TWI633046B - Micro-electromechanical apparatus for heating energy control - Google Patents
Micro-electromechanical apparatus for heating energy control Download PDFInfo
- Publication number
- TWI633046B TWI633046B TW105143746A TW105143746A TWI633046B TW I633046 B TWI633046 B TW I633046B TW 105143746 A TW105143746 A TW 105143746A TW 105143746 A TW105143746 A TW 105143746A TW I633046 B TWI633046 B TW I633046B
- Authority
- TW
- Taiwan
- Prior art keywords
- value
- heating element
- micro
- voltage
- power meter
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B7/00—Microstructural systems; Auxiliary parts of microstructural devices or systems
- B81B7/0083—Temperature control
- B81B7/009—Maintaining a constant temperature by heating or cooling
- B81B7/0096—Maintaining a constant temperature by heating or cooling by heating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B7/00—Microstructural systems; Auxiliary parts of microstructural devices or systems
- B81B7/02—Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2201/00—Specific applications of microelectromechanical systems
- B81B2201/02—Sensors
- B81B2201/0214—Biosensors; Chemical sensors
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Micromachines (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
一種可控制加熱能量的微機電裝置,包括感測器以及積體電路晶片。感測器的加熱元件用以加熱感測元件。感測器的偵測元件用以偵測物理量,而積體電路晶片的記憶單元儲存感測元件的目標值。積體電路晶片的資料處理單元將物理量轉換成轉換值,並定義差距值為目標值減去轉換值。另外,積體電路晶片的控制單元依據差距值設定參數值,且驅動單元依據參數值驅動加熱元件以調整加熱元件所產生的熱量,因而能減少加熱元件加熱時間與加熱頻率,以降低電能消耗。微機電裝置可應用於需要控制工作溫度的微機電感測器,例如氣體感測器。A micro-electromechanical device capable of controlling heating energy includes a sensor and an integrated circuit chip. The heating element of the sensor is used for heating the sensing element. The detection element of the sensor is used to detect the physical quantity, and the memory unit of the integrated circuit chip stores the target value of the sensing element. The data processing unit of the integrated circuit chip converts the physical quantity into a converted value, and defines the gap value as the target value minus the converted value. In addition, the control unit of the integrated circuit chip sets a parameter value according to the gap value, and the driving unit drives the heating element to adjust the heat generated by the heating element according to the parameter value, so that the heating element heating time and heating frequency can be reduced to reduce power consumption. The micro-electromechanical device can be applied to a microcomputer inductive sensor that needs to control the operating temperature, such as a gas sensor.
Description
本發明是有關於一種微機電裝置,且特別是有關於一種用來控制加熱能量的微機電裝置。The present invention relates to a micro-electro-mechanical device, and more particularly, to a micro-electro-mechanical device for controlling heating energy.
智慧微型行動裝置近年得以日益普及而融入大眾的生活,與近來愈趨蓬勃發展的APP應用程式息息相關。這些APP應用程式之所以可以達到智慧互動的功能,主要是由於人機與環境互動的感測技術持續演進。藉由在智慧微型行動裝置中加入各種感測器,可以及時地將環境感測資訊提供給使用者,而達到多元的生活應用。在眾多類型的感測器中,微機電氣體感測器的發展是最為令人注目的。In recent years, smart micro-mobile devices have become increasingly popular and integrated into the lives of the public, which are closely related to the recent booming APP applications. The reason why these APP applications can achieve the function of smart interaction is mainly because the sensing technology of human-machine interaction with the environment continues to evolve. By adding various sensors to the smart micro-mobile device, the environmental sensing information can be provided to the user in time to achieve a variety of life applications. Among the many types of sensors, the development of microelectromechanical gas sensors is the most striking.
現有微機電氣體感測器的感測方式是透過施加不同的電壓至加熱器上,使加熱器對感材加熱,藉以使感材達到不同氣體的預設操作溫度。然而,當感材的溫度因外在環境或其他因素產生變異,而無法操作在待測氣體之最佳操作溫度時,會導致不同種類的待測氣體都可以對感測器的輸出產生變化。因此,無法明確辨識感測信號之變化是肇因於何種氣體及其濃度。一般而言,會施加固定時間的電壓至加熱器,以確保感材溫度能達到預設操作溫度並且維持恆溫。然而,在實際驅動加熱器對感材加熱的過程中,預設操作溫度與實際的操作溫度可能會存在著差異。因此,上述方法雖然能維持恆溫,但其預設操作溫度未必會等於實際的操作溫度。除此之外,以固定時間提供電壓來驅動加熱器的作法會提供多餘的熱量,而無法有效降低微機電氣體感測器的電能消耗。The sensing method of the existing micro-electro-mechanical gas sensor is to apply different voltages to the heater, so that the heater heats the sensing material, so that the sensing material reaches the preset operating temperature of different gases. However, when the temperature of the sensing material is changed due to external environment or other factors, and it is impossible to operate at the optimal operating temperature of the gas to be measured, it will cause different types of gas to be measured to change the output of the sensor. Therefore, it is not possible to clearly identify what kind of gas and its concentration are caused by changes in the sensing signal. Generally, a voltage is applied to the heater for a fixed time to ensure that the temperature of the sensing material can reach a preset operating temperature and maintain a constant temperature. However, during the process of actually driving the heater to heat the sensing material, there may be a difference between the preset operating temperature and the actual operating temperature. Therefore, although the above method can maintain a constant temperature, its preset operating temperature may not necessarily be equal to the actual operating temperature. In addition, the method of supplying the voltage to drive the heater for a fixed time will provide excess heat, which cannot effectively reduce the power consumption of the micro-electromechanical gas sensor.
本發明提供一種微機電裝置,其能提高感測準確度,並且降低電能的消耗。The invention provides a micro-electromechanical device, which can improve the accuracy of sensing and reduce the consumption of electrical energy.
本發明提出一種微機電裝置,其包括感測器以及積體電路晶片。感測器包括感測元件、加熱元件以及至少一偵測元件。積體電路晶片包括記憶單元、資料處理單元、控制單元以及驅動單元。加熱元件用以加熱感測元件,至少一偵測元件用以偵測至少一物理量,而記憶單元儲存感測元件的至少一目標值。資料處理單元將至少一物理量轉換成至少一轉換值,並定義至少一差距值為至少一目標值減去至少一轉換值。控制單元依據至少一差距值設定至少一參數值,且驅動單元依據至少一參數值驅動該加熱元件以調整加熱元件所產生的熱量。The invention provides a micro-electromechanical device, which includes a sensor and an integrated circuit chip. The sensor includes a sensing element, a heating element and at least one detecting element. The integrated circuit chip includes a memory unit, a data processing unit, a control unit and a driving unit. The heating element is used for heating the sensing element, at least one detecting element is used for detecting at least one physical quantity, and the memory unit stores at least one target value of the sensing element. The data processing unit converts at least one physical quantity into at least one conversion value, and defines at least one gap value at least one target value minus at least one conversion value. The control unit sets at least one parameter value according to the at least one gap value, and the driving unit drives the heating element to adjust the heat generated by the heating element according to the at least one parameter value.
本發明另提出一種微機電裝置,其包括感測器以及積體電路晶片。感測器包括感測元件、加熱元件以及至少一偵測元件。積體電路晶片包括記憶單元、資料處理單元、控制單元以及驅動單元。加熱元件用以加熱感測元件,而至少一偵測元件用以偵測至少一物理量。至少一偵測元件為功率計,且至少一物理量為加熱元件的功率。記憶單元儲存感測元件的至少一目標值。資料處理單元將至少一物理量轉換成至少一轉換值,並定義至少一差距值為至少一目標值減去至少一轉換值。控制單元依據至少一差距值設定至少一參數值,且驅動單元依據至少一參數值驅動該加熱元件以調整加熱元件所產生的熱量。當至少一差距值大於0時,驅動單元根據至少一參數值驅動該加熱元件以增加加熱元件所產生的熱量。當至少一差距值小於0時,驅動單元根據至少一參數值驅動該加熱元件以減少加熱元件所產生的熱量。至少一參數值包括電壓與時間,且控制單元用以依據焦耳熱方程式調整電壓與時間。焦耳熱方程式包括第一熱量差、第一電阻值以及第一電壓值。The invention further provides a micro-electromechanical device, which includes a sensor and an integrated circuit chip. The sensor includes a sensing element, a heating element and at least one detecting element. The integrated circuit chip includes a memory unit, a data processing unit, a control unit and a driving unit. The heating element is used for heating the sensing element, and the at least one detecting element is used for detecting at least one physical quantity. At least one detection element is a power meter, and at least one physical quantity is the power of the heating element. The memory unit stores at least one target value of the sensing element. The data processing unit converts at least one physical quantity into at least one conversion value, and defines at least one gap value at least one target value minus at least one conversion value. The control unit sets at least one parameter value according to the at least one gap value, and the driving unit drives the heating element to adjust the heat generated by the heating element according to the at least one parameter value. When at least one gap value is greater than 0, the driving unit drives the heating element according to at least one parameter value to increase the heat generated by the heating element. When at least one gap value is less than 0, the driving unit drives the heating element according to at least one parameter value to reduce the heat generated by the heating element. At least one parameter value includes voltage and time, and the control unit is configured to adjust the voltage and time according to the Joule heat equation. The Joule heat equation includes a first heat difference, a first resistance value, and a first voltage value.
本發明又提出一種微機電裝置,適於感測氣體的濃度。微機電裝置包括感測器以及積體電路晶片。感測器包括感測元件、加熱元件以及至少一偵測元件。積體電路晶片包括記憶單元、資料處理單元、控制單元以及驅動單元。感測元件為氣體感測層。加熱元件用以加熱感測元件,而至少一偵測元件用以偵測至少一物理量。至少一偵測元件為功率計,且至少一物理量為加熱元件的功率。功率計具有第一電阻值及第一電壓值。記憶單元儲存感測元件的至少一目標值。資料處理單元將至少一物理量轉換成至少一轉換值,並定義至少一差距值為至少一目標值減去至少一轉換值,其中至少一差距值為第一熱量差。控制單元依據至少一差距值設定至少一參數值,且驅動單元依據至少一參數值驅動該加熱元件以調整加熱元件所產生的熱量。上述至少一參數值包括電壓與時間。控制單元用以依據焦耳熱方程式調整電壓與時間。焦耳熱方程式包括第一熱量差、第一電阻值及第一電壓值。The invention also proposes a micro-electromechanical device, which is suitable for sensing the concentration of a gas. The micro-electromechanical device includes a sensor and an integrated circuit chip. The sensor includes a sensing element, a heating element and at least one detecting element. The integrated circuit chip includes a memory unit, a data processing unit, a control unit and a driving unit. The sensing element is a gas sensing layer. The heating element is used for heating the sensing element, and the at least one detecting element is used for detecting at least one physical quantity. At least one detection element is a power meter, and at least one physical quantity is the power of the heating element. The power meter has a first resistance value and a first voltage value. The memory unit stores at least one target value of the sensing element. The data processing unit converts at least one physical quantity into at least one conversion value, and defines at least one gap value to be at least one target value minus at least one conversion value, wherein at least one gap value is a first heat difference. The control unit sets at least one parameter value according to the at least one gap value, and the driving unit drives the heating element to adjust the heat generated by the heating element according to the at least one parameter value. The at least one parameter value includes voltage and time. The control unit is used to adjust the voltage and time according to the Joule heat equation. The Joule heat equation includes a first heat difference, a first resistance value, and a first voltage value.
本發明再提出一種微機電裝置,適於感測氣體的濃度。微機電裝置包括感測器以及積體電路晶片。感測器包括感測元件、加熱元件以及至少一偵測元件。感測元件,包括氣體感測層。加熱元件用以加熱感測元件,而至少一偵測元件用以偵測至少一物理量。至少一偵測元件包括功率計。功率計電性串聯加熱元件。功率計以及加熱元件分別與積體電路晶片電性連接,且功率計的電阻值小於加熱元件的電阻值。功率計至加熱元件的最短距離大於感測元件至加熱元件的最短距離。The invention further proposes a micro-electromechanical device, which is suitable for sensing the concentration of a gas. The micro-electromechanical device includes a sensor and an integrated circuit chip. The sensor includes a sensing element, a heating element and at least one detecting element. The sensing element includes a gas sensing layer. The heating element is used for heating the sensing element, and the at least one detecting element is used for detecting at least one physical quantity. The at least one detection element includes a power meter. The power meter is electrically connected in series with the heating element. The power meter and the heating element are electrically connected to the integrated circuit chip, respectively, and the resistance value of the power meter is smaller than the resistance value of the heating element. The shortest distance from the power meter to the heating element is greater than the shortest distance from the sensing element to the heating element.
基於上述,由於本發明實施例的微機電裝置中,驅動單元依據至少一偵測元件所偵測到的至少一物理量來驅動該加熱元件而調整加熱元件所產生的熱量,進而使得加熱元件可提供熱量而使感測元件確實達到預定的操作溫度。因此,微機電裝置具有較高的感測準確度。除此之外,驅動單元還依據至少一目標值減去至少一轉換值所得的至少一差距值來驅動該加熱元件而調整加熱元件所產生的熱量,因此加熱元件提供熱量以使感測元件達到預定的操作溫度的同時,加熱元件所產生的熱量可以精確地被控制。在無須以固定時間持續供應電能以驅動加熱器的情況下,本發明實施例的微機電裝置可以有效降低電能的消耗。Based on the foregoing, in the micro-electromechanical device of the embodiment of the present invention, the driving unit drives the heating element to adjust the heat generated by the heating element according to at least one physical quantity detected by the at least one detection element, so that the heating element can provide The heat causes the sensing element to reach a predetermined operating temperature. Therefore, the micro-electromechanical device has higher sensing accuracy. In addition, the driving unit also drives the heating element to adjust the heat generated by the heating element according to at least one gap value obtained by subtracting at least one conversion value from at least one target value, so the heating element provides heat to make the sensing element reach At the same time as the predetermined operating temperature, the heat generated by the heating element can be accurately controlled. In the case that it is not necessary to continuously supply power to drive the heater at a fixed time, the micro-electromechanical device of the embodiment of the present invention can effectively reduce power consumption.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above features and advantages of the present invention more comprehensible, embodiments are hereinafter described in detail with reference to the accompanying drawings.
圖1A是本發明第一實施例的微機電裝置的剖面示意圖。請參考圖1A,在本實施例中,微機電裝置100可應用於環境感測器,用以偵測人類所處環境中的氣體、或空氣品質等環境特性。舉例而言,微機電裝置100適於感測氣體的濃度、或是氣體的相關特性。微機電裝置100包括感測器110以及積體電路晶片120,而感測器110包括感測元件112、加熱元件114以及至少一偵測元件116。具體而言,本實施例的微機電裝置100還包括薄膜130、基座140以及基板150。基座140以及積體電路晶片120藉由接合層160接合於基板150上,且基座140包括空洞141。另外,薄膜130配置於基座140上,且薄膜130例如是全面覆蓋空洞141。在其他未繪示的實施例中,薄膜130亦可為局部覆蓋空洞,而暴露出部分的空洞,以減少經由薄膜散失的熱量,本發明並不以此為限。在本實施例中,基座140可為由矽基材、其他半導體基材或玻璃基材製作而成,而薄膜130的材質可選自於氮化矽(silicon nitride; Si 3N 4)、二氧化矽(silicon dioxide; SiO2)等適當的材質。 FIG. 1A is a schematic cross-sectional view of a micro-electromechanical device according to a first embodiment of the present invention. Please refer to FIG. 1A. In this embodiment, the micro-electromechanical device 100 can be applied to an environmental sensor to detect environmental characteristics such as gas or air quality in the environment in which humans are located. For example, the micro-electromechanical device 100 is suitable for sensing the concentration of a gas, or the related characteristics of a gas. The MEMS device 100 includes a sensor 110 and an integrated circuit chip 120. The sensor 110 includes a sensing element 112, a heating element 114, and at least one detecting element 116. Specifically, the micro-electromechanical device 100 of this embodiment further includes a thin film 130, a base 140, and a substrate 150. The base 140 and the integrated circuit chip 120 are bonded to the substrate 150 through a bonding layer 160, and the base 140 includes a cavity 141. In addition, the thin film 130 is disposed on the base 140, and the thin film 130 covers the cavity 141 for example. In other embodiments not shown, the film 130 may be partially covered with a cavity, and a part of the cavity is exposed to reduce the heat lost through the film, which is not limited in the present invention. In this embodiment, the base 140 may be made of a silicon substrate, other semiconductor substrates, or glass substrates, and the material of the thin film 130 may be selected from silicon nitride (Si 3 N 4 ), Suitable materials such as silicon dioxide (SiO2).
在本實施例中,薄膜130具有第一表面130a以及相對於第一表面130a的第二表面130b。薄膜130是以其中一部分的第二表面130b與基座140相連接,並以另一部分的第二表面130b覆蓋空洞141。另外,加熱元件114設置於薄膜130的第一表面130a上。在本實施例中,薄膜130可以例如是多層薄膜或是單層薄膜,本發明並不對薄膜的層數加以限制。另外,薄膜130可例如是透過微機電薄膜沉積製程(MEMS Thin Film Deposition Processes)來加以製作。另外,加熱元件114例如是加熱線圈,其材質可例如為鉑(Platinum, Pt)、鈦(Titanium, Ti)或鎢(Tungsten, W)等材質。藉由通入電流,加熱元件114可以產生熱量。In this embodiment, the film 130 has a first surface 130a and a second surface 130b opposite to the first surface 130a. The thin film 130 is connected to the base 140 with a second surface 130b of one part thereof, and covers the cavity 141 with the second surface 130b of another part. In addition, the heating element 114 is disposed on the first surface 130 a of the film 130. In this embodiment, the film 130 may be, for example, a multi-layer film or a single-layer film. The present invention does not limit the number of layers of the film. In addition, the thin film 130 may be manufactured by, for example, a MEMS Thin Film Deposition Process. In addition, the heating element 114 is, for example, a heating coil, and a material thereof may be, for example, platinum (Platinum, Pt), titanium (Titanium, Ti), or tungsten (Tungsten, W). By applying a current, the heating element 114 can generate heat.
在本實施例中,感測元件112設置於加熱元件114的上方,且加熱元件114例如是設置於感測元件112與薄膜130之間。具體而言,微機電裝置100例如是微機電氣體感測裝置,而感測元件112例如是氣體感測層。感測元件112與加熱元件114相接觸,且加熱元件114用以加熱感測元件112。在本實施例中,感測元件112因所含的奈米觸媒的種類不同而可感測不同氣體。一般而言,感測元件112的電阻值會隨著所吸附的目標氣體的濃度變化而產生變化。因此,透過觀察輸入感測元件112的電流的變化,就可以換算出感測元件112的電阻值的變化而得知微機電裝置100周圍的目標氣體的濃度變化。加熱元件114可對感測元件112進行加熱,並維持感測元件112的溫度維持在一預設範圍內。如此一來,當目標氣體濃度變化時,感測元件112產生的電阻值也隨之變化。In this embodiment, the sensing element 112 is disposed above the heating element 114, and the heating element 114 is disposed between the sensing element 112 and the film 130, for example. Specifically, the micro-electromechanical device 100 is, for example, a micro-electro-mechanical gas sensing device, and the sensing element 112 is, for example, a gas sensing layer. The sensing element 112 is in contact with the heating element 114, and the heating element 114 is used to heat the sensing element 112. In this embodiment, the sensing element 112 can sense different gases due to different types of nano-catalysts contained therein. Generally speaking, the resistance value of the sensing element 112 changes as the concentration of the target gas adsorbed changes. Therefore, by observing the change in the current input to the sensing element 112, the change in the resistance value of the sensing element 112 can be converted to know the change in the concentration of the target gas around the MEMS device 100. The heating element 114 can heat the sensing element 112 and maintain the temperature of the sensing element 112 within a preset range. In this way, when the target gas concentration changes, the resistance value generated by the sensing element 112 also changes accordingly.
在本實施例中,積體電路晶片120分別電性耦接感測元件112、加熱元件114以及至少一偵測元件116。至少一偵測元件116用以偵測至少一物理量。具體而言,至少一偵測元件116例如是功率計,而至少一物理量為加熱元件114的功率P h。一般而言,功率計係透過以下關係式來偵測加熱元件114的功率P h: -----------(1) 其中,Vp表示當加熱元件114加熱時跨接功率計的電壓值,其可經由量測得知。Rp為功率計的電阻值,為已知值,而V表示系統施加於功率計以及加熱元件114的電壓差,其為電源供應器之設定值,亦為已知值。在本實施例中,功率計例如是一電阻元件。功率計電性串聯加熱元件114,且功率計的電阻值小於加熱元件114的電阻值。 In this embodiment, the integrated circuit chip 120 is electrically coupled to the sensing element 112, the heating element 114, and the at least one detecting element 116, respectively. The at least one detecting element 116 is used for detecting at least one physical quantity. Specifically, the at least one detection element 116 is, for example, a power meter, and the at least one physical quantity is the power P h of the heating element 114. In general, the power meter detects the power P h of the heating element 114 through the following relationship: ----------- (1) Among them, Vp represents the voltage value across the power meter when the heating element 114 is heated, which can be known by measurement. Rp is the resistance value of the power meter, which is a known value, and V represents the voltage difference applied by the system to the power meter and the heating element 114, which is the set value of the power supply and is also a known value. In this embodiment, the power meter is, for example, a resistance element. The power meter is electrically connected in series with the heating element 114, and the resistance value of the power meter is smaller than the resistance value of the heating element 114.
在本實施例中,功率計(至少一偵測元件116)配置於薄膜130的第一表面130a上,且此功率計至加熱元件114的最短距離,例如是圖1A繪示的距離d,大於感測元件112至加熱元件114的最短距離。詳細而言,此功率計設置於遠離加熱元件114的位置,但不限於設置在薄膜130上的特定位置。如此,功率計的電阻值,才不會受到高溫的影響,以確保功率計的量測準確度。在一些實施例中,此功率計亦可設置於微機電裝置100的其他位置上,例如是基板150上。另外,在本實施例中為了能利用公式(1)來求得加熱元件114的功率P h,功率計(至少一偵測元件116)需電性串聯該加熱元件114,且此功率計之電阻值R p需小於加熱元件114的電阻值R h。 In this embodiment, a power meter (at least one detection element 116) is disposed on the first surface 130a of the film 130, and the shortest distance from the power meter to the heating element 114 is, for example, the distance d shown in FIG. 1A, which is greater than The shortest distance from the sensing element 112 to the heating element 114. In detail, the power meter is disposed at a position remote from the heating element 114, but is not limited to a specific position provided on the film 130. In this way, the resistance value of the power meter will not be affected by the high temperature to ensure the measurement accuracy of the power meter. In some embodiments, the power meter can also be disposed at other positions of the micro-electromechanical device 100, such as the substrate 150. In addition, in this embodiment, in order to use the formula (1) to obtain the power P h of the heating element 114, the power meter (at least one detection element 116) needs to be electrically connected to the heating element 114 in series, and the resistance of the power meter The value R p needs to be smaller than the resistance value R h of the heating element 114.
圖1B是本發明第一實施例的感測器以及積體電路晶片的概要示意圖。請同時參考圖1A以及圖1B,在本實施例中,積體電路晶片120包括彼此電性耦接的記憶單元122、資料處理單元124、控制單元126以及驅動單元128。記憶單元122用以儲存感測元件112的至少一目標值,而至少一目標值例如是適於對感測元件112加熱以進行濃度檢測的目標氣體的預定熱量值。資料處理單元124用以將上述功率計(至少一偵測元件116)偵測的至少一物理量,例如是加熱元件114的功率P h,轉換成至少一轉換值例如是加熱元件114產生的熱量。 FIG. 1B is a schematic diagram of a sensor and an integrated circuit chip according to the first embodiment of the present invention. Please refer to FIG. 1A and FIG. 1B simultaneously. In this embodiment, the integrated circuit chip 120 includes a memory unit 122, a data processing unit 124, a control unit 126, and a driving unit 128 electrically coupled to each other. The memory unit 122 is configured to store at least one target value of the sensing element 112, and the at least one target value is, for example, a predetermined heat value of a target gas suitable for heating the sensing element 112 for concentration detection. The data processing unit 124 is configured to convert at least one physical quantity detected by the power meter (at least one detection element 116), such as the power P h of the heating element 114, into at least one conversion value, such as the heat generated by the heating element 114.
具體而言,資料處理單元124包括感測資料處理單元124_1、感測資料校正單元124_2、類比數位轉換單元124_3、功率資料處理單元124_4、功率資料校正單元124_5以及類比數位轉換單元124_6。感測元件112的電阻訊號例如透過類比數位轉換單元124_3轉換為數位訊號後,通過感測資料校正單元124_2進行訊號偏移的校正,接著傳遞至感測資料處理單元124_1以感測目標氣體的濃度變化。此外,功率計偵測的電訊號(電壓差)例如透過類比數位轉換單元124_6轉換為數位訊號後,通過功率資料校正單元124_5進行訊號偏移的校正,接著傳遞至功率資料處理單元124_4。Specifically, the data processing unit 124 includes a sensing data processing unit 124_1, a sensing data correction unit 124_2, an analog digital conversion unit 124_3, a power data processing unit 124_4, a power data correction unit 124_5, and an analog digital conversion unit 124_6. For example, after the resistance signal of the sensing element 112 is converted into a digital signal by the analog digital conversion unit 124_3, the signal offset is corrected by the sensing data correction unit 124_2, and then transmitted to the sensing data processing unit 124_1 to sense the concentration of the target gas. Variety. In addition, the electrical signal (voltage difference) detected by the power meter is converted to a digital signal by the analog digital conversion unit 124_6, and the signal offset correction is performed by the power data correction unit 124_5, and then transmitted to the power data processing unit 124_4.
在本實施例中,功率資料處理單元124_4例如是透過上述式(1)得出加熱元件114的功率P h。另外,功率資料處理單元124_4根據功率P h以及加熱元件114的加熱時間t得出加熱元件114的實際的輸出熱量值(至少一轉換值)。具體而言,定義至少一差距值為至少一目標值減去至少一轉換值。至少一差距值例如是預定熱量值(目標值)減去加熱元件114的實際的輸出熱量值(轉換值)所得的第一熱量差DQ 1。 In this embodiment, the power data processing unit 124_4 obtains the power P h of the heating element 114 through the above formula (1), for example. Further, the power data processing unit 124_4 power P h in accordance with the heating time and the heating element 114 of heating element t obtained actual heat output value 114 (at least a converted value). Specifically, at least one gap value is defined as at least one target value minus at least one conversion value. The at least one gap value is, for example, a first heat difference DQ 1 obtained by subtracting an actual output heat value (conversion value) of the heating element 114 from a predetermined heat value (target value).
在本實施例中,控制單元126依據至少一差距值(第一熱量差DQ 1)設定至少一參數值,且驅動單元128依據至少一參數值驅動加熱元件114以調整加熱元件114所產生的熱量。具體而言,控制單元126包括加熱控制單元126_1以及比較單元126_2。比較單元126_2會接收功率資料處理單元124_4以及記憶單元122提供的訊號,並判斷加熱元件114的實際的輸出熱量值是否到達預定熱量值。倘若加熱元件114的實際的輸出熱量值未到達預定熱量值,則加熱控制單元126_1控制驅動單元128以驅動加熱元件114加熱以補償上述第一熱量差DQ 1。詳細而言,當第一熱量差DQ 1(至少一差距值)大於0時,表示實際的輸出熱量值未到達預定熱量值。此時,驅動單元128根據至少一參數值,驅動加熱元件114以增加加熱元件114所產生的熱量。另外,當第一熱量差DQ 1(至少一差距值)小於0時,表示實際的輸出熱量值超過預定熱量值。此時,驅動單元128根據至少一參數值,驅動加熱元件114以減少加熱元件114所產生的熱量。 In this embodiment, the control unit 126 sets at least one parameter value according to at least one gap value (the first heat difference DQ 1 ), and the driving unit 128 drives the heating element 114 to adjust the heat generated by the heating element 114 according to the at least one parameter value. . Specifically, the control unit 126 includes a heating control unit 126_1 and a comparison unit 126_2. The comparison unit 126_2 receives signals provided by the power data processing unit 124_4 and the memory unit 122, and determines whether the actual output heat value of the heating element 114 has reached a predetermined heat value. If the actual output heat value of the heating element 114 does not reach the predetermined heat value, the heating control unit 126_1 controls the driving unit 128 to drive the heating element 114 to heat to compensate the above-mentioned first heat difference DQ 1 . In detail, when the first heat difference DQ 1 (at least one gap value) is greater than 0, it means that the actual output heat value does not reach the predetermined heat value. At this time, the driving unit 128 drives the heating element 114 according to at least one parameter value to increase the heat generated by the heating element 114. In addition, when the first heat difference DQ 1 (at least one gap value) is less than 0, it means that the actual output heat value exceeds a predetermined heat value. At this time, the driving unit 128 drives the heating element 114 according to at least one parameter value to reduce the heat generated by the heating element 114.
詳細而言,控制單元126(例如是加熱控制單元126_1)依據第一熱量差DQ 1設定至少一參數值。至少一參數值例如是包括電壓V與時間t。控制單元126可用以依據焦耳熱方程式調整電壓V與時間t,此焦耳熱方程式包括第一熱量差DQ 1、第一電阻值R p(即功率計的電阻值R p)及第一電壓值V p(即當加熱元件114加熱時跨接功率計的電壓差V p)。焦耳熱方程式如下所示: -----------(2) Specifically, the control unit 126 (e.g., a heating control unit 126_1) setting at least one difference between a parameter value according to the first heat DQ. The at least one parameter value includes, for example, the voltage V and the time t. The control unit 126 can be used to adjust the voltage V and time t according to the Joule heat equation. The Joule heat equation includes a first heat difference DQ 1 , a first resistance value R p (ie, a resistance value R p of the power meter), and a first voltage value V. p (that is, the voltage difference V p across the power meter when the heating element 114 is heated). The Joule heat equation is as follows: -----------(2)
具體而言,微機電裝置100可以設定出系統應施加於功率計以及加熱元件114的電壓差(電壓V)及/或系統驅動加熱元件114進行加熱的加熱時間t以滿足上述熱焦耳方程式(式(2)),藉以調整加熱元件114所產生的熱量,以彌補第一熱量差DQ 1。因此,加熱元件114所產生的熱量可以精確地被控制。 Specifically, the micro-electromechanical device 100 can set the voltage difference (voltage V) that the system should apply to the power meter and the heating element 114 and / or the heating time t for the system to drive the heating element 114 to meet the above-mentioned thermal Joule equation (formula (2)), so as to adjust the heat generated by the heating element 114 to make up for the first heat difference DQ 1 . Therefore, the heat generated by the heating element 114 can be accurately controlled.
除此之外,記憶單元122亦可以儲存彌補第一熱量差DQ 1的至少一數據(電壓V與時間t中的至少一數據)。該電壓V與時間t中的至少一數據是已經過實驗驗證後的最佳化數據,可使加熱元件114精準地彌補第一熱量差DQ 1。而控制單元126可以直接根據所得第一熱量差DQ 1,直接採用最佳化的電壓V與時間t的至少一數據,以快速地彌補第一熱量差DQ 1。具體而言,在無須以固定時間持續供應電能以驅動加熱元件114的情況下,本發明第一實施例的微機電裝置100可以有效降低電能的消耗。 In addition, the memory unit 122 may also store at least one piece of data (at least one piece of data between the voltage V and the time t) that makes up the first thermal difference DQ 1 . At least one of the voltage V and the time t is an optimized data that has been experimentally verified, so that the heating element 114 can accurately compensate for the first heat difference DQ 1 . The control unit 126 may directly use at least one of the optimized voltage V and time t according to the obtained first heat difference DQ 1 to quickly compensate the first heat difference DQ 1 . Specifically, the micro-electromechanical device 100 according to the first embodiment of the present invention can effectively reduce the consumption of electric power without the need to continuously supply electric power to drive the heating element 114 for a fixed time.
圖2A是本發明第二實施例的微機電裝置的剖面示意圖,而圖2B是本發明第二實施例的感測器以及積體電路晶片的概要示意圖。請先參考圖2A,圖2A實施例的微機電裝置200類似於圖1A實施例的微機電裝置100,其差異如下所述。微機電裝置200的感測器210包括至少一偵測元件216,且至少一偵測元件216例如是溫度計。溫度計(至少一偵測元件216)設置於加熱元件114與感測元件112之間。如此,加熱元件114產生的熱不會散失而溫度計也可以精確偵測感測元件112的溫度。另外,請參考圖2B,在本實施例中,積體電路晶片220的資料處理單元224除了包括感測資料處理單元124_1、感測資料校正單元124_2、類比數位轉換單元124_3外,亦包括溫度資料處理單元224_1、溫度資料校正單元224_2以及類比數位轉換單元224_3。溫度計的電訊號例如透過類比數位轉換單元224_3轉換為數位訊號後,通過溫度資料校正單元224_2進行訊號偏移的校正,接著傳遞至溫度資料處理單元224_1。2A is a schematic cross-sectional view of a micro-electromechanical device according to a second embodiment of the present invention, and FIG. 2B is a schematic diagram of a sensor and an integrated circuit chip of the second embodiment of the present invention. Please refer to FIG. 2A first. The micro-electromechanical device 200 of the embodiment of FIG. 2A is similar to the micro-electromechanical device 100 of the embodiment of FIG. 1A, and the differences are as follows. The sensor 210 of the micro-electromechanical device 200 includes at least one detection element 216, and the at least one detection element 216 is, for example, a thermometer. A thermometer (at least one detection element 216) is disposed between the heating element 114 and the sensing element 112. In this way, the heat generated by the heating element 114 is not lost and the thermometer can accurately detect the temperature of the sensing element 112. In addition, please refer to FIG. 2B. In this embodiment, the data processing unit 224 of the integrated circuit chip 220 includes temperature data in addition to the sensing data processing unit 124_1, the sensing data correction unit 124_2, and the analog digital conversion unit 124_3 The processing unit 224_1, the temperature data correction unit 224_2, and the analog-to-digital conversion unit 224_3. The electrical signal of the thermometer is converted into a digital signal by the analog digital conversion unit 224_3, for example, and the signal data is corrected by the temperature data correction unit 224_2, and then transmitted to the temperature data processing unit 224_1.
在本實施例中,資料處理單元224用以將上述溫度計(至少一偵測元件216)提供的電訊號轉換成用以進行溫度差DT計算的溫度值(至少一轉換值)。另外,定義溫度差DT(至少一差距值)為預定溫度(記憶單元所儲存的至少一目標值)減去上述溫度值(至少一轉換值)。在本實施例中,控制單元126可用以依據溫度差DT設定至少一參數值。至少一參數值包括電壓V與時間t。具體而言,控制單元126可依據溫度差DT所對應之至少一數據調整電壓V與時間t。經實驗最佳化的至少一數據儲存於記憶單元122中。也就是說,微機電裝置200可以採用實驗得來的至少一數據來設定電壓V與時間t以調整加熱元件114所產生的熱量,進而快速且精准地彌補溫度差DT。具體而言,本發明第二實施例的微機電裝置200的至少一偵測元件216(溫度計)可以偵測感測元件112的溫度。此外,微機電裝置200根據所偵測到的感測元件112的溫度推算得到溫度差DT,並根據溫度差DT來調整加熱元件114所產生的熱量。如此,加熱元件114可提供熱量而使感測元件112確實達到預定的操作溫度。因此,微機電裝置200具有較高的感測準確度。除此之外,在無須以持續供應電能以驅動加熱元件114的情況下,本發明第二實施例的微機電裝置200可以有效降低電能的消耗。In this embodiment, the data processing unit 224 is configured to convert the electrical signal provided by the thermometer (at least one detection element 216) into a temperature value (at least one conversion value) for calculating the temperature difference DT. In addition, the temperature difference DT (at least one difference value) is defined as a predetermined temperature (at least one target value stored in the memory unit) minus the above-mentioned temperature value (at least one conversion value). In this embodiment, the control unit 126 can be used to set at least one parameter value according to the temperature difference DT. The at least one parameter value includes a voltage V and a time t. Specifically, the control unit 126 can adjust the voltage V and the time t according to at least one data corresponding to the temperature difference DT. At least one piece of data optimized by experiments is stored in the memory unit 122. That is, the micro-electromechanical device 200 can use at least one data obtained from experiments to set the voltage V and time t to adjust the heat generated by the heating element 114, and then quickly and accurately compensate for the temperature difference DT. Specifically, at least one detecting element 216 (thermometer) of the micro-electromechanical device 200 according to the second embodiment of the present invention can detect the temperature of the sensing element 112. In addition, the micro-electro-mechanical device 200 estimates the temperature difference DT based on the detected temperature of the sensing element 112, and adjusts the heat generated by the heating element 114 according to the temperature difference DT. In this way, the heating element 114 can provide heat so that the sensing element 112 does reach a predetermined operating temperature. Therefore, the micro-electromechanical device 200 has higher sensing accuracy. In addition, the micro-electromechanical device 200 according to the second embodiment of the present invention can effectively reduce the power consumption without the need to continuously supply power to drive the heating element 114.
圖3A是本發明第三實施例的微機電裝置的剖面示意圖,而圖3B是本發明第三實施例的感測器以及積體電路晶片的概要示意圖。請先參考圖3A,圖3A實施例的微機電裝置300類似於圖1A實施例的微機電裝置100,其差異如下所述。微機電裝置300的感測器310包括至少一偵測元件316。至少一偵測元件316包括功率計316_1以及溫度計316_2。功率計316_1用以偵測加熱元件114的功率,且溫度計316_2用以偵測感測元件112的溫度。另外,功率計316_1的電阻值R p小於加熱元件114的電阻值R h,以使功率計316_1能利用公式(1)來求得加熱元件314的功率P h。另外,在本實施例中,功率計316_1類似於圖1A實施例的至少一偵測元件116(功率計),且溫度計316_2類似於圖2A實施例的至少一偵測元件216(溫度計)。另外,請參考圖3B,在本實施例中,積體電路晶片320的資料處理單元324除了包括感測資料處理單元124_1、感測資料校正單元124_2、類比數位轉換單元124_3外,亦包括功率資料處理單元324_1、功率資料校正單元324_2以及類比數位轉換單元324_3、溫度資料處理單元324_4、溫度資料校正單元324_5以及類比數位轉換單元324_6。具體而言,功率計316_1的電訊號例如透過類比數位轉換單元324_3轉換為數位訊號後,通過功率資料校正單元324_2進行訊號偏移的校正,接著傳遞至功率資料處理單元324_1。另外,溫度計316_2的電訊號例如透過類比數位轉換單元324_6轉換為數位訊號後,通過溫度資料校正單元324_5進行訊號偏移的校正,接著傳遞至溫度資料處理單元324_4。 3A is a schematic cross-sectional view of a micro-electromechanical device according to a third embodiment of the present invention, and FIG. 3B is a schematic diagram of a sensor and an integrated circuit chip of the third embodiment of the present invention. Please refer to FIG. 3A first. The MEMS device 300 of the embodiment of FIG. 3A is similar to the MEMS device 100 of the embodiment of FIG. 1A, and the differences are as follows. The sensor 310 of the MEMS device 300 includes at least one detection element 316. The at least one detecting element 316 includes a power meter 316_1 and a thermometer 316_2. The power meter 316_1 is used to detect the power of the heating element 114, and the thermometer 316_2 is used to detect the temperature of the sensing element 112. Further, power meter 316_1 resistance value R p smaller than the resistance value R h of the heating element 114, so that the power meter can 316_1 using the formula (1) obtained by the heating element 314 to a power P h. In addition, in this embodiment, the power meter 316_1 is similar to at least one detection element 116 (power meter) in the embodiment of FIG. 1A, and the thermometer 316_2 is similar to at least one detection element 216 (thermometer) in the embodiment of FIG. 2A. In addition, please refer to FIG. 3B. In this embodiment, the data processing unit 324 of the integrated circuit chip 320 includes power data in addition to the sensing data processing unit 124_1, the sensing data correction unit 124_2, and the analog digital conversion unit 124_3. The processing unit 324_1, the power data correction unit 324_2, and the analog digital conversion unit 324_3, the temperature data processing unit 324_4, the temperature data correction unit 324_5, and the analog digital conversion unit 324_6. Specifically, the electrical signal of the power meter 316_1 is converted into a digital signal by the analog digital conversion unit 324_3, for example, and the signal data is corrected by the power data correction unit 324_2, and then transmitted to the power data processing unit 324_1. In addition, the electrical signal of the thermometer 316_2 is converted into a digital signal by the analog-to-digital conversion unit 324_6, and the signal offset correction is performed by the temperature data correction unit 324_5, and then transmitted to the temperature data processing unit 324_4.
在本實施例中,資料處理單元324用以將功率計316_1提供的電訊號轉換成功率值,進而求得加熱元件114的實際的輸出熱量值。另外,以預定熱量值減去加熱元件114的實際的輸出熱量值而得到第一熱量差DQ 1。此外,資料處理單元324亦用以將溫度計316_2提供的電訊號轉換成溫度值。且微機電裝置300可以根據記憶單元122所儲存的溫度值計算第二熱量差DQ 2。第二熱量差DQ 2可以透過下式進行定義: -----------(3) In this embodiment, the data processing unit 324 is configured to convert the electrical signal provided by the power meter 316_1 into a success rate value, and then obtain the actual output heat value of the heating element 114. In addition, the actual output heat value of the heating element 114 is subtracted from the predetermined heat value to obtain the first heat difference DQ 1 . In addition, the data processing unit 324 is also used to convert the electrical signal provided by the thermometer 316_2 into a temperature value. In addition, the micro-electromechanical device 300 can calculate the second heat difference DQ 2 according to the temperature value stored in the memory unit 122. The second heat difference DQ 2 can be defined by the following formula: ----------- (3)
其中,m是感測元件112的質量,s是感測元件112的比熱,而Dt例如是溫度計316_2測得的溫度值與記憶單元122所儲存的目標溫度值的溫度差。Among them, m is the mass of the sensing element 112, s is the specific heat of the sensing element 112, and Dt is, for example, the temperature difference between the temperature value measured by the thermometer 316_2 and the target temperature value stored in the memory unit 122.
在本實施例中,控制單元126依據至少一差距值(第一熱量差DQ 1以及第一熱量差DQ 2)設定至少一參數值。驅動單元128依據上述至少一參數值驅動加熱元件114以調整加熱元件114所產生的熱量。具體而言,至少一參數值包括系統應施加於加熱元件114的電壓V與系統驅動加熱元件114進行加熱的加熱時間t。也就是說,控制單元126可依據第一熱量差DQ 1及第二熱量差DQ 2調整上述電壓V與上述時間t,藉以調整加熱元件114所產生的熱量。具體而言,本發明第三實施例的微機電裝置300至少可以獲致類似於本發明第一實施例以及第二實施例所述的技術效果。因此,微機電裝置300具有較高的感測準確度,且可以有效降低電能的消耗。此外,由於微機電裝置300可同時藉由溫度計316_2量測感測元件112的溫度以及藉由功率計316_1量測加熱元件114的功率,以作為微機電裝置300調整加熱元件114所產生的熱量以進行補償的依據。因此,相較於第一實施例以及第二實施例而言,微機電裝置300可以進行更為精準的熱量補償,並可以減少熱量補償的次數與時間,進而有效降低電能的消耗。 In this embodiment, the control unit 126 sets at least one parameter value according to at least one gap value (the first heat difference DQ 1 and the first heat difference DQ 2 ). The driving unit 128 drives the heating element 114 according to the at least one parameter value to adjust the heat generated by the heating element 114. Specifically, the at least one parameter value includes a voltage V that the system should apply to the heating element 114 and a heating time t that the system drives the heating element 114 to perform heating. That is, the control unit 126 can adjust the voltage V and the time t according to the first heat difference DQ 1 and the second heat difference DQ 2 to adjust the heat generated by the heating element 114. Specifically, the micro-electromechanical device 300 according to the third embodiment of the present invention can obtain at least technical effects similar to those described in the first and second embodiments of the present invention. Therefore, the micro-electromechanical device 300 has higher sensing accuracy and can effectively reduce power consumption. In addition, since the micro-electro-mechanical device 300 can simultaneously measure the temperature of the sensing element 112 by means of the thermometer 316_2 and the power of the heating element 114 by means of the power meter 316_1, as the micro-electro-mechanical device 300 adjusts the heat generated by the heating element 114 to Basis for compensation. Therefore, compared with the first embodiment and the second embodiment, the micro-electromechanical device 300 can perform more accurate heat compensation, and can reduce the number and time of heat compensation, thereby effectively reducing power consumption.
具體而言,上述第一實施例、第二實施例以及第三實施例所述的感測資料處理單元124_1、感測資料校正單元124_2、類比數位轉換單元124_3、124_6、224_3、324_3、324_6、功率資料處理單元124_4、324_1、功率資料校正單元124_5、324_2、溫度資料處理單元224_1、324_4、溫度資料校正單元224_2、324_5、加熱控制單元126_1、比較單元126_2以及驅動單元128等構件可以例如是透過具備運算能力的硬體(例如晶片組、處理器等)來實施。舉例而言,上述構件可透過中央處理單元(Central Processing Unit,CPU),或是其他可程式化之微處理器(Microprocessor)、特殊應用積體電路(Application Specific Integrated Circuits,ASIC)或其他類似裝置來實施,本發明並不以此為限。Specifically, the sensing data processing unit 124_1, the sensing data correction unit 124_2, the analog digital conversion unit 124_3, 124_6, 224_3, 324_3, 324_6, and the like described in the first, second, and third embodiments. Components such as power data processing units 124_4, 324_1, power data correction units 124_5, 324_2, temperature data processing units 224_1, 324_4, temperature data correction units 224_2, 324_5, heating control unit 126_1, comparison unit 126_2, and drive unit 128 can be, for example, transmitted through Implemented with computing hardware (such as chipset, processor, etc.). For example, the above components may be provided by a Central Processing Unit (CPU), or other programmable microprocessor (Microprocessor), Application Specific Integrated Circuits (ASIC), or other similar devices. To implement, the present invention is not limited thereto.
除此之外,上述第一實施例、第二實施例以及第三實施例所述的記憶單元122可例如是內嵌式儲存單元或外接式儲存單元。內部儲存單元可為隨機存取記憶體(Random Access Memory,RAM)、唯讀記憶體(Read-Only Memory,ROM)、快閃記憶體(Flash memory)、磁碟儲存裝置(Magnetic disk storage device)等。外部儲存單元可為小型快閃(Compact Flash,CF)記憶卡、安全數位(Secure Digital,SD)記憶卡、微安全數位(Micro SD)記憶卡、記憶棒(Memory Stick,MS)等,本發明亦不以此為限。In addition, the memory unit 122 described in the first embodiment, the second embodiment, and the third embodiment may be, for example, an embedded storage unit or an external storage unit. Internal storage unit can be Random Access Memory (RAM), Read-Only Memory (ROM), Flash memory, Magnetic disk storage device Wait. The external storage unit may be a compact flash (CF) memory card, a secure digital (SD) memory card, a micro SD memory card, a memory stick (MS), etc. It is not limited to this.
圖4是本發明一實施例的多種氣體感測方法的步驟流程圖。請參考圖4,在本實施例中,所述氣體感測方法至少可以應用於圖2A實施例的微機電裝置200。所述氣體感測方法如下步驟。在步驟S410中,進行微機電裝置的初始化。接著,在步驟S420中,根據儲存在記憶單元中的溫度設定,提供一電壓至加熱控制單元,以驅動加熱元件對感測元件進行加熱。需注意的是,步驟S420中的電壓值是預設的且儲存在記憶單元之中。之後,在步驟S430中,接收溫度資料處理單元的輸出,以接收例如是感測元件的溫度值。接著,在步驟S440中,比較感測元件的溫度值是否到達目標值(即預定溫度)。若尚未到達目標值,則在步驟S440_1中,判斷感測元件的溫度值是否超過目標值。具體而言,當預定溫度(目標值)減去上述溫度值所得的溫度差(至少一差距值)大於0時,表示感測元件的溫度值並未超過目標值,且表示感測元件的溫度值小於目標值。此時,在步驟S440_2中,增加提供至加熱控制單元的電壓值,以增加加熱元件所產生的熱量。另外,當上述溫度差(至少一差距值)小於0時,表示感測元件的溫度值超過目標值,且表示感測元件的溫度值大於目標值。此時,在步驟S440_3中,減少提供至加熱控制單元的電壓值,以減少加熱元件所產生的熱量。上述加熱控制單元的電壓值的增加量或加熱控制單元的電壓值的減少量是依據差距值(目標值減去感測元件的溫度值所得的溫度差)所對應的實驗數據而求得的。這些對應的實驗數據在微機電裝置的初始化之前,已儲存於記憶體中。接著,在步驟S440_4中,加熱控制單元調整電壓值以及提供更新的電壓值。在步驟S420中,再次提供更新的電壓值至加熱控制單元以驅動加熱元件加熱感測元件。需注意的是,步驟S420中的電壓值是更新的電壓值。FIG. 4 is a flowchart of steps of various gas sensing methods according to an embodiment of the present invention. Please refer to FIG. 4. In this embodiment, the gas sensing method can be applied to at least the micro-electromechanical device 200 in the embodiment of FIG. 2A. The gas sensing method has the following steps. In step S410, initialization of the micro-electromechanical device is performed. Next, in step S420, a voltage is provided to the heating control unit according to the temperature setting stored in the memory unit to drive the heating element to heat the sensing element. It should be noted that the voltage value in step S420 is preset and stored in the memory unit. After that, in step S430, the output of the temperature data processing unit is received to receive, for example, the temperature value of the sensing element. Next, in step S440, it is compared whether the temperature value of the sensing element has reached a target value (that is, a predetermined temperature). If the target value has not been reached, it is determined whether the temperature value of the sensing element exceeds the target value in step S440_1. Specifically, when the temperature difference (at least one gap value) obtained by subtracting the above temperature value from the predetermined temperature (target value) is greater than 0, it means that the temperature value of the sensing element does not exceed the target value, and indicates the temperature of the sensing element The value is less than the target value. At this time, in step S440_2, the voltage value provided to the heating control unit is increased to increase the heat generated by the heating element. In addition, when the temperature difference (at least one difference value) is less than 0, it indicates that the temperature value of the sensing element exceeds the target value, and that the temperature value of the sensing element is greater than the target value. At this time, in step S440_3, the voltage value provided to the heating control unit is reduced to reduce the heat generated by the heating element. The increase amount of the voltage value of the heating control unit or the decrease amount of the voltage value of the heating control unit is obtained based on the experimental data corresponding to the gap value (the temperature difference obtained by subtracting the temperature value of the sensing element from the target value). These corresponding experimental data have been stored in the memory before the initialization of the MEMS device. Next, in step S440_4, the heating control unit adjusts the voltage value and provides an updated voltage value. In step S420, the updated voltage value is provided to the heating control unit again to drive the heating element to heat the sensing element. It should be noted that the voltage value in step S420 is the updated voltage value.
另外,在步驟S440中,倘若感測元件的溫度值到達目標值,則在步驟S450中等待預定時間之後,在步驟S460量測氣體感測層(感測元件)的電阻值,以例如是進行目標氣體的濃度感測。之後,在步驟S470中,確認是否完成所有目標氣體的量測。倘若尚未完成所有目標氣體的量測,則重複進行步驟S420至步驟S460以對各個目標氣體進行量測。倘若已完成所有目標氣體的量測,則進行步驟S480,關閉加熱元件。具體而言,本發明之實施例的氣體感測方法可以由圖1A至圖3B之實施例的敘述中獲致足夠的教示、建議與實施說明,因此不再贅述。In addition, in step S440, if the temperature value of the sensing element reaches the target value, after waiting for a predetermined time in step S450, the resistance value of the gas sensing layer (sensing element) is measured in step S460, for example, to perform Target gas concentration sensing. After that, in step S470, it is confirmed whether the measurement of all the target gases is completed. If the measurement of all target gases has not been completed, step S420 to step S460 are repeated to measure each target gas. If the measurement of all the target gases has been completed, step S480 is performed to turn off the heating element. Specifically, the gas sensing method according to the embodiment of the present invention can obtain sufficient teaching, suggestions, and implementation description from the description of the embodiment of FIGS. 1A to 3B, and therefore will not be described again.
綜上所述,本發明實施例的微機電裝置中,驅動單元依據至少一偵測元件所偵測到的至少一物理量來提供更新的電壓以驅動加熱元件,藉以調整加熱元件所產生的熱量。因此,加熱元件可提供精確的熱量而使感測元件快速且確實達到預定的操作溫度。因此,微機電裝置具有較高的感測準確度。除此之外,驅動單元還依據至少一目標值減去至少一轉換值所得的至少一差距值來提供一更新的電壓。藉此更新的電壓,可驅動加熱元件以調整加熱元件所產生的熱量。因此加熱元件提供熱量以使感測元件達到預定的操作溫度的同時,加熱元件所產生的熱量可以精確地被控制。在無須以固定時間持續供應電能以驅動加熱器的情況下,本發明實施例的微機電裝置可以有效降低電能的消耗。In summary, in the micro-electromechanical device of the embodiment of the present invention, the driving unit provides an updated voltage to drive the heating element according to at least one physical quantity detected by the at least one detecting element, thereby adjusting the heat generated by the heating element. Therefore, the heating element can provide accurate heat to enable the sensing element to reach the predetermined operating temperature quickly and surely. Therefore, the micro-electromechanical device has higher sensing accuracy. In addition, the driving unit also provides an updated voltage according to at least one gap value obtained by subtracting at least one conversion value from at least one target value. The updated voltage can drive the heating element to adjust the heat generated by the heating element. Therefore, while the heating element provides heat so that the sensing element reaches a predetermined operating temperature, the heat generated by the heating element can be accurately controlled. In the case that it is not necessary to continuously supply power to drive the heater at a fixed time, the micro-electromechanical device of the embodiment of the present invention can effectively reduce power consumption.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed as above with the examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some modifications and retouching without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be determined by the scope of the attached patent application.
100、200、300:微機電裝置 110、210、310:感測器 112:感測元件 114:加熱元件 116、216、316:偵測元件 120、220、320:積體電路晶片 122:記憶單元 124、224、324:資料處理單元 124_1:感測資料處理單元 124_2:感測資料校正單元 124_3、124_6、224_3、324_3、324_6:類比數位轉換單元 124_4、324_1:功率資料處理單元 124_5、324_2:功率資料校正單元 126:控制單元 126_1:加熱控制單元 126_2:比較單元 128:驅動單元 130:薄膜 130a:第一表面 130b:第二表面 140:基座 141:空洞 150:基板 160:接合層 224_1、324_4:溫度資料處理單元 224_2、324_5:溫度資料校正單元 316_1:功率計 316_2:溫度計 d:距離 S410、S420、S430、S440、S440_1、S440_2、S440_3、S440_4、S450、S460、S470、S480:氣體感測方法的步驟100, 200, 300: MEMS 110, 210, 310: sensor 112: sensing element 114: heating element 116, 216, 316: detection element 120, 220, 320: integrated circuit chip 122: memory unit 124, 224, 324: data processing unit 124_1: sensing data processing unit 124_2: sensing data correction unit 124_3, 124_6, 224_3, 324_3, 324_6: analog digital conversion unit 124_4, 324_1: power data processing unit 124_5, 324_2: power Data correction unit 126: control unit 126_1: heating control unit 126_2: comparison unit 128: drive unit 130: film 130a: first surface 130b: second surface 140: base 141: cavity 150: substrate 160: bonding layer 224_1, 324_4 : Temperature data processing unit 224_2, 324_5: Temperature data correction unit 316_1: Power meter 316_2: Thermometer d: Distance S410, S420, S430, S440, S440_1, S440_2, S440_3, S440_4, S450, S460, S470, S480: Gas sensing Method steps
圖1A是本發明第一實施例的微機電裝置的剖面示意圖。 圖1B是本發明第一實施例的感測器以及積體電路晶片的概要示意圖。 圖2A是本發明第二實施例的微機電裝置的剖面示意圖。 圖2B是本發明第二實施例的感測器以及積體電路晶片的概要示意圖。 圖3A是本發明第三實施例的微機電裝置的剖面示意圖。 圖3B是本發明第三實施例的感測器以及積體電路晶片的概要示意圖。 圖4是本發明一實施例的多種氣體感測方法的步驟流程圖。FIG. 1A is a schematic cross-sectional view of a micro-electromechanical device according to a first embodiment of the present invention. FIG. 1B is a schematic diagram of a sensor and an integrated circuit chip according to the first embodiment of the present invention. 2A is a schematic cross-sectional view of a micro-electromechanical device according to a second embodiment of the present invention. 2B is a schematic diagram of a sensor and an integrated circuit chip according to a second embodiment of the present invention. 3A is a schematic cross-sectional view of a micro-electromechanical device according to a third embodiment of the present invention. 3B is a schematic diagram of a sensor and an integrated circuit chip according to a third embodiment of the present invention. FIG. 4 is a flowchart of steps of various gas sensing methods according to an embodiment of the present invention.
Claims (20)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105143746A TWI633046B (en) | 2016-12-29 | 2016-12-29 | Micro-electromechanical apparatus for heating energy control |
CN201710096747.5A CN108249384B (en) | 2016-12-29 | 2017-02-22 | Micro-electromechanical device capable of controlling heating energy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105143746A TWI633046B (en) | 2016-12-29 | 2016-12-29 | Micro-electromechanical apparatus for heating energy control |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201823143A TW201823143A (en) | 2018-07-01 |
TWI633046B true TWI633046B (en) | 2018-08-21 |
Family
ID=62721352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105143746A TWI633046B (en) | 2016-12-29 | 2016-12-29 | Micro-electromechanical apparatus for heating energy control |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108249384B (en) |
TW (1) | TWI633046B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11193819B2 (en) | 2018-12-24 | 2021-12-07 | Industrial Technology Research Institute | Vibration sensor with monitoring function and vibration signal monitoring method thereof |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020061121A1 (en) * | 2018-09-17 | 2020-03-26 | Invensense, Inc. | Sensor with integrated heater |
CN109186786B (en) * | 2018-10-10 | 2020-01-07 | 西安交通大学 | Device and method for monitoring whether electrical contact of electrical equipment is overheated |
CN111351566B (en) * | 2018-12-24 | 2022-11-01 | 财团法人工业技术研究院 | Vibration sensor with monitoring function and vibration signal monitoring method thereof |
TWI702392B (en) * | 2019-12-20 | 2020-08-21 | 財團法人工業技術研究院 | Gas sensing device and detection method of gas concentration |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101360991A (en) * | 2005-11-24 | 2009-02-04 | 咨询实施技术管理公司 | Electronic chemical trace detector |
CN101889201A (en) * | 2007-10-09 | 2010-11-17 | 佛罗里达大学研究基金公司 | Multifunctional potentiometric gas sensor array with an integrated temperature control and temperature sensors |
CN102681564A (en) * | 2012-05-18 | 2012-09-19 | 成都安可信电子股份有限公司 | Method and circuit for automatically heating gas sensor |
TWI557527B (en) * | 2015-12-28 | 2016-11-11 | 財團法人工業技術研究院 | Micro-electromechanical temperature control system with thermal reservoir |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7628907B2 (en) * | 2005-08-26 | 2009-12-08 | Honeywell International Inc. | Gas sensor |
CN101975804A (en) * | 2010-08-20 | 2011-02-16 | 郑州炜盛电子科技有限公司 | Semiconductor gas sensor and temperature compensation method |
CN102095766B (en) * | 2010-12-02 | 2013-05-22 | 西安交通大学 | Miniature integrated temperature control type CO2 gas sensor and manufacturing method thereof |
CN104034759B (en) * | 2014-06-04 | 2016-09-07 | 苏州能斯达电子科技有限公司 | A kind of MEMS semiconductor gas sensor and manufacture method thereof and gas detection method |
KR101655768B1 (en) * | 2014-12-09 | 2016-09-22 | 현대오트론 주식회사 | Validation Method for Measuring Internal Resistance of Oxygen Sensor, and Monitoring System for Exhaust Gas Operated Thereby |
EP3082011A1 (en) * | 2015-04-17 | 2016-10-19 | Zentrum Mikroelektronik Dresden AG | Arrangement and method for measuring and controlling the heating temperature in one semi-conductor gas sensor |
-
2016
- 2016-12-29 TW TW105143746A patent/TWI633046B/en active
-
2017
- 2017-02-22 CN CN201710096747.5A patent/CN108249384B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101360991A (en) * | 2005-11-24 | 2009-02-04 | 咨询实施技术管理公司 | Electronic chemical trace detector |
CN101889201A (en) * | 2007-10-09 | 2010-11-17 | 佛罗里达大学研究基金公司 | Multifunctional potentiometric gas sensor array with an integrated temperature control and temperature sensors |
CN102681564A (en) * | 2012-05-18 | 2012-09-19 | 成都安可信电子股份有限公司 | Method and circuit for automatically heating gas sensor |
TWI557527B (en) * | 2015-12-28 | 2016-11-11 | 財團法人工業技術研究院 | Micro-electromechanical temperature control system with thermal reservoir |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11193819B2 (en) | 2018-12-24 | 2021-12-07 | Industrial Technology Research Institute | Vibration sensor with monitoring function and vibration signal monitoring method thereof |
Also Published As
Publication number | Publication date |
---|---|
TW201823143A (en) | 2018-07-01 |
CN108249384A (en) | 2018-07-06 |
CN108249384B (en) | 2020-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI633046B (en) | Micro-electromechanical apparatus for heating energy control | |
US10656036B2 (en) | Self-heated pressure sensor assemblies | |
JP6160667B2 (en) | Thermal conductivity gas sensor | |
US9302902B2 (en) | Integrated heater on MEMS cap for wafer scale packaged MEMS sensors | |
US9995593B2 (en) | Method for operating a sensor array | |
JP4707680B2 (en) | Feedback control system and method for maintaining constant power operation of an electric heater | |
JP2007132762A (en) | Structure of gas sensor | |
US20170188413A1 (en) | Micro-electromechanical temperature control system with thermal reservoir | |
US20160216227A1 (en) | Gas sensor | |
JP6679993B2 (en) | Gas detector | |
JP6706871B2 (en) | Flow sensor | |
US20170082648A1 (en) | Systems and methods for thermally controlling sensors | |
JP6631049B2 (en) | Gas detector | |
JP2015227822A (en) | Heat conduction type gas sensor | |
JP6119701B2 (en) | Gas sensor | |
JP5769043B2 (en) | Electrical device, integrated device, electronic circuit and temperature calibration device | |
JP5835650B2 (en) | Temperature measuring device and Seebeck coefficient calculation method | |
JP5467775B2 (en) | Gas sensor performance evaluation method | |
JP2889910B2 (en) | Atmosphere detector | |
US10393718B2 (en) | Micro-electromechanical apparatus for thermal energy control | |
WO2016069070A1 (en) | Gas chromatography (gc) column heater control using multiple temperature sensors | |
US7712347B2 (en) | Self diagnostic measurement method to detect microbridge null drift and performance | |
JP2016133404A (en) | Gas detector | |
JP2008203155A (en) | Sensor circuit | |
JP2012134910A5 (en) |