drive circuit 486, and the COM display drive circuit 480 transmit display drive signals, and the display 41 is deducted. ',, during the touch detection period, the touch display & 4〇0 within the first sound pass circuit 485, the row gate circuit 488 and the COM signal gate output circuit 482 enable the display column electrode 420, the row electrode 43 and the (10) electrode 44〇, respectively, the connected column touch circuit 484, the line touch circuit and (3) the control excitation source 481 transmits the touch signal, and respectively detects the change of the touch signal flowing through each of the opposite line and each line electrode line. The row and column: Wei minus is used as the occupational sensing electrode; the column touch circuit 484 and the line touch circuit 487 detect that the column electrode line and the row electrode line of the limb condition of the change of the touch signal flowing through are the touched electrode line. The position of the touch point on the display 41q is determined by the intersection of the (four) electrode line and the touched electrode line. Fig. 4 is a view showing the structure of a typical touch display, and the following description of the specific embodiments is based on this structure. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A 098142369 Form No. A0101 Page 13 of 77 0993125395-0 201120845 The touch display shown in Fig. 4 shows the timing of the display electrodes being time-divided as shown in Fig. 5. The frame blanking time slave between each frame of _ _ ^ ^ mother and child is used as the touch detection period, this time, the morning face is not the electrode switch ^ control induction coffee on the wire touch incentive message, and The change of the touch signal on the sensor electrode is detected. [0037] The touch excitation source is a square wave signal source having a DC bottom value or no DC bottom value. In the touch detection, 'for the TFT shown in FIG. 2 The three electrodes of Gl, Sj, and c〇M respectively apply the touch excitation signals as shown in FIG. 6, and the three touch excitations applied are “the same as the DC or the bottom of the money, and the frequency is the same. Phase H: When the display electrode is switched from the display state to the touch detection state, the transient potential of the touch excitation signal applied to the electrode _ electrode Sj is: the Vgs alarm Js is lower than the voltage at which the TFT is in the off state; It is necessary to apply a suitable touch excitation signal to the (10) electrode and the electrode Gi. The average value of the pixel electrode potential VCOM electrode potential vcom is not maintained, and the pixel potential yd is in accordance with Vgd Vg Vd. Tft at the cutoff voltage of the off state - this requires 'vehicle Vgs#, both lower than let m In the cut-off state, the cut-off is free to ensure that the Tft can effectively capture the jh in the touch detection state, maintaining the voltage of the display pixel, so that the display effect is not affected by the touch detection. [0038] The excitation choice is the square wave signal source with or without the DC bottom value. The frequency and phase of the two-way signal source are the same, so the amplitude of the jump is the same, so that the Gi, Sj of the TFT The excitation signal (4) applied by the three electrodes of COM is a constant DC potential 〇evei). In fact, the touch detection can be obtained by using a simple detection circuit to obtain good 098142369 Form No. A0101 Page 14/77 Page 0993125395-0 201120845 Good detection effect, and the generation of the signal source is very convenient and has high practical value. [0039] The second embodiment differs from the first embodiment in that the three touch excitation signals are applied ( The frequency of the present invention is different from that of the first embodiment and the second embodiment in that the three touch excitation signals are all provided with a DC bottom. Value or A square wave having a DC bottom value is the same in frequency but not in phase, as shown in Fig. 8. [0041] The fourth embodiment is different from the first embodiment to the third embodiment. In the touch detection, as shown in Fig. 2, the three electrodes of Gi, Sj, and COM of the TFT are respectively applied with the touch excitation signals as shown in Fig. 9, and the three touch excitation signals applied are DC bottom. A value or a sine wave without a DC bottom value (note that Embodiments 1 to 3 are square waves instead of sine waves) have the same frequency and phase. [0042] Embodiment 5 This embodiment is different from Embodiment 1 to Embodiment 4. In the touch detection, as shown in FIG. 2, the three electrodes of Gi, Sj, and COM of the TFT are respectively applied with the touch excitation signals as shown in FIG. 10, and the three touch excitation signals applied are The dc value or the sine wave without the DC bottom value is the same in frequency and phase, but the amplitude of the AC part of the waveform is different. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Sixth embodiment differs from the first embodiment to the fifth embodiment in that the touch test 098142369 form number A0101 page 15 / page 77 0993125395-0 201120845 is measured as shown in FIG. 2 The three electrodes of the Gi, Sj, and c〇M of the TFT are respectively applied with the touch excitation signals as shown in FIG. 11, and the combination of the excitation signals does not cause the pixel electrode potential V (the mc〇M electrode potential to be 〇1]1 average. The values remain unchanged, but the potential difference Vd_VeQ_ of the two can be kept constant, and the display effect can be prevented from being affected by the touch detection. [0044] The touch display shown in FIG. 4〇〇, the display uses tft-lcd, tft-lcd uses a positive liquid crystal material. The characteristic of the dielectric property anisotropy of the liquid crystal material changes the distribution of the electric crystals in the liquid crystal cell. The arrangement of liquid crystal molecules in the LCD depends on the cumulative effect value of the driving electromigration at that place, and the difference between the different positions of the driving and the accumulating driving «the effective value is different, the liquid crystal molecules are aged and the capacitance is different, and the touch is made. The measurement environment for controlled detection is different. When the driving voltage is applied to the TFT_LCD, the alignment state of the liquid crystal molecules tends to be parallel to the direction of the electric field due to the action of the driving electric field. [0045] Another time for displaying the electrode time-division multi-paint: The sequence is as shown in Fig. 12. The blanking time period between the display blocks is used as the touch detection period. In the time period, a saturated preset drive is applied to all the column electrode lines Gi and the row electrode lines Sj of the display (pre-drive, pre one)抒iving), the signal waveform on the three electrodes of Gi, Sj*c〇M is as shown in Fig. 13, and the touch excitation signal is a sine wave with a DC bottom value or no DC bottom value. [0046]

Gi~sj間的電位差Vgs在_10.5uM?v之間低於讓tft 處於截止狀態的截止電壓,避免影響顯示;Gi_c〇M間的 098142369 電位差Vgc在_1〇 5H,】_12V之間 表單編號A0101 第16頁/共77頁 sj-COM間的電位差 0993125395-0 201120845 /SC是5V,都超過液晶分子的飽和驅動電壓。在所施加的 飽和驅動電壓的作用下,液晶顯示器内列電極和c〇M電極 之間的液晶分子、行電極和C0M電極之間的液晶分子,排 列方向都—致迅速轉向趨向平行於電場的方向。如第14 圖所示,給正性液晶材料分子施加電場£時,液晶分子的 排列平行於電場方向的排列狀態。再分別對顯示器列電 極線Gi和行電極線sj施加觸控激勵訊號,並分別檢測流 經各條列電極線和各條行電極線的觸控訊號的變化;之 前的飽和預驅動電壓使液晶分子排列一致,排除了液晶 材料介電係數各向異性導致的分佈電容的變化,檢測各 條列電極線上各條行電極控訊赛钓髮化時,不 同時刻不同位置上的測量環参於Θ致,'有利於觸控 探測結果的穩定性和一致裡 [0047] 對液晶外加電場時,由於液晶分子為無擇性分子,如第 14圖液晶分子的排列不會奪笮場?正負方向的影響,所以 在預驅動環節襄電極上的癌:態正寸負,只要保持 飞咖 w乡- 1 r % ; }, 對液晶的飽和驅動即可。所...以施加在顯示器同一電極上 的預驅動訊號和觸控激勵訊k的波形或頻率、幅值都可 以是相同的,甚至將預驅動訊號和觸控激勵訊號採用同 一訊號。 [0048] 具體實施方式八 與實施例七不同的是,本例中TFT-LCD採用負性液晶材料 ,如第15圖所不0 具體實施方式九 098142369 第4圖所示的觸控顯示器400,顯示器採用TFT-LCD,由 表單編琥A0101 第17頁/共77頁 0993125395-0 [0049] 201120845 於液晶顯示器的回應速度相對較低,在顯示高速晝面時 ,容易存在殘影、拖尾現象,為了解決這一問題,目前 的一種解決方案是提高顯示的幀頻,在每—個顯示幀後 面插入一個“黑幀”,讓“黑幀”阻斷之前顯示内容的 殘衫。所謂黑幀就是在這—幀内,在TFT處於導通的狀態 下,通過行電極Sj對顯示像素電極施加一個飽和驅動電 壓,讓顯不像素内液晶分子的排列一致處於與所加電場 垂直或平行的方向。在顯示像素内液晶分子排列處於— 致的情況下’液晶顯示器内行電極和c〇M電極之間液晶分 子的排列也將是一致的。由於列電極是掃描電極,各列 電極上的電壓有效值是一樣_、,在:行尊隹知⑽電極之間 液晶分子排列處於-致的情考下,“Γ電極上的分佈電 容就基本是一致的。 ί Ί 麵顯示電極分時多工方案的時序如第16瞒示。在黑幢之 後才分別對顯示器列電極線Gi和行電極線Sj施加觸控激 勵訊號,齡恥職料姊各騎電極線 的觸控訊號的變化。利用黑賴讓液晶分子排列處於一致 ’排除了液晶材料介電係數各向異性導致的分佈電容的 變化檢測各條列電極線上和各條行電極線上觸控訊號 的變化時’不同時刻不同位置上的測量環境趨向於一致 ,有利於觸控_結果的穩定性和—致性。 [0051] 具體實施方式十 第4圖所不的觸控顯示器4QG ’顯示器採用爪―LCD,與 實施例九相同之處在於,也在每—鋪補後面插入一 個…幢冑黑鴨”阻斷之前顯示内容的殘影。 098142369 表單編號A0101 第18頁/共頁 0993125395-0 201120845 與實施例九不同的是,顯示電極分時多工 工方案的再一時The potential difference Vgs between Gi~sj is lower than _10.5uM?v below the cut-off voltage that makes tft in the off state, avoiding the influence display; the 098142369 potential difference Vgc between Gi_c〇M is between _1〇5H, _12V form number A0101 Page 16 of 77 The potential difference between sj-COM is 0993125395-0. 201120845 /SC is 5V, both exceeding the saturation drive voltage of liquid crystal molecules. Under the action of the applied saturation driving voltage, the liquid crystal molecules between the liquid crystal molecules, the row electrodes and the COM electrodes between the column electrodes and the c〇M electrodes in the liquid crystal display are aligned in a direction to rapidly turn toward the electric field. direction. As shown in Fig. 14, when an electric field is applied to the molecules of the positive liquid crystal material, the arrangement of the liquid crystal molecules is parallel to the alignment of the electric field direction. And applying a touch excitation signal to the display column electrode line Gi and the row electrode line sj respectively, and detecting changes of the touch signals flowing through the column electrode lines and the respective row electrode lines respectively; the previous saturated pre-drive voltage makes the liquid crystal The molecular arrangement is consistent, and the variation of the distribution capacitance caused by the anisotropy of the dielectric constant of the liquid crystal material is excluded. When the row electrode control lines of each row electrode line are detected, the measurement loops at different positions at different times are involved. Therefore, 'is conducive to the stability and consistency of the touch detection results. [0047] When the liquid crystal is applied with an electric field, since the liquid crystal molecules are non-selective molecules, the arrangement of the liquid crystal molecules in Fig. 14 does not cause the field to be positive or negative. Influence, so the cancer on the electrode of the pre-driver: the state is positive and negative, as long as the fly coffee w - 1 r %; }, the saturation drive of the liquid crystal can be. The waveform or frequency and amplitude of the pre-drive signal and the touch excitation signal k applied to the same electrode of the display can be the same, and even the pre-drive signal and the touch excitation signal can be the same signal. [0048] Embodiment 8 differs from Embodiment 7 in that the TFT-LCD in this example uses a negative liquid crystal material, as shown in FIG. 15 , and the touch display 400 shown in FIG. 4 is The display adopts TFT-LCD, and the form is edited by A0101. Page 17/77 pages 0993125395-0 [0049] 201120845 The response speed of the liquid crystal display is relatively low. When displaying the high-speed surface, it is easy to have residual image and tailing phenomenon. In order to solve this problem, a current solution is to increase the frame rate of the display, insert a "black frame" after each display frame, and let the "black frame" block the residual shirt of the previously displayed content. The so-called black frame is in this frame, in the state where the TFT is on, a saturation driving voltage is applied to the display pixel electrode through the row electrode Sj, so that the alignment of the liquid crystal molecules in the pixel is consistent or perpendicular to the applied electric field. The direction. In the case where the arrangement of the liquid crystal molecules in the display pixel is in the same state, the arrangement of the liquid crystal molecules between the row electrode and the c〇M electrode in the liquid crystal display will also be uniform. Since the column electrode is the scan electrode, the effective value of the voltage on each column electrode is the same _, and in the case where the alignment of the liquid crystal molecules between the electrodes of the line is known, the distribution capacitance on the Γ electrode is basically The timing of the electrode display time division multiplexing scheme is shown in Fig. 16. After the black building, the touch excitation signal is applied to the display column electrode line Gi and the row electrode line Sj, respectively. The change of the touch signal of each riding electrode line. The black matrix is used to make the liquid crystal molecules are aligned. The change of the distributed capacitance caused by the anisotropy of the dielectric constant of the liquid crystal material is detected to detect the line on each column electrode line and each row electrode line. When the control signal changes, the measurement environment at different positions tends to be consistent at different times, which is beneficial to the stability and consistency of the touch _ result. [0051] The fourth embodiment of the touch display 4QG The display uses a claw-LCD, which is the same as in the ninth embodiment, and also inserts a ... building black duck behind each patch to block the residual image of the displayed content. 098142369 Form No. A0101 Page 18 / Total Page 0993125395-0 201120845 Different from the ninth embodiment, the display electrode time division multi-engineering scheme is repeated.

電極使用;又利用黑晶分子排列—致,排除液晶材 料介電係數各向異性導致的分佈電容的變化;综合判斷 來消除液晶分子排列不一致對檢測環境的影響。 [0052] 具體實施方式Η-- 第4圖所示的觸控顯示器400$顯:示'器採用:t'ft-lcD,玻 璃基板厚度為0. 3mm。當人ή:手指濟峩'顯示蜀表面時,手 指通過基板玻璃片與顯示器電極間形成一個叙合電容, 等效電路如第18圖所:不。1810是對顯示器電極提供觸控 激勵訊號的觸控激勵源,1多20是觸控_路内觸控訊號檢 測電路的採樣電阻’1821暴一i作為觸控感應電極使用 的顯示器電極的等效電阻1 ^3 〇是一組作為觸控感應電 δ λ 3 « ·; £ ·-> - ' -*·;- ^ 極使用的顯示器電極相對顯示器内其他電極的分佈電容 ,1831是手指與一組作為觸控感應電極使用的顯示器電 極間的耦合電容,1832是一組作為觸控感應電極使用的 顯示器電極與COM電極之間的電容。 [0053] 通常,手指與一組作為觸控感應電極使用的顯示器電極 間的重疊寬度在5mm以下,基板玻璃厚度為〇. 3mm,耦合 電容1831就大約為10pF ;對於通常的樣電阻 1820和等效電阻1821之和約為30ΚΩ,作為觸控感應電 098142369 表單編號Α0101 第19頁/共77頁 0993125395-0 201120845 極使用的顯示器電極上的觸控訊號部分地從耦合電容 1831浪漏出去到手指;當觸控激勵源輸出Vrms = 5V的正 弦波時,耦合電容1 831導致的洩漏電流△ i隨觸控激勵源 頻率變化的關係如第19圖所示。觸控激勵訊號的頻率對 耦合電容1831的容抗構成主要的影響,而容抗不同,電 流從手指洩漏出去的觸控訊號的大小就不同。頻率太低 ,耦合電容1831容抗太小,觸控顯示器400對觸控物的觸 控不敏感,容易產生觸控的漏判斷。觸控激勵訊號的頻 率選擇對觸控探測可靠性的影響較大,特別是當顯示器 前再加有保護面殼的情況下。 [0054] 從第19圖可以看出,在實際,的實驗結果中,觸控激勵源 的頻率低於ΙΟΚΗζ時,洩漏電流Δί較小,與環境雜訊比 較不夠明顯難於區分,將觸控激勵源頻率設置在ΙΟΚΗζ或 以上時,才是利用顯示器電極作為觸控感應電極使用的 合理電路參數。 [0055] 具體實施方式十二 第4圖所示的觸控顯示器400,顯示器採用TFT-LCD,玻 璃基板厚度為0.3mm。當液晶螢幕的COM電極設置在朝向 操作者的上基板玻璃上時,COM電極會在列電極和行電極 與操作者之間形成一定的遮罩效果。手指與顯示器COM電 極間形成一個耦合電容,COM電極與一組作為觸控感應電 極使用的顯示器電極間又存在耦合電容,等效電路如第 20圖所示。2010是對顯示器電極提供觸控激勵訊號的觸 控激勵源,2020是觸控電路内觸控訊號檢測電路的採樣 電阻,2021是一組作為觸控感應電極使用的顯示器電極 098142369 表單編號A0101 第20頁/共77頁 0993125395-0 201120845^ 的專效電阻’ 2G3G是-组作為職感應電極使用的顯示 器電極相對顯示器内其他電極的分佈電容,⑼“是⑶诞電 極與一組作為觸控感應電極使用的顯示器電極間的耦合 電容,2032是手指與顯示器COM電極間的輕合電容, 2〇40是激勵源和COM電極之間的等效電阻。 [_]通常’手指與一組作為觸控感應電極使用的顯示器電極 間的重疊寬度在5mm以下,基板玻璃厚度為〇·3πιπ],耦合 電容2032就大約為10pF ;對於通常的TFT_LCD採樣電阻 (: 2〇20和等效電阻2021之和约為3〇ΚΩ ^人的手指觸摸觸 摸顯示器表面時,由於耦合電容2031和2〇32的存在,作 為觸控感應電隹使用的顯示的為控訊號部分地 - _合電容2031流到⑽電声,年輕〇^電極與手指的麵 • 合電容2032部分、轉出去到手指。選用高頻的觸控激勵 訊號時,從耦合電容2031和2032洩漏的電流Δί就較大 ,觸控訊號穿透COM電極遮罩巧能力就較強,可獲得比較 好的觸控探測能力、 。… Λ.. - ; ' :¾ :.i ^ is )/ -- .: ;.;':;;;;::!, :· ·'· ^ ;j I \-f I [QQ57] 具體實施方式十三 '^!·^ ί I il 第4圖所不的觸控顯示器400,顯示器採用TFT_LCD。液 晶材料介電係數各向異性的特徵,使液晶盒内各處分佈 電容随各處液晶分子的排列而變化。TFT_LCD内各處液晶 分子的排列取決於該處驅動電細累積的有效值,不同 時刻不同位置累積的驅動電壓有致值不同,液晶分子排 列就不同’分饰電容也不同’進行觸控探測的測量環境 就不同。但液晶材料介電錄的各向異性存在隨頻率變 化的色散效應’通常在5G0KHZ或以上電訊號的作用下, 098142369 表單编號A0101 第21頁/共77頁 0993125395-0 201120845 其介電係數的各向異性基本不能體現。 [0058] [0059] 對顯示器列電極線Gi和行電極線Sj施加頻率在1MHz或以 上的觸控激勵訊號,並分別檢測流經各條列電極線和各 條行電極線的觸控訊號的變化。雖然TFT-LCD的不同位置 上液晶分子的排列不盡一致,但由於液晶材料介電係數 的各向異性的色散效應,對於1MHz或以上的觸控激勵訊 號,仍排除了液晶材料介電係數各向異性導致的分佈電 容的變化,檢測各條列電極線上和各條行電極線上觸控 訊號的變化時,不同時刻不同位置上的測量環境趨向於 一致’有利於觸控探測結果的穩定性和一致性。 具體實施方式十四 〜^ / & - 第4圖所示的觸控顯示器4〇〇3,顯示器樣每TFT_LCD。實 際進行觸控探測時,通常是以電壓訊號為檢測物件來進 行測量。測量的等效電路如第18圖所示1 1810是對顯示 器電極提供觸控激勵訊號的觸摔激勵源,182〇是觸控電 路内觸控訊號檢測電路的採樣.電祖,1821是一組作為觸 控感應電極使甩_編示器電極的等效電阻,183〇是_組 作為觸控感應電極使用的顯示器電極相對顯示器内其他 電極的分佈電容,1831是手指與一組作為觸控感應電極 使用的顯示器電極間的耦合電容,1832是一組作為觸控 感應電極使用的顯示器電極與COM電極之間的電容,1841 是測量觸控訊號電壓變化的觸控訊號採樣點,1840是消j 量觸控訊號電壓變化的檢測參考點,這裏是選擇觸控激 勵源1810的輸出端作為參考點,事實上還可以選擇其他 的電位點為參考點,如觸控電路的地端、或觸控電路的 098142369 表單編號A0101 第22頁/共77頁 0993125395-0 201120845 正電源端、或觸控電路的負電源端、或對比電路中的一 點、或觸控螢幕上另一組電極線等都能有不錯的檢測效 果。觸控激勵源1810為方波訊號,由於1 830和1831是電 容負載,觸控激勵的方波訊號在這兩個電容上出現充放 電波形。觸控激勵源1810的輸出波形和觸控訊號採樣點 1841的觸控訊號波形如第21圖所示。 [0060] 本實施方式對觸控訊號的檢測方法採用瞬時值測量法, 測量觸控訊號採樣點18 41在某一特定相位點上的電位, - 比較不同的幀消隱時間段内所檢測到的這個特定相位點 電位的變化,來獲取觸控資訊;所述的某一特定相位點 是指相對於觸控激勵源1810輸出端波形的特定相位點。 . 第18圖所示電路以激勵源訊號為電路源、採樣電阻所在 的支路上是1 830和1831兩個電容並聯再與1 820和1821 兩個電阻串聯的RC回路。在觸控探測時段,對第18圖所 示電路施加觸控激勵訊號,電路就會對電容產生充放電 過程。第21圖中T1和T2段為適合採樣的相位區間,在觸 ( 控訊號採樣點1841上T1的松位區間是電容開始充電到充 電完成的時間段,T2的相位區間是電容開始放電到放電 完成的時間段。 [0061] 為確保證每一次對觸控訊號的檢測都處於相對於觸控激 勵源1810輸出端波形的特定相位點上,需要保持嚴格的 一系列的同步關係。這裏的同步關係由三項同步關係組 成:顯示幀同步、觸控激勵脈衝數同步、觸控激勵波形 相位同步。顯示幀同步:每次開始施加觸控激勵訊號都 是在兩次顯示幀之間的幀消隱時間段内的某一固定時刻 098142369 表單編號A0101 第23頁/共77頁 0993125395-0 201120845 ’激勵脈衝個數同步.從開始施加觸控激勵訊號到作為 觸控感應The electrode is used; the black crystal molecules are arranged to eliminate the change of the distributed capacitance caused by the dielectric constant of the liquid crystal material; and the comprehensive judgment is made to eliminate the influence of the inconsistent alignment of the liquid crystal molecules on the detection environment. The thickness of the glass substrate is 0. 3mm. The thickness of the glass substrate is 0. 3mm. When a person squats: the finger 峩 峩 'shows the 蜀 surface, the finger forms a reciprocal capacitance between the substrate glass piece and the display electrode, and the equivalent circuit is as shown in Fig. 18: No. The 1810 is a touch excitation source for providing a touch excitation signal to the display electrode, and the 1-20 is the equivalent of the display electrode used for the touch sensing electrode by the sampling resistor of the touch-in-channel touch signal detecting circuit. The resistance 1 ^3 〇 is a set of capacitances as the touch sensing electric δ λ 3 « ·; £ ·-> - ' -*·;- ^ The display electrode of the pole is used with respect to the other electrodes in the display, and the 1831 is the finger and A set of coupling capacitors between display electrodes used as touch sensing electrodes, 1832 is a set of capacitance between the display electrodes and the COM electrodes used as touch sensing electrodes. [0053] Generally, the overlap width between the finger and a set of display electrodes used as the touch sensing electrodes is 5 mm or less, the substrate glass thickness is 〇3 mm, and the coupling capacitor 1831 is approximately 10 pF; for the usual sample resistor 1820 and the like The sum of the effective resistors 1821 is about 30 ΚΩ, as the touch sensing electric 098142369 Form No. 1010101 Page 19 / Total 77 Page 0993125395-0 201120845 The touch signal on the display electrode of the pole is partially leaked from the coupling capacitor 1831 to the finger When the touch excitation source outputs a sine wave with Vrms = 5V, the relationship between the leakage current Δ i caused by the coupling capacitor 1 831 and the frequency of the touch excitation source is as shown in FIG. The frequency of the touch excitation signal has a major influence on the capacitive reactance of the coupling capacitor 1831, and the capacitive reactance is different, and the magnitude of the touch signal that the current leaks from the finger is different. The frequency is too low, the coupling capacitance of the coupling capacitor 1831 is too small, and the touch display 400 is insensitive to the touch control of the touch object, and the touch leakage judgment is easily generated. The frequency selection of the touch excitation signal has a great influence on the reliability of the touch detection, especially when the protective cover is added in front of the display. [0054] As can be seen from FIG. 19, in actual experimental results, when the frequency of the touch excitation source is lower than ΙΟΚΗζ, the leakage current Δί is small, and it is not sufficiently distinguishable from the environmental noise, and the touch excitation is When the source frequency is set to ΙΟΚΗζ or above, it is a reasonable circuit parameter that uses the display electrode as the touch sensing electrode. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT 12 The touch display 400 shown in Fig. 4 is a TFT-LCD having a thickness of 0.3 mm. When the COM electrode of the liquid crystal screen is disposed on the upper substrate glass facing the operator, the COM electrode forms a certain masking effect between the column electrode and the row electrode and the operator. A coupling capacitor is formed between the finger and the COM electrode of the display, and a coupling capacitor exists between the COM electrode and a set of display electrodes used as the touch sensing electrode. The equivalent circuit is shown in FIG. 2010 is a touch excitation source for providing a touch excitation signal to the display electrode, 2020 is a sampling resistor of the touch signal detection circuit in the touch circuit, and 2021 is a set of display electrodes used as a touch sensing electrode 098142369 Form No. A0101 No. 20 Page / Total 77 pages 0993125395-0 201120845^ The special effect resistor '2G3G is the distribution capacitance of the display electrode used as the sensor electrode relative to the other electrodes in the display, (9) "Yes (3) the electrode and a group as the touch sensing electrode The coupling capacitance between the display electrodes used, 2032 is the light-combining capacitance between the finger and the COM electrode of the display, and 2〇40 is the equivalent resistance between the excitation source and the COM electrode. [_] Usually 'finger and one group as touch The overlap width between the display electrodes used for the sensing electrodes is 5 mm or less, the thickness of the substrate glass is 〇·3πιπ], and the coupling capacitance 2032 is approximately 10 pF. For the usual TFT_LCD sampling resistors (the sum of the 2 〇 20 and the equivalent resistance 2021 is approximately 3〇ΚΩ ^ When a human finger touches the surface of the touch display, the display is used as a touch sensing power due to the presence of the coupling capacitors 2031 and 2〇32. Part of the control signal - _ capacitor 2031 flows to (10) electroacoustic, young 〇 ^ electrode and finger face • Capacitor 2032 part, turn out to the finger. When using high frequency touch excitation signal, from the coupling capacitor 2031 and 2032 leakage current Δί is larger, the touch signal penetrates the COM electrode mask is more powerful, and can obtain better touch detection capability, .... -.. - ; ' :3⁄4 :.i ^ is ) / -- .: ;.;':;;;;::!, :· ·'· ^ ;j I \-f I [QQ57] Detailed implementation thirteen '^!·^ ί I il Figure 4 The touch display 400 is not used, and the display adopts TFT_LCD. The dielectric material anisotropy of the liquid crystal material changes the distributed capacitance of the liquid crystal cell with the arrangement of liquid crystal molecules everywhere. The arrangement of liquid crystal molecules in the TFT_LCD depends on At this point, the effective value of the electric fine accumulation is driven, and the driving voltages accumulated at different positions at different times have different values, and the liquid crystal molecules are arranged differently, and the measurement environment of the touch detection is different. However, the liquid crystal material is dielectric. The recorded anisotropy has a dispersion effect with frequency. Often under the action of 5G0KHZ or above, 098142369 Form No. A0101 Page 21 / Total 77 Page 0993125395-0 201120845 The anisotropy of the dielectric coefficient is basically not reflected. [0059] Gi and the row electrode line Sj apply touch excitation signals having a frequency of 1 MHz or more, and detect changes in touch signals flowing through the respective column electrode lines and the respective row electrode lines, respectively. Although the arrangement of liquid crystal molecules is not uniform at different positions of the TFT-LCD, due to the anisotropic dispersion effect of the dielectric constant of the liquid crystal material, the dielectric constant of the liquid crystal material is excluded for the touch excitation signal of 1 MHz or more. When the change of the distributed capacitance caused by the opposite sex is detected, when the change of the touch signal on each column electrode line and each row electrode line is detected, the measurement environment at different positions at different times tends to be consistent, which is favorable for the stability of the touch detection result. consistency. DETAILED DESCRIPTION OF THE INVENTION Fourteenth ~ ^ / & - The touch display 4 〇〇 3 shown in Figure 4, the display type per TFT_LCD. In actual touch detection, the voltage signal is usually used as the detection object for measurement. The equivalent circuit of the measurement is shown in Fig. 18. 1 1810 is a touch-off excitation source for providing a touch excitation signal to the display electrode, and 182 is a sampling of the touch signal detection circuit in the touch circuit. As the touch sensing electrode, the equivalent resistance of the 甩_programmer electrode is 183〇 is the distributed capacitance of the display electrode used as the touch sensing electrode with respect to other electrodes in the display, and the 1831 is a finger and a group as the touch sensing. The coupling capacitance between the display electrodes used by the electrodes, 1832 is a set of capacitance between the display electrode and the COM electrode used as the touch sensing electrode, and 1841 is a touch signal sampling point for measuring the change of the touch signal voltage, and 1840 is a subtraction. The detection reference point of the touch signal voltage change, here is to select the output end of the touch excitation source 1810 as a reference point, in fact, other potential points can be selected as a reference point, such as the ground end of the touch circuit, or touch 098142369 of the circuit Form No. A0101 Page 22 of 77 0993125395-0 201120845 Positive power supply, or the negative power supply of the touch circuit, or a point in the comparison circuit, or touch Another set of electrode lines on the control screen can have good detection results. The touch excitation source 1810 is a square wave signal. Since the 1 830 and the 1831 are capacitive loads, the touch-activated square wave signal has a charge and discharge waveform on the two capacitors. The output waveform of the touch excitation source 1810 and the touch signal waveform of the touch signal sampling point 1841 are as shown in FIG. [0060] In the present embodiment, the method for detecting a touch signal uses an instantaneous value measurement method to measure the potential of the touch signal sampling point 18 41 at a specific phase point, and compares the detected time between different frame blanking periods. The change in potential of the particular phase point is used to obtain touch information; the specific phase point is a specific phase point relative to the waveform of the output of the touch excitation source 1810. The circuit shown in Figure 18 uses the excitation source signal as the circuit source, and the branch where the sampling resistor is located is an RC loop in which 1 830 and 1831 capacitors are connected in parallel and then connected to the 1 820 and 1821 resistors. During the touch detection period, a touch excitation signal is applied to the circuit shown in Fig. 18, and the circuit generates and charges a capacitor. In the 21st picture, the T1 and T2 segments are phase intervals suitable for sampling. At the touch (the signal sampling point 1841, the loose interval of T1 is the period from when the capacitor starts charging to the completion of charging, and the phase interval of T2 is the discharge of the capacitor to the discharge. The completed time period. [0061] To ensure that each detection of the touch signal is at a specific phase point relative to the waveform of the output of the touch excitation source 1810, a strict series of synchronization relationships needs to be maintained. The relationship consists of three synchronization relationships: display frame synchronization, touch excitation pulse number synchronization, and touch excitation waveform phase synchronization. Display frame synchronization: each time the touch actuation signal is applied, the frame is cancelled between the two display frames. A fixed time in the hidden time period 098142369 Form No. A0101 Page 23 / Total 77 Page 0993125395-0 201120845 'Stimulus pulse number synchronization. From the start of applying touch excitation signal to as touch sensing

訊號脈衝數, 一 ......™屯径上,開始計具觸徑激勵 採樣資料的時刻都是在相同序號 的觸控激勵訊號脈衝數上;數勵波形相位同步:每次獲 取私樣資料的時刻都處在觸控激勵源輸出端波形的特定 相位點上,而這個特定相位點的位置選擇在Τ1*Τ2這兩 個相位區間内。一個完整的同步過程如第22a圖、第22b 圖、第22c圖所示。第22a圖是顯示器分時多工的時序圖 ,顯示器的列電極、行電極、電極在顯示掃描時間段 裏面,配合輸出相應的顯示訊號,順序進行顯示掃描, 而在顯示器的列電極、行電餐nCQM嘩極在幀消隱時間段 (Η段和K段)内多工在觸控翁调j、態濟,按儉測要求施加 Μ “ / #1 方波觸控激勵訊號並進行檢測;g 22b圖是第22a圖中Η段 和Κ段(幀消隱時間段)的放大示意圖,如第22b圖所示 顯示器電極在幀消隱時間段内的同一固定時刻開始施加 方波觸控激勵訊號,實現幀同步;第22c圖是第22b圖中X 段(載入激勵訊號並撿測時間段)的放大示意圖,在顯 示幀消隱時間段裏面經過幀同步後,開始施加觸控激勵 訊號,同時也開始計算激勵訊號脈衝個數,每次採樣檢 測都是控制在相同序號的觸控激勵訊號脈衝數上,以實 現觸控激勵脈衝個數同步;在此觸控激勵訊號脈衝裏面 ,每次獲取採樣資料的時刻都處在觸控激勵輸出端波形 的某特定相位上,以實現與觸控激勵波形相位的同步。 [0062]具體實施方式十五 與實施例十四不同的是,觸控激勵源1810為正弦波訊號 098142369 表單編號A0101 第24頁/共77頁 0993125395-0 201120845 ’由於1830和1831是電容負載,正弦波的觸控激勵源帶 上電谷負載後’在觸控訊號採樣點上的波形還是正弦波 ,但發生了幅度和相位的變化,觸控激勵源181〇的輸出 波形和觸控訊號採樣點的觸控说波形如第2 3圖所示。 [0063] 本實施方式對觸控訊號的檢測方法採用相移測量法,比 較不同的幀消隱時間段上觸控訊號採樣點丨84丨某一特定 相位點的相位移動,來獲取觸控資訊;所述的某一特定 相位點是指相對於觸控激勵源1810輸出端波形的特定相 位點。第18圖所示以觸控激勵源訊號為電路源、採樣電 阻所在的支路上是1830和1831兩個電容並聯再與1820和 1821兩個電卩且串聯的RC回i·。在觸控探淘時段,對第18 圖所示電路施加觸控激勵訊號,正弦&$過>队回路會發 生幅值的下降和相位的延遲;手指觸摸器時,轉合 電容1831引起了RC回路中C的變化’在觸控訊號採樣點測 量正弦波過零點相對觸控激勵源181 0輸出端波形過零點 時間差的變化’來判斷觸否'争:觸控訊號採 樣點上觸控訊號波形相位务動命變化’也可以在正弦波 .Wmwc 的峰值點上或其他相位點上進行測量。 [0064] 同樣,為確保每一次對觸控訊號的檢測都處於相對於觸 控激勵源1810輸出端波形的特定相位點上,需要保持嚴 格的一系列的同步關係。這裏的同步關係由三項同步關 係組成:顯示幀同步、觸控激勵脈衝數同步、觸控激勵 波形相位同步。顯示幀同步:每次開始施加觸控激勵訊 號都是在兩次顯示幀之間的幀消隱時間段内的某一固定 時刻;激勵脈衝個數同步:從開始施加觸控激勵訊號到 098142369 表單煸號A0101 第25頁/共77頁 0993125395-0 201120845 作為觸控感應電極使用的顯示器電極上,開始計算觸控 激勵訊5虎脈衝數’母次獲取採樣育料的時刻都是在相同 序號的觸控激勵訊號脈衝數上;激勵波形相位同步:將 測量觸控訊號採樣點上觸控訊號波形的特定相位點,與 觸控激勵源輸出端波形相同相位點進行時間的比較;正 弦波的相移資訊是全相位的,故只要每次都是看同一個 特定相位點的移動即可。一個完整的同步過程如第24a圖 、第24b圖、第24c圖所示。第24a圖是顯示器分時多工 的時序圖*顯不的列電極、行電極、C 0 Μ電極在顯不·if 描時間段裏面,配合輸出相應的顯示訊號,順序進行顯 示掃描,而在顯示器的列電極、行電極、COM電極在顯示 的幀消隱時間段(H段和K段)内多工在觸控檢測態時, 按檢測要求載入正弦波激勵訊號並進行檢測;第24b圖是 第24a圖中Η段和K段(顯示的幀消隱時間段)的放大示意 圖,如第24b圖所示顯示器電極在顯示的幀消隱時間段内 的同一固定時刻開始施加正弦波觸控激勵訊號,實現幀 同步;第24c圖是第24b圖中X段(施加觸控激勵訊號並檢 測時間段)的放大示意圖,在顙示的幀消隱時間段裏面 經過幀同步後,開始施加正弦波觸控激勵訊號,同時也 開始計算觸控激勵訊號脈衝個數,每次採樣檢測都是控 制在相同序號的觸控激勵訊號脈衝數上,以實現激勵脈 衝個數同步;在此正弦波觸控激勵訊號脈衝裏面,每次 獲取採樣資料的時刻都處在觸控激勵輸出端波形的相同 的某特定相位點上,以實現與觸控激勵波形相位的同步 098142369 表單編號A0101 第26頁/共77頁 0993125395-0 201120845 具體實施方式十六 具體實施方式十四和方式十五都是用瞬時值測量法,來 對第4圖的觸控顯示器400進行觸控探測。這種瞬時值測 I法疋在特定相位點的極短時間段内進行對觸控訊號的 檢測,其主要特點就是檢測速度快。實現瞬時值測量法 觸控訊號檢測的三種電路結構如第25圖、第26圖和第27 圖所示。觸控訊號檢測電路結構都是由訊號檢測通道、 資料採樣通道和資料處理和時序控制電路組成。訊號檢 測通道具有緩衝器、第一級差分放大電路和第二級差分 放大電路,資料採樣通道具有類比數位轉換電路;資料 處理和時序控螂電路是具有寒产運:算暫力、罗料輸出輸 入介面的t央處理器^器具有控制 軟體、資料處理軟體。 V: [0066] 第2 5圖所示是一種瞬時值測量法的觸控訊號檢測電路結 構圖,2510是觸控訊號採樣點的訊號,2541是檢測參考The number of signal pulses, one...TM path, the time at which the sampling path excitation sampling data is started is on the number of touch excitation signal pulses of the same serial number; the phase excitation waveform phase synchronization: each time private The time of the sample data is at a specific phase point of the waveform of the output end of the touch excitation source, and the position of the specific phase point is selected in the two phase intervals of Τ1*Τ2. A complete synchronization process is shown in Figure 22a, Figure 22b, and Figure 22c. Figure 22a is a timing diagram of the time division multiplexing of the display. The column electrodes, row electrodes and electrodes of the display are in the display scanning period, and the corresponding display signals are outputted, and the display scanning is performed sequentially, and the column electrodes and the row electrodes in the display are performed. The meal nCQM bungee is multiplexed in the frame blanking time period (Η segment and K segment) in the touch Weng adjustment j, the state, according to the test requirements, Μ " / #1 square wave touch excitation signal and detection; g 22b is an enlarged view of the segment and segment (frame blanking period) in Figure 22a. As shown in Figure 22b, the display electrode begins to apply square wave touch excitation at the same fixed time in the frame blanking period. Signal, to achieve frame synchronization; Figure 22c is an enlarged view of the X segment (loading the excitation signal and the time period) in Figure 22b. After the frame synchronization in the display frame blanking period, the touch excitation signal is applied. At the same time, the number of excitation signal pulses is also calculated. Each sampling detection is controlled by the number of touch excitation signal pulses of the same serial number to realize the synchronization of the number of touch excitation pulses; in this touch excitation signal pulse Each time the sampled data is acquired, it is at a certain phase of the waveform of the touch excitation output to achieve synchronization with the phase of the touch excitation waveform. [0062] The specific embodiment fifteenth is different from the fourteenth embodiment, The touch excitation source 1810 is a sine wave signal 098142369 Form No. A0101 Page 24 / Total 77 Page 0993125395-0 201120845 'Because 1830 and 1831 are capacitive loads, the sine wave touch excitation source is charged with the valley load' in the touch The waveform on the signal sampling point is still a sine wave, but the amplitude and phase change occur, and the output waveform of the touch excitation source 181 和 and the touch waveform of the touch signal sampling point are as shown in FIG. 2 . In the method for detecting a touch signal, the phase shift measurement method is used to compare the phase shift of the touch signal sampling point 丨84丨 at a specific phase point in different frame blanking periods to obtain touch information. A specific phase point refers to a specific phase point of the waveform of the output end of the touch excitation source 1810. In the 18th figure, the touch excitation source signal is used as the circuit source, and the branch circuit where the sampling resistor is located is 1830. Connect two capacitors in parallel with 1831 and then connect the two RCs in series with 1820 and 1821 and return to RC. In the touch detection period, apply the touch excitation signal to the circuit shown in Figure 18, sine & $ over > The loop of the team will have a decrease in amplitude and a delay in phase; when the finger is touched, the turn-on capacitor 1831 causes a change in C in the RC loop. 'Measure the sine wave zero-crossing point at the touch signal sampling point relative to the touch excitation source 181 0 output The change of the time difference of the zero-crossing of the end waveform is used to determine whether the touch is not the same: the touch signal waveform on the touch signal sampling point can also be measured at the peak point of the sine wave .Wmwc or other phase points. [0064] Again, to ensure that each detection of the touch signal is at a particular phase point relative to the waveform of the output of the touch excitation source 1810, a rigorous series of synchronization relationships need to be maintained. The synchronization relationship here consists of three synchronization relationships: display frame synchronization, touch excitation pulse number synchronization, and touch excitation waveform phase synchronization. Display frame synchronization: Each time the touch actuation signal is applied is a fixed time in the frame blanking period between two display frames; the number of excitation pulses is synchronized: the touch excitation signal is applied from the beginning to the 098142369 form.煸号A0101 Page 25 of 77 0993125395-0 201120845 As the touch-sensing electrode used on the display electrode, start to calculate the touch excitation 5 tiger pulse number 'mother times to obtain sampling and breeding time are all in the same serial number The number of touch excitation signal pulses; phase synchronization of the excitation waveform: the specific phase point of the touch signal waveform on the touch signal sampling point is measured, and the time phase of the same phase of the waveform of the output end of the touch excitation source is compared; the phase of the sine wave is compared The shift information is all-phase, so it is only necessary to look at the movement of the same specific phase point each time. A complete synchronization process is shown in Figure 24a, Figure 24b, and Figure 24c. Figure 24a is a timing diagram of the time division multiplexing of the display. * The column electrode, the row electrode, and the C 0 Μ electrode are displayed in the display period, and the corresponding display signals are outputted, and the display scan is performed sequentially. The column electrode, the row electrode, and the COM electrode of the display are multiplexed in the touch detection state during the frame blanking period (H segment and K segment) of the display, and the sine wave excitation signal is loaded and detected according to the detection requirement; The figure is an enlarged view of the Η segment and the K segment (the frame blanking period shown) in Figure 24a. As shown in Figure 24b, the display electrode begins to apply a sine wave at the same fixed time in the displayed frame blanking period. Controlling the excitation signal to achieve frame synchronization; Figure 24c is an enlarged schematic view of the X segment (applying the touch excitation signal and detecting the time period) in Figure 24b, after the frame synchronization is performed in the frame blanking period shown The sine wave touch excitation signal, and also begins to calculate the number of touch excitation signal pulses, each sampling detection is controlled on the same number of touch excitation signal pulses to achieve the excitation pulse number synchronization; In the sinusoidal touch excitation signal pulse, each time the sampled data is acquired, it is at the same specific phase point of the waveform of the touch excitation output end, so as to realize the phase synchronization with the touch excitation waveform 098142369 Form No. A0101 26 pages/total 77 pages 0993125395-0 201120845 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Sixteenth and fifteenth embodiments are touch detection of the touch display 400 of FIG. 4 by means of instantaneous value measurement. This instantaneous value measurement method 进行 detects the touch signal in a very short period of time at a specific phase point, and its main feature is that the detection speed is fast. Realizing instantaneous value measurement The three circuit configurations of touch signal detection are shown in Figure 25, Figure 26 and Figure 27. The structure of the touch signal detection circuit is composed of a signal detection channel, a data sampling channel, and a data processing and timing control circuit. The signal detection channel has a buffer, a first-stage differential amplifying circuit and a second-stage differential amplifying circuit, and the data sampling channel has an analog digital conversion circuit; the data processing and the timing control circuit have a cold production: calculating the temporary force and the output of the material. The t-processor of the input interface has a control software and a data processing software. V: [0066] FIG. 25 is a structural diagram of a touch signal detecting circuit of an instantaneous value measuring method, 2510 is a signal of a touch signal sampling point, and 2541 is a detecting reference.

... j r I 點的訊號,觸控訊號採樣點功k號25^0和袼測參考點的 訊號2511分別經過缓衝器2_&2|^缓衝fe2521缓衝後,作 為第一級差分放大器2522的輸入訊號;第一級差分放大 器2522的輸出再作為第二級差分放大器2523的其中一個 輸入,2524是調節電壓輸出,其作為基準電位,連接第 二級差分放大器2523的另一個輸入,用來減去第一級差 分放大電路輸出訊號的底值;第二級差分放大器2523輸 出到類比數位轉換器(Analog-to-Digital Converter )2525 , 2525 在中央處理器 (CPU 、 MPU) 2526輸出的 同步控制訊號2530的控制下進行同步採樣,採樣的轉換 098142369 表單编號A0101 第27頁/共77頁 0993125395-0 201120845 結果發送到中央處理器(CPU、MPU) 2526,再由中央處 理器進行資料處理及觸控判斷。 [0067] 第26圖所示是一種瞬時值測量法的觸控訊號檢測電路結 構圖’ 2610是觸控訊號採樣點的訊號,2611是檢測參考 點的訊號,觸控訊號採樣點的訊號2610和檢測參考點的 訊號2611分別經過缓衝器2620和缓衝器2621緩衝後,作 為第一級差分放大器2622的輸入訊號;第一級差分放大 器2622的輸出再作為第二級差分放大器2623的其中一個 輸入,回饋調節類比電路2624用第二級差分放大器2623 的輸出作為回饋輸入訊號並自動調節輸出電壓,其作為 f ^ t 1 f , 、 基準電位,連接第二級差分的另一個輸入, Λ , Λ % - 用來減去第一級差分放大電的扁值;第二級 差分放大器2623輸出到類比數位轉換器2625,2625在中 央處理器(CPU、MPU) 2626輸出的同步控制訊號2630的 控制下進行同步採樣,採樣的轉换結果發送到中央處理 器(CPU、MPU) 2626,再由中奂處理器進行資料處理及 觸控判斷。 …: [0068] 第27圖所示是一種瞬時值測量法的觸控訊號檢測電路結 構圖,2710是觸控訊號採樣點的訊號,2711是檢測參考 點的訊號,觸控訊號採樣點的訊號2710和檢測參考點的 訊號2711分別經過緩衝器2720和緩衝器2721緩衝後,作 為第一級差分放大器2722的輸入訊號;第一級差分放大 器2722的輸出再作為第二級差分放大器2723的其中一個 輸入,中央處理器(CPU、MPU) 2726根據觸控運算結果 送出調節資料到數模轉換器2724,2724的輸出電壓作為 098142369 表單編號A0101 第28頁/共T7頁 0993125395-0 201120845^ …α 土準电位,連接第二級差分放大器2723的另一個輸入, 用來減去第一級差分放大電路輸出訊號的底值;第二級 差分放大器2723輸出到類比數位轉換器2725,2725在中 央處理器(CPU、MPU) 2726輸出的同步控制訊號2730的 控制下進行同步採樣,採樣的轉換結果發送到中央處理 器(CPU、MPU) 2726,再由中央處理器進行資料處理及 觸控判斷。 [0069]第25圖、第26圖、第27圖所示的三種瞬時值測量法觸控 (::: 訊號檢測電路的區別在於:第25圖所示方案是手動的方 法給二次差分電路設置~個基準電位,對二次差分電路 具有基本的調節能力;第A®所示·去案^土次差分電路 5' ? . ξι , - 的輪出端訊號銓類比電路再,回#給ϋ差,分臺路作為基 、 ν - 1 ^ - 準電位’對二次差分電路具有自動跟蹤的調節能力;第 27圖所示方案是將中央處理器運算後的結果經數模轉換 電路回饋給二次差分電路作為基準電位,對二次差分電 路具有智慧化的Μ節能力。' . r..... * ^ I > * »· / f V [0070] 不同尺寸及解析度的顯示器,其電極的電阻一般在21[以 上’檢測電路與觸控螢幕上電極線的連接點上,因檢測 電路的輸入阻抗而對觸控訊號分流,檢測電路的輸入阻 抗越大,對觸控訊號的分流作用越小。當檢測電路的輸 入阻抗為2. 5倍以上時,觸控訊號都能反映出觸摸動作資 訊的,所以要求訊號檢測通道對電極線的輪入阻抗在π Q或5ΚΩ以上,如第25、26及27圖,在差分放大電路與 觸控螢幕上電極線的連接點之間加上緩衝器就是為了辦 大檢測電路的輸入阻抗。 098142369 表單編號A0101 第29頁/共77頁 0993125395-0 201120845 [0071J具體實施方式十七 ,、$實施方^十四和方式十五也可以使用平均值測 吉對第4圖的觸控顯示器綱進行觸控探測。$種= ^法是在,軸㈣_ 雖“觸控訊號的平均值作制量結果。Μ值測料 =料制量法慢,但Μ要伽就切W除部分 ,干擾,測量資料更平穩有利於觸控的判 中的:種。實現平均值測量法對觸控訊號檢測 的一種電路結構如第28、29和30圖所示。罝 測電路結構都是由峨檢騎道、轉_、控訊號檢 休锿通道、資料 慝理和時序控猶電路組成。,訊號檢測ϋ道具有緩衝器 第—級差分放大電路、有效声測懂電路和第二級差八 大電路;資料採樣通道具有徽數位轉錢路;資料處 理和時序控制電路是具有資料運算能力、 貝科输出輪入 介面的中央處理器(CPU、MCU),巾央處理器具有控制軟 體、資料處理軟體。 [0072] 第28圖所示是一種平均值測-量法的觸控訊號檢測電路結 構圖,2810是觸控訊號採樣點的訊號,2811是檢測參考 點的訊號,觸控訊號採樣點的訊號2810和檢測參考點的 訊號2811分別經過緩衝器2820和緩衝器2821緩衝後,作 為第一級差分差分放大電路單元2822的輸入訊號;第一 級差分差分放大電路單元2822内含頻率選通電路,選通 電路的選通頻率為激勵源觸控訊號的頻率’其對差分放 大的輸出進行選通,選通後的輸出再作為有效值轉換器 2823的輸入,2823的有效值輸出作為第二級差分放大器 098142369 表單编號A0101 第30頁/共77頁 0993125395-0 201120845 2824的輸入;2825是調節電壓輸出,其作為基準電位, 連接到第二級差分放大器2824的另一個輸入端,用來減 去2823的有效值輸出訊號的底值;第二級差分放大器 2824輸出到類比數位轉換器2826,2826在中央處理器( CPU、MPU) 2827輸出的同步控制訊號2830的控制下進行 同步採樣,採樣的轉換結果發送到中央處理器(CPU、 MPU) 2827 ’再由中央處理器進行資料處理及觸控判斷。 [0073]第29圖所示是一種平均值測量法的觸控訊號檢測電路結 構圖,2910是觸控訊號採樣點的訊號,2911是檢測參考 點的訊號,觸控m號採樣點的訊號2910和檢測參考點的 訊號2911分別經過緩衝器39之6^儀'嫁鉍^>2'1緩衝後,作 為第一級差分差分放大電路,軍?元2 9 2 i_人訊號;第一 級差分差分放大電路單元2922内含頻率選通電路,選通 電路的選通頻率為激勵源觸控訊號的頻率,其對差分放 大的輸出進行選通,選通後的輸;出再作為有效值轉換器 2923的輸入’2923的有效值輸"出作為第匕級差分放大器 2924的輸入;回饋調節類比|路2925用第二級差分放大 器2924的輸出作為回饋輸入訊號並自動調節輸出電壓, 其作為基準電位,連接到第二級差分放大器2924的另一 個輸入端,用來減去2923的有效值輸出訊號的底值;第 一級差分放大器2924輸出到類比數位轉換器2926,2926 在中央處理器(CPU、ΜΡϋ) 2927輸出的同步控制訊號 2930的控制下進行同步採樣’採樣的轉換結果發送到中 央處理器(CPU、MPU) 2927 ’再由中央處理器進行資料 處理及觸控判斷》 098142369 表單編號A0101 第31頁/共77頁 0993125395-0 201120845 [0074] 第30圖所示是一種平均值測量法的觸控訊號檢測電路結 構圖’ 3010是觸控訊號採樣點的訊號,3〇11是檢測參考 點的訊號’觸控訊號採樣點的訊號3〇1〇和檢測參考點的 訊號3011分別經過緩衝器3〇2〇和緩衝器3〇21緩衝後,作 為第一級差分差分放大電路單元3〇22的輸入訊號;第一 級差分差分放大電路單元3022内含頻率選通電路,選通 電路的選通頻率為激勵源觸控訊號的頻率,其對差分放 大的輸出進行選通,選通後的輸出再作為有效值轉換器 3023的輸入’ 3023的有效值輸出作為第二級差分放大器 3024的輸入;中央處理器(cpu、Μρϋ) 3〇27根據觸控運 算結果送出調節資料到數模轉換器3〇25,別25的輸出電 壓作為基準電位’連接到第二級差分放大琴.3024的另一 個輸入端’用來減去3 〇 2 3的有效貧輸出訊號的底值;第 二級差分放大器3024輪出到類比數位轉換器3026,3026 在中央處理器(CPU、MPU) 3027輸出的同步控制訊號 3030的控制下進行同考採樣,採樣的轉換結果發送到中 央處理器(CPU、ΜΡϋ) 302*7,再由s中央處理器進行資料 處理及觸控判斷。 [0075] 第28圖 '第29圖和第3〇圖所示的三種平均值測量法觸控 訊號檢測電路的區別在於:第28圖所示方案是手動的方 法給二次差分電路設置一個基準電位,對二次差分電路 具有基本的調節能力;第29圖所示方案是二次差分電路 的輸出端訊號經類比電路再回饋給二次差分電路作為基 準電位,對二次差分電路具有自動跟蹤的調節能力;第 30圖所示方案是將中央處理器運算後的結果經數模轉換 098142369 表單編號A0101 第32頁/共77頁 0993125395-0 201120845 電路回饋給二次差分電路作為基準電位,對二次差分電 路具有智慧化的調節能力。 [0076] 不同尺寸及解析度的顯示器,其電極的電阻一般在二千 歐姆(2ΚΩ)以上,檢測電路與觸控螢幕上電極線的連接 點上,因檢測電路的輸入阻抗而對觸控訊號分流,檢測 電路的輸入阻抗越大,對觸控訊號的分流作用越小。當 檢測電路的輸入阻抗為2. 5倍以上時,觸控訊號都能反映 出觸摸動作資訊的,所以要求訊號檢測通道對電極線的 輸入阻抗在5ΚΩ或5ΚΩ以上,如第28、29及30圖,在差 分放大電路與觸控螢幕上電極線的連接點之間加上緩衝 器就是為了增大檢測電路的輸入阻抗。: [0077] 具體實施方式十八 在介紹實施例十四時我們提到,第4圖所示的觸控顯示器 400,顯示器採用TFT-LCD,測量的等效電路如第18圖所 示。觸控激勵源1810為方波訊號,由於1830和1831是電 容負載,觸控激勵的方波訊號在這兩個電容上出現充放 電波形。觸控激勵源1810的輸出波形和觸控訊號採樣點 1841的觸控訊號波形如第21圖所示,為了說明本實施例 ,現重新對第21圖標號,如第31圖所示。 [0078] 本實施方式對觸控訊號的檢測方法採用時間特徵測量法 ,測量觸控訊號採樣點1841充放電過程中兩個既定電位 間的時間間隔的變化,來獲取觸控資訊。如第31圖所示 ,測量觸控訊號採樣點1841波形的充電過程中兩個既定 電位V422和V421之間的時間T423,放電過程中兩個既定 電位V421和V422之間的時間T424,可以反映這個電容負 098142369 表單編號A0101 第33頁/共77頁 0993125395-0 201120845 載的變化°當手指觸摸顯示器時第18圖等效電路的耦合 電容1831就會產生,改變了電路的電容負載以及時間常 數’兩個既定電位間的時間間隔T423*T424也就發生了 改變。測量時間間隔Τ423和Τ424的變化就可以獲得觸控 的寊訊,既定電位V421和V422選取充放電過程中採樣點 1841的兩個電位。 [0079] 實現時間特徵測量法觸控訊號檢測的電路結構如第32圖 和第33圖所示。其觸控訊號檢測電路結構都是由訊號檢 測及資料採樣通道、資料處理和時序控制電路組成。訊 號檢測及資料採樣通道具有緩衝器、數模轉換電路或電 壓調節輸出單先、比較器、ϋ赛;資許處楚和時序控 制電路是具有資料運算能力、資料輪出輸今介面的中央 處理器(CPU、MCU) ’中央處理器具有控制軟體、資料處 理軟體。 [0080] 第3 2圖是一種時間特徵測暈法的觸控訊號檢測電路結構 圖,3210是觸控訊號被樣點的訊號,3211是一個既定電 位(V421),由電壓調節輸出單元3220來產生,3212是 一個既定電位(V422 ),由電壓調節輸出單元3221來產 生;觸控訊號採樣點的訊號3210經過緩衝器3230緩衝輸 出,與3211這個既定電位進入比較器3232進行比較;觸 控訊號採樣點的訊號3210經過緩衝器3231緩衝輸出,與 3212這個既定電位進入比較器3233進行比較;中央處理 器(CPU、MCU)3235產生計數器3234的記數脈衝訊號 3240,比較器3233的輸出電位作為計數器3234的啟動記 數訊號,比較器3232的輸出電位作為計數器3234的停止 098142369 表單編號A0101 第34頁/共77頁 0993125395-0 201120845 ϊ己數訊號;計數器3234停止記數後的讀數由中央處理器 (CPU、MCU )3235讀取,讀數完畢後由中央處理器(cpu ' 、MCI03235送出清零訊號3241清零計數器3234,為下 一次讀數做好準備,並由中央中央處理器(CPU、 MCU)3235進行資料處理及觸控判斷。 .[0081] 第33圖是一種時間特徵測量法的觸控訊號檢測電路結構 圖,3310是觸控訊號採樣點的訊號,中央處理器(cpu、 MCU)3327通過程式預置或歷史檢測判斷而輸出相應資料 到數模轉換器3320輸出一個既定電位3311 (V421),也 輪出資料到數模轉換器3321輸出一個既定電位3312 ( V422 );觸控説號採樣點鈞雖號,331〇,4聲衝器3322緩 衝輸出’與3311這個既定電位進入比,破器3324 ;觸控訊 號採樣點的訊號3310經過緩衝器3323緩衝輸出,與3312 這個既定電位進入比較器3325;中央處理器(CPU、 MCU)3327產生計數器332β的記數脈衝訊號3330,比較 η二〜…… 器3325的輸出電位作為計數器'3326的啟動記數訊號,比 較器3324的輸出電位作為計it:器3326的停止記數訊號; §十數器3326停止記數後的讀數由中央處理器(cpu、 MCU)3327讀取,讀數完畢後由中央處理器(cpu、 MCU)3327送出清零訊號3331清零計數器3326,為下一 次讀數做好準備,並由中央中央處理器(CPU、MCU) 3327 進行資料處理及觸控判斷。 第32圖和第33圖所示的兩種時間特徵測量法觸控訊號檢 測的區別在於:第32圖所示方案是手動的方法給比較器 設置兩個既定電位V421*V422 ;第33圖所示方案是由中 098142369 表單編號A0101 第35頁/共77頁 0993125395-0 [0082] 201120845 央處理器給比較器設置兩個既定電位V421和V422,中央 處理器通過程式預置或將之前的測量結果運算後輸出對 應資料到數模轉換電路,使其輸出作為既定比較電位, 對既定比較電位V421和V422的設置具有智慧化的調節能 力。 [0083] 具體實施方式十九 與實施例十八不同,本例中觸控激勵源1810為正弦波訊 號,由於1830和1831是電容負載,正弦波的觸控激勵源 帶上電容負載後,在觸控訊號採樣點上的波形還是正弦 波,但發生了幅度和相位的變化,觸控激勵源1810的輸 出波形和觸控訊號採樣點1841的觸控訊號波形如第23圖 所示。 [0084] 本實施方式對觸控訊號的檢測方法採用相移測量法,比 較不同的幀消隱時間段上觸控訊號採樣點1841上特定相 位點的相位移動,來獲取觸控資訊。可以看出可以通過 測量相位的改變來反映這個觸摸電容的影響,而相位的 改變也可以從測量時間間隔來反映,這個時間間隔的檢 測示意圖亦見如第23圖所示,顯示器無手指觸摸時,由 於第18圖中的分佈電容1830的存在,檢測觸控訊號採樣 點1841上的觸控訊號波形相對觸控激勵源輸出端1840的 波形有相位的延遲;當手指觸摸顯示器時第1圖8所示等 效電路的耦合電容1831就會產生,增大了電路的電容負 載,觸控訊號採樣點1841上的過零點與激勵源之間的過 零點之間的時間T500會變大,即產生進一步的相移。測 量時間T500的變化就可獲得觸控的資訊。根據觸控激勵 098142369 表單編號A0101 第36頁/共77頁 0993125395-0 201120845 源波形的不同,特定相位點對應的電位可以是零點或者 是其他電位點。 [0085]實現相移測量法觸控訊號檢測的電路結構如第3 4圖和第 35圖所示。其觸控訊號檢測電路結構都是由訊號檢測及 資料採樣通道、資料處理和時序控制電路組成。訊 測及資料採樣通道具有緩衝器、數模轉換電路或電壓調 節輸出單元、比較器、記數器;資料處理和時序控制電 路是具有資料運算能力、資料輸出輸入介面的中央處理 器(CPU、MCU),中央處理器具有控制軟體、資料處理軟 體》 _]第34圖是-種相移特徵測藏簡控氣號檢,測電路結構 圖,3410是觸控訊號採樣^的:瓿號^ 3411是檢測參考點 的訊號,3412是由電壓調節輸出單元342〇產生的對應一 個特定相位點時的電位;觸控訊號採樣點的訊號3 4丨〇經 過緩衝器3430缓衝輸出,與3412這個特定相位點對應的 電位進入比較器3432進行由較;觸控訊號採樣點的訊號 3411經過缓衝器3431緩衝赛由,與34丨2這個特定相位點 對應的電位進入比較器3433進行比較;中央處理器(cpu 、MCU)3435產生計數器3434的記數脈衝訊號3440,比 較器3433的輸出電位作為計數器3434的啟動記數訊號, 比較器3432的輸出電位作為計數器3434的停止記數訊號 ;計數器3434記數停止後的讀數由中央處理器(cpu、 MCU)3435讀取’讀數完畢後由中央處理器(cpu、 MCU)3435送出清零訊號3441清零計數器3434,為下一 次讀數做好準備,並由中央中央處理器(CPU、MCU) 3435 098142369 表單編號 A0101 第 37 頁/共 77 頁 0993125395-0 201120845 進行資料處理及觸控判斷。 [0087] 第3 5圖是—種相移特徵測量法的觸控訊號檢測電路結構 圖’ 3510是觸控訊號採樣點的訊號,3511是檢測參考點 的訊號,中央處理器(CPU、MCU)3526根據程式預設或者 歷史檢測判斷而輸出相應資料到數模轉換器3520,特定 相位點對應的電位3512即是數模轉換器3520的輸出電位 :觸控訊號採樣點的訊號3510經過緩衝器3521緩衝輸出 ’與3512這個特定相位點對應的電位進入比較器3523進 行比較;觸控訊號採樣點的訊號3511經過緩衝器3522緩 衝輸出,與3512這個特定相位點對應的電位進入比較器 3524進行比較;中央處理_^CPU、MCU)352,6產生計數 器3525的記數脈衝訊號353,0tb較器3524的輸出電位作 為計數器3525的啟動記數訊號,比較器3523的輸出電位 作為計數器3525的停止記數訊號;計數器3525記數停止 後的讀數由中央處理器(CPU、MCU)3526讀取,讀數完畢 後由中央處理器(CPU、MCU)3526送出清零訊號3531清 零计數器3 5 25 為一.次讀數..做好準備,並由中央中央 處理器(CPU、MCU)3526進行資料處理及觸控判斷。 [0088] 第34圖和第35圖所示的兩種相移測量法觸控訊號檢測的 區別在於:第34圖所示方案是用手動的方法設定特定相 位點對應的電位;第35圖所示方案是由中央處理器通過 數模轉換器來設定特定相位點對應的電位,中央處理器 通過程式預設或將之前的測量結果運算後經數模轉換器 回饋作為特定相位點對應的電位,對特定相位點的設置 具有智慧化的調節能力。 098142369 表單編號A0101 第38頁/共77頁 0993125395-0 2Ό1本實施方式所測量的觸控訊號相位特徵實質上也是時間 [0090] r ( 特徵的一種。 具體實施方式二十 第4圖所示的觸控顯示器400,分時多工顯示器電極來完 成觸控功能。觸控顯示器400以部分的或全部的N條顯示 器電極線分時多工作觸控感應電極線,以單通道順序掃 描的檢測方式進行觸控探測:觸控訊號檢測電路具有一 個觸控訊號檢測通道或一個資料採樣通道,以掃描的方 式依次順序檢測N條觸控感應電極線中的第一條、第二條 .....直至最後的第N條觸控感應電極線,從而完成一個 探測巾貞的全部檢測過程,如第3 6圖所示。 - [0091] 這也是最常規和自然的觸控檢測方式。 [0092] 具體實施方式二十一 與實施例二十不同,本例中是按某一既定的間隔i以掃描 的方式檢測N條觸控感應電極中的第一條電極、第i + Ι條 、第2i + l條.....直至到最後的第N條觸控感應電極線, 從而完成一個探測幀的全部檢測過程。 [0093] i = 2時,即間隔一條觸控感應電極線的檢測掃描示意圖如 第37圖所示。 [0094] 具體實施方式二十二 與實施例二十一和二十二不同的是,本例是以單通道粗 掃加細掃的檢測方式進行觸控探測:觸控訊號檢測電路 具有一個檢測通道或一個資料採樣通道,把觸控感應電 極線按每i條一區劃分為幾個分區,每個分區選取一條或 098142369 表單編號A0101 第39頁/共77頁 0993125395-0 201120845 多條觸控感應電極線作為該分區觸控感應電極線的觸控 感應代表電極一起進行觸控檢測,最好的方法是把每個 分區裏面全部的觸控感應電極線並聯作為一條觸控感應 代表電極;先按區對觸控感應代表電極進行檢測,確定 觸控動作發生的區域;再在有觸控動作發生的區域裏面 進行細分掃描檢測’獲得更具體的觸控貢訊。此方法的 目的是為了節省觸控檢測的時間。 [0095] i = 3時,單通道粗掃加細掃的檢測掃描示意圖如第3 8圖所 示。 [0096] 具體實施方式二十三 本例以多通道順序掃描的檢測方式進行觸控探測:觸控 訊號檢測電路具有多個觸控訊號檢測通道和多個資料採 樣通道,把全部的觸控感應電極線分為跟觸控訊號檢測 通道數目相同的組數,每一個觸控訊號檢測通道負責一 個觸控感應電極組内的檢測。 [0097] —種方案是各觸控訊號檢測通道同時分別在各自組内進 、行順序掃描檢測,綜合全部觸控訊號檢測通道的檢測結 果,獲得全螢幕的觸控資訊。第39圖是三個觸控訊號檢 測通道時的掃描順序示意圖。 [0098] 另一種方案是各觸控訊號檢測通道同時分別在各自組内 進行間隔掃描檢測,綜合全部觸控訊號檢測通道的檢測 結果,獲得全螢幕的觸控資訊。第40圖是三個觸控訊號 檢測通道時的掃描順序示意圖。 [0099] 再一種方案是各觸控訊號檢測通道同時分別在各自組内 098142369 表單編號A0101 第40頁/共77頁 0993125395-0 201120845進杆相播“ a 進订粗知加細知檢測,綜合全部觸控訊號_通道的檢 H獲得全鸯幕的馳資訊。第41圖是三個觸控訊 號檢測通道時的掃插順序示意圖。 闺以±所述料舉舰,轉驗舰者。純未脫離本 發明之精神與範疇,而對其進行之等效修改或變更,均 應包含於後附之申請專利範圍中。 【圖式簡單說明】 [麵]第1圖係為本發明之TFT-LCD顯示器典型的結構圖;... jr I point signal, touch signal sampling point function k number 25^0 and speculative reference point signal 2511 are buffered by buffer 2_&2|^ buffer fe2521 respectively, as the first stage difference The input signal of the amplifier 2522; the output of the first stage differential amplifier 2522 is used as one of the inputs of the second stage differential amplifier 2523, and the 2524 is the regulated voltage output, which serves as a reference potential and is connected to the other input of the second stage differential amplifier 2523. Used to subtract the bottom value of the output signal of the first stage differential amplifier circuit; the second stage differential amplifier 2523 outputs to the Analog-to-Digital Converter 2525, 2525 in the central processor (CPU, MPU) 2526 output Simultaneous sampling under the control of the synchronization control signal 2530, sampling conversion 098142369 Form number A0101 Page 27 / Total 77 page 0993125395-0 201120845 The result is sent to the central processing unit (CPU, MPU) 2526, and then by the central processing unit Data processing and touch judgment. [0067] FIG. 26 is a structural diagram of a touch signal detecting circuit of an instantaneous value measuring method. 2610 is a signal of a touch signal sampling point, 2611 is a signal for detecting a reference point, and a signal 2610 of a touch signal sampling point is The signal 2611 of the detection reference point is buffered by the buffer 2620 and the buffer 2621, respectively, as an input signal of the first stage differential amplifier 2622; the output of the first stage differential amplifier 2622 is used as one of the inputs of the second stage differential amplifier 2623. The feedback adjustment analog circuit 2624 uses the output of the second stage differential amplifier 2623 as a feedback input signal and automatically adjusts the output voltage as f ^ t 1 f , , the reference potential, and the other input connected to the second stage difference, Λ , Λ % - is used to subtract the flat value of the first stage differential amplifier; the second stage differential amplifier 2623 is output to the analog to digital converter 2625, 2625 under the control of the synchronous control signal 2630 output by the central processing unit (CPU, MPU) 2626 Simultaneous sampling is performed, and the sampling conversion result is sent to the central processing unit (CPU, MPU) 2626, and then the data processing and touch determination are performed by the central processing unit. ...: [0068] Figure 27 shows a structure of the touch signal detection circuit of the instantaneous value measurement method, 2710 is the signal of the touch signal sampling point, 2711 is the signal for detecting the reference point, and the signal of the touch signal sampling point The signal 2711 of the 2710 and the detection reference point is buffered by the buffer 2720 and the buffer 2721, respectively, as an input signal of the first stage differential amplifier 2722; the output of the first stage differential amplifier 2722 is again used as one of the second stage differential amplifiers 2723. Input, the central processing unit (CPU, MPU) 2726 sends the adjustment data to the digital-to-analog converter 2724 according to the result of the touch operation, and the output voltage of the 2724 is 098142369. Form number A0101 page 28/total T7 page 0993125395-0 201120845^ ... a quasi-potential connected to the other input of the second stage differential amplifier 2723 for subtracting the bottom value of the output signal of the first stage differential amplifying circuit; the second stage differential amplifier 2723 is output to the analog bit converter 2725, 2725 at the central processor (CPU, MPU) Synchronous sampling is performed under the control of the synchronous control signal 2730 outputted by the 2726, and the converted result of the sampling is sent to the central processing unit (CP). U, MPU) 2726, and then the central processing unit for data processing and touch judgment. [0069] The three kinds of instantaneous value measurement touches shown in FIG. 25, FIG. 26, and FIG. 27 (::: The difference of the signal detection circuit is that the scheme shown in FIG. 25 is a manual method to the second differential circuit. Set ~ reference potential, have basic adjustment ability for the secondary differential circuit; the first A® · go to the case ^ soil differential circuit 5 ' ? ξι , - the wheel-out signal 铨 analog circuit again, back # give ϋ difference, sub-station as the base, ν - 1 ^ - quasi-potential 'has the ability to adjust the automatic tracking of the second differential circuit; the scheme shown in Figure 27 is to feedback the result of the central processor operation through the digital-to-analog conversion circuit The secondary differential circuit is used as the reference potential, and the second differential circuit has an intelligent ability to be used. ' . r..... * ^ I > * »· / f V [0070] Different sizes and resolutions The resistance of the electrode of the display is generally 21 [above] at the connection point between the detection circuit and the electrode line on the touch screen. The touch signal is shunted due to the input impedance of the detection circuit, and the input impedance of the detection circuit is larger, and the touch is The smaller the shunting effect of the signal, the input impedance of the detection circuit is 2. When the touch signal is more than 5 times, the touch signal can reflect the touch action information, so the wheel-in impedance of the signal detection channel to the electrode line is required to be above π Q or 5 Κ Ω, as shown in Figures 25, 26 and 27, in the differential amplifier circuit and A buffer is added between the connection points of the electrode lines on the touch screen for the input impedance of the large detection circuit. 098142369 Form No. A0101 Page 29/77 Page 0993125395-0 201120845 [0071J Embodiment 17, $ The implementation of the ^ 14 and the fifteenth can also use the average to measure the touch display of the touch screen display of Figure 4. $ species = ^ method is, the axis (four) _ although "the average value of the touch signal Quantity result. Μ value measurement = material production method is slow, but 伽 就 就 除 除 除 除 除 , , , , 除 除 除 除 除 除 除 除 除 除 除 除 除 除 除 除 除 除 除 除 除 除 除 除 除 除 除 除A circuit structure for detection is shown in Figures 28, 29 and 30. The structure of the circuit is composed of a slap detection path, a turn signal, a control signal check channel, a data processing and a timing control circuit. Detecting ramps with buffer level-level differential placement The circuit, the effective acoustic measurement circuit and the second-order difference eight circuits; the data sampling channel has the emblem digital transfer path; the data processing and timing control circuit is a central processing unit (CPU, data processing capability, Becco output wheel input interface) MCU), the towel central processor has control software and data processing software. [0072] FIG. 28 is a structural diagram of a touch signal detecting circuit of a mean value measuring method, and 2810 is a signal of a touch signal sampling point. 2811 is a signal for detecting a reference point, and the signal 2810 of the touch signal sampling point and the signal 2811 of the detection reference point are buffered by the buffer 2820 and the buffer 2821, respectively, and are input signals of the first stage differential differential amplifying circuit unit 2822; The first-order differential differential amplifying circuit unit 2822 includes a frequency strobe circuit, and the strobe frequency of the strobe circuit is the frequency of the excitation source touch signal', and the strobe output is strobed, and the strobed output is used as an effective value. The input of converter 2823, the effective value of 2823 is output as the second stage differential amplifier 098142369 Form No. A0101 Page 30 / Total 77 Page 0993125395-0 201120845 2824 input; 2825 is the regulated voltage output, which is used as a reference potential, connected to the other input of the second stage differential amplifier 2824, used to subtract the bottom value of the 2823 rms output signal; the second stage differential amplifier 2824 output The analog to digital converters 2826, 2826 are synchronously sampled under the control of the synchronous control signal 2830 outputted by the central processing unit (CPU, MPU) 2827, and the sampled conversion result is sent to the central processing unit (CPU, MPU) 2827 'and then by the central The processor performs data processing and touch judgment. [0073] FIG. 29 is a structural diagram of a touch signal detecting circuit of an average value measuring method, 2910 is a signal of a touch signal sampling point, 2911 is a signal for detecting a reference point, and a signal 2910 of a sampling point of the touch m is touched. And the signal 2911 for detecting the reference point is buffered by the buffer 39 of the buffer 39, and is used as the first-stage differential differential amplifying circuit, the military element 2 9 2 i_human signal; The differential differential amplifying circuit unit 2922 includes a frequency strobe circuit. The strobe frequency of the strobe circuit is the frequency of the excitation source touch signal, and the strobe output is strobed, and the strobe output is valid. The input value of the value converter 2923's input value '2923' is output as the input of the second-stage differential amplifier 2924; the feedback adjustment analogy|channel 2925 uses the output of the second-stage differential amplifier 2924 as a feedback input signal and automatically adjusts the output voltage. It is connected as a reference potential to the other input of the second stage differential amplifier 2924 for subtracting the bottom value of the 2923 rms output signal; the first stage differential amplifier 2924 outputs the analog to digital converter 2926, 2926 Simultaneous sampling under the control of the synchronous control signal 2930 outputted by the central processing unit (CPU, ΜΡϋ) 2927 'Sampling conversion result is sent to the central processing unit (CPU, MPU) 2927 'The data processing and touch by the central processing unit Judgment 098142369 Form No. A0101 Page 31 / Total 77 Page 0993125395-0 201120845 [0074] Figure 30 shows a structure of the touch signal detection circuit of the average value measurement method. 3010 is the signal of the touch signal sampling point. 3〇11 is the signal for detecting the reference point. The signal of the touch signal sampling point 3〇1〇 and the signal 3011 of the detection reference point are buffered by the buffer 3〇2〇 and the buffer 3〇21 respectively, as the first stage difference. The input signal of the differential amplifying circuit unit 3〇22; the first stage differential differential amplifying circuit unit 3022 includes a frequency strobe circuit, and the strobe frequency of the strobe circuit is the frequency of the excitation source touch signal, and the differential amplified output is performed. The strobe, the strobed output is then output as the rms value of the input ' 3023 of the rms converter 3023 as the input of the second stage differential amplifier 3024; the central processing unit (cpu, Μρϋ) 3〇27 According to the touch operation result, the adjustment data is sent to the digital-to-analog converter 3〇25, and the output voltage of the other 25 is used as the reference potential 'connected to the second-stage differential amplifier. The other input terminal of the 3024' is used to reduce The bottom value of the effective lean output signal of 3 〇 2 3; the second stage differential amplifier 3024 is rotated to the analog digital converter 3026, 3026 under the control of the synchronous control signal 3030 outputted by the central processing unit (CPU, MPU) 3027. Sampling with the same test, the sampling conversion result is sent to the central processing unit (CPU, ΜΡϋ) 302*7, and then the s central processing unit performs data processing and touch judgment. [0075] The difference between the three average measurement touch signal detection circuits shown in FIG. 28 'the 29th and 3rd is that the scheme shown in FIG. 28 is a manual method to set a reference for the secondary differential circuit. The potential has a basic adjustment capability for the second differential circuit; the scheme shown in Fig. 29 is that the output signal of the second differential circuit is fed back to the second differential circuit as a reference potential through the analog circuit, and the second differential circuit has automatic tracking. The adjustment scheme is shown in Figure 30. The result of the CPU operation is digital-to-analog conversion 098142369 Form No. A0101 Page 32 / Total 77 Page 0993125395-0 201120845 The circuit is fed back to the secondary differential circuit as the reference potential. The secondary differential circuit has intelligent adjustment capabilities. [0076] The display of different sizes and resolutions generally has an electrode resistance of more than two kilo ohms (2 Ω), and the touch signal is connected to the connection line of the detecting circuit and the electrode line on the touch screen due to the input impedance of the detecting circuit. The shunting, the larger the input impedance of the detection circuit, the smaller the shunting effect on the touch signal. When the input impedance of the detection circuit is 2.5 times or more, the touch signal can reflect the touch action information, so the input impedance of the signal detection channel to the electrode line is required to be 5 Κ or 5 Ω or more, such as 28, 29, and 30. In the figure, a buffer is added between the connection point of the differential amplifying circuit and the electrode line on the touch screen to increase the input impedance of the detecting circuit. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [0077] In the fourteenth embodiment, we refer to the touch display 400 shown in FIG. 4, which uses a TFT-LCD, and the equivalent circuit of the measurement is shown in FIG. The touch excitation source 1810 is a square wave signal. Since the 1830 and 1831 are capacitive loads, the touch-activated square wave signal has a charge and discharge waveform on the two capacitors. The output waveform of the touch excitation source 1810 and the touch signal waveform of the touch signal sampling point 1841 are as shown in Fig. 21. To illustrate the present embodiment, the 21st icon number is now re-displayed as shown in Fig. 31. [0078] In the embodiment, the touch signal detection method uses a time characteristic measurement method to measure the time interval change between two predetermined potentials during charging and discharging of the touch signal sampling point 1841 to obtain touch information. As shown in FIG. 31, the time T423 between two predetermined potentials V422 and V421 during the charging process of the waveform of the touch signal sampling point 1841 is measured, and the time T424 between the two predetermined potentials V421 and V422 during the discharging process can be reflected. This capacitor is negative 098142369 Form No. A0101 Page 33 / Total 77 Page 0993125395-0 201120845 Changes in the load ° When the finger touches the display, the coupling capacitor 1831 of the equivalent circuit is generated, changing the capacitive load and time constant of the circuit. The time interval T423*T424 between the two established potentials has also changed. The measurement of the time interval Τ 423 and Τ 424 can obtain the touch signal. The predetermined potentials V421 and V422 select the two potentials of the sampling point 1841 during the charging and discharging process. [0079] The circuit structure for realizing the time characteristic measurement touch signal detection is as shown in FIGS. 32 and 33. The structure of the touch signal detection circuit is composed of signal detection and data sampling channels, data processing and timing control circuits. The signal detection and data sampling channel has a buffer, a digital-to-analog conversion circuit or a voltage-regulated output single-single, comparator, and smashing; the stipulation and the timing control circuit are central processing units with data computing capability and data wheel output interface ( CPU, MCU) 'The central processing unit has control software and data processing software. [0080] FIG. 3 is a structural diagram of a touch signal detecting circuit of a time characteristic halation method, wherein 3210 is a signal of a touch signal being sampled, and 3211 is a predetermined potential (V421), which is provided by a voltage regulating output unit 3220. The 3212 is a predetermined potential (V422) generated by the voltage adjustment output unit 3221; the signal 3210 of the touch signal sampling point is buffered and outputted through the buffer 3230, and compared with the predetermined potential of 3211 to enter the comparator 3232; the touch signal is The signal 3210 of the sampling point is buffered and outputted through the buffer 3231, and is compared with the predetermined potential of 3212 into the comparator 3233; the central processing unit (CPU, MCU) 3235 generates the counting pulse signal 3240 of the counter 3234, and the output potential of the comparator 3233 is taken as The start signal of the counter 3234, the output potential of the comparator 3232 is used as the stop of the counter 3234 098142369 Form No. A0101 Page 34 / Total 77 page 0993125395-0 201120845 ϊ 数 ; 信号 ; (CPU, MCU) 3235 read, after the reading is completed by the central processor (cpu ', MCI03235 send clear signal 3241 clear The zero counter 3234 is prepared for the next reading and is processed by the central processing unit (CPU, MCU) 3235 for data processing and touch determination. [0081] Figure 33 is a touch signal detection method for time characteristic measurement. The circuit structure diagram, 3310 is the signal of the touch signal sampling point, and the central processing unit (cpu, MCU) 3327 outputs the corresponding data to the digital-to-analog converter 3320 through a program preset or history detection to output a predetermined potential 3311 (V421), Also rotate the data to the digital-to-analog converter 3321 to output a predetermined potential 3312 (V422); the touch point sample point 钧 number, 331 〇, 4 sounder 3322 buffer output 'with 3311 this set potential ratio, breaker 3324; the signal 3310 of the touch signal sampling point is buffered and outputted through the buffer 3323, and enters the comparator 3325 with the predetermined potential of 3312; the central processing unit (CPU, MCU) 3327 generates the counting pulse signal 3330 of the counter 332β, and compares η2~ The output potential of the device 3325 is used as the start count signal of the counter '3326, and the output potential of the comparator 3324 is used as the stop count signal of the meter 3326; § after the timer 3326 stops counting The number is read by the central processing unit (cpu, MCU) 3327. After the reading is completed, the central processing unit (cpu, MCU) 3327 sends the clearing signal 3331 clearing counter 3326, which is ready for the next reading and is processed by the central processing center. (CPU, MCU) 3327 Data processing and touch judgment. The difference between the two types of time characteristic measurement touch signal detection shown in Fig. 32 and Fig. 33 is that the scheme shown in Fig. 32 is a manual method for setting two predetermined potentials V421*V422 to the comparator; Fig. 33 The program is composed of 098142369 Form No. A0101 Page 35 / Total 77 Page 0993125395-0 [0082] 201120845 The central processor sets two preset potentials V421 and V422 to the comparator, and the central processor presets by program or will measure the previous After the result is calculated, the corresponding data is output to the digital-to-analog conversion circuit, and the output is used as a predetermined comparison potential, and the setting of the predetermined comparison potentials V421 and V422 is intelligently adjusted. The nineteenth embodiment is different from the eighteenth embodiment. In this example, the touch excitation source 1810 is a sinusoidal signal. Since the 1830 and 1831 are capacitive loads, the sinusoidal touch excitation source is charged with a capacitive load. The waveform on the touch signal sampling point is still a sine wave, but the amplitude and phase change occur. The output waveform of the touch excitation source 1810 and the touch signal waveform of the touch signal sampling point 1841 are as shown in FIG. [0084] In the embodiment, the touch signal detection method uses a phase shift measurement method to compare the phase movement of a specific phase point on the touch signal sampling point 1841 on different frame blanking periods to obtain touch information. It can be seen that the influence of the touch capacitance can be reflected by measuring the change of the phase, and the phase change can also be reflected from the measurement time interval. The detection diagram of this time interval is also shown in Fig. 23, when the display has no finger touch. Because of the presence of the distributed capacitor 1830 in FIG. 18, the touch signal waveform on the touch signal sampling point 1841 is detected to have a phase delay relative to the waveform of the touch excitation source output terminal 1840; when the finger touches the display, FIG. The coupling capacitor 1831 of the equivalent circuit shown is generated, which increases the capacitive load of the circuit, and the time T500 between the zero-crossing point on the touch signal sampling point 1841 and the zero-crossing point between the excitation sources becomes larger, that is, Further phase shift. Touch information can be obtained by measuring the change in time T500. According to the touch excitation 098142369 Form No. A0101 Page 36 of 77 0993125395-0 201120845 The potential of the specific phase point can be zero or other potential points. [0085] The circuit structure for realizing the phase shift measurement touch signal detection is as shown in FIGS. 34 and 35. The structure of the touch signal detection circuit is composed of signal detection and data sampling channels, data processing and timing control circuits. The signal measurement and data sampling channel has a buffer, a digital-to-analog conversion circuit or a voltage-regulating output unit, a comparator, and a counter; the data processing and timing control circuit is a central processing unit (CPU, which has a data computing capability and a data output input interface). MCU), the central processing unit has control software and data processing software. _] Figure 34 is a kind of phase shift feature detection and control control gas number detection, measurement circuit structure diagram, 3410 is touch signal sampling ^: 瓿号 ^ 3411 is a signal for detecting a reference point, 3412 is a potential corresponding to a specific phase point generated by the voltage adjustment output unit 342〇; a signal 3 4丨〇 of the touch signal sampling point is buffered and outputted through the buffer 3430, and 3412 The potential corresponding to the specific phase point enters the comparator 3432 to perform comparison; the signal 3411 of the touch signal sampling point is buffered by the buffer 3431, and the potential corresponding to the specific phase point of 34丨2 is entered into the comparator 3433 for comparison; The processor (cpu, MCU) 3435 generates a counter pulse signal 3440 of the counter 3434, and the output potential of the comparator 3433 is used as a start count signal of the counter 3434. The output potential of the device 3432 is used as the stop counting signal of the counter 3434; the reading of the counter 3434 is stopped by the central processing unit (cpu, MCU) 3435. After the reading is completed, it is sent out by the central processing unit (cpu, MCU) 3435. Zero signal 3441 clears the counter 3434 to prepare for the next reading and is processed and touched by the central processing unit (CPU, MCU) 3435 098142369 Form No. A0101 Page 37 of 77 0993125395-0 201120845 . [0087] FIG. 3 is a structure diagram of a touch signal detecting circuit of a phase shift characteristic measuring method, '3510 is a signal of a touch signal sampling point, 3511 is a signal for detecting a reference point, and a central processing unit (CPU, MCU) The 3526 outputs the corresponding data to the digital-to-analog converter 3520 according to the program preset or the history detection judgment. The potential 3512 corresponding to the specific phase point is the output potential of the digital-to-analog converter 3520: the signal 3510 of the touch signal sampling point passes through the buffer 3521. The buffer output 'the potential corresponding to the specific phase point of 3512 enters the comparator 3523 for comparison; the signal 3511 of the touch signal sampling point is buffered and outputted through the buffer 3522, and the potential corresponding to the specific phase point of 3512 enters the comparator 3524 for comparison; The central processing _^CPU, MCU) 352, 6 generates the counter pulse signal 353 of the counter 3525, the output potential of the 0tb comparator 3524 is used as the start count signal of the counter 3525, and the output potential of the comparator 3523 is used as the stop count of the counter 3525. The signal is read by the central processing unit (CPU, MCU) 3526 after the stop of the counter 3525 count. After the reading is completed, the central processing unit (CPU, MCU) 3 526 sends the clear signal 3531 clear counter 3 5 25 for one reading.. Prepare, and the central processing unit (CPU, MCU) 3526 for data processing and touch judgment. [0088] The difference between the two phase shift measurement touch signal detections shown in FIG. 34 and FIG. 35 is that the scheme shown in FIG. 34 is to manually set the potential corresponding to a specific phase point; FIG. The display program is configured by the central processing unit to set a potential corresponding to a specific phase point through a digital-to-analog converter, and the central processing unit calculates the potential of the specific phase point by using a program preset or calculating the previous measurement result through a digital-to-analog converter. Intelligent adjustment of the setting of specific phase points. 098142369 Form No. A0101 Page 38 / Total 77 Page 0993125395-0 2Ό1 The phase characteristics of the touch signal measured in this embodiment are also substantially time [0090] r (one kind of feature. The specific embodiment is shown in Figure 4 The touch display 400 and the time-division multiplexed display electrodes complete the touch function. The touch display 400 uses a part or all of the N display electrode lines to divide and operate the touch sensing electrode lines in a single channel sequential scanning manner. Touch detection: The touch signal detection circuit has a touch signal detection channel or a data sampling channel, and sequentially scans the first and second of the N touch sensing electrode lines in a scanning manner. Until the last Nth touch sensing electrode line, complete the entire detection process of a detection frame, as shown in Figure 3. - [0091] This is also the most common and natural touch detection method. The twenty-first embodiment is different from the twenty-first embodiment. In this example, the first electrode of the N touch sensing electrodes and the i + Ι strip are detected by scanning at a predetermined interval i. , 2i + l ..... until the last Nth touch sensing electrode line, thus completing the entire detection process of a sounding frame. [0093] When i = 2, that is, a touch sensing electrode line is separated The schematic diagram of the detection scan is as shown in Fig. 37. [0094] The specific embodiment 22 is different from the twenty-first and twenty-second embodiments, and the example is touched by a single channel coarse sweep and fine sweep detection. Control detection: The touch signal detection circuit has a detection channel or a data sampling channel. The touch sensing electrode line is divided into several sections for each i-zone, and one partition is selected for each partition or 098142369 Form No. A0101 Page 39/ A total of 77 pages of 0993125395-0 201120845 multiple touch sensing electrode lines as the touch sensing electrode of the partition touch sensing electrode line for touch detection together, the best way is to put all the touch sensing electrodes in each partition The line is connected in parallel as a touch sensing representative electrode; the touch sensing representative electrode is detected by the area to determine the area where the touch action occurs; and then the subdivision is performed in the area where the touch action occurs. Trace detection 'gets more specific touch gongs. The purpose of this method is to save time for touch detection. [0095] When i = 3, the single-channel coarse sweep plus fine sweep detection scan is as shown in Figure 38. [0096] DETAILED DESCRIPTION OF THE INVENTION [Twenty-three] This example uses a multi-channel sequential scanning detection method for touch detection: the touch signal detection circuit has a plurality of touch signal detection channels and a plurality of data sampling channels, all of which are touched. The control sensing electrode line is divided into the same number of groups as the touch signal detecting channel, and each touch signal detecting channel is responsible for detecting in a touch sensing electrode group. [0097] In one solution, each touch signal detection channel simultaneously scans and scans in each group, and comprehensively detects the detection results of all the touch signal detection channels to obtain touch information of the full screen. Figure 39 is a schematic diagram of the scanning sequence when three touch signal detection channels are used. [0098] Another solution is that each touch signal detection channel simultaneously performs interval scan detection in each group, and comprehensively detects the detection results of all touch signal detection channels to obtain touch information of the full screen. Figure 40 is a schematic diagram of the scanning sequence when three touch signals are detected. [0099] Another solution is that each touch signal detection channel is simultaneously in the respective group 098142369 Form No. A0101 Page 40 / Total 77 Page 0993125395-0 201120845 Advance broadcast "a Advance rough knowledge plus detailed detection, comprehensive All the touch signals _ channel detection H get the full screen of the information. Figure 41 is the sweep sequence of the three touch signal detection channels. 举 ± 所述 所述 所述 所述 所述 所述 所述 举 举 ± ± ± The equivalent modifications and variations of the present invention are intended to be included in the scope of the appended claims. [FIG. 1] FIG. 1 is a TFT of the present invention. - a typical structural diagram of an LCD display;

第2圖係為本發明之TFT-LCD的顯示子像素的結構示意圖 * . . 第3圖係為本#明之TFT-LCD液晶顯示器常嬈顯示驅動的 „ 時序圖; 第4圖係為本發明之TFT-LCD顯示器的觸斧顯示器的結構 Γ5Π · 團, 第5圖係為本發明之分時多工顯示器f極的時序圖; 第6圖係為本發明之具鐘實S轉專七激勵訊號波形 ;" ::/;:.. I I 7 ta * > I 3 (@J , i'..I. 2—, II H 1 ? 第7圖係為本發明之具體實施方式二的觸控激勵訊號波形 圖; 第8圖係為本發明之具體實施方式三的觸控激勵訊號波形 圖; 第9圖係為本發明之具體實施方式四的觸控激勵訊號波形 圖; 第10圖係為本發明之具體實施方式五的觸控激勵訊號波 形圖; 098142369 表單蹁號A0101 第41頁/共77頁 0993125395-0 201120845 第11圖係為本發明之具體實施方式六的觸控激勵訊號波 形圖; 第12圖係為本發明之具體實施方式七、方式八的分時多 工顯示器電極的時序圖; 第13圖係為本發明之具體實施方式七、方式八的觸控激 勵訊號波形圖; 第14圖係為本發明之在外場下正性液晶材料分子排列順 序圖; 第15圖係為本發明之在外場下負性液晶材料分子排列順 序圖, 第16圖係為本發明之具體實施方式九的分時多工顯示器 電極時序圖; 第17圖係為本發明之具體實施方式千的分時多工顯示器 電極時序圖; 第18圖係為本發明之手指觸摸顯示器時的等效電路圖; 第19圖係為本發明之觸摸所產生的觸控訊號洩漏電流△i 隨頻率變化的曲線圖; 第20圖係為本發明之COM電極設置在上基板玻璃上時,手 指觸摸顯示器時的等效電路圖; 第21圖係為本發明之觸控激勵訊號為方波時,觸控激勵 源和觸控訊號採樣點的觸控訊號波形圖; 第22a、22b、22c圖係為本發明之觸控激勵訊號為方波 時,觸控探測的完整同步過程示意圖; 第23圖係為本發明之觸控激勵訊號為正弦波時,觸控激 勵源和觸控訊號採樣點的觸控訊號波形圖; 第24a、24b、24c圖係為本發明之觸控激勵訊號為正弦 098142369 表單編號A0101 第42頁/共77頁 0993125395-0 201120845 波時,觸控探測的完整同步過程示意圖; 第25圖係為本發明之瞬時值測量法的觸控訊號檢測電路 結構圖; 第26圖係為本發明之瞬時值測量法的觸控訊號檢測電路 結構圖; 第27圖係為本發明之瞬時值測量法的觸控訊號檢測電路 結構圖; 第28圖係為本發明之有效值測量法的觸控訊號檢測電路 結構圖; 第29圖係為本發明之有效值測量法的觸控訊號檢測電路 結構圖; ’入… 第30圖係為本發明之有效值測量法的觸控訊號檢測電路 結構圖; 第31圖係為本發明之觸控激勵訊號為方波,觸控訊號採 樣點觸控訊號的時間特徵; 第3 2圖係為本發明之時間特徵測量法的觸控訊號檢測電 路結構圖; 第3 3圖係為本發明之時間特徵測量法的觸控訊號檢測電 路結構圖, 第34圖係為本發明之相移測量法的觸控訊號檢測電路結 構圖; 第35圖係為本發明之相移測量法的觸控訊號檢測電路結 構圖; 第36圖係為本發明之單通道順序掃描的觸控檢測方式檢 測順序不意圖, 第37圖係為本發明之單通道間隔掃描的觸控檢測方式檢 098142369 表單編號A0101 第43頁/共77頁 0993125395-0 201120845 測順序不意圖, 第38圖係為本發明之單通道粗掃加細掃的觸控檢測方式 檢測順序示意圖; 第39圖係為本發明之多通道順序掃描的觸控檢測方式檢 測順序不意圖, 第40圖係為本發明之多通道間隔掃描的觸控檢測方式檢 測順序示意圖;以及 第41圖係為本發明之多通道粗掃加細掃的觸控檢測方式 檢測順序示意圖。 【主要元件符號說明】 [0102] 1、2、3、4、N-1、N、i + 1、2i + l、N + 1、N + 2、N + 3、 N + Q、N+Q-l、N + Q-2、3N、3N-1、3N-2 ·檢測掃描序號 100 : TFT-LCD顯示器; 110 : TFT液晶螢幕; 120 :液晶螢幕水平方向掃描列電極; 121、122、12m-l及12m :掃描電極線(列電極線); 130 :液晶螢幕垂直方向資料行電極; 131及13η :數據電極線(行電極線); 140 :公共電極(COM電極); 150 :液晶螢幕上的薄膜電晶體TFT ; 160 :顯示像素對應的液晶分子盒; 170 :儲存電容; 180 :公共電極電壓源; 181 : TFT-LCD的閘極電極; 098142369 182 : TFT-LCD的源極電極(行電極)驅動器; 表單編號A0101 第44頁/共77頁 0993125395-0 201120845 183 :時序控制器; 400 :觸控顯示器; 410 : TFT-LCD顯示器 420 : TFT-LCD顯示器水平方向的掃插列電極; 421 42m :列電極線; 430 :TFT-LCD顯示器垂直方向的資料行電極; 431及43η :行電極線; 44G ·· TFT-LCD顯示器的公共電極層(⑶Μ電極); 450 . TFT-LCD顯示器上的薄膜場效應電晶體TFT ; 460 :顯示像素對應的液晶盒; 470 :儲存够; 嘗, 48〇 : COM電極的顯示驅動^為專|r jx; 481 :觸控激勵源; 二 482 . COM訊號選通輪出電路; 483 :列電極的顯示掃描驅動電路; 484 :列電極的觸控電路;/ ; 一 、乂, 48δ :列電極的列訊政遘通‘出電路; 486 :行電極的顯示資料驅動’’電路 487 .行電極的觸控電路; 488 :行電極的列訊號選通輸出電路; 489 :時序控制器; 1810 :觸控激勵源; 1820 :採樣電阻; 1821 :等效電阻; 1830 :分佈電容; 0993125395-0 1831 :耦合電容; 098142369 表單編號A0101 第45頁/共77頁 201120845 1832 :顯示器電極與COM電極之間的電容 1 840 :檢測參考點; 1841 :訊號採樣點; 202 0 :採樣電阻; 2021 :等效電阻; 2030 :分佈電容; 2031 :耦合電容; 2032 :耦合電容; 2040 :等效電阻; 2510 :觸控訊號採樣點的訊號;2 is a schematic view showing the structure of a display sub-pixel of the TFT-LCD of the present invention. Fig. 3 is a timing diagram of the conventional display driving of the TFT-LCD liquid crystal display of the present invention; FIG. 4 is the present invention. The structure of the touch-axe display of the TFT-LCD display is Π5Π · group, the fifth figure is the timing diagram of the f-pole of the time-division multiplex display of the present invention; the sixth figure is the excitation of the clock S-transmission of the invention Signal waveform; "::/;:.. II 7 ta * > I 3 (@J , i'..I. 2 -, II H 1 ? Figure 7 is a second embodiment of the present invention FIG. 8 is a waveform diagram of a touch excitation signal according to a third embodiment of the present invention; FIG. 9 is a waveform diagram of a touch excitation signal according to a fourth embodiment of the present invention; The touch excitation signal waveform diagram of the fifth embodiment of the present invention; 098142369 Form nickname A0101 Page 41 / Total 77 page 0993125395-0 201120845 The 11th figure is the touch excitation signal of the sixth embodiment of the present invention. Waveform diagram; Fig. 12 is a time-sharing method of the seventh embodiment and the eighth mode of the present invention. FIG. 13 is a waveform diagram of a touch excitation signal according to a seventh embodiment of the present invention; FIG. 14 is a sequence diagram of a molecular arrangement of a positive liquid crystal material in an external field according to the present invention; 15 is a sequence diagram of the molecular arrangement of the negative liquid crystal material in the external field of the present invention, and FIG. 16 is a timing chart of the time division multiplex display of the specific embodiment 9 of the present invention; FIG. 17 is a specific embodiment of the present invention. Embodiments of the time division multiplexed display electrode timing diagram of the embodiment; Figure 18 is an equivalent circuit diagram of the finger touch display of the present invention; Figure 19 is the touch signal leakage current Δi generated by the touch of the present invention Fig. 20 is an equivalent circuit diagram when the COM electrode of the present invention is placed on the upper substrate glass when the finger touches the display; and Fig. 21 is the square excitation of the touch excitation signal of the present invention. The touch signal waveform of the touch excitation source and the touch signal sampling point; the 22a, 22b, and 22c diagrams are the complete synchronization process of the touch detection when the touch excitation signal of the present invention is a square wave FIG. 23 is a touch signal waveform diagram of a touch excitation source and a touch signal sampling point when the touch excitation signal of the present invention is a sine wave; FIGS. 24a, 24b, and 24c are touches of the present invention. The excitation signal is sinusoidal 098142369 Form No. A0101 Page 42 / Total 77 Page 0993125395-0 201120845 Wave time, the schematic diagram of the complete synchronization process of touch detection; Figure 25 is the touch signal detection circuit structure of the instantaneous value measurement method of the present invention Figure 26 is a structural diagram of the touch signal detecting circuit of the instantaneous value measuring method of the present invention; Figure 27 is a structural diagram of the touch signal detecting circuit of the instantaneous value measuring method of the present invention; The structure of the touch signal detecting circuit of the rms measuring method of the invention; FIG. 29 is a structural diagram of the touch signal detecting circuit of the rms measuring method of the present invention; 'Into... FIG. 30 is the RMS measurement of the present invention. The structure of the touch signal detection circuit of the method; FIG. 31 is a time characteristic of the touch excitation signal of the present invention, which is a square wave and a touch signal sampling point; and FIG. 3 is a time characteristic of the present invention. The structure of the touch signal detecting circuit of the measuring method; the third drawing is the structure of the touch signal detecting circuit of the time characteristic measuring method of the present invention, and the 34th drawing is the touch signal detecting of the phase shift measuring method of the present invention. Circuit structure diagram; Figure 35 is a structural diagram of the touch signal detection circuit of the phase shift measurement method of the present invention; FIG. 36 is a schematic diagram of the detection order of the touch detection mode of the single channel sequential scan of the present invention, FIG. It is a touch detection method for single-channel interval scanning of the present invention. 098142369 Form No. A0101 Page 43/77 pages 0993125395-0 201120845 The order of measurement is not intended, and the 38th figure is a single-channel coarse sweep and fine sweep of the present invention. FIG. 39 is a schematic diagram of the detection sequence of the touch detection method for the multi-channel sequential scan of the present invention, and FIG. 40 is the detection sequence of the touch detection method for the multi-channel interval scan of the present invention. FIG. 41 is a schematic diagram showing the detection sequence of the multi-channel coarse sweep and fine sweep touch detection method according to the present invention. [Description of main component symbols] [0102] 1, 2, 3, 4, N-1, N, i + 1, 2i + l, N + 1, N + 2, N + 3, N + Q, N+Ql , N + Q-2, 3N, 3N-1, 3N-2 · Detection scan number 100: TFT-LCD display; 110: TFT liquid crystal screen; 120: LCD screen horizontal scanning column electrode; 121, 122, 12m-l And 12m: scan electrode line (column electrode line); 130: liquid crystal screen vertical direction data row electrode; 131 and 13n: data electrode line (row electrode line); 140: common electrode (COM electrode); 150: on the liquid crystal screen Thin film transistor TFT; 160: liquid crystal molecular box corresponding to display pixel; 170: storage capacitor; 180: common electrode voltage source; 181: gate electrode of TFT-LCD; 098142369 182: source electrode of TFT-LCD (row electrode ) Driver; Form No. A0101 Page 44/77 Page 0993125395-0 201120845 183: Timing Controller; 400: Touch Display; 410: TFT-LCD Display 420: Sweeping Column Electrode in Horizontal Direction of TFT-LCD Display; 42m: column electrode line; 430: data line electrode in the vertical direction of the TFT-LCD display; 431 and 43n: row electrode line; 44G · · Common electrode layer of TFT-LCD display ((3) Μ electrode); 450. Thin film field effect transistor TFT on TFT-LCD display; 460: LCD cell corresponding to display pixel; 470: Storage enough; Taste, 48〇: COM The display drive of the electrode is dedicated to |r jx; 481: touch excitation source; two 482. COM signal gate rotation circuit; 483: column electrode display scan drive circuit; 484: column electrode touch circuit; First, 乂, 48δ: column electrode column zhentongtong 'out circuit; 486: row electrode display data drive ''circuit 487. row electrode touch circuit; 488: row electrode column signal strobe output circuit; 489: timing controller; 1810: touch excitation source; 1820: sampling resistor; 1821: equivalent resistance; 1830: distributed capacitance; 0993125395-0 1831: coupling capacitor; 098142369 form number A0101 page 45/77 page 201120845 1832 : Capacitance between display electrode and COM electrode 1 840 : detection reference point; 1841 : signal sampling point; 202 0 : sampling resistance; 2021 : equivalent resistance; 2030 : distributed capacitance; 2031 : coupling capacitance; 2032 : coupling capacitance; 2040: equivalent electricity Resistance; 2510: the signal of the touch signal sampling point;

2511 :檢測參考點的訊號; — '零囊擊 藝么、 2520及2521 :緩衝器; 2522 :第一級差分放大器; 2523 :第二級差分放大器; 2524 :調節電壓輸出; 2525 :類比數位轉換器; 2526 :中央處理器; 2530 :同步控制訊號; 2610 :觸控訊號採樣點的訊號; 2611 :檢測參考點的訊號; 2620及2621 :緩衝器; 2622 :第一級差分放大器; 2623 :第二級差分放大器; 2624 :類比電路; 2625 :類比數位轉換器; 2626 :中央處理器; 098142369 表單編號Α0101 第46頁/共77頁 0993125395-0 201120845」630:控制訊號; 2710 :觸控訊號採樣點的訊號; 2711 :檢測參考點的訊號; 2720及2721 :缓衝器; 2722 :第一級差分放大器; 2723 :第二級差分放大器; 2724及2725 :類比數位轉換器; 2726 ··中央處理器; 2730 :同步控制訊號; ' 2810 :觸控訊號採樣點的訊號; .2811 :檢測參.考點的訊號;. 2820及2821 :緩衝器; — 2822 :第一級差分差分放大電路單元; • 2823 :轉換器; 2824 :第二級差分放大器; 2825 :調節電壓輸出; 2826 :類比數位轉換器; .--. ... p - j * :; -. = ..... 、 2827 :中央處理器; 2830 :同步控制訊號; 2910 :觸控訊號採樣點的訊號; 2911 :檢測參考點的訊號; 2920及2921 :緩衝器; 2922 :第一級差分差分放大電路單元; 2923 :有效值轉換器; 2924 :第二級差分放大器; 2925 :回饋調節類比電路; 098142369 表單編號A0101 第47頁/共77頁 0993125395-0 201120845 2926 :類比數位轉換器; 2927 :中央處理器; 2930 :同步控制訊號; 3010 :觸控訊號採樣點的訊號; 3011 :檢測參考點的訊號; 3020及3021 :緩衝器; 3022 :第一級差分差分放大電路單元; 3023 :有效值轉換器; 3024 :第二級差分放大器; 3025 :數模轉換器; isilfc .飞_ί 纖賴_ 猶 3D26 :類比數位轉換器; :;.s_ 3027 :中央處理器; '.:_s 3030 :同步控制訊號; 3210 :觸控訊號採樣點的訊號; 3211 :既定電位(V421 ); 3212 :既定電位(V422 ); 3220及3221 :電壓調節輸出單元; 3231 :緩衝器; 3232及3233 :比較器; 3234 :計數器; 3235 :中央處理器; 3241 :清零訊號; 3310 :觸控訊號採樣點的訊號; 3311 :既定電位(V421 ); 3312 :既定電位(V422 ); 3320及3321 :數模轉換器; 098142369 表單編號A0101 第48頁/共77頁 0993125395-0 201120845^322^3323 : ; 3324及3325 :比較器; 3326 :計數器; 3327 :中央處理器;以及 3331 :清零訊號。2511: Signal to detect the reference point; — 'Zero-bubble, 2520 and 2521: Buffer; 2522: First-stage differential amplifier; 2523: Second-stage differential amplifier; 2524: Adjust voltage output; 2525: Analog-to-digital conversion 2526: central processing unit; 2530: synchronous control signal; 2610: signal for touch signal sampling point; 2611: signal for detecting reference point; 2620 and 2621: buffer; 2622: first stage differential amplifier; 2nd differential amplifier; 2624: analog circuit; 2625: analog to digital converter; 2626: central processing unit; 098142369 form number Α 0101 page 46 / total 77 page 0993125395-0 201120845" 630: control signal; 2710: touch signal sampling Point signal; 2711: signal for detecting reference point; 2720 and 2721: buffer; 2722: first stage differential amplifier; 2723: second stage differential amplifier; 2724 and 2725: analog digital converter; 2726 · central processing 2730: synchronous control signal; '2810: signal of touch signal sampling point; .2811: signal for detecting reference point; 2820 and 2821: buffer; - 2822: first difference difference Amplifying circuit unit; • 2823: converter; 2824: second stage differential amplifier; 2825: regulating voltage output; 2826: analog digital converter; .--. ... p - j * :; -. = ... .., 2827: central processing unit; 2830: synchronous control signal; 2910: signal for touch signal sampling point; 2911: signal for detecting reference point; 2920 and 2921: buffer; 2922: first stage differential differential amplifying circuit unit 2923: rms converter; 2924: second stage differential amplifier; 2925: feedback adjustment analog circuit; 098142369 form number A0101 page 47/total 77 page 0993125395-0 201120845 2926: analog to digital converter; 2927: central processing unit 2930: synchronous control signal; 3010: signal of touch signal sampling point; 3011: signal for detecting reference point; 3020 and 3021: buffer; 3022: first stage differential differential amplifying circuit unit; 3023: RMS converter; 3024: second stage differential amplifier; 3025: digital to analog converter; isilfc. fly_ί _ _ 3D26: analog digital converter; :; s_ 3027: central processing unit; '.: _s 3030: synchronous control signal ; 3210 : Touch Signal sampling point signal; 3211: set potential (V421); 3212: set potential (V422); 3220 and 3221: voltage regulation output unit; 3231: buffer; 3232 and 3233: comparator; 3234: counter; Processor; 3241: clear signal; 3310: touch signal sampling point signal; 3311: set potential (V421); 3312: set potential (V422); 3320 and 3321: digital-to-analog converter; 098142369 form number A0101 Page / Total 77 pages 0993125395-0 201120845^322^3323 : ; 3324 and 3325: comparator; 3326: counter; 3327: central processing unit; and 3331: clear signal.

098142369 表單編號A0101 第49頁/共77頁 0993125395-0098142369 Form No. A0101 Page 49 of 77 0993125395-0

Claims (1)

201120845 七、申請專利範圍: 1 . 一種可排除顯示影響觸控的觸控顯示器,包括一主動式液 晶顯示器、一顯示驅動電路、一觸控電路,及使至少一顯 示器電極既用於顯示驅動又用於觸控探測的一顯示/觸控 訊號選通輸出電路或一顯示/觸控訊號載入電路; 該觸控電路具有一觸控激勵源和一觸控訊號檢測電路; 該顯示/觸控訊號選通輸出電路使各該顯示器電極或與該 顯示驅動電路連通傳輸顯示一驅動訊號,或與該觸控電路 連通傳輸一觸控訊號,藉以利用分時多工法將該顯示器電 極分別應用於顯示驅動和觸控探測: 該顯示/觸控訊號載入電路使該顯示器電極同時傳輸該顯 示驅動訊號和該觸控訊號,顯示驅動和觸控探測同時共用 該顯示器電極;以及 在該主動式液晶顯示器的至少一片基板上具有一主動式器 件陣列和連接該主動式器件陣列的一列電極組、一行電極 組,在該主動式液晶顯示器的另一片該基板上具有一公共 電極; 、 其中,正常顯示時段結束後,在該主動式液晶顯示器之部 分或全部行列電極線上和該公共電極上施加一液晶預驅動 訊號,該液晶預驅動訊號的大小是要讓施加有該液晶預驅 動訊號的各該行列電極線相對該公共電極之間所具有的電 位差不小於液晶的飽和驅動電壓,使施加有該液晶預驅動 訊號的各該行列電極線與該公共電極之間的液晶分子處於 確定的排列狀態,排除顯示内容變化對該觸控訊號檢測的 影響。 098142369 表單編號A0101 第50頁/共77頁 0993125395-0 201120845 _ . 如 申請專利範圍第!項所 顯示器,复由+ 排除觸控影響顯示的觸控 "、T在該主動式液晶 _ 極線上和該公共電極上所的2之部分或全部行列電 時或不同時施加在不同的各二,晶預驅動訊號,是同 電極線上施加有該液晶預驅動線上:各該行列 極上也有施知4 動訊唬的時段内,在該公共電 如專利申於:液晶預驅動訊號的時刻。 顯示器,:中=第1項所述之可排除觸控影響顯示的觸控 極線上和該1=動式液晶顯示器之部分或全部行列電 對該主動_^、$上所施加_液晶預雜訊號,是在 2 顯示器之部分或全部行列電極線上和該公 驅動:Γ液晶預驅動,“街過該液晶預 後上^該订列電極線施加該觸並檢測電極 線上該觸控訊號的變化。 1 4 如專利中請範圍第1項所述之可排除觸控影響顯示的觸控 顯示器,其中在該主動式液晶顯示器之部分或全部行列電 極線上和該公共電極上所施如的該液晶預驅動訊號,是在 對各該行列電極線施加該觸控訊號如同;時,或在各該對行 列電極線施加該觸控訊號之後,、對該主動式液晶顯示器之 部分或全部行列電極線上和該公共電極上施加該液晶預驅 動訊號,在施加該液晶預驅動訊號後,再檢測施加過該液 晶預驅動訊號的電極線上該觸控訊號的變化。 5 .如專利申請範圍第1項所述之可排除觸控影響顯示的觸控 顯示器’其中該主動式液晶顯示器上的該主動式器件陣列 是一薄膜場效應電晶體陣列,該各列行電極線分別連接該 薄膜場效應電晶體的閘極和源極、或分別連接該薄膜場效 應電晶體的閘極和汲極,對連接該薄膜場效應電晶體源極 098142369 表單编號 A0101 第 51 頁/共 77 頁 0993125395-0 201120845 或汲極的該行電極線具有同時施加該液晶預驅動訊號的時 段。 6 .如專利申請範圍第1項所述之可排除觸控影響顯示的觸控 顯示器,其中對該主動式液晶顯示器之部分或全部行列電 極線上和該公共電極上施加該液晶預驅動訊號,是在該主 動式液晶顯示器上全部的或部分的各該行列電極線與顯示 像素相連的一主動式器件處於截止狀態的時段。 7 .如專利申請範圍第1項所述之可排除觸控影響顯示的觸控 顯示器,其中該液晶預驅動訊號是在該主動式液晶顯示器 上與顯示像素相連的一主動式器件的導通狀態時段施加。 8 .如專利申請範圍第1項所述之可排除觸控影響顯示的觸控 顯示器,其甲該液晶預驅動訊號和該觸控訊號是在該主動 式液晶顯示器上與顯示像素相連的—主動武器件的導通狀 態時段同時施加。 9 .如專利申請範圍第7項或第8項所述之可排除觸控影響顯示 的觸控顯示器,其中該主動式液晶顯器上的主動式器件 陣列是一薄膜場效應電晶體陣列,在與顯示像素相連的該 薄膜場效應電晶體的導通狀態時段,對連接該薄膜場效應 電晶體源極或汲·極的該行電極線和該公共電極施加該液晶 預驅動訊號。 10 .如專利申請範圍第1項、第7項或第8項所述之可排除觸控 影響顯示的觸控顯示器,其中在該列或該行電極組上或該 公共電極上施加的該液晶預驅動訊號,是交流訊號、直流 訊號、交流和直流混合訊號中的一種。 11 .如專利申請範圍第1項、第7項或第8項所述之可排除觸控 影響顯示的觸控顯示器,其中施加在該主動式液晶顯示器 098142369 表單編號A0101 第52頁/共77頁 0993125395-0 201120845 , η電極上的該液晶預驅動訊號和該觸控訊號是頻率或波 形相同的交流訊號。 項 '第7項或第8項所述之可排除觸控 曰“、、頁不的觸控顯不②’其中該液晶_動訊號的頻率是 l〇kHz 或 ΙΟΚΗζ 以上。201120845 VII. Patent application scope: 1. A touch display capable of eliminating display affecting touch, comprising an active liquid crystal display, a display driving circuit, a touch circuit, and at least one display electrode for display driving a display/touch signal strobe output circuit or a display/touch signal loading circuit for touch detection; the touch circuit has a touch excitation source and a touch signal detection circuit; The signal strobe output circuit enables each display electrode or communicates with the display driving circuit to display a driving signal, or communicates with the touch circuit to transmit a touch signal, thereby applying the display electrodes to the display by using time division multiplexing method Driving and touch detection: the display/touch signal loading circuit causes the display electrode to simultaneously transmit the display driving signal and the touch signal, and the display driving and the touch detection share the display electrode simultaneously; and the active liquid crystal display An active device array and a column of electrode groups connecting the active device array on at least one substrate a row of electrode groups having a common electrode on the other substrate of the active liquid crystal display; wherein, after the normal display period is over, applying on some or all of the row and column electrode lines of the active liquid crystal display and the common electrode a liquid crystal pre-drive signal, the liquid crystal pre-drive signal is sized such that a potential difference between each of the row and column electrode lines to which the liquid crystal pre-drive signal is applied is opposite to a saturation drive voltage of the liquid crystal, so that The liquid crystal molecules between the row and column electrode lines of the liquid crystal pre-drive signal and the common electrode are in a certain arrangement state, and the influence of the display content change on the touch signal detection is excluded. 098142369 Form No. A0101 Page 50 of 77 0993125395-0 201120845 _ . If the display of the scope of the application for the patent item is covered by +, the touch is affected by the touch control, and the T is on the active liquid crystal _ pole line And a part or all of the two rows on the common electrode are applied to different two, crystal pre-drive signals, and the liquid crystal pre-drive line is applied on the same electrode line: each row of the column also has a knowledge 4 During the period of the motion, the public power is applied at the moment when the patent is applied to: the liquid crystal pre-drive signal. The display, wherein: the touch pole line on the touch-sensitive effect display and the part or all of the row of the 1=moving liquid crystal display are applied to the active _^, $ The signal is on some or all of the row and column electrodes of the 2 display and the male drive: Γ liquid crystal pre-drive, "the street passes the liquid crystal prognosis ^ the predetermined electrode line applies the touch and detects the change of the touch signal on the electrode line. 1 4 The touch display capable of eliminating the touch influence display according to the first aspect of the patent, wherein the liquid crystal pre-applied on part or all of the row electrode lines of the active liquid crystal display and the common electrode Driving the signal, when applying the touch signal to each of the row and column electrode lines; or after applying the touch signal to each of the pair of row and column electrode lines, and partially or completely arranging the electrode lines on the active liquid crystal display The liquid crystal pre-drive signal is applied to the common electrode, and after the liquid crystal pre-drive signal is applied, the change of the touch signal on the electrode line to which the liquid crystal pre-drive signal is applied is detected. The touch display capable of eliminating the touch influence display according to the first aspect of the patent application, wherein the active device array on the active liquid crystal display is a thin film field effect transistor array, and the column electrode lines are respectively connected The gate and the source of the thin film field effect transistor, or the gate and the drain of the thin film field effect transistor, respectively, are connected to the thin film field effect transistor source 098142369 Form No. A0101 Page 51 of 77 Page 0993125395-0 201120845 or the electrode line of the drain electrode has a period of simultaneous application of the liquid crystal pre-drive signal. 6. The touch display capable of eliminating the touch influence display according to the first aspect of the patent application, wherein The liquid crystal pre-driving signal is applied to some or all of the row electrode lines of the active liquid crystal display and the common electrode, and is an active device in which all or part of the row and column electrode lines are connected to the display pixels on the active liquid crystal display. The time period in the cut-off state. 7. The touch display capable of eliminating the touch influence display as described in the first application of the patent application scope, The liquid crystal pre-drive signal is applied during an on-state period of an active device connected to the display pixel on the active liquid crystal display. 8. The touch that can eliminate the touch-sensitive display according to the first application of the patent application scope The display, wherein the liquid crystal pre-drive signal and the touch signal are simultaneously applied to the display pixel in the active liquid crystal display - the active state of the active weapon is simultaneously applied. 9. The patent application scope 7 or 8 The touch display capable of eliminating the touch effect display, wherein the active device array on the active liquid crystal display is a thin film field effect transistor array, and the thin film field effect transistor connected to the display pixel During the on-state period, the liquid crystal pre-drive signal is applied to the row electrode line and the common electrode connecting the source/gate electrode of the thin film field effect transistor. 10. The touch display capable of eliminating a touch influence display according to the first, seventh or eighth aspect of the patent application, wherein the liquid crystal is applied on the column or the row electrode group or the common electrode The pre-drive signal is one of an AC signal, a DC signal, and an AC and DC mixed signal. 11. A touch display capable of eliminating a touch influence display according to the first, seventh or eighth aspect of the patent application, wherein the active liquid crystal display is applied to the active liquid crystal display 098142369 Form No. A0101 Page 52 of 77 0993125395-0 201120845, the liquid crystal pre-drive signal on the η electrode and the touch signal are alternating signals with the same frequency or waveform. Item 'Item 7 or Item 8 can exclude the touch 曰 ", the touch of the page is not 2', wherein the frequency of the liquid crystal signal is l 〇 kHz or more. 098142369 表單编號A0101 第53頁/共7?頁 0993125395-0098142369 Form No. A0101 Page 53 of 7 Page 0993125395-0
TW98142369A 2009-12-10 2009-12-10 Touch-control display capable of removing touch-control impact on display. TW201120845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98142369A TW201120845A (en) 2009-12-10 2009-12-10 Touch-control display capable of removing touch-control impact on display.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98142369A TW201120845A (en) 2009-12-10 2009-12-10 Touch-control display capable of removing touch-control impact on display.

Publications (1)

Publication Number Publication Date
TW201120845A true TW201120845A (en) 2011-06-16

Family

ID=45045342

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98142369A TW201120845A (en) 2009-12-10 2009-12-10 Touch-control display capable of removing touch-control impact on display.

Country Status (1)

Country Link
TW (1) TW201120845A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI494911B (en) * 2012-09-24 2015-08-01 Innocom Tech Shenzhen Co Ltd Liquid crystal display apparatus and driving method thereof
TWI549032B (en) * 2014-10-28 2016-09-11 宏碁股份有限公司 Touch display apparatus and operation method of touch device thereof
TWI754821B (en) * 2019-05-31 2022-02-11 大陸商北京集創北方科技股份有限公司 Common voltage decoupling circuit, touch display integrated driver using the same, and touch display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI494911B (en) * 2012-09-24 2015-08-01 Innocom Tech Shenzhen Co Ltd Liquid crystal display apparatus and driving method thereof
TWI549032B (en) * 2014-10-28 2016-09-11 宏碁股份有限公司 Touch display apparatus and operation method of touch device thereof
TWI754821B (en) * 2019-05-31 2022-02-11 大陸商北京集創北方科技股份有限公司 Common voltage decoupling circuit, touch display integrated driver using the same, and touch display device

Similar Documents

Publication Publication Date Title
WO2011035489A1 (en) Touch control display
WO2011035485A1 (en) Touch control display able to remove touch control impact on display
JP5481740B2 (en) Touch display that can eliminate the effects of touch on the display
WO2011035491A1 (en) Touch control screen
US9690424B2 (en) In-cell multi-touch display panel system
CN201590059U (en) Touch control circuit
US9601067B2 (en) In-cell multi-touch display panel system
US9619073B2 (en) Touch screen driver including out-of-phase driving signals simultaneously supplied to adjacent TX lines for reducing noise from a display panel, and method for driving the same
US9310942B2 (en) Display device having touch sensor reducing limit in driving time of pixel array and driving time of touch sensor and method for driving the same
CN102693703B (en) Display with integrated touch sensor and driving method thereof
US20150185913A1 (en) Touch sensing system
KR101491203B1 (en) Apparatus and method for driving touch screen
CN104216583B (en) touch screen driver
TW201120698A (en) Touch display.
US20140118301A1 (en) Touch sensing system and method of reducing latency thereof
TW201120507A (en) Touch-controlled screen.
US9122305B2 (en) Display device having touch sensors and method for transmitting touch coordinate data thereof
CN103018994A (en) In-cell multi-touch liquid crystal display panel system
TW201120844A (en) Touch-control display capable of removing touch-control impact on display.
CN201765574U (en) Touch control display capable of eliminating touch control influence on display
TW201120845A (en) Touch-control display capable of removing touch-control impact on display.
KR20170003843A (en) Display device and driving method thereof
KR101798662B1 (en) Apparatus and method for driving touch screen
KR20140072313A (en) Touch sensing system
TWI509335B (en) Tft touch-control display panel device and driving method thereof