JP5835650B2 - Temperature measuring device and Seebeck coefficient calculation method - Google Patents

Temperature measuring device and Seebeck coefficient calculation method Download PDF

Info

Publication number
JP5835650B2
JP5835650B2 JP2011179222A JP2011179222A JP5835650B2 JP 5835650 B2 JP5835650 B2 JP 5835650B2 JP 2011179222 A JP2011179222 A JP 2011179222A JP 2011179222 A JP2011179222 A JP 2011179222A JP 5835650 B2 JP5835650 B2 JP 5835650B2
Authority
JP
Japan
Prior art keywords
temperature
cold junction
phase change
change material
temperature measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011179222A
Other languages
Japanese (ja)
Other versions
JP2013040885A (en
Inventor
順二 間中
順二 間中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2011179222A priority Critical patent/JP5835650B2/en
Publication of JP2013040885A publication Critical patent/JP2013040885A/en
Application granted granted Critical
Publication of JP5835650B2 publication Critical patent/JP5835650B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

本発明は、温度測定装置およびゼーベック係数算出方法に関するものである。   The present invention relates to a temperature measurement device and a Seebeck coefficient calculation method.

従来から、熱電対を使用して、測定対象物の温度を測定する温度測定装置が知られている(例えば、特許文献1、2)。熱電対を使用した温度測定装置は、熱電対の一方の接合点である温接点を測定対象物に接触または近づけ、熱電対の他方の接合点である冷接点との温度差により生じる熱起電力ΔV10(ゼーベック効果)を計測する。また、これと同時に冷接点温度測定手段としての温度センサ(感温素子、サーミスタなど)により冷接点の温度t1を測定する。そして、不揮発性メモリに記憶されているゼーベック係数Sと、熱起電力ΔV10と、冷接点の温度t1とから、測定対象物の温度である温接点の温度t2を求める(t2=(ΔV10+S×t1)/S)   2. Description of the Related Art Conventionally, temperature measuring devices that measure the temperature of an object to be measured using a thermocouple are known (for example, Patent Documents 1 and 2). A temperature measuring device using a thermocouple is a thermoelectromotive force generated by a temperature difference from a cold junction that is the other junction point of a thermocouple, with a hot junction that is one junction point of the thermocouple being in contact with or close to the object to be measured. ΔV10 (Seebeck effect) is measured. At the same time, the temperature t1 of the cold junction is measured by a temperature sensor (temperature sensing element, thermistor, etc.) as cold junction temperature measuring means. Then, from the Seebeck coefficient S stored in the nonvolatile memory, the thermoelectromotive force ΔV10, and the temperature t1 of the cold junction, a temperature t2 of the hot junction that is the temperature of the object to be measured is obtained (t2 = (ΔV10 + S × t1). ) / S)

上記ゼーベック係数Sは、熱電対の材質や形状毎に異なる値であり、装置の不揮発性メモリには、熱電対に対応する上記ゼーベック係数Sが記憶されている。   The Seebeck coefficient S varies depending on the material and shape of the thermocouple, and the Seebeck coefficient S corresponding to the thermocouple is stored in the nonvolatile memory of the apparatus.

経時使用によって熱電対が劣化(酸化、金属構造の変化など)すると、熱電対の特性が変化して、ゼーベック係数Sが変化してしまう。その結果、不揮発性メモリに記憶されているゼーベック係数と、使用されている熱電対のゼーベック係数とが異なってしまい、経時にわたり、良好な温度測定を行うことができないという課題がある。   When the thermocouple deteriorates due to use over time (oxidation, change in metal structure, etc.), the characteristics of the thermocouple change and the Seebeck coefficient S changes. As a result, the Seebeck coefficient stored in the non-volatile memory is different from the Seebeck coefficient of the thermocouple used, and there is a problem that good temperature measurement cannot be performed over time.

また、従来、劣化した熱電対を交換する際は、ゼーベック係数Sが同じ熱電対を用意する必要があり、利便性が悪いという課題もあった。   Further, conventionally, when replacing a deteriorated thermocouple, it is necessary to prepare a thermocouple having the same Seebeck coefficient S, and there is a problem that the convenience is poor.

本発明は以上の問題点に鑑みなされたものであり、その目的は、経時わたり良好な温度測定を行うことができ、かつ、利便性を向上することができる温度測定装置およびゼーベック係数算出方法を提供することである。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a temperature measurement device and a Seebeck coefficient calculation method capable of performing good temperature measurement over time and improving convenience. Is to provide.

上記目的を達成するために、請求項1の発明は、熱電対と、上記熱電対の冷接点の温度を測定する冷接点温度測定手段と、上記熱電対の出力値と、上記冷接点温度測定手段の測定結果と、ゼーベック係数とに基づいて測定対象物の温度を測定する温度測定装置において、上記冷接点を加熱する加熱手段と、上記加熱手段で冷接点を加熱し、上記冷接点の温度が第1温度ときの上記熱電対の出力値と、上記第1温度とは異なる第2温度ときの上記熱電対の出力値とを検出し、上記第1温度、上記第1温度ときの上記熱電対の出力値、上記第2温度および上記第2温度ときの上記熱電対の出力値に基づいて、上記ゼーベック係数を算出するゼーベック係数算出手段を備えたことを特徴とするものである。   In order to achieve the above object, the invention of claim 1 includes a thermocouple, cold junction temperature measuring means for measuring the temperature of the cold junction of the thermocouple, an output value of the thermocouple, and the cold junction temperature measurement. In the temperature measurement device for measuring the temperature of the measurement object based on the measurement result of the means and the Seebeck coefficient, the heating means for heating the cold junction, the cold junction is heated by the heating means, and the temperature of the cold junction Detecting the output value of the thermocouple at a first temperature and the output value of the thermocouple at a second temperature different from the first temperature, and detecting the thermocouple at the first temperature and the first temperature. It comprises a Seebeck coefficient calculating means for calculating the Seebeck coefficient based on the output value of the pair, the second temperature, and the output value of the thermocouple at the second temperature.

本発明によれば、第1温度と、冷接点の温度が第1温度のときの熱電対の出力値と、第2温度と、冷接点が第2温度のときの熱電対の出力値とに基づいて、ゼーベック係数を算出する。冷接点の温度が第1温度のときの熱電対の出力値(熱起電力)をΔV1とすると、次の式が成り立つ。
ΔV1=S×(t2−t1a)・・・・(1)
上記t1aは、冷接点の第1温度であり、上記t2は、温接点の温度(測定対象物)の温度である。
また、冷接点の温度が第2温度のときの熱電対の出力値(熱起電力)をΔV2とすると、次の式が成り立つ。
ΔV2=S×(t2−t1b)・・・・(2)
上記t1bは、冷接点の第2温度である。
上記ΔV1、上記ΔV2、上記t1a、上記t1bは、既知であるので、上記式(1)、上記式(2)の連立方程式を解くことにより、ゼーベック係数Sを求めることができる。また、上記式(1)、上記式(2)の連立方程式を解くことにより、測定対象物の温度t2も求めることができる。これにより、測定対象物の温度測定時におけるゼーベック係数Sを求めることができる。その結果、熱電対が経時変化して特性が変化したときのゼーベック係数Sで、測定対象物の温度t2を求めることができ、精度の高い温度測定を行うことができる。また、交換する熱電対のゼーベック係数Sが、交換前の熱電対のゼーベック係数Sと異なっても、精度よく、測定対象物の温度t2を測定することができ、装置の利便性を高めることができる。
According to the present invention, the first temperature, the thermocouple output value when the cold junction temperature is the first temperature, the second temperature, and the thermocouple output value when the cold junction is the second temperature. Based on this, the Seebeck coefficient is calculated. When the output value (thermoelectromotive force) of the thermocouple when the temperature of the cold junction is the first temperature is ΔV1, the following equation is established.
ΔV1 = S × (t2−t1a) (1)
The t1a is the first temperature of the cold junction, and the t2 is the temperature of the hot junction (measurement object).
Further, when the output value (thermoelectromotive force) of the thermocouple when the temperature of the cold junction is the second temperature is ΔV2, the following equation is established.
ΔV2 = S × (t2−t1b) (2)
The t1b is the second temperature of the cold junction.
Since ΔV1, ΔV2, t1a, and t1b are known, the Seebeck coefficient S can be obtained by solving the simultaneous equations of the above equations (1) and (2). Further, the temperature t2 of the measurement object can also be obtained by solving the simultaneous equations of the above equations (1) and (2). Thereby, the Seebeck coefficient S at the time of measuring the temperature of the measurement object can be obtained. As a result, the temperature t2 of the measurement object can be obtained from the Seebeck coefficient S when the thermocouple changes with time and the characteristics change, and a highly accurate temperature measurement can be performed. In addition, even if the Seebeck coefficient S of the thermocouple to be replaced is different from the Seebeck coefficient S of the thermocouple before replacement, the temperature t2 of the measurement object can be measured with high accuracy, and the convenience of the apparatus is improved. it can.

本発明によれば、熱電対が経時変化して特性が変化しても、良好に測定対象物の温度を測定することができる。また、異なるゼーベック係数の熱電対を交換することができ、装置の利便性を高めることができる。   According to the present invention, even when the thermocouple changes with time and the characteristics change, the temperature of the measurement object can be measured well. Moreover, the thermocouple of a different Seebeck coefficient can be exchanged, and the convenience of the apparatus can be enhanced.

本実施形態の温度測定装置のシース部の概略構成図。The schematic block diagram of the sheath part of the temperature measuring device of this embodiment. 同温度測定装置の温度計測部の概略構成図。The schematic block diagram of the temperature measurement part of the temperature measuring device. 同温度計測部の基板の概略構成図。The schematic block diagram of the board | substrate of the same temperature measurement part. 温度測定装置の制御ブロック図。The control block diagram of a temperature measuring device. 時間推移における相変化物質の温度変化と、冷接点温度測定部の抵抗変化とを示す特性図。The characteristic view which shows the temperature change of the phase change material in a time transition, and the resistance change of the cold junction temperature measurement part. 相変化物質を加熱するときに冷接点温度測定部に流す電流に対する温度変化及び冷接点温度測定部の抵抗値変化を示す特性図。The characteristic view which shows the temperature change with respect to the electric current which flows through a cold junction temperature measurement part when heating a phase change substance, and the resistance value change of a cold junction temperature measurement part. 冷接点温度測定部の抵抗値−温度特性を示すグラフ。The graph which shows the resistance value-temperature characteristic of a cold junction temperature measurement part. 温度キャリブレーション、ゼーベック係数算出および測定対象物の温度測定のタイミングチャート。A timing chart of temperature calibration, Seebeck coefficient calculation, and temperature measurement of a measurement object. 温度キャリブレーション、ゼーベック係数算出および測定対象物の温度測定のフローチャート。The flowchart of temperature calibration, Seebeck coefficient calculation, and temperature measurement of a measurement object. 変形例1の温度測定装置の冷接点が設けられた基板の概略平面図。The schematic plan view of the board | substrate with which the cold junction of the temperature measuring apparatus of the modification 1 was provided. 変形例2の温度測定装置の冷接点が設けられた基板の概略平面図。The schematic plan view of the board | substrate with which the cold junction of the temperature measuring apparatus of the modification 2 was provided. 図11のA−A断面図。AA sectional drawing of FIG. 変形例3の温度測定装置の冷接点が設けられた基板の一例を示す概略平面図。The schematic plan view which shows an example of the board | substrate with which the cold junction of the temperature measuring apparatus of the modification 3 was provided. 変形例3の温度測定装置の冷接点が設けられた基板の他の例を示す概略平面図。The schematic plan view which shows the other example of the board | substrate with which the cold junction of the temperature measuring apparatus of the modification 3 was provided. 図14のB−B断面図。BB sectional drawing of FIG. 異なる相転移温度の2つの相変化物質において時間推移に対する温度変化を示す特性図。The characteristic view which shows the temperature change with respect to time transition in two phase change substances of a different phase transition temperature. 変形例3の温度測定装置の温度キャリブレーションのタイミングチャート。10 is a timing chart of temperature calibration of a temperature measuring device according to Modification 3. 変形例3の温度測定装置の温度キャリブレーション、ゼーベック係数算出、測定対象物の温度測定のフローチャート。The flowchart of the temperature calibration of the temperature measuring apparatus of the modification 3, Seebeck coefficient calculation, and the temperature measurement of a measuring object. 冷接点温度測定部の抵抗値−温度特性を示すグラフ。The graph which shows the resistance value-temperature characteristic of a cold junction temperature measurement part. 変形例4の温度測定装置の冷接点が設けられた基板の概略平面図。The schematic plan view of the board | substrate with which the cold junction of the temperature measuring apparatus of the modification 4 was provided. 変形例4の温度測定装置の制御ブロック図。The control block diagram of the temperature measuring device of the modification 4. 相変化したときの相変化物質の流動(粘性)変化を電気的に検知するメカニズムについて説明する図。The figure explaining the mechanism which electrically detects the flow (viscosity) change of a phase change substance when a phase changes. 相変化したときの相変化物質の流動(粘性)変化を電気的に検知するメカニズムの他の構成例について説明する図。The figure explaining the other structural example of the mechanism which electrically detects the flow (viscosity) change of the phase change substance at the time of a phase change. 相変化したときの相変化物質の流動(粘性)変化を電気的に検知するメカニズムのさらに他の構成例について説明する図。The figure explaining the further another structural example of the mechanism which electrically detects the flow (viscosity) change of the phase change substance at the time of a phase change. 変形例5の温度測定装置の冷接点が設けられた基板の概略平面図。The schematic plan view of the board | substrate with which the cold junction of the temperature measuring apparatus of the modification 5 was provided. 図25のD−D断面図。DD sectional drawing of FIG. 変形例5の温度測定装置の制御ブロック図。FIG. 10 is a control block diagram of a temperature measuring device according to Modification 5. 変形例5の温度測定装置の温度キャリブレーションのタイミングチャート。10 is a timing chart of temperature calibration of a temperature measuring device according to Modification 5. 変形例5の温度測定装置の温度キャリブレーション、ゼーベック係数算出、測定対象物の温度測定のフローチャート。The flowchart of the temperature calibration of the temperature measuring device of the modification 5, Seebeck coefficient calculation, and the temperature measurement of a measuring object.

以下、本発明を適用した温度測定装置の一実施形態について説明する。
図1は、温度測定装置100のシース部101の概略構成図であり、図2は、温度測定装置100の温度計測部110の概略構成図であり、図3は、温度計測部110の基板1の概略構成図である。
温度測定装置100は、熱電対の温接点を備えたシース部101と、冷接点を備えた温度計測部110とを有している。図1に示すように、温度測定装置100のシース部101は、金属保護管102(シース管)内に第1熱電材料103aと第2熱電材料103bとが接合された温接点Wを備えた熱電対103を有しており、セラミックなどの無機物質104が高圧充填されている。熱電対103の第1熱電材料103aの端部113aと、第2熱電材料103bの端部113bは、金属保護管102から露出している。
Hereinafter, an embodiment of a temperature measuring device to which the present invention is applied will be described.
1 is a schematic configuration diagram of the sheath portion 101 of the temperature measuring device 100, FIG. 2 is a schematic configuration diagram of the temperature measuring portion 110 of the temperature measuring device 100, and FIG. 3 is a substrate 1 of the temperature measuring portion 110. FIG.
The temperature measuring apparatus 100 includes a sheath part 101 having a hot junction of a thermocouple and a temperature measuring part 110 having a cold junction. As shown in FIG. 1, the sheath portion 101 of the temperature measuring device 100 includes a thermoelectric device having a hot junction W in which a first thermoelectric material 103 a and a second thermoelectric material 103 b are joined in a metal protective tube 102 (sheath tube). It has a pair 103 and is filled with an inorganic substance 104 such as ceramic at high pressure. The end 113 a of the first thermoelectric material 103 a and the end 113 b of the second thermoelectric material 103 b of the thermocouple 103 are exposed from the metal protective tube 102.

図2に示すように、温度計測部110は、本体ケース内にベース材2と、電気絶縁層3とからなる図3に示す基板1を有している。基板1には、上記熱電対103の第1熱電材料103aと同じ熱電材料で構成された第1接続電極10と、上記熱電対103の第2熱電材料103bと同じ熱電材料の構成された第2接続電極11とを備えている。この第1接続電極10および第2接続電極11は、基板1の略中央部まで延びており、そこで、Al、Ni、Siなどの金属材料などの導電性材料からなり、信号処理回路部20と接続する回路接続電極7と接合されており、熱電対の一対の冷接点Cを形成している。   As shown in FIG. 2, the temperature measurement unit 110 includes the substrate 1 shown in FIG. 3, which includes a base material 2 and an electrical insulating layer 3 in a main body case. The substrate 1 has a first connection electrode 10 made of the same thermoelectric material as the first thermoelectric material 103a of the thermocouple 103 and a second thermoelectric material made of the same thermoelectric material 103b as the second thermoelectric material 103b of the thermocouple 103. The connection electrode 11 is provided. The first connection electrode 10 and the second connection electrode 11 extend to substantially the center of the substrate 1, and are made of a conductive material such as a metal material such as Al, Ni, Si, and the signal processing circuit unit 20. It joins with the circuit connection electrode 7 to connect, and forms a pair of cold junction C of a thermocouple.

第1接続電極10の冷接点と、第2接続電極11の冷接点との間には、冷接点の温度を測定する冷接点温度測定手段としての冷接点温度測定部5と、温度キャリブレーションのための相変化物質6とが図の2点鎖線Aを基準線として線対称、かつ、2点鎖線Bを基準線として線対称に配置されている。このように、冷接点温度測定部5と、相変化物質6とを一対の冷接点の間に対称配置することにより、一対の冷接点の温度を高精度に測定することができる。   Between the cold junction of the 1st connection electrode 10 and the cold junction of the 2nd connection electrode 11, the cold junction temperature measurement part 5 as a cold junction temperature measurement means which measures the temperature of a cold junction, and temperature calibration The phase change material 6 is arranged symmetrically with the two-dot chain line A in the figure as a reference line and symmetrical with the two-dot chain line B as a reference line. Thus, by arranging the cold junction temperature measuring unit 5 and the phase change material 6 symmetrically between the pair of cold junctions, the temperature of the pair of cold junctions can be measured with high accuracy.

冷接点温度測定部5は、Pt、NiCr、SiC,Cなどの温度依存性を持つ抵抗体であり、信号処理回路部20でこの抵抗体の抵抗値を求めることにより、温度が検知される。また、この実施形態においては、この抵抗体からなる冷接点温度測定部5を発熱させて相変化物質6を加熱する加熱手段としての機能を有している。   The cold junction temperature measurement unit 5 is a resistor having temperature dependency such as Pt, NiCr, SiC, C, and the temperature is detected by obtaining a resistance value of the resistor by the signal processing circuit unit 20. Moreover, in this embodiment, it has a function as a heating means which heats the cold junction temperature measurement part 5 which consists of this resistor, and heats the phase change material 6.

温度キャリブレーションの標準物質である相変化物質6は、狭い温度範囲を再現性良く高い精度で相転移するものであり、相転移前後において、温度(熱)、電気抵抗値、熱容量、粘性(流動性)、質量、固有振動数、誘電率いずれかの変化を伴うものである。本実施形態においては、その変化を検出することで、相変化物質6の相変化を検出する。相変化物質6はある温度で相転移する物質であればよい。特に、高精度に温度が決められている国際温度目盛として定められる温度を示す物質を用いれば高精度にキャリブレーションでき、好ましい。また、相変化物質6としては、固体と液体、液体と気体などの間で再現性よく可逆的に相転移する条件や材料を選択することが好ましい。これにより、いつでも、温度キャリブレーションを行い、いつでも精度が維持された温度測定が可能となる。また、高精度にキャリブレーションするためには、相変化物質6は、利用する温度に近い相転移温度を有するものを用いるのが好ましい。また、相変化物質6としてパラフィンや酢酸ナトリウムなどを用い、既知の温度における過冷却温度に基づいて、温度キャリブレーションを行ってもよい。   The phase change material 6 which is a standard material for temperature calibration is a material that undergoes phase transition in a narrow temperature range with high reproducibility and high accuracy. Before and after the phase transition, temperature (heat), electrical resistance value, heat capacity, viscosity (flow) Property), mass, natural frequency, and dielectric constant. In the present embodiment, the phase change of the phase change material 6 is detected by detecting the change. The phase change material 6 may be any material that undergoes a phase transition at a certain temperature. In particular, it is preferable to use a substance showing a temperature determined as an international temperature scale in which the temperature is determined with high accuracy, because calibration can be performed with high accuracy. Further, as the phase change substance 6, it is preferable to select conditions and materials that undergo a reversible phase transition with good reproducibility between solid and liquid, liquid and gas, and the like. As a result, temperature calibration can be performed at any time, and temperature measurement can be performed with accuracy maintained at any time. In order to calibrate with high accuracy, it is preferable to use the phase change material 6 having a phase transition temperature close to the temperature to be used. Alternatively, paraffin or sodium acetate may be used as the phase change material 6 and temperature calibration may be performed based on the supercooling temperature at a known temperature.

相変化物質6の(熱)、粘性(流動性)や固有振動数の変化を検出して、相変化物質6の相変化を検出する場合は、次の材料を好適に用いることができる。すなわち、国際温度目盛ITS―90の定義定点であるGa:29.7646℃、In:156.5985℃、Sn:231.928℃、Zn:419.527℃、Al:660.323℃、Ag:961.78℃、Au:1064.18℃、Cu:1084.62℃などである。これらの材料は、融点(凝固点)が、特に高精度であり、好ましい。また、Bi:271.3 ℃や合金であるSn−Zn、Sn−Agや、Bi−Sn合金は混合比率によって130℃から170℃の範囲の加熱に際して、特定温度にて溶融させることができる。   When detecting changes in (thermal), viscosity (fluidity) and natural frequency of the phase change substance 6 to detect a phase change in the phase change substance 6, the following materials can be preferably used. That is, Ga: 29.7646 ° C., In: 156.5985 ° C., Sn: 231.928 ° C., Zn: 419.527 ° C., Al: 660.323 ° C., Ag: which are defined fixed points of the international temperature scale ITS-90 961.78 ° C., Au: 1064.18 ° C., Cu: 1084.62 ° C., and the like. These materials are preferable because their melting points (freezing points) are particularly highly accurate. Further, Bi: 271.3 ° C. and alloys such as Sn—Zn, Sn—Ag, and Bi—Sn alloy can be melted at a specific temperature upon heating in the range of 130 ° C. to 170 ° C. depending on the mixing ratio.

また、相変化物質6の相転移を、質量や熱容量の変化で検出する場合は、酸化物であるBi、In、Sb、MoO、Pなどは固体から気体へ既知の狭い温度範囲で相転移するので、相転移温度における質量や熱容量の変化を良好に検知することができ、好ましい。 Moreover, when detecting the phase transition of the phase change material 6 by a change in mass or heat capacity, the oxides such as Bi 2 O 3 , In 2 O 3 , Sb 2 O 3 , MoO 3 , and P 2 O 5 are Since the phase transition from a solid to a gas is performed in a known narrow temperature range, it is preferable because changes in mass and heat capacity at the phase transition temperature can be detected well.

また、相変化物質6の相転移を、電気伝導度の変化で検出する場合は、CTRサ−ミスタにも用いられているVが好ましい。Vは、の結晶の構造変化による相転移が生じる相転移温度(80℃)よりも低いときは、単斜晶系で、抵抗が負の温度係数を持った半導体であるが、相転移温度(80℃)を超えると、ルチル構造・正方晶系となり、電気伝導度が2桁増加(抵抗が急激に減少)する。よって、相変化物質6の相転移を、電気伝導度の変化で検出する場合、相変化物質6として、Vを用いることにより、相変化物質6の相転移を良好に検出することができる。また、チタン酸バリウムを主成分とするPTCサ−ミスタも好適である。PTCサ−ミスタは、キュリー温度を超えると、結晶系は正方晶系から立方晶系へと相転移するため、それにともなって電気抵抗値が急激に上昇する。このように、既知の相転移温度で結晶性の変化に伴う電気伝導度の変化を生じる材料を、相変化物質6として用いることにより、相変化物質6の相転移を、電気伝導度の変化で良好に検出することができる。 Moreover, when detecting the phase transition of the phase change material 6 by a change in electrical conductivity, V 2 O 5 that is also used in a CTR thermistor is preferable. V 2 O 5 is a monoclinic semiconductor having a negative temperature coefficient when it is lower than the phase transition temperature (80 ° C.) at which phase transition occurs due to the structural change of the crystal. When the transition temperature (80 ° C.) is exceeded, a rutile structure / tetragonal system is obtained, and the electrical conductivity increases by two orders of magnitude (resistance decreases rapidly). Therefore, when the phase transition of the phase change material 6 is detected by a change in electric conductivity, the phase transition of the phase change material 6 can be detected well by using V 2 O 5 as the phase change material 6. it can. A PTC thermistor mainly composed of barium titanate is also suitable. When the PTC thermistor exceeds the Curie temperature, the crystal system undergoes a phase transition from the tetragonal system to the cubic system, and accordingly, the electrical resistance value rapidly increases. Thus, by using a material that causes a change in electrical conductivity accompanying a change in crystallinity at a known phase transition temperature as the phase change material 6, the phase transition of the phase change material 6 can be changed by a change in electrical conductivity. It can be detected well.

また、相変化物質6の相転移を、誘電率の変化で検出する場合、光学的に相変化物質6の相転移を検出する場合、および、固有振動数の変化で検出する場合は、相変化物質6として、タンタル酸ニオブ酸カリウム(KTa1-xNbxO3)を好適に用いることができる。タンタル酸ニオブ酸カリウムは、相転移温度にて結晶の構造相転移を生じ、誘電率と二次電気光学定数(Kerr定数)が最大となり、固有振動数が相転移温度(35.6℃)付近で急激に変化する。よって、相変化物質6の相転移を、誘電率の変化を検出する場合、光学的に相変化物質6の相転移を検出する場合、および、固有振動数の変化を検出する場合は、相変化物質6として、タンタル酸ニオブ酸カリウム(KTa1-xNbxO3)を用いることにより、良好に相変化物質6の相転移を検出することができる。 When the phase transition of the phase change material 6 is detected by a change in dielectric constant, when the phase transition of the phase change material 6 is optically detected, and when it is detected by a change in natural frequency, the phase change As the substance 6, potassium tantalate niobate (KTa1-xNbxO 3 ) can be suitably used. Potassium tantalate niobate undergoes a structural phase transition of the crystal at the phase transition temperature, the dielectric constant and the second-order electro-optic constant (Kerr constant) are maximized, and the natural frequency is around the phase transition temperature (35.6 ° C). Changes rapidly. Therefore, when the phase change of the phase change material 6 is detected as a change in dielectric constant, when the phase change of the phase change material 6 is detected optically, and when a change in the natural frequency is detected, the phase change By using potassium tantalate niobate (KTa1-xNbxO 3 ) as the substance 6, the phase transition of the phase change substance 6 can be detected well.

基板1のベース材2は、Al、Ni、Siなどの金属材料などの導電性材料で構成される。電気絶縁層3は、相変化物質6の相転移温度よりも低いと、相転移してしまうので、相変化物質6よりも高い相転移温度の材料を選択する必要があり、SiO、Si、Al等の耐熱性材料が用いられる。本実施形態においては、導電性材料で形成されたベース材2上に形成された電気絶縁層3上に、第1、第2接続電極10、11、冷接点温度測定部5、相変化物質6などを設けているが、ベース材2をガラスやセラミックなど電気絶縁性材料で構成した場合は、ベース材2上に第1、第2接続電極10、11、冷接点温度測定部5、相変化物質6などを設けてもよい。 The base material 2 of the substrate 1 is made of a conductive material such as a metal material such as Al, Ni, or Si. The electrical insulating layer 3 undergoes a phase transition if it is lower than the phase transition temperature of the phase change material 6. Therefore, it is necessary to select a material having a phase transition temperature higher than that of the phase change material 6. SiO 2 , Si 3 A heat resistant material such as N 4 or Al 2 O 3 is used. In the present embodiment, the first and second connection electrodes 10 and 11, the cold junction temperature measuring unit 5, and the phase change material 6 are formed on the electrical insulating layer 3 formed on the base material 2 made of a conductive material. However, when the base material 2 is made of an electrically insulating material such as glass or ceramic, the first and second connection electrodes 10 and 11, the cold junction temperature measuring unit 5, and the phase change are formed on the base material 2. Substance 6 or the like may be provided.

電気絶縁層3はCVD、スパッタリングやゾルゲル法および各種薄膜製造方法により成膜する。その電気絶縁層3上にフォトリソグラフにより第1、第2接続電極10、11、冷接点温度測定部5、信号処理回路部20の回路などをパターン形成する。また、形成される冷接点温度測定部5、第1、第2接続電極10、11、信号処理回路部20の回路などの導電性、相変化物質6の相転移に伴う液化流動性、周囲雰囲気との化学反応などを考慮して、適宜、部材を電気絶縁層3で覆って保護するのが好ましい。例えば、冷接点温度測定部5や相変化物質6が、相変化物質6を加熱するときの熱により高温度になるため表面が周囲雰囲気により酸化したり腐食したりする場合、耐久性を高めるために、冷接点温度測定部5や相変化物質全体を耐熱性の酸化物や窒化物の電気絶縁層3で被覆し不活性化(パッシベーション)する。具体的には、金属材料などの相変化物質6の場合、相変化物質6が表面に露出していると、周囲雰囲気によって金属酸化物に変化して、相転移温度が変化するおそれがある。また、相変化物質6が液化する場合は流動変形によって、温度分布が変わるおそれがある。その結果、これらは相転移を繰り返すと再現性が得られない場合がある。従って、相変化物質6が周囲雰囲気により化学変化するのを防止するために相変化物質6を周囲雰囲気に接しないように電気絶縁層3でパッシベーションしたり、相変化物質6が液化する場合の流動変形を防止するため相変化物質6を電気絶縁層3で包囲したりする。さらに、国際温度目盛の定義定点を用い高精度にキャリブレーションする場合には、標準気圧下(10.1325Pa)にて相変化物質6の凝固点(融点)を検出する必要がある。相変化物質6は、上述したように、SiO、Si、Al等の耐熱性材料からなる耐熱性電気絶縁層3を被覆した剛性を有する構造にすることにより、耐熱性電気絶縁層3の内部は一定圧力に維持される。これにより、周囲雰囲気の気圧が変化しても、相変化物質6A,6Bが影響を受けず後述する温度キャリブレーションの精度を高くすることができる。 The electrical insulating layer 3 is formed by CVD, sputtering, sol-gel method, and various thin film manufacturing methods. The first and second connection electrodes 10 and 11, the cold junction temperature measuring unit 5, the circuit of the signal processing circuit unit 20, and the like are pattern-formed on the electrical insulating layer 3 by photolithography. Further, the conductivity of the cold junction temperature measuring unit 5, the first and second connection electrodes 10 and 11, the circuit of the signal processing circuit unit 20, the liquefied fluidity accompanying the phase transition of the phase change material 6, and the ambient atmosphere It is preferable to protect the member by appropriately covering the member with the electrical insulating layer 3 in consideration of the chemical reaction with the material. For example, if the cold junction temperature measuring unit 5 or the phase change material 6 is heated to a high temperature by heating the phase change material 6 and the surface is oxidized or corroded by the ambient atmosphere, the durability is improved. In addition, the cold junction temperature measuring section 5 and the entire phase change material are covered with a heat-resistant oxide or nitride electrical insulating layer 3 to be inactivated (passivation). Specifically, in the case of the phase change material 6 such as a metal material, if the phase change material 6 is exposed on the surface, the phase change material 6 may be changed to a metal oxide by the ambient atmosphere, and the phase transition temperature may change. Further, when the phase change material 6 is liquefied, the temperature distribution may change due to flow deformation. As a result, reproducibility may not be obtained when the phase transition is repeated. Therefore, in order to prevent the phase change material 6 from being chemically changed by the ambient atmosphere, the phase change material 6 is passivated by the electrical insulating layer 3 so as not to contact the ambient atmosphere, or the flow when the phase change material 6 is liquefied. In order to prevent deformation, the phase change material 6 is surrounded by the electrical insulating layer 3. Further, when calibration is performed with high accuracy using a definition fixed point of the international temperature scale, it is necessary to detect the freezing point (melting point) of the phase change material 6 under standard atmospheric pressure (10.325 Pa). As described above, the phase change material 6 has a heat-resistant structure by covering the heat-resistant electrical insulating layer 3 made of a heat-resistant material such as SiO 2 , Si 3 N 4 , and Al 2 O 3 . The inside of the electrical insulating layer 3 is maintained at a constant pressure. Thereby, even if the atmospheric pressure of the surrounding atmosphere changes, the phase change materials 6A and 6B are not affected and the accuracy of temperature calibration described later can be increased.

また、半導体微細加工のフォトエッチング技術によって電気絶縁層3上にパターン形成する場合には積層段差が加工寸法精度に影響を与える。よって、冷接点と冷接点温度測定部5と相変化物質6とをそれぞれ離間させて隣接配置する場合は、並列に同一平面上に配置する。これにより、積層段差を小さくし精度ばらつきが小さくできる。また、冷接点温度測定部5と相変化物質6との間に間隔ができ、冷接点温度測定部5と相変化物質6とは電気的に絶縁され、相変化物質6が導電性を有する場合であっても冷接点温度測定部5との電気的影響をなくせる。   Further, when a pattern is formed on the electrical insulating layer 3 by a photo-etching technique for semiconductor microfabrication, the stacking step affects the processing dimension accuracy. Accordingly, when the cold junction, the cold junction temperature measurement unit 5 and the phase change material 6 are arranged apart from each other, they are arranged in parallel on the same plane. Thereby, a lamination | stacking level | step difference can be made small and an accuracy variation can be made small. Further, there is a gap between the cold junction temperature measurement unit 5 and the phase change material 6, the cold junction temperature measurement unit 5 and the phase change material 6 are electrically insulated, and the phase change material 6 has conductivity. Even so, the electrical influence on the cold junction temperature measurement unit 5 can be eliminated.

また、図2、図3に示すように、ベース材2の電気絶縁層3に形成された冷接点C、相変化物質6、冷接点温度測定部5が設けられた領域22(以下、計測領域という)と対向する箇所は、エッチング処理により除去され、空洞部21となっている。これにより、冷接点C、冷接点温度測定部5、相変化物質6が形成された電気絶縁層3の計測領域22は、ベース材2と非接触となるので、冷接点温度測定部5、相変化物質6付近の熱容量を少なくすることができる。これにより、冷接点温度測定部5で発熱させて、すばやく相変化物質6を加熱することができる。また、測定領域の熱容量が少ないので、冷接点温度測定部5の温度応答を鋭敏にすることができ、冷接点Cの温度や、相変化物質6の温度を精度よく測定することができる。   As shown in FIGS. 2 and 3, a region 22 (hereinafter referred to as a measurement region) in which a cold junction C, a phase change material 6, and a cold junction temperature measurement unit 5 formed in the electrical insulating layer 3 of the base material 2 are provided. The portion opposite to the above is removed by an etching process to form a cavity 21. As a result, the cold junction C, the cold junction temperature measurement unit 5 and the measurement region 22 of the electrical insulating layer 3 on which the phase change material 6 is formed are not in contact with the base material 2. The heat capacity in the vicinity of the change substance 6 can be reduced. As a result, the phase change material 6 can be heated quickly by generating heat in the cold junction temperature measurement unit 5. Further, since the heat capacity of the measurement region is small, the temperature response of the cold junction temperature measurement unit 5 can be made sharp, and the temperature of the cold junction C and the temperature of the phase change material 6 can be measured with high accuracy.

図2に示すように、温度計測部110のケース111には、シース部101が、温度計測部110から抜き差し可能な、ソケット上の接続口111aを有している。また、ケース111の第1、第2接続電極の接続部10a,10bと対向する箇所には、加圧板バネ112が設けられている。加圧板バネ112には、接続口111aから差し込まれた熱電対の第1熱電材料の端部113aと、第2熱電材料の端部113bとが突き当る突き当て部112aと、第1、第2熱電材料の端部113a,113bの第1、第2接続電極の接続部10a,10bと対向面と反対側の面を加圧する加圧部112bと有している。   As shown in FIG. 2, the case 111 of the temperature measurement unit 110 has a connection port 111 a on the socket in which the sheath unit 101 can be inserted and removed from the temperature measurement unit 110. Further, a pressure leaf spring 112 is provided at a location of the case 111 facing the connection portions 10a and 10b of the first and second connection electrodes. The pressing plate spring 112 has an abutting portion 112a against which the end portion 113a of the first thermoelectric material of the thermocouple inserted from the connection port 111a and the end portion 113b of the second thermoelectric material abut, and the first and second portions. It has the pressurization part 112b which pressurizes the surface on the opposite side to the connection part 10a, 10b of the 1st and 2nd connection electrode of the edge parts 113a and 113b of a thermoelectric material.

また、ケース111には、ケース111に対してスライド可能に設けられたスライドノブ114が設けられている。スライドノブ114には、加圧板バネ112に当接して、加圧板バネ112を、基板側へ押圧する押圧突起114aが設けられている。   The case 111 is provided with a slide knob 114 that is slidable with respect to the case 111. The slide knob 114 is provided with a pressing protrusion 114a that abuts the pressing plate spring 112 and presses the pressing plate spring 112 toward the substrate.

ケース111の接続口111aに熱電対の第1熱電材料の端部113aと、第2熱電材料の端部113bとを差し込んでいくと、第1、第2の熱電材料の端部113a,113bが、加圧板バネ112の突き当て部112aと突き当たり、第1熱電材料の端部113aが、第1接続電極の接続部10aと対向し、第2熱電材料の端部113bが、第2接続電極の接続部11aと対向する。次に、スライドノブ114を、図中右側へスライドさせると、スライドノブ114の押圧突起114aが、加圧板バネ112と当接して、加圧板バネ112を基板側へ押圧する。加圧板バネ112が押圧突起114aに押圧されると、加圧板バネ112が基板側に撓んで、加圧板バネの加圧部112bが、第1、第2の熱電材料の第1、第2接続電極の接続部と対向面と反対側の面を加圧する。これにより、第1熱電材料の端部113aが、第1接続電極の接続部10aに当接し、第2熱電材料の端部113bが、第2接続電極の接続部11aに当接した状態で、シース部101が、温度計測部110に固定される。   When the end portion 113a of the first thermoelectric material and the end portion 113b of the second thermoelectric material of the thermocouple are inserted into the connection port 111a of the case 111, the end portions 113a and 113b of the first and second thermoelectric materials are formed. The end portion 113a of the first thermoelectric material is opposed to the connection portion 10a of the first connection electrode, and the end portion 113b of the second thermoelectric material is opposed to the connection portion 10a of the second connection electrode. Opposing to the connecting portion 11a. Next, when the slide knob 114 is slid to the right side in the drawing, the pressing protrusion 114a of the slide knob 114 comes into contact with the pressure plate spring 112 and presses the pressure plate spring 112 to the substrate side. When the pressing plate spring 112 is pressed by the pressing protrusion 114a, the pressing plate spring 112 is bent toward the substrate side, and the pressing portion 112b of the pressing plate spring is connected to the first and second connection of the first and second thermoelectric materials. Pressure is applied to the electrode connection and the surface opposite to the facing surface. Thereby, the end portion 113a of the first thermoelectric material is in contact with the connection portion 10a of the first connection electrode, and the end portion 113b of the second thermoelectric material is in contact with the connection portion 11a of the second connection electrode, The sheath part 101 is fixed to the temperature measurement part 110.

シース部101を温度計測部110から取り外すときは、スライドノブ114を図中左側(シース部側)へスライドさせることにより、第1、第2の熱電材料の端部113a,113bの基板側への加圧が解除され、容易に第1、第2の熱電材料の端部113a,113bを、接続口111aから抜き出すことができる。   When removing the sheath part 101 from the temperature measurement part 110, the slide knob 114 is slid to the left side (sheath part side) in the figure to move the end portions 113a and 113b of the first and second thermoelectric materials to the substrate side. The pressurization is released, and the end portions 113a and 113b of the first and second thermoelectric materials can be easily extracted from the connection port 111a.

また、ベース材2がSiであれば、信号処理回路部20の各回路を集積しやすい。例えば、Siベース材を熱酸化させることにより表面にSiOを形成するか、Siベース材2上にCVDやスパッタリングによりSiO、Si、Al等の単層または複層の電気絶縁層3を形成する。次に、ポリシリコン層および酸化膜を形成後、酸化膜をマスクとしてポリシリコン層に冷接点温度測定部5と信号処理回路部20の回路となる不純物拡散領域を形成する。次に、電気絶縁層3上にAl(アルミ)回路接続電極7、第1、第2接続電極10,11、相変化物質6などをCVD、スパッタリングやゾルゲル法および各種薄膜製造方法により成膜、フォトリソグラフによりパターン形成する。この場合、同一のSiベース材2、電気絶縁層3、ポリシリコン層、酸化膜および配線材料によりCMOS素子構造として、同一のチップ内に周辺回路を集積することができる。また、SOI(Si On Insulator)構造の基板を用いる場合は、BOX層を電気絶縁層3とし、SOI層に冷接点温度測定部5と信号処理回路部20の回路となる不純物拡散領域を形成する。次にBOX層上に回路接続電極7、第1、第2接続電極10,11、相変化物質6などをCVD、スパッタリングやゾルゲル法および各種薄膜製造方法により成膜、フォトリソグラフによりパターン形成する。このように、Siベース材2、BOX層やSOI層によりCMOS素子構造として、同一のチップ内に周辺回路を集積することができる。 Moreover, if the base material 2 is Si, it is easy to integrate each circuit of the signal processing circuit unit 20. For example, SiO 2 is formed on the surface by thermally oxidizing the Si base material, or a single layer or multiple layers of SiO 2 , Si 3 N 4 , Al 2 O 3 or the like is formed on the Si base material 2 by CVD or sputtering. The electrical insulating layer 3 is formed. Next, after forming the polysilicon layer and the oxide film, impurity diffusion regions to be the circuits of the cold junction temperature measuring unit 5 and the signal processing circuit unit 20 are formed in the polysilicon layer using the oxide film as a mask. Next, an Al (aluminum) circuit connection electrode 7, first and second connection electrodes 10, 11 and a phase change material 6 are formed on the electrical insulating layer 3 by CVD, sputtering, a sol-gel method, and various thin film manufacturing methods. A pattern is formed by photolithography. In this case, peripheral circuits can be integrated in the same chip as a CMOS device structure by the same Si base material 2, electrical insulating layer 3, polysilicon layer, oxide film and wiring material. When using a substrate having an SOI (Si On Insulator) structure, the BOX layer is used as the electrical insulating layer 3 and an impurity diffusion region serving as a circuit of the cold junction temperature measuring unit 5 and the signal processing circuit unit 20 is formed in the SOI layer. . Next, the circuit connection electrode 7, the first and second connection electrodes 10, 11, the phase change material 6 and the like are formed on the BOX layer by CVD, sputtering, sol-gel method, and various thin film manufacturing methods, and patterned by photolithography. In this way, peripheral circuits can be integrated in the same chip as a CMOS device structure by the Si base material 2, the BOX layer, and the SOI layer.

冷接点温度測定部5と信号処理回路部20の回路に設けられる冷接点温度測定部5の温度較正を行うためのプログラムや、熱電対による温度測定を行うためのプログラムなどの制御プログラムを記憶した記憶メモリ(P-ROM)を、相変化物質6と同じ材料からなる相変化記憶メモリ(Ovonic Unified Memory)としてもよい。この相変化メモリは、急速な熱変化によって結晶相をアモルファス相に遷移させることによって、情報を記憶させるものである。具体的には、相変化メモリを構成する相変化物質をヒーターで加熱して冷却するときの温度と時間を制御することで、結晶状態あるいはアモルファス状態を作る。結晶状態のときは、電気抵抗値が低く、アモルファス状態のときは、電気抵抗が高くなる。この電気抵抗値の違いを用いて、情報を読み出すことができるのである。また、レジスタ等の記憶部にも上記相変化メモリを用いてもよい。このように、信号処理回路部20の記憶メモリとして、相変化物質6と同一の材料からなる相変化メモリを用いることにより、相変化部と、信号処理回路部20の記憶メモリとを同時にパターン形成することができ、製造工程を簡略化することができる。   Control programs such as a program for performing temperature calibration of the cold junction temperature measurement unit 5 provided in the circuit of the cold junction temperature measurement unit 5 and the signal processing circuit unit 20 and a program for performing temperature measurement by a thermocouple are stored. The storage memory (P-ROM) may be a phase change storage memory (Ovonic Unified Memory) made of the same material as the phase change material 6. This phase change memory stores information by transitioning a crystalline phase to an amorphous phase by rapid thermal change. Specifically, a crystalline state or an amorphous state is created by controlling the temperature and time when the phase change material constituting the phase change memory is cooled by heating with a heater. When in the crystalline state, the electrical resistance value is low, and when in the amorphous state, the electrical resistance is high. Information can be read out using the difference in electrical resistance value. The phase change memory may also be used for a storage unit such as a register. Thus, by using the phase change memory made of the same material as the phase change material 6 as the storage memory of the signal processing circuit unit 20, the phase change unit and the storage memory of the signal processing circuit unit 20 are simultaneously patterned. The manufacturing process can be simplified.

また、図3に示すように、電気絶縁層3の冷接点C、冷接点温度測定部5、相変化物質6が設けられた計測領域22の周囲には、貫通孔9が設けられている。これにより、冷接点温度測定部5で相変化物質6を加熱する際の熱が、計測領域以外へ伝播するのを抑制することができ、相変化物質6を効率よく加熱することができる。   Further, as shown in FIG. 3, a through hole 9 is provided around a measurement region 22 where the cold junction C, the cold junction temperature measurement unit 5, and the phase change material 6 of the electrical insulating layer 3 are provided. Thereby, it can suppress that the heat at the time of heating the phase change material 6 in the cold junction temperature measurement part 5 propagates to other than a measurement area | region, and can heat the phase change material 6 efficiently.

また、信号処理回路部20には、熱電対の出力値に基づいて、測定対象物の温度を測定するためのインターフェイス、制御回路、レジスタ、ΔΣA/D、発信回路などを備えている。また、基板1の図中左側の端部には、アドレス入力用端子、GND用端子、クロック入力用端子、データ入出力用端子、電源入力用端子などの各端子が設けられている。端子8は、例えば、図2に示すように、配線ワイヤ12、リードピン13を介して、電源や外部装置などに接続されている。このように、信号処理回路部20を冷接点Cが設けられた基板と同一基板に形成することで、冷接点温度測定部5、熱電対からの信号をΔΣA/Dへ電送させる配線長を短くでき、ノイズを受け難く高精度に冷接点Cの温度測定ができる。   In addition, the signal processing circuit unit 20 includes an interface, a control circuit, a register, ΔΣ A / D, a transmission circuit, and the like for measuring the temperature of the measurement object based on the output value of the thermocouple. Further, terminals such as an address input terminal, a GND terminal, a clock input terminal, a data input / output terminal, and a power input terminal are provided at the left end of the substrate 1 in the drawing. For example, as shown in FIG. 2, the terminal 8 is connected to a power source, an external device, or the like via a wiring wire 12 and a lead pin 13. Thus, by forming the signal processing circuit unit 20 on the same substrate as the substrate provided with the cold junction C, the wiring length for transmitting the signal from the cold junction temperature measuring unit 5 and the thermocouple to ΔΣ A / D is shortened. In addition, the temperature of the cold junction C can be measured with high accuracy and is less susceptible to noise.

図4は、温度測定装置100の制御ブロック図である。
信号処理回路部20は、冷接点温度測定部5の温度キャリブレーションを行う温度較正手段としての機能、熱電対103の熱起電力を検出して、測定対象物30の温度を計測する機能、熱電対103のゼーベック係数を算出する機能などを有している。
図4に示すように、信号処理回路部20は、冷接点温度測定部5に交流バイアスを印加するための電源201と発振回路208を有している。また、冷接点温度測定部5の抵抗値を検出する抵抗値検出部202、相転移温度とそのときの冷接点温度測定部5の抵抗値などを記憶するため記憶手段たるレジスタ203、測定対象物30の温度計測を行うための熱起電力電圧検出部204、アナログ信号をデジタル信号に変換するためのΔΣA/D変換器205、ゼーベック係数Sを算出するためのゼーベック係数算出手段としてのゼーベック係数算出回路206、ゼーベック係数S、冷接点Cの温度、熱起電力などに基づいて、測定対象物の温度を計測する温度変換部207、各回路を制御する制御回路209などを有している。
FIG. 4 is a control block diagram of the temperature measuring apparatus 100.
The signal processing circuit unit 20 functions as a temperature calibration unit that performs temperature calibration of the cold junction temperature measurement unit 5, detects the thermoelectromotive force of the thermocouple 103, and measures the temperature of the measurement object 30. A function for calculating the Seebeck coefficient of the pair 103 is included.
As shown in FIG. 4, the signal processing circuit unit 20 includes a power supply 201 and an oscillation circuit 208 for applying an AC bias to the cold junction temperature measurement unit 5. Also, a resistance value detection unit 202 for detecting the resistance value of the cold junction temperature measurement unit 5, a register 203 as a storage means for storing the phase transition temperature and the resistance value of the cold junction temperature measurement unit 5 at that time, an object to be measured A thermoelectromotive force voltage detector 204 for measuring 30 temperatures, a ΔΣ A / D converter 205 for converting an analog signal into a digital signal, and a Seebeck coefficient calculation as a Seebeck coefficient calculation means for calculating a Seebeck coefficient S. Based on the circuit 206, the Seebeck coefficient S, the temperature of the cold junction C, the thermoelectromotive force, and the like, a temperature conversion unit 207 that measures the temperature of the measurement object, a control circuit 209 that controls each circuit, and the like are included.

制御回路209からキャリブレーション実行の信号が、電源201に入力されると、加熱部としての冷接点温度測定部5が発熱する。同時に、冷接点温度測定部5の抵抗値が抵抗値検出部202で算出され、時刻と冷接点温度測定部5の抵抗値をレジスタ203に収納する。そして、冷接点温度測定部5の抵抗値によって相変化物質6の相転移を検出し、その時の冷接点温度測定部5の抵抗値を相変化物質6の既知の相転移温度として、温度依存性を示す関係式を求め、レジスタ203に記憶する。   When a calibration execution signal is input from the control circuit 209 to the power supply 201, the cold junction temperature measurement unit 5 as a heating unit generates heat. At the same time, the resistance value of the cold junction temperature measurement unit 5 is calculated by the resistance value detection unit 202, and the time and the resistance value of the cold junction temperature measurement unit 5 are stored in the register 203. Then, the phase transition of the phase change material 6 is detected based on the resistance value of the cold junction temperature measurement unit 5, and the resistance value of the cold junction temperature measurement unit 5 at that time is used as the known phase transition temperature of the phase change material 6, and the temperature dependence Is obtained and stored in the register 203.

制御回路209から温度測定実行の信号が、電源201に入力されると、冷接点温度測定部5の抵抗値が抵抗値検出部202で算出され、算出された抵抗値と、先の温度依存性を示す関係式とを用いて、冷接点温度測定値として温度変換部207に出力される。また、熱起電力電圧検出部で検出された熱起電力が、温度変換部に出力される。温度変換部207は、後述するゼーベック係数算出回路により算出されたゼーベック係数Sと、熱起電力とに基づいて、温接点と冷接点との温度差を求める。次いで、求めた温接点と冷接点との温度差と、冷接点温度測定部5で測定された冷接点温度とに基づいて、温接点温度(測定対象物)の温度が求められ、温度測定値として、出力される。   When a temperature measurement execution signal is input from the control circuit 209 to the power supply 201, the resistance value of the cold junction temperature measurement unit 5 is calculated by the resistance value detection unit 202, and the calculated resistance value and the previous temperature dependence are calculated. Is output to the temperature conversion unit 207 as a cold junction temperature measurement value. Further, the thermoelectromotive force detected by the thermoelectromotive force voltage detection unit is output to the temperature conversion unit. The temperature conversion unit 207 obtains a temperature difference between the hot junction and the cold junction based on the Seebeck coefficient S calculated by the Seebeck coefficient calculation circuit described later and the thermoelectromotive force. Next, the temperature of the hot junction temperature (measurement object) is obtained based on the temperature difference between the obtained hot junction and the cold junction and the cold junction temperature measured by the cold junction temperature measurement unit 5, and the temperature measurement value is obtained. As output.

また、制御回路209からゼーベック係数算出実行の信号が、電源201に入力されると、加熱部としての冷接点温度測定部5を発熱させ、冷接点温度を予め決められた第1の温度に加熱する。冷接点温度測定部5の抵抗値が抵抗値検出部202で算出され、算出された抵抗値と、先の温度依存性を示す関係式とを用いて、冷接点温度が算出され、算出された冷接点温度が、上記第1の温度となったら、熱起電力電圧検出部204で熱電対103の熱起電力を検出する。次に、加熱部としての冷接点温度測定部5を発熱させ、冷接点温度を予め決められた第1の温度とは異なる第2の温度に加熱する。次に、算出された冷接点温度が、上記第2の温度となったら、熱起電力電圧検出部204で熱電対103の熱起電力を検出する。そして、第1の温度t1a、このときの熱起電力ΔV1から得られる下記式(a)の関係式、第2の温度t1b、このときの熱起電力ΔV2から得られる下記式(b)の関係式との連立解から、ゼーベック係数Sを算出する。
ΔV1=S×(t2−t1a)・・・(a)
ΔV2=S×(t2−t1b)・・・(b)
なお、上記t2は、温接点Wの温度である。
When a signal for execution of Seebeck coefficient calculation is input from the control circuit 209 to the power supply 201, the cold junction temperature measurement unit 5 as a heating unit generates heat, and the cold junction temperature is heated to a predetermined first temperature. To do. The resistance value of the cold junction temperature measurement unit 5 is calculated by the resistance value detection unit 202, and the cold junction temperature is calculated and calculated using the calculated resistance value and the relational expression indicating the temperature dependence. When the cold junction temperature reaches the first temperature, the thermoelectromotive force voltage detector 204 detects the thermoelectromotive force of the thermocouple 103. Next, the cold junction temperature measuring unit 5 as a heating unit is caused to generate heat, and the cold junction temperature is heated to a second temperature different from the predetermined first temperature. Next, when the calculated cold junction temperature becomes the second temperature, the thermoelectromotive force voltage detection unit 204 detects the thermoelectromotive force of the thermocouple 103. Then, the relationship of the following equation (a) obtained from the first temperature t1a and the thermoelectromotive force ΔV1 at this time, the relationship of the following equation (b) obtained from the second temperature t1b and the thermoelectromotive force ΔV2 at this time The Seebeck coefficient S is calculated from the simultaneous solution with the equation.
ΔV1 = S × (t2−t1a) (a)
ΔV2 = S × (t2−t1b) (b)
The t2 is the temperature of the hot junction W.

次に、本実施形態の温度測定装置100における相変化物質の相転移を用いたキャリブレーションの原理について概説する。ここでは相変化物質の相転移を相変化物質の温度(熱)変化で検出する場合について、説明する。
図5は時間推移における相変化物質の温度変化と、冷接点温度測定部5の抵抗変化とを示す特性図である。図5に示すように、相変化物質6を加熱していき、相変化物質6が相転移温度(融点(凝固点):Mpa)になると吸熱反応が生じる。相変化物質が固体であれば温度が上がっていくと相転移温度にて液体となりはじめ、全てが液体となる期間は相転移温度MPaを維持し、全てが液体となった以降は再び温度が上昇する。そのため、冷接点温度測定部5の電気抵抗値が不連続な傾向となる部分が出現する。すなわち、図5に示すように、冷接点温度測定部5の電気抵抗値R2のとき、温度が相転移温度であると判定できる。よって、温度依存性を有する抵抗体である冷接点温度測定部5の抵抗値を測定しておき、測定抵抗値が抵抗値R2となったときの温度を既知の相転移温度とする温度較正を行う。このように、相転移温度と電気抵抗値との関係が1対1の関係となり、この関係を用いることによりキャリブレーションを行うことができる。
Next, the principle of calibration using the phase transition of the phase change material in the temperature measurement apparatus 100 of the present embodiment will be outlined. Here, the case where the phase transition of the phase change material is detected by the temperature (heat) change of the phase change material will be described.
FIG. 5 is a characteristic diagram showing the temperature change of the phase change material over time and the resistance change of the cold junction temperature measurement unit 5. As shown in FIG. 5, when the phase change material 6 is heated and the phase change material 6 reaches the phase transition temperature (melting point (freezing point): Mpa), an endothermic reaction occurs. If the phase change material is solid, it begins to become liquid at the phase transition temperature as the temperature rises, maintains the phase transition temperature MPa during the period when everything is liquid, and rises again after all becomes liquid. To do. Therefore, a portion where the electric resistance value of the cold junction temperature measuring unit 5 tends to be discontinuous appears. That is, as shown in FIG. 5, when the electrical resistance value R2 of the cold junction temperature measurement unit 5, it can be determined that the temperature is the phase transition temperature. Therefore, the temperature value of the cold junction temperature measuring unit 5 which is a temperature-dependent resistor is measured, and temperature calibration is performed with the temperature when the measured resistance value becomes the resistance value R2 as the known phase transition temperature. Do. Thus, the relationship between the phase transition temperature and the electric resistance value is a one-to-one relationship, and calibration can be performed by using this relationship.

相変化物質6を加熱する加熱部(本実施形態においては、冷接点温度測定部5)の熱容量を小さくし、かつ均一な温度領域に形成することにより、相変化の時点をより正確に検出できる。また、本実施形態においては、相変化物質6を加熱する加熱手段として、冷接点温度測定部5を用いている。相変化物質6を加熱するときは、冷接点温度測定部5にジュール熱が生じるような大きな電流を冷接点温度測定部5に流す。図5に示すように、相変化物質6が固体から液体へ相転移が発生すると、相変化物質6が吸熱反応を示し、相変化開始から終了まで温度が変化しないので温度が維持され、冷接点温度測定部5でもある抵抗体の電気抵抗値の増加傾向が平行状態へ変化する。相変化物質6の転移熱量(潜熱)が大きく、検出領域全体の熱容量に対して相変化物質6の熱容量が占める割合が大きいほど、この吸熱反応の時間(温度が変化しない時間)を長くすることができ、確実に相変化物質6の相変位を検出することができ、好ましい。信号処理回路部20の抵抗値検出部は、冷接点温度測定部5に印加した電圧値と、冷接点温度測定部5に流れた電流値とから、時刻T0の冷接点温度測定部5の電気抵抗値と、時刻T1の冷接点温度測定部5の電気抵抗値とを推移データとして記憶する。そして、時刻T0の電気抵抗値と時刻T1の電気抵抗値とから、抵抗値Rと時刻Tとの関数(一次関数:R=aT+b)が演算される。この関数により求められた時刻T1後の抵抗値と、測定した時刻T1後の抵抗値Rとを比較していく。すると、時刻T2後で関数にフィットしないデータが生じ、相変化物質6が相転移したことを検知することができる。   The time point of phase change can be detected more accurately by reducing the heat capacity of the heating part (in this embodiment, the cold junction temperature measuring part 5) for heating the phase change material 6 and forming it in a uniform temperature region. . In the present embodiment, the cold junction temperature measuring unit 5 is used as a heating means for heating the phase change material 6. When the phase change material 6 is heated, a large current that causes Joule heat in the cold junction temperature measurement unit 5 is passed through the cold junction temperature measurement unit 5. As shown in FIG. 5, when the phase change material 6 undergoes a phase transition from a solid to a liquid, the phase change material 6 exhibits an endothermic reaction, and since the temperature does not change from the start to the end of the phase change, the temperature is maintained. The increasing tendency of the electrical resistance value of the resistor which is also the temperature measuring unit 5 changes to a parallel state. The time of the endothermic reaction (the time during which the temperature does not change) is increased as the amount of heat of transition (latent heat) of the phase change material 6 is large and the ratio of the heat capacity of the phase change material 6 to the heat capacity of the entire detection region is large. This is preferable because the phase displacement of the phase change material 6 can be reliably detected. The resistance value detection unit of the signal processing circuit unit 20 calculates the electrical value of the cold junction temperature measurement unit 5 at time T0 from the voltage value applied to the cold junction temperature measurement unit 5 and the current value flowing through the cold junction temperature measurement unit 5. The resistance value and the electrical resistance value of the cold junction temperature measurement unit 5 at time T1 are stored as transition data. Then, a function (linear function: R = aT + b) of the resistance value R and the time T is calculated from the electric resistance value at the time T0 and the electric resistance value at the time T1. The resistance value after time T1 obtained by this function is compared with the measured resistance value R after time T1. Then, after time T2, data that does not fit the function is generated, and it can be detected that the phase change material 6 has undergone phase transition.

相変化物質6の相転移を検知したら、冷接点温度測定部5の電気抵抗値R2が既知の温度Mpaとしてメモリに保存し、図7に示すような温度依存性を示す関係式を補正する。冷接点温度測定部5で、冷接点の温度を測定するときは、冷接点温度測定部5に対しジュール発熱させないように微弱な電流を供給して、そのときの冷接点温度測定部5の電気抵抗値を測定する。そして、メモリに記憶されている図7に示すような温度依存性を示す関係式と、冷接点温度測定部5の既知の抵抗温度係数TCRとを用いることによって、冷接点温度測定部5の抵抗値から、温度を検出する。
図7に示す温度依存性を示す関係式:(抵抗値R、温度S、温度係数(TCR)α
R=R0*(1+α*S)・・・・(式1)
例えば、温度測定部が白金抵抗体の場合、温度係数(TCR)αは、α=3.9083E−03(0℃〜850℃)となる。
温度キャリブレーションにおいては、上述の抵抗値R2と温度MPaとの関係に基づいて、上記R0が補正される。
When the phase transition of the phase change material 6 is detected, the electrical resistance value R2 of the cold junction temperature measurement unit 5 is stored in the memory as the known temperature Mpa, and the relational expression showing the temperature dependence as shown in FIG. 7 is corrected. When the cold junction temperature measurement unit 5 measures the cold junction temperature, a weak current is supplied to the cold junction temperature measurement unit 5 so as not to generate Joule heat, and the electric power of the cold junction temperature measurement unit 5 at that time is supplied. Measure the resistance value. Then, by using the relational expression indicating the temperature dependence as shown in FIG. 7 and the known resistance temperature coefficient TCR of the cold junction temperature measurement unit 5 stored in the memory, the resistance of the cold junction temperature measurement unit 5 is determined. The temperature is detected from the value.
Relational expressions showing temperature dependence shown in FIG. 7: (resistance value R, temperature S, temperature coefficient (TCR) α
R = R0 * (1 + α * S) (Formula 1)
For example, when the temperature measuring unit is a platinum resistor, the temperature coefficient (TCR) α is α = 3.9083E-03 (0 ° C. to 850 ° C.).
In the temperature calibration, R0 is corrected based on the relationship between the resistance value R2 and the temperature MPa.

また、本実施形態の温度の実用に必要な精度は、0〜850℃の範囲で±0.1℃の精度で十分であるので、下記式の温度依存性を示す関係式のβ×S2を0として線形な一次関数を、温度依存性を示す関係式として用いているが、下記式に示す2次関数の温度依存性を示す関係式を用いてもよい。下記式に示す2次関数の温度依存性を示す関係式を用いることで、0〜419.527℃の範囲で±0.01の精度を得ることができ、抵抗値−温度特性の精度を更に高めることもできる。
R=R0*(1+α*S+β*S2)・・・・(式)
例えば、白金抵抗体の温度係数(TCR)は
α=3.9083E−03、β=−5.7750E−07(0℃〜850℃)
In addition, since the accuracy required for practical use of the temperature of the present embodiment is sufficient in the range of 0 to 850 ° C. and ± 0.1 ° C., the relational expression β × S2 indicating the temperature dependence of the following equation is expressed. Although a linear function that is linear as 0 is used as a relational expression that indicates temperature dependence, a relational expression that indicates the temperature dependence of a quadratic function shown in the following expression may be used. By using the relational expression showing the temperature dependence of the quadratic function shown in the following formula, an accuracy of ± 0.01 can be obtained in the range of 0-419.527 ° C., and the accuracy of the resistance value-temperature characteristic is further increased. It can also be increased.
R = R0 * (1 + α * S + β * S2) (formula)
For example, the temperature coefficient (TCR) of the platinum resistor is α = 3.9083E-03, β = −5.7750E-07 (0 ° C. to 850 ° C.)

図6は、相変化物質6を加熱するときに冷接点温度測定部5に流す電流に対する温度変化及び冷接点温度測定部5の抵抗値変化を示す特性図である。この図6においては、相変化物質6が液体から気体に相変化する例であり、熱容量の変化で相転移を検知する例である。図6に示すように、冷接点温度測定部5へ流す電流値を増加させ、沸点Bpに達した時に相変化物質6が相転移する。相変化物質6が液体から気体へ既知の温度(昇華点又は沸点:Bp)で相転移すると、相変化物質6は蒸散が完了するまで、吸熱反応により温度上昇しない不連続な特性として現れる。しかし、蒸散により相変化物質6の質量が減少してゆくため、上記温度上昇しない不連続な特性は、図6に現れないほど、ごく短時間である。このため、相変化物質6が液体から気体に相変化する場合は、相変化物質6が固定から液体へ相変化する場合のように、吸熱反応により温度上昇しない不連続な特性を検出することは難しい。そこで、相変化物質6が液体から気体に相変化する場合は、蒸散前の温度上昇と、蒸散後の温度上昇の違いに基づいて、相転移温度を検知する。具体的には、相変化物質6が蒸散すると、検出領域の温度測定部周辺の熱容量が相変化物質の分減少する。相変化物質の蒸散により熱容量が減少することにより、温度上昇および冷接点温度測定部5の増加量(傾き)が、相変化物質6が蒸散する前に比べて大きくなり、図6に示すように、温度(電気抵抗値)は、不連続な特性として顕著に現れるので、この不連続開始点(ごくわずかな温度上昇しない領域における後端)を検出する。よって、この場合も、相変化物質加熱直後に得られたデータから、冷接点温度測定部5の電気抵抗値Rと時刻Tの関数(一次関数:R=aT+b)を演算し、この関数にフィットしないデータが生じれば相変化物質6が相転移したことを検知することができる。相変化物質6の相転移を検知したら、冷接点温度測定部5の電気抵抗値R2が既知の温度Mpaとしてメモリに保存する。冷接点温度測定部5で、冷接点の温度を測定するときは、冷接点温度測定部5に対しジュール発熱させないように微弱な電流を供給して、そのときの冷接点温度測定部5の電気抵抗値を測定する。そして、上述同様、温度キャリブレーションにより補正された温度依存性を示す関係式を用いて、冷接点の温度が演算される。   FIG. 6 is a characteristic diagram showing a temperature change with respect to a current passed through the cold junction temperature measurement unit 5 and a resistance value change of the cold junction temperature measurement unit 5 when the phase change material 6 is heated. FIG. 6 is an example in which the phase change material 6 undergoes a phase change from liquid to gas, and is an example in which phase transition is detected by a change in heat capacity. As shown in FIG. 6, when the value of the current flowing to the cold junction temperature measurement unit 5 is increased and the boiling point Bp is reached, the phase change material 6 undergoes phase transition. When the phase change material 6 undergoes a phase transition from liquid to gas at a known temperature (sublimation point or boiling point: Bp), the phase change material 6 appears as a discontinuous characteristic that does not increase in temperature due to endothermic reaction until transpiration is completed. However, since the mass of the phase change material 6 decreases due to transpiration, the discontinuous characteristics that do not increase in temperature are so short that they do not appear in FIG. For this reason, when the phase change material 6 undergoes a phase change from a liquid to a gas, it is possible to detect a discontinuous characteristic in which the temperature does not increase due to an endothermic reaction, as in the case where the phase change material 6 undergoes a phase change from stationary to liquid. difficult. Therefore, when the phase change material 6 undergoes a phase change from liquid to gas, the phase transition temperature is detected based on the difference between the temperature increase before transpiration and the temperature increase after transpiration. Specifically, when the phase change material 6 evaporates, the heat capacity around the temperature measurement unit in the detection region decreases by the amount of the phase change material. As the heat capacity decreases due to the transpiration of the phase change material, the temperature rise and the increase (slope) of the cold junction temperature measurement unit 5 become larger than before the phase change material 6 evaporates, as shown in FIG. Since the temperature (electrical resistance value) appears remarkably as a discontinuous characteristic, this discontinuity start point (the rear end in a region where the temperature does not rise very slightly) is detected. Therefore, also in this case, the function (primary function: R = aT + b) of the electrical resistance value R and time T of the cold junction temperature measurement unit 5 is calculated from the data obtained immediately after the phase change material heating, and fits to this function If no data is generated, it can be detected that the phase change material 6 has undergone phase transition. When the phase transition of the phase change material 6 is detected, the electrical resistance value R2 of the cold junction temperature measurement unit 5 is stored in the memory as a known temperature Mpa. When the cold junction temperature measurement unit 5 measures the cold junction temperature, a weak current is supplied to the cold junction temperature measurement unit 5 so as not to generate Joule heat, and the electric power of the cold junction temperature measurement unit 5 at that time is supplied. Measure the resistance value. As described above, the temperature of the cold junction is calculated using the relational expression indicating the temperature dependence corrected by the temperature calibration.

図8は、温度キャリブレーション、ゼーベック係数算出および測定対象物の温度測定のタイミングチャートであり、図9は、フローチャートである。
所定期間経過すると、制御回路209からキャリブレーション実行の信号が、出力される。キャリブレーション実行の信号が出力されたら(S1のYES)、レジスタ203に記憶されている前回のキャリブレーションで検出された相転移温度MPaのときの冷接点温度測定部5の電気抵抗値R2を消去する(S2)。次に、冷接点温度測定部5にバイアスを印加する電源201が起動し(S3)、冷接点温度測定部5に相変化物質を加熱するための加熱電流Icが印加され、相変化物質6が加熱される。また、抵抗値検出部202で電圧値Vcを検出して、抵抗値が算出され、算出された抵抗値は、レジスタ203に記憶される。また、算出した抵抗値と、これよりもひとつ前に算出した抵抗値とから差分値ΔRを算出する(S5)。
FIG. 8 is a timing chart of temperature calibration, Seebeck coefficient calculation, and temperature measurement of the measurement object, and FIG. 9 is a flowchart.
When a predetermined period elapses, the control circuit 209 outputs a calibration execution signal. When a calibration execution signal is output (YES in S1), the electrical resistance value R2 of the cold junction temperature measurement unit 5 at the phase transition temperature MPa detected in the previous calibration stored in the register 203 is deleted. (S2). Next, the power supply 201 for applying a bias to the cold junction temperature measurement unit 5 is activated (S3), the heating current Ic for heating the phase change material is applied to the cold junction temperature measurement unit 5, and the phase change material 6 is Heated. Further, the resistance value detection unit 202 detects the voltage value Vc to calculate a resistance value, and the calculated resistance value is stored in the register 203. Further, a difference value ΔR is calculated from the calculated resistance value and the resistance value calculated immediately before this (S5).

図8に示すように、時刻T2において、相変化物質6が相変化し冷接点温度測定部5の抵抗値Rの差分値(時間微分)ΔR=0となる。制御回路209は、算出したΔRが、0か否かをチェックする(S6)。差分値ΔRが0であったら(S6のYES)、制御回路209は、算出した抵抗値を、相転移温度MPaにおける冷接点温度測定部5の電気抵抗値Raに設定し(S7)、相転移温度MPaにおける冷接点温度測定部5の電気抵抗値Raとに基づいて、温度依存性の関数を求めレジスタ203に記憶する(S8)。そして、冷接点温度測定部5への加熱電流の印加をOFFにして、温度キャリブレーションが終了する。   As shown in FIG. 8, at time T <b> 2, the phase change material 6 undergoes a phase change, and the difference value (time differentiation) ΔR = 0 of the resistance value R of the cold junction temperature measurement unit 5. The control circuit 209 checks whether or not the calculated ΔR is 0 (S6). If the difference value ΔR is 0 (YES in S6), the control circuit 209 sets the calculated resistance value to the electrical resistance value Ra of the cold junction temperature measuring unit 5 at the phase transition temperature MPa (S7), and the phase transition. Based on the electrical resistance value Ra of the cold junction temperature measuring unit 5 at the temperature MPa, a function of temperature dependence is obtained and stored in the register 203 (S8). Then, the application of the heating current to the cold junction temperature measurement unit 5 is turned off, and the temperature calibration is completed.

このように、本実施形態においては、冷接点温度測定部5、抵抗値検出部202、制御回路209で相転移検出手段が構成されており、制御回路209で温度較正手段が構成されている。   Thus, in this embodiment, the cold junction temperature measurement unit 5, the resistance value detection unit 202, and the control circuit 209 constitute a phase transition detection unit, and the control circuit 209 constitutes a temperature calibration unit.

温度キャリブレーションが終了したら、フラグが立ち、冷接点の温度が、常温に戻ったタイミングで、制御回路209からゼーベック係数算出実行の信号が出力される。経時使用により、第1熱電材料103a、第2熱電材料103bが、酸化したり、金属構造が変化したりして熱電対103のゼーベック係数Sが、変動する。このため、初期から同じゼーベック係数Sを用いた場合、経時使用により、測定対象物の温度測定値に誤差が生じてしまう。よって、所定のタイミングで、ゼーベック係数Sを算出して、第1熱電材料103a、第2熱電材料103bの劣化状態に対応したゼーベック係数Sを算出する(S9)。   When the temperature calibration is completed, a flag is set and a signal for executing the Seebeck coefficient calculation is output from the control circuit 209 at the timing when the temperature of the cold junction returns to room temperature. With the passage of time, the Seebeck coefficient S of the thermocouple 103 varies as the first thermoelectric material 103a and the second thermoelectric material 103b are oxidized or the metal structure is changed. For this reason, when the same Seebeck coefficient S is used from the beginning, an error occurs in the temperature measurement value of the measurement object due to use over time. Therefore, the Seebeck coefficient S is calculated at a predetermined timing, and the Seebeck coefficient S corresponding to the deterioration state of the first thermoelectric material 103a and the second thermoelectric material 103b is calculated (S9).

制御回路209からゼーベック係数算出実行の信号が出力されると、冷接点温度測定部5にバイアスを印加する電源201が起動し、冷接点を第1の温度t1aに加熱するための加熱電流が印加される。抵抗値検出部202で抵抗値が算出される。次に、温度依存性の関数と算出された抵抗値とから、冷接点温度を算出する。算出した冷接点温度が第1温度t1aであったら、熱起電力電圧検出部で、熱電対の熱起電力電圧値を検出し、ΔV1としてレジスタに記憶する。次に、冷接点温度測定部に印加する加熱電流を上げて、冷接点を第1温度より高温の第2温度t1bに加熱する。次に、抵抗値検出部202で抵抗値を算出し、温度依存性の関数と算出された抵抗値とから、冷接点温度を算出する。算出した冷接点温度が第2温度t1bであったら、熱起電力電圧検出部204で、熱電対の熱起電力電圧値を検出し、ΔV2としてレジスタ203に記憶する。そして、第1温度t1aと、このときの熱起電力ΔV1とから上記関係式(a)を求め、第2温度t1bと、このときの熱起電力ΔV2とから上記関係式(b)を求め、上記式(a)と式(b)との連立解から、ゼーベック係数Sを算出し、算出したゼーベック係数Sを、レジスタ203に記憶し、ゼーベック係数算出処理が終了する。   When a signal for executing the Seebeck coefficient calculation is output from the control circuit 209, the power supply 201 for applying a bias to the cold junction temperature measurement unit 5 is activated, and a heating current for heating the cold junction to the first temperature t1a is applied. Is done. A resistance value is calculated by the resistance value detection unit 202. Next, the cold junction temperature is calculated from the temperature dependency function and the calculated resistance value. When the calculated cold junction temperature is the first temperature t1a, the thermoelectromotive force voltage detector detects the thermoelectromotive force voltage value of the thermocouple and stores it in the register as ΔV1. Next, the heating current applied to the cold junction temperature measurement unit is increased to heat the cold junction to a second temperature t1b higher than the first temperature. Next, a resistance value is calculated by the resistance value detection unit 202, and a cold junction temperature is calculated from the temperature dependency function and the calculated resistance value. If the calculated cold junction temperature is the second temperature t1b, the thermoelectromotive force voltage detection unit 204 detects the thermoelectromotive force voltage value of the thermocouple and stores it in the register 203 as ΔV2. Then, the relational expression (a) is obtained from the first temperature t1a and the thermal electromotive force ΔV1 at this time, the relational expression (b) is obtained from the second temperature t1b and the thermal electromotive force ΔV2 at this time, The Seebeck coefficient S is calculated from the simultaneous solution of the above formulas (a) and (b), the calculated Seebeck coefficient S is stored in the register 203, and the Seebeck coefficient calculation process is completed.

なお、図8に示すように、冷接点を第1温度にする制御を開始してから、冷接点が第2温度のときの熱起電力を検出するまでの時間(時刻T6−時刻T4)は、1.0μsec程度であり、ごく短時間である。よって、図8に示すように、ゼーベック係数算出時に、温接点の温度t2は、ほぼ同一の温度である。よって、ゼーベック係数Sは、精度よく算出できる。さらに、精度を上げたい場合は、図8に示すように、もう一度、第1温度t1aにおける熱起電力ΔV1、第2温度t1bにおける熱起電力ΔV2を検出して、熱起電力ΔV1やΔV2の値に誤差があるか否かを検証してもよい。誤差が所定値以上ある場合は、再度、ΔV1、ΔV2を検出して、前回のΔV1、ΔV2に対する誤差が所定値以下であるか否かを検証する制御を繰り返し行う。そして、前回のΔV1、ΔV2に対する誤差が所定値以下であれば、前回のΔV1、ΔV2を用いて、ゼーベック係数Sを算出するようにしてもよい。また、複数回、ΔV1、ΔV2を検出して、その平均値に基づいて、ゼーベック係数Sを算出するようにしてもよい。   In addition, as shown in FIG. 8, the time (time T6-time T4) after starting control which makes a cold junction a 1st temperature until detecting a thermoelectromotive force when a cold junction is a 2nd temperature is 1.0 μsec, which is a very short time. Therefore, as shown in FIG. 8, when calculating the Seebeck coefficient, the temperature t2 of the hot junction is substantially the same temperature. Therefore, the Seebeck coefficient S can be calculated with high accuracy. Further, when it is desired to increase the accuracy, as shown in FIG. 8, the thermoelectromotive force ΔV1 at the first temperature t1a and the thermoelectromotive force ΔV2 at the second temperature t1b are detected again, and the values of the thermoelectromotive forces ΔV1 and ΔV2 are detected. It may be verified whether or not there is an error. If the error is greater than or equal to a predetermined value, ΔV1 and ΔV2 are detected again, and control for verifying whether or not the error with respect to the previous ΔV1 and ΔV2 is less than or equal to the predetermined value is repeatedly performed. If the error with respect to the previous ΔV1 and ΔV2 is equal to or less than a predetermined value, the Seebeck coefficient S may be calculated using the previous ΔV1 and ΔV2. Alternatively, ΔV1 and ΔV2 may be detected a plurality of times, and the Seebeck coefficient S may be calculated based on the average value.

そして、制御回路209に、測定対象物の温度測定実行信号が入力される(S10)と、冷接点温度測定部5にバイアスを印加する電源201が起動し(S11)、冷接点温度測定部5に冷接点の温度を検出するための検出電流が印加され、温度依存性の関数と算出された抵抗値とから、冷接点温度が算出され、温度変換部207へ入力される(S12)。また、熱起電力電圧検出部で、熱電対の熱起電力が検出され、温度変換部207へ入力される(S13)。温度変換部207は、算出されたゼーベック係数S、熱起電力、冷接点の温度に基づいて、温接点の温度である測定対象物の温度を算出して(S14)、出力する(S15)。具体的には、冷接点の温度t1、熱起電力ΔVとすると、温接点(測定対象物)の温度t2は、次の式で求めることができる。
t2=(ΔV+St1)/S・・・・(c)
When a temperature measurement execution signal of the measurement object is input to the control circuit 209 (S10), the power supply 201 for applying a bias to the cold junction temperature measurement unit 5 is activated (S11), and the cold junction temperature measurement unit 5 is activated. A detection current for detecting the temperature of the cold junction is applied to the cold junction, and the cold junction temperature is calculated from the temperature dependency function and the calculated resistance value, and is input to the temperature converter 207 (S12). Further, the thermoelectromotive force voltage detector detects the thermoelectromotive force of the thermocouple and inputs it to the temperature converter 207 (S13). The temperature conversion unit 207 calculates the temperature of the measurement object, which is the temperature of the hot junction, based on the calculated Seebeck coefficient S, the thermoelectromotive force, and the temperature of the cold junction (S14), and outputs it (S15). Specifically, assuming that the temperature t1 of the cold junction and the thermoelectromotive force ΔV, the temperature t2 of the hot junction (measurement object) can be obtained by the following equation.
t2 = (ΔV + St1) / S (c)

本実施形態においては、所定のタイミングでゼーベック係数Sを算出するので、熱電対が経時使用で劣化し、ゼーベック係数Sが変化しても、精度の高い温度測定を行うことができる。また、本実施形態においては、図2に示すように、シース部101が、温度計測部110に対して、着脱可能となっている。シース部101の熱電材料の大きさや長さが異なると、ゼーベック係数Sが異なるが、本実施形態においては、ゼーベック係数Sを算出するので、ゼーベック係数Sが異なるシース部101が、温度計測部110に装着されても、精度の高い温度測定を行うことができる。これにより、用途に合わせて、熱電対の長さや大きさの異なるシース部101を温度計測部110に装着して、温度測定を行うことができ、利便性が向上する。具体的には、温度計測部110に以前装着したシース部101とはゼーベック係数が異なるシース部101が装着されたときは、ゼーベック係数S算出を実行し、ゼーベック係数Sを算出する。このときのゼーベック係数Sの算出は、手動で行うようにしてもよいし、シース部101の着脱を検知する検知手段を設け、シース部101が装着されたことを検知したら、ゼーベック係数Sの算出を実行してもよい。   In the present embodiment, since the Seebeck coefficient S is calculated at a predetermined timing, even if the thermocouple deteriorates with time and the Seebeck coefficient S changes, temperature measurement with high accuracy can be performed. In the present embodiment, as shown in FIG. 2, the sheath part 101 is detachable from the temperature measurement part 110. When the size and length of the thermoelectric material of the sheath portion 101 are different, the Seebeck coefficient S is different, but in this embodiment, the Seebeck coefficient S is calculated. Even if it is attached to the device, it is possible to perform highly accurate temperature measurement. Thereby, according to a use, the temperature measurement part 110 can be mounted | worn with the sheath part 101 from which the length and magnitude | size of a thermocouple differ, and a temperature measurement can be performed, and the convenience improves. Specifically, when the sheath part 101 having a different Seebeck coefficient from the sheath part 101 previously attached to the temperature measurement unit 110 is attached, the Seebeck coefficient S is calculated to calculate the Seebeck coefficient S. The calculation of the Seebeck coefficient S at this time may be performed manually, or a detection unit that detects attachment / detachment of the sheath portion 101 is provided, and when it is detected that the sheath portion 101 is attached, the calculation of the Seebeck coefficient S is performed. May be executed.

また、本実施形態においては、温度計測部110の基板1に、熱電対103の一部を構成する部分(第1接続電極10、第2接続電極11)を設けて、基板1に設けた第1接続電極10と、第2接続電極11とを回路接続電極7に接続させて冷接点を形成している。しかし、この場合、第1熱電材料103aが第1接続電極10と同一の材料、第2熱電材料103bが第2接続電極11と同一の材料のシース部101を用いる必要があり、用いることのできるシース部101が限定されてしまう。そのため、シース部101の第1熱電材料の端部113aと、第2熱電材料の端部113bとを、回路接続電極7に直接接触するように構成し、シース部101の第1熱電材料の端部113aと回路接続電極7との接続箇所、第2熱電材料の端部113bと回路接続電極7との接続箇所を冷接点にしてもよい。このように構成することにより、シース部101の第1熱電材料103a、第2熱電材料103bにも制限がなくなり、用いることのできるシース部101を増やすことができ、さらに利便性を高めることができる。この場合も、シース部101の第1熱電材料と第2熱電材料とが、以前装着されていたシース部の熱電材料と異なると、ゼーベック係数Sが異なるので、以前装着されていたシース部の熱電材料と異なる熱電材料が用いられたシース部101が温度計測部110に装着された場合は、ゼーベック係数Sを算出する。   In the present embodiment, the substrate 1 of the temperature measurement unit 110 is provided with portions (first connection electrode 10 and second connection electrode 11) that constitute a part of the thermocouple 103, and the first provided on the substrate 1. The first connection electrode 10 and the second connection electrode 11 are connected to the circuit connection electrode 7 to form a cold junction. However, in this case, it is necessary to use the sheath portion 101 of the same material as the first connection electrode 10 for the first thermoelectric material 103a and the same material as that of the second connection electrode 11 for the second thermoelectric material 103b. The sheath part 101 will be limited. Therefore, the end portion 113a of the first thermoelectric material of the sheath portion 101 and the end portion 113b of the second thermoelectric material are configured to be in direct contact with the circuit connection electrode 7, and the end of the first thermoelectric material of the sheath portion 101 is configured. The connection location between the portion 113a and the circuit connection electrode 7 and the connection location between the end portion 113b of the second thermoelectric material and the circuit connection electrode 7 may be cold junctions. By comprising in this way, the 1st thermoelectric material 103a of the sheath part 101 and the 2nd thermoelectric material 103b do not have a restriction | limiting, The sheath part 101 which can be used can be increased, and the convenience can be improved further. . Also in this case, since the Seebeck coefficient S is different if the first thermoelectric material and the second thermoelectric material of the sheath portion 101 are different from the thermoelectric material of the sheath portion that was previously mounted, the thermoelectric power of the sheath portion that was previously mounted is different. When the sheath part 101 using a thermoelectric material different from the material is attached to the temperature measurement part 110, the Seebeck coefficient S is calculated.

また、本実施形態においては、ゼーベック係数の算出と、測定対象物30の温度測定とを分けているが、上記した式(a)、式(b)の連立方程式を解くことで、ゼーベック係数だけでなく、温接点の温度を算出することができる。よって、ゼーベック係数の算出と、測定対象物30の温度測定とを同時に行ってもよい。しかし、この場合は、冷接点を第1温度に加熱して、そのときの熱起電力と、冷接点を第2温度に加熱して、そのときの熱起電力とを検出する必要があるため、測定対象物の温度が出力されるまでの時間がかかる。しかしながら、測定時の熱電対の劣化状態に対応したゼーベック係数で、測定対象物の温度が算出されるので、精度の高い温度検出を行うことができる。よって、例えば、精度の高い温度測定を行う高精度モードと、通常モードとを備えておき、高精度モードが選択された場合は、冷接点を第1温度に加熱して、そのときの熱起電力と、冷接点を第2温度に加熱して、そのときの熱起電力とを検出し、ゼーベック係数Sと、測定対象物の温度とを算出できるようにしてもよい。   Further, in the present embodiment, the calculation of the Seebeck coefficient and the temperature measurement of the measurement object 30 are separated, but only the Seebeck coefficient is obtained by solving the simultaneous equations of the above expressions (a) and (b). Instead, the temperature of the hot junction can be calculated. Therefore, the calculation of the Seebeck coefficient and the temperature measurement of the measurement target 30 may be performed simultaneously. However, in this case, it is necessary to heat the cold junction to the first temperature and detect the thermoelectromotive force at that time and the cold junction to the second temperature and detect the thermoelectromotive force at that time. It takes time until the temperature of the measurement object is output. However, since the temperature of the measurement object is calculated with the Seebeck coefficient corresponding to the deterioration state of the thermocouple at the time of measurement, highly accurate temperature detection can be performed. Thus, for example, a high accuracy mode for measuring temperature with high accuracy and a normal mode are provided, and when the high accuracy mode is selected, the cold junction is heated to the first temperature and the heat The electric power and the cold junction may be heated to the second temperature, the thermoelectromotive force at that time may be detected, and the Seebeck coefficient S and the temperature of the measurement object may be calculated.

また、本実施形態においては、測定対象物30の温度測定時は、冷接点温度測定部5に検出電流を印加して、そのときの冷接点の温度を検出しているが、例えば、冷接点温度測定部に加熱電流を流し、冷接点温度を所定の温度にして、測定対象物30の温度測定を行ってもよい。特に、冷接点を相変化物質6が溶融する温度にまで加熱するのが好ましい。これは、そのとき検出される冷接点温度測定部5の抵抗値は、相変化物質が相変化する温度Mpaであるので、冷接点の温度の誤差をほぼ無くすことができる。これにより、測定対象物の温度を高精度に検出することができる。   Further, in the present embodiment, when measuring the temperature of the measurement object 30, a detection current is applied to the cold junction temperature measurement unit 5 and the temperature of the cold junction at that time is detected. The temperature of the measurement object 30 may be measured by supplying a heating current to the temperature measurement unit and setting the cold junction temperature to a predetermined temperature. In particular, it is preferable to heat the cold junction to a temperature at which the phase change material 6 melts. This is because the resistance value of the cold junction temperature measurement unit 5 detected at that time is the temperature Mpa at which the phase change material undergoes a phase change, so that the cold junction temperature error can be substantially eliminated. Thereby, the temperature of the measurement object can be detected with high accuracy.

また、本実施形態においては、相変化物質6を基板1に設けて、相変化物質を加熱して相変化させ、相変化が起きたときの冷接点温度測定部5の出力値(抵抗値)を、既知の相転移温度とする温度較正を行うので、精度のよく冷接点の温度を検出することができる。その結果、精度よく温接点(測定対象物30)の温度を測定することができる。また、随時簡便に冷接点温度測定部5の温度キャリブレーションを実施することができるので、精度の高い冷接点温度の測定結果を維持することができる。   In the present embodiment, the phase change material 6 is provided on the substrate 1 and the phase change material is heated to change the phase, and the output value (resistance value) of the cold junction temperature measurement unit 5 when the phase change occurs. Is performed with a known phase transition temperature, so that the temperature of the cold junction can be detected with high accuracy. As a result, the temperature of the hot junction (measurement object 30) can be accurately measured. In addition, since the temperature calibration of the cold junction temperature measurement unit 5 can be easily performed at any time, a highly accurate measurement result of the cold junction temperature can be maintained.

また、冷接点温度測定部5のキャリブレーションを行うことができるので、冷接点温度測定部5や冷接点が設けられた基板1に信号処理回路部20を設けることができる。すなわち、従来は、信号処理回路部20も含めてひとつの基板に集積すると、冷接点温度測定部5の精度に影響する要素が多くなり、かえって冷接点温度測定部5の出力値のばらつき範囲が拡大してしまい、精度よく冷接点の温度を測定できない。また、特別な設計上の工夫や高精度の製造条件で製造することで、冷接点温度測定部5の検知結果のばらつきを抑えることができるが、規格合格品の歩留まりが低くなり、冷接点が設けられた基板と、信号処理回路部が設けられた基板とを別々に設けたものに比べて、製造コストが高くなる。しかし、本実施形態においては、信号処理回路部20の個々の回路に特性ばらつきがあって、冷接点温度測定部5の出力値にばらつきがあっても、上述した温度キャリブレーションを行うことで、精度よく冷接点の温度を測定することができる。また、特別な設計上の工夫や高精度の製造条件で製造する必要がないため、製造コストを抑えて、信号処理回路部20を、冷接点が設けられた基板に集積することができる。また、信号処理回路部20を冷接点が設けられた基板に集積することで、信号処理回路部の各回路に接続するための配線を短くできノイズを受け難く高精度に相変化物質の相転移や、冷接点の温度測定、測定対象物の温度測定を行うことができる。   Further, since the cold junction temperature measurement unit 5 can be calibrated, the signal processing circuit unit 20 can be provided on the cold junction temperature measurement unit 5 or the substrate 1 provided with the cold junction. In other words, conventionally, when integrated on one substrate including the signal processing circuit unit 20, there are many factors that affect the accuracy of the cold junction temperature measurement unit 5, and the variation range of the output value of the cold junction temperature measurement unit 5 is rather large. The temperature of the cold junction cannot be accurately measured. In addition, by manufacturing with special design measures and high-precision manufacturing conditions, variation in the detection results of the cold junction temperature measurement unit 5 can be suppressed, but the yield of products that pass the standard is reduced, and the cold junction The manufacturing cost is higher than the case where the provided substrate and the substrate provided with the signal processing circuit unit are provided separately. However, in this embodiment, even if there is a characteristic variation in each circuit of the signal processing circuit unit 20 and there is a variation in the output value of the cold junction temperature measurement unit 5, by performing the temperature calibration described above, The temperature of the cold junction can be accurately measured. In addition, since it is not necessary to manufacture under special design measures or high-precision manufacturing conditions, the signal processing circuit unit 20 can be integrated on the substrate provided with the cold junction, while suppressing the manufacturing cost. Further, by integrating the signal processing circuit unit 20 on a substrate provided with cold junctions, the wiring for connecting to each circuit of the signal processing circuit unit can be shortened, and the phase transition of the phase change material can be performed with high accuracy and less noise. In addition, the temperature of the cold junction and the temperature of the measurement object can be measured.

次に、本実施形態の変形例について、説明する。   Next, a modification of this embodiment will be described.

[変形例1]
図10は、変形例1の温度測定装置100Aの冷接点Cが設けられた基板1の概略平面図である。
図10に示すように、この変形例1の湿度測定装置100Aは、冷接点温度測定部5と、加熱部とを別々に設けたものである。図に示すように、加熱部は、温度測定部と相変化物質との間に並列配置した。また、この図において、信号処理回路部20は、省略している。
[Modification 1]
FIG. 10 is a schematic plan view of the substrate 1 provided with the cold junction C of the temperature measuring device 100A of the first modification.
As shown in FIG. 10, the humidity measuring device 100 </ b> A according to the first modification is provided with the cold junction temperature measuring unit 5 and the heating unit separately. As shown in the figure, the heating unit was arranged in parallel between the temperature measurement unit and the phase change material. In this figure, the signal processing circuit unit 20 is omitted.

温度キャリブレーションを実行する場合は、加熱部に加熱電流を印加して、相変化物質を加熱するとともに、冷接点温度測定部5には、微弱な検出電流を印加して、抵抗値を算出し、上記のようにΔRを求める。ゼーベック係数S算出時においても、加熱部には、加熱電流を印加して、冷接点を加熱し、冷接点温度測定部5には、微弱な検出電流を印加して、冷接点の温度を検出する。   When performing temperature calibration, a heating current is applied to the heating unit to heat the phase change material, and a weak detection current is applied to the cold junction temperature measurement unit 5 to calculate a resistance value. ΔR is obtained as described above. Even when the Seebeck coefficient S is calculated, a heating current is applied to the heating unit to heat the cold junction, and a weak detection current is applied to the cold junction temperature measurement unit 5 to detect the cold junction temperature. To do.

冷接点温度測定部5を、相変化物質を溶融するための加熱手段や、ゼーベック係数Sを算出するために冷接点を加熱手段として用いた場合、冷接点温度測定部5に大電流を印加する必要がある。その結果、冷接点温度測定部5が、エレクトロマイグレーションにより抵抗温度係数のα、βが変化し易い。そのために、冷接点温度測定部5の材料や寸法や加熱部表面へのパッシベーション膜の被覆などの条件を工夫したり、精度を維持するために温度キャリブレーションの頻度を多めにしたりする必要がある。しかし、冷接点温度測定部5とは別に加熱部を設けることにより、冷接点温度測定部5には、微弱な検出用電流しか流れないので、抵抗温度係数のα、βの変化を抑えることができ、温度キャリブレーションの頻度が少なくても冷接点温度測定部5の冷接点温度測定の安定性を保つことができる。   When the cold junction temperature measurement unit 5 is used as a heating means for melting the phase change material or a cold junction as the heating means for calculating the Seebeck coefficient S, a large current is applied to the cold junction temperature measurement unit 5. There is a need. As a result, the cold junction temperature measuring unit 5 is likely to change the resistance temperature coefficients α and β due to electromigration. Therefore, it is necessary to devise conditions such as the material and dimensions of the cold junction temperature measurement unit 5 and the coating of the passivation film on the surface of the heating unit, or to increase the frequency of temperature calibration in order to maintain accuracy. . However, by providing a heating unit separately from the cold junction temperature measurement unit 5, only a weak detection current flows through the cold junction temperature measurement unit 5, so that changes in the resistance temperature coefficients α and β can be suppressed. Even if the frequency of temperature calibration is low, the stability of the cold junction temperature measurement of the cold junction temperature measurement unit 5 can be maintained.

[変形例2]
図11は、変形例2の温度測定装置100Bの冷接点Cが設けられた基板の概略平面図であり、図12は、図11のA−A断面図である。
この変形例2の温度測定装置100は、相変化物質6を、相変化物質6を加熱する冷接点温度測定部上に積層したものである。相変化物質6が導電性材料あれば図12に示すように、電気絶縁層3を冷接点温度測定部5上に設けて、電気絶縁層3を介して相変化物質6を冷接点温度測定部に積層させる。
[Modification 2]
FIG. 11 is a schematic plan view of a substrate provided with the cold junction C of the temperature measuring device 100B according to Modification 2. FIG. 12 is a cross-sectional view taken along the line AA in FIG.
In the temperature measuring device 100 of the second modification, the phase change material 6 is laminated on a cold junction temperature measuring unit that heats the phase change material 6. If the phase change material 6 is a conductive material, as shown in FIG. 12, the electrical insulating layer 3 is provided on the cold junction temperature measuring unit 5, and the phase change material 6 is connected to the cold junction temperature measuring unit via the electrical insulating layer 3. Laminate.

また、この変形例2においても、ベース材2の計測領域22と対向する箇所を、エッチング処理により除去し、空洞部21を形成している。また、計測領域22の周囲に貫通孔9を設けた。これにより、冷接点温度測定部5で相変化物質6を加熱する際の熱が、計測領域以外へ伝播するのを抑制することができ、相変化物質6や冷接点を効率よく加熱することができる。   Also in this modified example 2, a portion of the base material 2 that faces the measurement region 22 is removed by an etching process to form the cavity 21. Further, a through hole 9 was provided around the measurement region 22. Thereby, it can suppress that the heat at the time of heating the phase change material 6 in the cold junction temperature measurement part 5 propagates outside the measurement region, and the phase change material 6 and the cold junction can be efficiently heated. it can.

相変化物質6を冷接点温度測定部5上に積層することで、相変化物質6を加熱する冷接点温度測定部5と相変化物質6とが極近接し、冷接点温度測定部5と相変化物質6との伝熱も等距離で均等になる。これにより、図3に示すように、相変化物質6を加熱する冷接点温度測定部5と相変化物質6とを並列配置したものに比べて、相変化物質6を配置する面積分削減される。よって、図3に示す構成に比べて、計測領域22の熱容量が小さくなるため、計測領域の熱応答速度が早くなる。その結果、温度キャリブレーションを迅速に行うことができる。また、冷接点温度測定部5と冷接点とを近接配置することができ冷接点の温度測定精度が高めることができる。また、冷接点を所定の第1温度、第2温度にすばやく加熱することができ、ゼーベック係数を迅速に算出することができる。   By laminating the phase change material 6 on the cold junction temperature measurement unit 5, the cold junction temperature measurement unit 5 that heats the phase change material 6 and the phase change material 6 are in close proximity, and the cold junction temperature measurement unit 5 and the phase Heat transfer with the change substance 6 is also equalized at equal distances. As a result, as shown in FIG. 3, the area where the phase change material 6 is arranged is reduced as compared with the case where the cold junction temperature measuring unit 5 for heating the phase change material 6 and the phase change material 6 are arranged in parallel. . Therefore, compared with the configuration shown in FIG. 3, the heat capacity of the measurement region 22 is reduced, and the thermal response speed of the measurement region is increased. As a result, temperature calibration can be performed quickly. In addition, the cold junction temperature measurement unit 5 and the cold junction can be arranged close to each other, and the temperature measurement accuracy of the cold junction can be increased. Further, the cold junction can be quickly heated to the predetermined first temperature and second temperature, and the Seebeck coefficient can be calculated quickly.

[変形例3]
図13、図14は、変形例3の温度測定装置100Cの冷接点Cが設けられた基板の概略平面図である。また、図15は、図14のB−B断面図である。
この変形例3の温度測定装置100Cは、互いに異なる相変化物質6A,6Bを、相変化物質を加熱する冷接点温度測定部5近傍に分散配置したものである。図13は、基板1に信号処理回路部20を設けており、相変化物質6A,6Bを冷接点温度測定部近傍に並列に配置したものである。
[Modification 3]
13 and 14 are schematic plan views of a substrate provided with the cold junction C of the temperature measuring device 100C according to the third modification. FIG. 15 is a sectional view taken along line BB in FIG.
In the temperature measuring device 100C of the third modification, different phase change materials 6A and 6B are dispersedly arranged in the vicinity of the cold junction temperature measuring unit 5 that heats the phase change material. In FIG. 13, the signal processing circuit unit 20 is provided on the substrate 1, and the phase change materials 6A and 6B are arranged in parallel near the cold junction temperature measurement unit.

図14、図15に示す基板1は、信号処理回路部20を設けず、2種類の相変化物質6A,6Bを、冷接点温度測定部5上に積層配置したものである。また、この図14、図15に示す基板1は、計測領域22周囲に貫通孔9を設けたものである。   The substrate 1 shown in FIGS. 14 and 15 does not include the signal processing circuit unit 20, and two types of phase change materials 6 </ b> A and 6 </ b> B are stacked on the cold junction temperature measuring unit 5. Further, the substrate 1 shown in FIGS. 14 and 15 has a through hole 9 around the measurement region 22.

2種類の相変化物質6A,6Bは、互いの相変化温度が異なる物質である。各相変化物質6A,6Bは、互いに接触していると相互に拡散し新たな合金や化合物に変化し相変化温度が変化してしまう。そのため、異なる相変化温度の複数の相変化物質を互いに分離させて形成する。このように、相転移温度が互いに異なる2種類の相変化物質6A,6Bを用いることにより、冷接点温度測定部の抵抗温度係数TCRをメモリに記憶しておく必要がなくなる。以下に、具体的説明する。   The two types of phase change materials 6A and 6B are materials having different phase change temperatures. When the phase change materials 6A and 6B are in contact with each other, the phase change materials 6A and 6B diffuse to each other and change to a new alloy or compound, and the phase change temperature changes. Therefore, a plurality of phase change materials having different phase change temperatures are separated from each other. As described above, by using two kinds of phase change materials 6A and 6B having different phase transition temperatures, it is not necessary to store the resistance temperature coefficient TCR of the cold junction temperature measurement unit in the memory. Specific description will be given below.

図16は異なる相転移温度の2つの相変化物質6A,6Bにおいて時間推移に対する温度変化を示す特性図であり、図17は、変形例3の温度測定装置100Cの温度キャリブレーションの入出力信号のタイミングチャートであり、図18は、変形例3の温度測定装置100Cの温度キャリブレーション、ゼーベック係数算出、測定対象物の温度測定のフローチャートである。   FIG. 16 is a characteristic diagram showing temperature changes with time in two phase change materials 6A and 6B having different phase transition temperatures, and FIG. 17 shows input / output signals of temperature calibration of the temperature measuring device 100C of the third modification. FIG. 18 is a timing chart, and FIG. 18 is a flowchart of temperature calibration, Seebeck coefficient calculation, and temperature measurement of the measurement target of the temperature measurement device 100C of the third modification.

図18に示すように、キャリブレーション実行の信号が出力される(S21)と、メモリに記憶された温度依存性の関数を消去し(S22)し、冷接点温度測定部5に相変化物質を加熱するための加熱電流が印加され、各相変化物質6A,6Bが加熱される(S24)。そして、図17に示すように、時刻T2で一方の相変化物質6Aが相転移する温度(相変化物質6A固有の既知の値である融点(凝固点):Mpa)になる。更に、加熱電流を供給し続けて温度を上昇させると、時刻T4で他方の相変化物質6Bが相転移する温度(相変化物質6B固有の既知の値である融点(凝固点):Mpb(>Mpa))になる。   As shown in FIG. 18, when a calibration execution signal is output (S 21), the temperature dependence function stored in the memory is deleted (S 22), and the phase change material is stored in the cold junction temperature measurement unit 5. A heating current for heating is applied, and the phase change materials 6A and 6B are heated (S24). Then, as shown in FIG. 17, the temperature at which one phase change material 6A undergoes phase transition at time T2 (melting point (freezing point): Mpa, which is a known value unique to phase change material 6A). Further, when the heating current is continuously supplied and the temperature is raised, the temperature at which the other phase change material 6B undergoes phase transition at time T4 (melting point (freezing point), which is a known value unique to the phase change material 6B): Mpb (> Mpa ))become.

このように相変化物質が2種類あるときは、以下のようにして、2種類の相変化物質6A,6Bの相変化を検知する。すなわち、固体から液体へ相転移を完了するまでは吸熱反応によって印加電力を増しても温度の上昇はなくΔR=0であるので、時刻T2において一方の相変化物質6Aは既知の相転移温度Mpaになったことを検出することができる。同様に、時刻T4において他方の相変化物質6Bは既知の相転移温度Mpbになったと検出することができる。   Thus, when there are two types of phase change materials, the phase changes of the two types of phase change materials 6A and 6B are detected as follows. That is, until the phase transition from the solid to the liquid is completed, even if the applied power is increased by the endothermic reaction, the temperature does not increase and ΔR = 0. Therefore, at time T2, one phase change material 6A has a known phase transition temperature Mpa. Can be detected. Similarly, at time T4, it can be detected that the other phase change material 6B has reached a known phase transition temperature Mpb.

上述と同様にして、ΔRを算出して(S25)、ΔRが0か否かをチェックする(S26)ΔRが、0となったら、制御回路209は、算出した抵抗値を、相転移温度MPaにおける冷接点温度測定部5の電気抵抗値Raに設定する(S27)。さらに、加熱電流を上げていき、吸熱反応(ΔR=0)でなくなり、冷接点温度測定部5の抵抗値が上昇を開始したら、再び、ΔR=0であるか否かをチェックする(S28〜S30)。ΔRが、0となったら、制御回路209は、算出した抵抗値を、相転移温度MPbにおける冷接点温度測定部5の電気抵抗値Rbに設定する(S31)。   In the same manner as described above, ΔR is calculated (S25), and whether or not ΔR is 0 is checked (S26). If ΔR becomes 0, the control circuit 209 sets the calculated resistance value to the phase transition temperature MPa. Is set to the electric resistance value Ra of the cold junction temperature measuring section 5 (S27). Further, when the heating current is increased and the endothermic reaction (ΔR = 0) is eliminated, and the resistance value of the cold junction temperature measurement unit 5 starts to increase, it is checked again whether ΔR = 0 (S28-). S30). When ΔR becomes 0, the control circuit 209 sets the calculated resistance value to the electric resistance value Rb of the cold junction temperature measuring unit 5 at the phase transition temperature MPb (S31).

次に、図19に示すように、相転移温度MPaにおける冷接点温度測定部5の電気抵抗値Raと、相転移温度MPbにおける冷接点温度測定部5の電気抵抗値Rbとに基づいて、温度依存性の関数を求め、メモリに記憶する。そして、冷接点温度測定部5への加熱電流の印加をOFFにして、温度キャリブレーションが終了する(S32)。その後のゼーベック係数の算出のフロー、測定対象物の温度測定のフローは、上述と同じであるので、説明は、省略する。   Next, as shown in FIG. 19, based on the electrical resistance value Ra of the cold junction temperature measurement unit 5 at the phase transition temperature MPa and the electrical resistance value Rb of the cold junction temperature measurement unit 5 at the phase transition temperature MPb, the temperature A dependency function is obtained and stored in a memory. Then, the application of the heating current to the cold junction temperature measuring unit 5 is turned off, and the temperature calibration is completed (S32). The subsequent flow for calculating the Seebeck coefficient and the flow for measuring the temperature of the measurement object are the same as described above, and a description thereof will be omitted.

このように、2つの異なる相変化物質6A,6Bを用いて、温度キャリブレーションが行われることにより、高精度の温度目盛が付与できる。また、温度依存性の関数を求めるので、未知の抵抗温度係数(TCR)の抵抗体材料を用いることができる。   As described above, by performing temperature calibration using two different phase change materials 6A and 6B, a highly accurate temperature scale can be provided. In addition, since a temperature-dependent function is obtained, a resistor material having an unknown resistance temperature coefficient (TCR) can be used.

また、より高精度な測定値を得るためには、国際温度目盛り(ITS-90)に示されている標準物質の凝固点の中でも、温度検出範囲に対してできるだけ相転移温度が近いことが好ましい。例えば、一般電子機器に用いられているIC温度センサの測定範囲である−40から+125℃に相当する用途であれば、相変化物質6AにIn(Mpa=156.5985℃)相変化物質6BにSn(Mpb=231.928℃)を選択し、冷接点温度測定部5にPt(0℃〜850℃では線形)を用いることで、MpaからMpbまでの範囲以外の温度領域でも高精度な測定値を得ることができる。また、この変形例3では、2種類の相変化物質を6A,6B用いているが、温度依存性を示す関係式として、2次関数を用いる場合、温度係数(TCR)α、βを用いずに、温度依存性を示す関数を算出するには少なくとも、3点の異なる既知の相転移温度が必要となる。この場合は、互いの相転移温度が異なる3種類以上の相変化物質を備えればよい。   Further, in order to obtain a more accurate measurement value, it is preferable that the phase transition temperature is as close as possible to the temperature detection range among the freezing points of the standard substances shown in the international temperature scale (ITS-90). For example, in an application corresponding to −40 to + 125 ° C., which is the measurement range of an IC temperature sensor used in general electronic equipment, the phase change material 6A includes In (Mpa = 156.5985 ° C.) and the phase change material 6B includes By selecting Sn (Mpb = 231.928 ° C.) and using Pt (linear at 0 ° C. to 850 ° C.) for the cold junction temperature measuring unit 5, high-precision measurement is possible even in a temperature range other than the range from Mpa to Mpb. A value can be obtained. In the third modification, 6A and 6B are used as two types of phase change substances. However, when a quadratic function is used as a relational expression indicating temperature dependence, temperature coefficients (TCR) α and β are not used. In addition, at least three different known phase transition temperatures are required to calculate a function indicating temperature dependence. In this case, three or more kinds of phase change materials having different phase transition temperatures may be provided.

また、上記では、異なる相転移温度の複数の相変化物質6A,6Bが混ざりあわないように構成しているが、各相変化物質を互いに接触させて新たな合金や化合物を形成させて、この合金や化合物の既知の相転移温度で、温度キャリブレーションを行ってもよい。例えば、相変化物質6AにInを、相変化物質6BにSnをそれぞれ選択し、In−Sn合金を形成させ、InとSnの混合比率により融点(凝固点)は2元合金の状態図を参照することにより得られる。そこで、例えば、Inの相変化物質6Aからなる相変化部と、Snの相変化物質6Bからなる相変化部と、相変化物質6A上に相変化物質6Bが積層された相変化部とを、冷接点温度測定部5の近傍に並列配置する。そして、温度キャリブレーションを行う際、あるいは事前に、冷接点温度測定部5で加熱して、相変化物質6Aと相変化物質6Bとを溶融させ、相変化物質6A上に相変化物質6Bが積層された相変化部において、これら2つの金属を混ざりあわせ、In−Sn合金からなる相変化物質6ABを生成する。これにより、2種類の物質で、互いの相転移温度が異なる3種類の相変化物質を、基板に形成することができる。さらに、積層厚みの比率により、InとSnの混合比率が変わり、相変化温度が変わるので、積層させる相変化物質の厚みの比率が異なる相変化部を複数設けることにより、2種類の物質で、異なる相転移温度の相変化部を更に多数形成することができる。   Further, in the above, a plurality of phase change materials 6A and 6B having different phase transition temperatures are configured not to be mixed, but each phase change material is brought into contact with each other to form a new alloy or compound. Temperature calibration may be performed at a known phase transition temperature of the alloy or compound. For example, In is selected for the phase change material 6A and Sn is selected for the phase change material 6B, an In—Sn alloy is formed, and the melting point (freezing point) is referred to the binary alloy phase diagram according to the mixing ratio of In and Sn. Can be obtained. Therefore, for example, a phase change portion made of In phase change material 6A, a phase change portion made of Sn phase change material 6B, and a phase change portion in which phase change material 6B is laminated on phase change material 6A, It is arranged in parallel in the vicinity of the cold junction temperature measuring unit 5. When temperature calibration is performed or in advance, the cold junction temperature measurement unit 5 is heated to melt the phase change material 6A and the phase change material 6B, and the phase change material 6B is laminated on the phase change material 6A. In the phase change portion thus formed, these two metals are mixed to generate a phase change material 6AB made of an In—Sn alloy. Thereby, three types of phase change materials having different phase transition temperatures from two types of materials can be formed on the substrate. Furthermore, since the mixing ratio of In and Sn changes depending on the ratio of the lamination thickness, and the phase change temperature changes, by providing a plurality of phase change portions having different thickness ratios of the phase change substances to be laminated, A large number of phase change portions having different phase transition temperatures can be formed.

[変形例4]
図20は、変形例4の温度測定装置100Dの冷接点Cが設けられた基板の概略平面図であり、図21は、変形例4の温度測定装置の制御ブロック図である。
この変形例4の温度測定装置100Dは、相変化物質6を導電性とし、相変化したときの相変化物質6の抵抗値変化、電気容量変化などの電気的特性の変化を電気的に検知することで、相変化物質6の相変化を検知するものである。
[Modification 4]
FIG. 20 is a schematic plan view of a substrate provided with the cold junction C of the temperature measurement device 100D of the fourth modification, and FIG. 21 is a control block diagram of the temperature measurement device of the fourth modification.
The temperature measuring device 100D according to the fourth modified example makes the phase change material 6 conductive, and electrically detects changes in electrical characteristics such as resistance value change and capacitance change of the phase change material 6 when the phase change occurs. Thus, the phase change of the phase change material 6 is detected.

この変形例4の温度測定装置100Dにおいては、冷接点温度測定部5の近傍に一対の検出用リード線16が設けられており、この一対の検出リード線間に2つの異なる相変化温度の導電性の相変化物質6A,6Bが並列に配置され、検出リード線16間を接続している。
相変化物質としては、Vなどの相転移すると、電気伝導度(抵抗値)や電気容量が大きく変動する物質を用いる。
In the temperature measurement device 100D of the fourth modification, a pair of detection lead wires 16 are provided in the vicinity of the cold junction temperature measurement unit 5, and conduction of two different phase change temperatures is performed between the pair of detection lead wires. Sex phase change materials 6A and 6B are arranged in parallel, and connect between the detection lead wires 16.
As the phase change material, a material whose electric conductivity (resistance value) or electric capacity greatly varies upon phase transition such as V 2 O 5 is used.

図21に示すように、信号処理回路部20には、検出リード線に検出電流を流して、抵抗値や電気容量を検出する検出部210を有している以外は、先の図4と同じである。   As shown in FIG. 21, the signal processing circuit unit 20 is the same as FIG. 4 except that the signal processing circuit unit 20 includes a detection unit 210 that detects a resistance value and a capacitance by passing a detection current through the detection lead wire. It is.

この変形例4の温度測定装置100Dにおける冷接点温度測定部5の温度キャリブレーションは、次のように行う。
まず、冷接点温度測定部5に加熱電流を印加して、相変化物質6A,6Bを加熱する。また、これと同時に、検出リード線16に検出電流を印加し、検出部210で抵抗値を算出する。相変化物質6Aが相変化すると、相変化物質6Aの電気伝導度が急激に変化し、抵抗値の値が変化する。これにより、相変化物質6Aが、相変化したことを検知することができる。また、相変化物質6Aが、相変化したことを検知したら、このとき抵抗値検出部202で算出された、冷接点温度測定部5の抵抗値を、相転移温度MPaにおける冷接点温度測定部5の電気抵抗値Raとして設定する。
The temperature calibration of the cold junction temperature measurement unit 5 in the temperature measurement device 100D of the modification 4 is performed as follows.
First, a heating current is applied to the cold junction temperature measurement unit 5 to heat the phase change materials 6A and 6B. At the same time, a detection current is applied to the detection lead wire 16, and the resistance value is calculated by the detection unit 210. When the phase change material 6A undergoes a phase change, the electrical conductivity of the phase change material 6A changes abruptly, and the resistance value changes. Thereby, it can be detected that the phase change material 6A has undergone a phase change. When the phase change material 6A detects that the phase has changed, the resistance value of the cold junction temperature measurement unit 5 calculated by the resistance value detection unit 202 at this time is used as the cold junction temperature measurement unit 5 at the phase transition temperature MPa. Is set as the electrical resistance value Ra.

さらに、冷接点温度測定部5により、相変化物質を加熱していくと、相変化物質6Bが相変化して、相変化物質6Bの電気伝導度が急激に変化し、検出部210で算出された抵抗値の値が変化する。これにより、相変化物質6Bが、相変化したことを検知することができる。また、相変化物質6Bが、相変化したことを検知したら、このとき抵抗値検出部202で算出された、冷接点温度測定部5の抵抗値を、相転移温度MPbにおける冷接点温度測定部5の電気抵抗値Rbとして設定する。   Further, when the phase change material is heated by the cold junction temperature measurement unit 5, the phase change material 6 </ b> B undergoes a phase change, and the electrical conductivity of the phase change material 6 </ b> B changes abruptly and is calculated by the detection unit 210. The resistance value changes. Thereby, it can be detected that the phase change material 6B has undergone a phase change. When the phase change material 6B detects that the phase has changed, the resistance value of the cold junction temperature measurement unit 5 calculated by the resistance value detection unit 202 at this time is used as the cold junction temperature measurement unit 5 at the phase transition temperature MPb. Is set as the electrical resistance value Rb.

すなわち、この変形例4では、検出部210で検出された抵抗値の時間微分ΔRLが、所定値以上の値となったこと制御回路209が検知したら、抵抗値検出部202で検出された冷接点温度測定部5の抵抗値を、相転移温度MPaにおける冷接点温度測定部5の電気抵抗値Raとしてレジスタ203に記憶する。そして、再び、検出部210で検出された抵抗値の時間微分ΔRLが、所定の値以上となったこと制御回路209が検知したら、抵抗値検出部202で検出された冷接点温度測定部5の抵抗値を、相転移温度MPbにおける冷接点温度測定部5の電気抵抗値Rbとしてレジスタ203に記憶する。   That is, in the fourth modification, when the control circuit 209 detects that the time differential ΔRL of the resistance value detected by the detection unit 210 is equal to or greater than a predetermined value, the cold junction detected by the resistance value detection unit 202 is detected. The resistance value of the temperature measuring unit 5 is stored in the register 203 as the electric resistance value Ra of the cold junction temperature measuring unit 5 at the phase transition temperature MPa. When the control circuit 209 detects again that the time differential ΔRL of the resistance value detected by the detection unit 210 is equal to or greater than a predetermined value, the cold junction temperature measurement unit 5 detected by the resistance value detection unit 202 The resistance value is stored in the register 203 as the electric resistance value Rb of the cold junction temperature measurement unit 5 at the phase transition temperature MPb.

そして、変形例3と同様にして、相転移温度MPaにおける冷接点温度測定部5の電気抵抗値Raと、相転移温度MPbにおける冷接点温度測定部5の電気抵抗値Rbとに基づいて、温度依存性の関数を求め、メモリに記憶する。そして、冷接点温度測定部5への加熱電流の印加をOFFにし、検出リード線16への検出電流をOFFにして温度キャリブレーションが終了する。   Then, in the same manner as in Modification 3, based on the electrical resistance value Ra of the cold junction temperature measurement unit 5 at the phase transition temperature MPa and the electrical resistance value Rb of the cold junction temperature measurement unit 5 at the phase transition temperature MPb, the temperature A dependency function is obtained and stored in a memory. Then, the application of the heating current to the cold junction temperature measurement unit 5 is turned off, the detection current to the detection lead wire 16 is turned off, and the temperature calibration is completed.

上記では、相変化物質6A,6Bの相変化時の電気抵抗の変化を検出して、相変化物質6A,6Bが、相変化したことを検知しているが、相変化物質の相変化物質の電気容量変化を検出して、相変化物質6A,6Bが、相変化したことを検知してもよい。   In the above, the change in electrical resistance at the time of phase change of the phase change materials 6A and 6B is detected to detect that the phase change materials 6A and 6B have changed phase. A change in electric capacitance may be detected to detect that the phase change materials 6A and 6B have changed phase.

また、相変化したときの相変化物質6の流動(粘性)変化を電気的に検知することで、相変化物質の相変化を検知することもできる。
図22は、相変化したときの相変化物質6の流動(粘性)変化を電気的に検知するメカニズムについて説明する図である。同図では相変化物質6が固体から液体への相転移に伴う相変化物質6の流動(粘性)変化に伴う形状変化を説明している。
図22(a)に示すように、相変化物質6が固体の状態のときは、相変化物質6は、検出用リード線16a,16bに接しており、導通している。冷接点温度測定部5の加熱により、固体の相変化物質6が既知の相転移温度になると、液化によって表面張力が発生し、同図の(b)に示すように中央へ凝集する。すると、相変化物質6が、各検出用リード線16a,16bから離れ、その結果2つの検出用リード間の電気接続がOFFになる。このように、相変化物質6の導通状態を検出することで相変化物質6の相転移を検出できる。この場合、相変化物質6としては、表面張力が大きく、相変化物質6の下層との付着力が小さいものが好ましく、Snを用いるのが好適である。
Moreover, the phase change of the phase change material can also be detected by electrically detecting the flow (viscosity) change of the phase change material 6 when the phase changes.
FIG. 22 is a diagram illustrating a mechanism for electrically detecting a flow (viscosity) change of the phase change material 6 when the phase changes. In the figure, the phase change material 6 explains the shape change accompanying the flow (viscosity) change of the phase change material 6 accompanying the phase transition from solid to liquid.
As shown in FIG. 22A, when the phase change material 6 is in a solid state, the phase change material 6 is in contact with the detection leads 16a and 16b and is conductive. When the solid phase change material 6 reaches a known phase transition temperature due to heating of the cold junction temperature measuring unit 5, surface tension is generated by liquefaction and aggregates to the center as shown in FIG. Then, the phase change material 6 is separated from each of the detection lead wires 16a and 16b, and as a result, the electrical connection between the two detection leads is turned off. Thus, the phase transition of the phase change material 6 can be detected by detecting the conduction state of the phase change material 6. In this case, the phase change material 6 is preferably one having a large surface tension and a small adhesion to the lower layer of the phase change material 6, and it is preferable to use Sn.

また、次のようにして、検出用リード間の電気接続をONからOFFに切り替えることもできる。
図23(a)に示すように、相変化物質6が固体ときは、相変化物質6は2つの検出リード線間にまたがって連続して配置され、検出リード間の電気接続がONとなっている。そして、冷接点温度測定部5の加熱により、固体の相変化物質6が既知の相転移温度になり液化すると、同図の(b)に示すように液化によって流動し、各検出リード16a、16bに相変化物質6が凝集し、相変化物質6が分離して、検出リード線間の電気接続がOFFになる。よって、検出リード間の電気接続がOFFとなったときの温度が既知の相転移温度となる。相変化物質6としては、表面張力が小さく、検出リード、相変化物質6の下層の電気絶縁層3との濡れ性が大きい材質のものが好ましく、Inが適する。
Further, the electrical connection between the detection leads can be switched from ON to OFF as follows.
As shown in FIG. 23A, when the phase change material 6 is solid, the phase change material 6 is continuously arranged across the two detection leads, and the electrical connection between the detection leads is turned on. Yes. When the solid phase change material 6 reaches a known phase transition temperature and is liquefied by the heating of the cold junction temperature measuring unit 5, it flows by liquefaction as shown in FIG. The phase change material 6 aggregates and the phase change material 6 is separated, and the electrical connection between the detection leads is turned off. Therefore, the temperature when the electrical connection between the detection leads is turned off becomes a known phase transition temperature. The phase change material 6 is preferably made of a material having a low surface tension and high wettability with the detection lead and the electrical insulating layer 3 under the phase change material 6, and In is suitable.

上記では、相変化物質6の相変化によって、検出用リード16aと16b間の電気接続がOFFになることで、相変化物質の相転移を検知する場合について、説明したが、これとは逆に、相変化物質6の相変化によって、検出用リード16aと16b間の電気接続がOFFからONに切り替わる構成にすることもできる。   In the above, the case where the phase transition of the phase change material is detected by turning off the electrical connection between the detection leads 16a and 16b due to the phase change of the phase change material 6 has been described. The electrical connection between the detection leads 16a and 16b can be switched from OFF to ON by the phase change of the phase change material 6.

図24は、検出用リード16aと16b間の電気接続がOFFからONに切り替わる構成を説明する図である。
図24(a)に示すように、相変化物質6が固体のときは、電気絶縁層3上の相変化物質は、2つの分離しており、相変化物質6は2つの検出リード16a,16b間にまたがって断続している。その結果、検出用リード16aと16bとの間の電気接続がOFFとなっている。冷接点温度測定部5の加熱により、固体の相変化物質6が既知の相転移温度になると、図の(b)に示すように液化によって流動し、電気絶縁層上の相変化物質6が一つとなり、相変化物質6は2つの検出リード16a,16b間にまたがって連続する。これにより、検出用リード16aと16bとの間の電気接続がOFFからONに切り替わり、相変化物質6の相転移を検出することができる。この場合も、図23の構成と同様、相変化物質6としては、表面張力が小さく、検出リード、相変化物質6の下層の電気絶縁層3との濡れ性が大きい材質のものが好ましく、Inが適する。相変化物質6が冷えて、固化するときは、相変化物質6が収縮することにより、電気絶縁層3上の相変化物質6は、再び2つの分離する。また、図22、図23の構成においては、一度、固体から液体に相変化してしまった後、再び、液体から固体に相変化物質6が相変化しても、始めの状態に戻って、検出用リード16aと16b間の電気接続がONとなることはないが、図24に示す構成においては、液体から固体に相変化物質6が相変化すると、始めの状態に戻るので、何度も温度キャリブレーションを行うことができる。
FIG. 24 is a diagram illustrating a configuration in which the electrical connection between the detection leads 16a and 16b is switched from OFF to ON.
As shown in FIG. 24 (a), when the phase change material 6 is solid, the phase change material on the electrical insulating layer 3 is separated into two, and the phase change material 6 includes two detection leads 16a and 16b. Intermittently in between. As a result, the electrical connection between the detection leads 16a and 16b is turned off. When the solid phase change material 6 reaches a known phase transition temperature due to the heating of the cold junction temperature measuring unit 5, the solid phase change material 6 flows by liquefaction as shown in FIG. Thus, the phase change material 6 continues across the two detection leads 16a and 16b. Thereby, the electrical connection between the detection leads 16a and 16b is switched from OFF to ON, and the phase transition of the phase change material 6 can be detected. In this case as well, as in the configuration of FIG. 23, the phase change material 6 is preferably made of a material having a small surface tension and a high wettability with the detection lead and the electrical insulating layer 3 under the phase change material 6. Is suitable. When the phase change material 6 cools and solidifies, the phase change material 6 contracts, so that the phase change material 6 on the electrical insulating layer 3 is separated into two again. In the configurations of FIGS. 22 and 23, after the phase change once from solid to liquid, even if the phase change material 6 changes from liquid to solid again, the state returns to the initial state, The electrical connection between the detection leads 16a and 16b will not be turned on. However, in the configuration shown in FIG. 24, when the phase change material 6 undergoes a phase change from a liquid to a solid, the initial state is restored. Temperature calibration can be performed.

また、相変化物質6が固体から液体に相転移することによる流動性(粘性)の変化を電気的に検知することで、相変化を検知する場合、相変化物質6を電気絶縁層で覆ってしまうと、相変化物質6の流動性を阻害して、流動変形しないおそれがある。よって、図22〜図24の構成を採用する場合は、相変化物質6は電気絶縁層を被覆せず露出させる。また、相変化物質6の量を少なくして、相変化物質6がすばやく相転移温度にまで加熱されるようにするのが好ましい。   In addition, when a phase change is detected by electrically detecting a change in fluidity (viscosity) due to a phase transition of the phase change material 6 from a solid to a liquid, the phase change material 6 is covered with an electrical insulating layer. As a result, the fluidity of the phase change material 6 may be hindered and the fluid may not be deformed. Therefore, when the configurations of FIGS. 22 to 24 are employed, the phase change material 6 is exposed without covering the electrical insulating layer. Further, it is preferable to reduce the amount of the phase change material 6 so that the phase change material 6 is quickly heated to the phase transition temperature.

[変形例5]
図25は、変形例5の温度測定装置100Eの冷接点Cが設けられた基板の概略平面図であり、図26は、図25のD−D断面図であり、図27は、変形例5の温度測定装置の制御ブロック図である。
この変形例5の温度測定装置100Eは、相変化物質6A,6Bの下に圧電膜17を設けて、圧電膜17で、相変化物質6A,6Bの相変化に伴う体積変化、剛性変化、固有振動数変化などを検出して、相変化物質6A,6Bの相変化を検出するものである。
[Modification 5]
25 is a schematic plan view of the substrate provided with the cold junction C of the temperature measuring device 100E of the fifth modified example, FIG. 26 is a sectional view taken along the line DD of FIG. 25, and FIG. It is a control block diagram of the temperature measuring device of FIG.
The temperature measuring device 100E of the modified example 5 includes a piezoelectric film 17 provided under the phase change materials 6A and 6B, and the piezoelectric film 17 changes the volume change, the rigidity change, and the inherent change caused by the phase change of the phase change materials 6A and 6B. A change in frequency or the like is detected to detect a phase change in the phase change materials 6A and 6B.

冷接点温度測定部5に隣接して設けられた一対の圧電駆動電極18間に圧電膜17を形成し電気絶縁層3を介して相変化物質6A,6Bが積層されている。図27に示すように、信号処理回路部20には、圧電膜17からの電圧や周波数を検出する検出部211が設けられている以外は、先の図4と同じである。   A piezoelectric film 17 is formed between a pair of piezoelectric drive electrodes 18 provided adjacent to the cold junction temperature measurement unit 5, and phase change materials 6 </ b> A and 6 </ b> B are laminated via the electrical insulating layer 3. As shown in FIG. 27, the signal processing circuit unit 20 is the same as FIG. 4 except that a detection unit 211 that detects the voltage and frequency from the piezoelectric film 17 is provided.

まず、圧電膜17で相変化物質6の相変化に伴う固有振動数変化を検出する方法について説明する。周期的に力の周波数を試料に加え、その応答を測定する方法、すなわちメカニカルスペクトロスコピー(動的粘弾性測定:DMA)を適用することで、相変化物質6の相変化に伴う固有振動数変化を検出することができる。具体的には、圧電膜17に交流電圧を印加して、圧電膜17を所定の周波数で振動させる。例えば、相変化物質6が相変化して固有振動数が変化したとき、相変化物質6が圧電膜17の振動に共振するような周波数で、圧電膜17を振動させる。このように、圧電膜17を振動させることにより、圧電膜17上の相変化物質6が振動し、圧電膜17に対して、相変化物質6から応力が加わり、圧電膜17から所定の交流波が出力される。相変化物質6が相転移して、固有振動数が変化すると、相変化物質6が、圧電膜17の振動に共振して、大きく振動する。その結果、相変化物質6から圧電膜17に加わる力が増加し、圧電膜17ら出力される交流波の振幅が増大する。制御回路209では、圧電膜17から出力された交流波の振幅(電圧)の時間微分値ΔVを監視し、時間微分値ΔVが0でない値をとったら、相変化物質6が相変化したことを検知することができる。上記では、相変化物質6の相変化によって、相変化物質6が圧電膜17の振動に共振させているが、これとは逆に、相変化前の相変化物質6が、圧電膜17の振動に共振するよう、圧電膜17を振動させてもよい。また、図26に示すように、相変化物質6や圧電膜17は、基板1の空洞部21上に設けているので、圧電膜17が振動しやすく、高感度で相転移を検出することができる。   First, a method for detecting the natural frequency change accompanying the phase change of the phase change material 6 with the piezoelectric film 17 will be described. By applying a method of periodically applying force frequency to the sample and measuring its response, that is, mechanical spectroscopy (dynamic viscoelasticity measurement: DMA), the natural frequency change accompanying the phase change of the phase change material 6 Can be detected. Specifically, an AC voltage is applied to the piezoelectric film 17 to vibrate the piezoelectric film 17 at a predetermined frequency. For example, when the phase change material 6 changes its phase and the natural frequency changes, the piezoelectric film 17 is vibrated at a frequency at which the phase change material 6 resonates with the vibration of the piezoelectric film 17. In this way, by vibrating the piezoelectric film 17, the phase change material 6 on the piezoelectric film 17 vibrates, and stress is applied to the piezoelectric film 17 from the phase change material 6, and a predetermined AC wave is generated from the piezoelectric film 17. Is output. When the phase change material 6 undergoes phase transition and the natural frequency changes, the phase change material 6 resonates with the vibration of the piezoelectric film 17 and vibrates greatly. As a result, the force applied to the piezoelectric film 17 from the phase change material 6 increases, and the amplitude of the AC wave output from the piezoelectric film 17 increases. The control circuit 209 monitors the time differential value ΔV of the amplitude (voltage) of the AC wave output from the piezoelectric film 17, and if the time differential value ΔV takes a non-zero value, it indicates that the phase change material 6 has undergone a phase change. Can be detected. In the above, the phase change material 6 resonates with the vibration of the piezoelectric film 17 due to the phase change of the phase change material 6. On the contrary, the phase change material 6 before the phase change causes the vibration of the piezoelectric film 17 to vibrate. The piezoelectric film 17 may be vibrated so as to resonate with each other. Further, as shown in FIG. 26, since the phase change material 6 and the piezoelectric film 17 are provided on the cavity 21 of the substrate 1, the piezoelectric film 17 easily vibrates and can detect the phase transition with high sensitivity. it can.

次に、圧電材料を用いた相変化物質6の体積変化や剛性変化の検知について説明する。これは、相変化物質6から圧電膜17に加わる機械的な応力による圧電膜の抵抗変化である所謂ピエゾ抵抗効果を用いて、相変化物質6の体積変化や剛性変化を検知するものである。具体的には、圧電膜に検知用の電流を印加する。相変化物質6が加熱されて、固体から液体に相変化すると、電気絶縁層3に覆われている相変化物質6の体積が増加する。これにより、相変化物質6の圧電膜に対する応力が増加し、圧電膜の抵抗値が変化する。よって、制御回路209において、電圧変化や、圧電膜の抵抗値変化を検知することにより、相変化物質6の相変化を検知することができる。一方、相変化物質6の剛性変化を検知する場合は、相変化物質6が固体から液体に相変化すると、相変化物質6の剛性が低下し、圧電膜17に加わる応力が低下する。その結果、圧電膜の抵抗値が変化するので、制御回路209において、電圧変化や、圧電膜17の抵抗値変化を検知することにより、相変化物質の相変化を検知することができる。   Next, detection of volume change and stiffness change of the phase change material 6 using a piezoelectric material will be described. This is to detect a volume change or a rigidity change of the phase change material 6 by using a so-called piezoresistance effect that is a resistance change of the piezoelectric film due to a mechanical stress applied to the piezoelectric film 17 from the phase change material 6. Specifically, a detection current is applied to the piezoelectric film. When the phase change material 6 is heated to change the phase from solid to liquid, the volume of the phase change material 6 covered by the electrical insulating layer 3 increases. Thereby, the stress with respect to the piezoelectric film of the phase change material 6 increases, and the resistance value of the piezoelectric film changes. Therefore, the control circuit 209 can detect a phase change of the phase change material 6 by detecting a voltage change or a resistance value change of the piezoelectric film. On the other hand, when detecting a change in rigidity of the phase change material 6, when the phase change material 6 changes from a solid to a liquid, the rigidity of the phase change material 6 decreases and the stress applied to the piezoelectric film 17 decreases. As a result, since the resistance value of the piezoelectric film changes, the control circuit 209 can detect the phase change of the phase change material by detecting the voltage change or the resistance value change of the piezoelectric film 17.

図28は、変形例5の温度測定装置100Eの温度キャリブレーションの入出力信号のタイミングチャートであり、図29は、変形例5の温度測定装置100Eの温度キャリブレーション、ゼーベック係数算出、測定対象物の温度測定のフローチャートである。
この図28、図29においては、相変化物質6の相変化に伴う剛性変化による圧電膜17の抵抗値変化(電圧変化)を検出することにより、相変化を検出するものである。
FIG. 28 is a timing chart of input / output signals of the temperature calibration of the temperature measuring device 100E of the modified example 5, and FIG. 29 is a temperature calibration, Seebeck coefficient calculation, and measurement object of the temperature measuring device 100E of the modified example 5. It is a flowchart of temperature measurement of.
In FIG. 28 and FIG. 29, the phase change is detected by detecting the resistance value change (voltage change) of the piezoelectric film 17 due to the rigidity change accompanying the phase change of the phase change material 6.

図29に示すように、キャリブレーション実行の信号が出力される(S41)と、メモリに記憶された温度依存性の関数を消去し(S42)し、冷接点温度測定部5に相変化を加熱するための加熱電流が印加され、各相変化物質6A,6Bが加熱される(S44)。また、圧電膜17に検知電流を印加し、検出部211で電圧値を検出する。そして、図28に示すように、時刻T2で一方の相変化物質6Aが相転移する温度(相変化物質6A固有の既知の値である融点(凝固点):Mpa)になる。そのとき、相変化物質6Aが固相から液相に相転移することにより、相変化物質6Aの剛性が変化し、圧電膜17に加わる応力が低下する。その結果、電圧値Vfが低下し、相変化物質6Aが相変化したことを検知することができる。   As shown in FIG. 29, when a calibration execution signal is output (S41), the temperature dependence function stored in the memory is erased (S42), and the cold junction temperature measurement unit 5 is heated by the phase change. A heating current is applied to heat the phase change materials 6A and 6B (S44). Further, a detection current is applied to the piezoelectric film 17, and a voltage value is detected by the detection unit 211. Then, as shown in FIG. 28, the temperature at which one phase change material 6A undergoes phase transition at time T2 (a melting point (freezing point): Mpa, which is a known value unique to phase change material 6A). At this time, the phase change material 6A undergoes a phase transition from the solid phase to the liquid phase, whereby the rigidity of the phase change material 6A changes and the stress applied to the piezoelectric film 17 decreases. As a result, it is possible to detect that voltage value Vf has decreased and phase change material 6A has undergone a phase change.

よって、図29に示すように、電圧値Vfが変化したことを検知(S46のYES)したら、制御回路209は、算出した抵抗値を、相転移温度MPaにおける冷接点温度測定部5の電気抵抗値Raに設定する(S47)。さらに、加熱電流を上げていくと、図28に示すように、時刻T4で他方の相変化物質6Bが相転移する温度(相変化物質6B固有の既知の値である融点(凝固点):Mpb)になる。そのとき、相変化物質6Bが固相から液相に相転移することにより、相変化物質6Bの剛性が変化し、圧電膜17に加わる応力がさらに低下する。その結果、電圧値Vfがさらに低下し、相変化物質6Bが相変化したことを検知することができる。   Therefore, as shown in FIG. 29, when it is detected that the voltage value Vf has changed (YES in S46), the control circuit 209 uses the calculated resistance value as the electrical resistance of the cold junction temperature measurement unit 5 at the phase transition temperature MPa. The value Ra is set (S47). When the heating current is further increased, as shown in FIG. 28, the temperature at which the other phase change material 6B undergoes phase transition at time T4 (melting point (freezing point): Mpb, which is a known value unique to the phase change material 6B). become. At that time, the phase change material 6B undergoes a phase transition from the solid phase to the liquid phase, whereby the rigidity of the phase change material 6B changes and the stress applied to the piezoelectric film 17 further decreases. As a result, it is possible to detect that voltage value Vf further decreases and phase change material 6B has undergone a phase change.

よって、図29に示すように、再度、電圧値Vfが変化したことを検知(S50のYES)したら、制御回路209は、算出した抵抗値を、相転移温度MPbにおける冷接点温度測定部5の電気抵抗値Rbに設定する(S51)。   Therefore, as shown in FIG. 29, when it is detected again that the voltage value Vf has changed (YES in S50), the control circuit 209 uses the calculated resistance value of the cold junction temperature measurement unit 5 at the phase transition temperature MPb. The electric resistance value Rb is set (S51).

次に、先の図19に示すように、相転移温度MPaにおける冷接点温度測定部5の電気抵抗値Raと、相転移温度MPbにおける冷接点温度測定部5の電気抵抗値Rbとに基づいて、温度依存性の関数を求め、メモリに記憶する。そして、冷接点温度測定部5への加熱電流の印加をOFFにして、温度キャリブレーションが終了する(S52)。その後のゼーベック係数の算出のフロー、測定対象物の温度測定のフローは、上述と同じであるので、説明は、省略する。   Next, as shown in FIG. 19, the electrical resistance value Ra of the cold junction temperature measurement unit 5 at the phase transition temperature MPa and the electrical resistance value Rb of the cold junction temperature measurement unit 5 at the phase transition temperature MPb. Then, a function of temperature dependence is obtained and stored in the memory. Then, the application of the heating current to the cold junction temperature measurement unit 5 is turned off, and the temperature calibration is completed (S52). The subsequent flow for calculating the Seebeck coefficient and the flow for measuring the temperature of the measurement object are the same as described above, and a description thereof will be omitted.

以上に説明したものは一例であり、本発明は、次の(1)〜(21)態様毎に特有の効果を奏する。   What was demonstrated above is an example and this invention has an effect peculiar to every following (1)-(21) aspect.

(1)
熱電対と、熱電対の冷接点の温度を測定する冷接点温度測定部5などの冷接点温度測定手段と、熱電対の出力値と、冷接点温度測定手段の測定結果と、ゼーベック係数とに基づいて測定対象物の温度を測定する温度測定装置において、冷接点を加熱する加熱部15などの加熱手段と、加熱手段で冷接点を加熱し、冷接点の温度が第1温度ときの熱電対の出力値と、第1温度とは異なる第2温度ときの熱電対の出力値とを検出し、第1温度、第1温度ときの熱電対の出力値、第2温度および第2温度ときの熱電対の出力値に基づいて、ゼーベック係数を算出するゼーベック係数S算出回路206などのゼーベック係数算出手段を備えた。
かかる構成を備えることで、上述したように、熱電対が経時使用で劣化し、ゼーベック係数Sが変化しても、精度の高い温度測定を行うことができる。その結果、経時にわたり、精度の高い温度測定を行うことができる。また、ゼーベック係数の異なる熱電対を用いることができ、装置の利便性を向上することができる。
(1)
Cold junction temperature measurement means such as the cold junction temperature measurement unit 5 that measures the temperature of the cold junction of the thermocouple, the thermocouple, the output value of the thermocouple, the measurement result of the cold junction temperature measurement means, and the Seebeck coefficient In the temperature measuring device for measuring the temperature of the measurement object based on the heating means such as the heating unit 15 for heating the cold junction, and the thermocouple when the cold junction is heated by the heating means and the temperature of the cold junction is the first temperature And the output value of the thermocouple at the second temperature different from the first temperature, the output value of the thermocouple at the first temperature, the first temperature, the second temperature and the second temperature Seebeck coefficient calculation means such as a Seebeck coefficient S calculation circuit 206 for calculating the Seebeck coefficient based on the output value of the thermocouple was provided.
By providing such a configuration, as described above, even when the thermocouple deteriorates with time and the Seebeck coefficient S changes, it is possible to perform highly accurate temperature measurement. As a result, accurate temperature measurement can be performed over time. In addition, thermocouples having different Seebeck coefficients can be used, and the convenience of the apparatus can be improved.

(2)
上記(1)に記載の態様の温度測定装置において、ゼーベック係数算出手段は、冷接点の温度が第1温度のときの熱電対の出力値と、冷接点の温度が上記第2温度のときの熱電対の出力値とを複数回計測し、第1温度のときの熱電対の出力値の誤差、第2温度のときの熱電対の出力値の誤差が、閾値以下のとき、ゼーベック係数を算出する。
かかる構成を備えることにより、温接点の温度が一定であることを検証して、ゼーベック係数を算出するので、精度の高いゼーベック係数を算出することができる。
(2)
In the temperature measuring device according to the aspect described in (1) above, the Seebeck coefficient calculating means includes an output value of a thermocouple when the temperature of the cold junction is the first temperature, and a value when the temperature of the cold junction is the second temperature. Measure the output value of the thermocouple multiple times and calculate the Seebeck coefficient when the error of the output value of the thermocouple at the first temperature and the error of the output value of the thermocouple at the second temperature are below the threshold To do.
By providing such a configuration, it is verified that the temperature of the hot junction is constant, and the Seebeck coefficient is calculated. Therefore, the Seebeck coefficient with high accuracy can be calculated.

(3)
上記(1)または(2)に記載の態様の温度測定装置において、冷接点温度測定手段を、温度依存性を有する抵抗体とで構成し、冷接点温度測定手段を、加熱手段として用いた。
かかる構成を備えることで、加熱手段と冷接点温度測定手段とを別々に設けた場合に比べて、コストを安価にすることができる。また、基板の熱容量を少なくすることができ、迅速に冷接点を第1温度、第2温度に加熱することができる。
(3)
In the temperature measuring device according to the aspect described in (1) or (2) above, the cold junction temperature measuring means is constituted by a temperature-dependent resistor, and the cold junction temperature measuring means is used as the heating means.
By providing such a configuration, the cost can be reduced compared to the case where the heating means and the cold junction temperature measurement means are provided separately. Further, the heat capacity of the substrate can be reduced, and the cold junction can be quickly heated to the first temperature and the second temperature.

(4)
上記(1)乃至(3)いずれかに記載の態様の温度測定装置において、冷接点が設けられた基板は、ベース材上に積層された絶縁層が設けられており、絶縁層にベース材と接していない非接触領域を設け、上記非接触領域に、上記冷接点と、上記加熱手段と、上記冷接点温度測定手段とを設けた。
かかる構成を備えることにより、基板の上記冷接点、上記加熱手段、上記冷接点温度測定手段が配置された領域(計測領域)の熱容量を少なくなることがでる。これにより、迅速に冷接点を第1温度、第2温度に加熱することができる。
(4)
In the temperature measuring device according to any one of the above aspects (1) to (3), the substrate provided with the cold junction is provided with an insulating layer laminated on the base material, and the insulating layer is provided with the base material and A non-contact area that is not in contact was provided, and the cold junction, the heating means, and the cold junction temperature measurement means were provided in the non-contact area.
By providing such a configuration, the heat capacity of the region (measurement region) where the cold junction, the heating unit, and the cold junction temperature measurement unit of the substrate are arranged can be reduced. Thereby, the cold junction can be quickly heated to the first temperature and the second temperature.

(5)
上記(4)に記載の態様の温度測定装置において、上記絶縁層の上記非接触領域の近傍に貫通孔を設けた。
かかる構成を備えることにより、非接触領域に設けられた加熱手段の熱が、基板の非接触領域以外の箇所に伝播するのを抑制することができ、効率よく冷接点を加熱することができる。よって、迅速に冷接点を第1温度、第2温度に加熱することができる。
(5)
In the temperature measuring device according to the aspect described in (4) above, a through hole is provided in the vicinity of the non-contact region of the insulating layer.
By providing such a configuration, it is possible to suppress the heat of the heating means provided in the non-contact region from propagating to locations other than the non-contact region of the substrate, and to efficiently heat the cold junction. Therefore, the cold junction can be quickly heated to the first temperature and the second temperature.

(6)
上記(1)乃至(5)いずれかに記載の態様の温度測定装置において、既知の相転移温度を持つ相変化物質と、温度の変化に伴って上記相変化物質の相転移が起きたことを検出する相転移検出手段と、相転移が起きたことを上記相転移検出手段が検出したときの上記冷接点温度測定手段の検知結果を、既知の上記相転移温度とする上記冷接点温度測定手段の温度較正を行う制御回路209などの温度較正手段とを備えた。
かかる構成を備えることで、温度測定装置の製造工程において、温度測定装置を恒温環境槽内へ搬送して冷接点温度測定手段の温度較正を行う温度較正工程が必要なくなり、コストを抑えることができる。また、温度測定装置自身で冷接点温度測定手段の温度較正を行うことができるので、温度測定装置が取り付けられた機器から温度測定装置を取り外して、恒温環境槽内に温度測定装置を持ち込んで冷接点温度測定手段の温度較正を行う場合に比べて、随時簡便に冷接点温度測定手段の温度較正を実施することができる。これにより、冷接点温度測定手段の温度較正が必要なときに、冷接点温度測定手段の温度較正を行うことができるので、高い精度を維持することができる。このように冷接点の温度を高い精度で測定することができるので、温接点(測定対象物)の温度測定を高精度に行うことができる。
(6)
In the temperature measuring device according to any of the above aspects (1) to (5), a phase change material having a known phase transition temperature and a phase transition of the phase change material accompanying a change in temperature Phase transition detection means for detecting, and the cold junction temperature measurement means that uses the detection result of the cold junction temperature measurement means when the phase transition detection means detects that a phase transition has occurred as the known phase transition temperature. And a temperature calibration means such as a control circuit 209 for performing temperature calibration.
By providing such a configuration, in the manufacturing process of the temperature measuring device, it is not necessary to provide a temperature calibration step for carrying out the temperature calibration of the cold junction temperature measuring means by transporting the temperature measuring device into the constant temperature environment tank, and the cost can be suppressed. . In addition, since the temperature measuring device itself can perform temperature calibration of the cold junction temperature measuring means, the temperature measuring device is removed from the device to which the temperature measuring device is attached, and the temperature measuring device is brought into the thermostatic environment tank and cooled. Compared with the case where the temperature calibration of the contact temperature measuring means is performed, the temperature calibration of the cold junction temperature measuring means can be easily performed at any time. Thereby, when the temperature calibration of the cold junction temperature measuring means is necessary, the temperature calibration of the cold junction temperature measuring means can be performed, so that high accuracy can be maintained. Thus, since the temperature of a cold junction can be measured with high precision, the temperature measurement of a hot junction (measurement object) can be performed with high precision.

(7)
上記(6)に記載の態様の温度測定装置において、上記冷接点と、上記相変化物質と、上記加熱手段と、上記冷接点温度測定手段とを同じ基板に設けた。
かかる構成を備えることにより、上記相変化物質と上記冷接点温度測定手段の温度とを、ほぼ同じにすることができ、精度よく冷接点温度測定手段の温度較正を行うことができる。また、冷接点温度測定手段の温度を冷接点の温度とほぼ同じにでき、冷接点温度測定手で、冷接点の温度を精度よく測定することができる。また、加熱手段で、冷接点および相変化物質を良好に加熱することもできる。
(7)
In the temperature measurement device according to the aspect described in (6) above, the cold junction, the phase change material, the heating means, and the cold junction temperature measurement means are provided on the same substrate.
By providing such a configuration, the phase change material and the temperature of the cold junction temperature measuring means can be made substantially the same, and the temperature calibration of the cold junction temperature measuring means can be performed with high accuracy. Further, the temperature of the cold junction temperature measuring means can be made substantially the same as the temperature of the cold junction, and the cold junction temperature can be measured with high accuracy by the cold junction temperature measuring hand. Further, the cold junction and the phase change material can be favorably heated by the heating means.

(8)
上記(6)または(7)に記載の態様の温度測定装置において、上記相転移検出手段、上記温度較正手段、上記ゼーベック係数算出手段を上記冷接点が設けられた基板に設けた。
かかる構成により、上記相転移検出手段と、上記温度較正手段と、上記ゼーベック係数算出手段との配線長を短くすることができ、ノイズを受け難く高精度に相変化物質の相転移などを検出することができる。
(8)
In the temperature measurement device according to the aspect described in (6) or (7), the phase transition detection unit, the temperature calibration unit, and the Seebeck coefficient calculation unit are provided on a substrate provided with the cold junction.
With this configuration, the wiring length of the phase transition detection unit, the temperature calibration unit, and the Seebeck coefficient calculation unit can be shortened, and the phase transition of the phase change substance and the like can be detected with high accuracy without being susceptible to noise. be able to.

(9)
上記(6)乃至(8)いずれかに記載の態様の温度測定装置において、上記相転移検出手段は、上記冷接点温度測定手段が測定した温度変化に基づいて、相転移が起きたことを検出する。相変化物質が相変化すると、吸熱作用が生じたり、熱容量が小さくなったりするので、相変化するとき、温度変化が相変化前と異なる。よって、冷接点温度測定手段で温度変化を監視することにより、精度よく相変化物質の相転移を検知することができる。
(9)
In the temperature measuring device according to any of the above aspects (6) to (8), the phase transition detection unit detects that a phase transition has occurred based on a temperature change measured by the cold junction temperature measuring unit. To do. When the phase change material undergoes a phase change, an endothermic effect occurs or the heat capacity decreases, so when the phase changes, the temperature change differs from that before the phase change. Therefore, by monitoring the temperature change with the cold junction temperature measuring means, the phase transition of the phase change material can be detected with high accuracy.

(10)
上記(6)乃至(8)いずれかの温度測定装置において、上記相転移検出手段は、上記相変化物質を積層させた圧電膜などの圧電体を有し、上記圧電体で上記相変化物質の体積、剛性および固有振動数のいずれかの変化を検出して、相転移が起きたことを検出する。相変化物質が相転移して、体積や剛性が変化すると、相変化物質に積層の圧電体に対する応力が変化する。その結果、圧電体の抵抗が変化する。よって、圧電体の抵抗変化を検知することにより、上記圧電体で上記相変化物質の相変化に伴う体積や剛性の変化を検知することができ、精度よく相変化物質の相転移を検知することができる。また、圧電体を振動させて相変化物質を振動させることで、相変化物質が相転移して、固有振動数が変化し、圧電体の振幅が変化する。よって、圧電体の振幅変化を検知することにより、上記圧電体で、相変化物質の相転移に伴う固有振動数の変化を検知することができ、精度よく相変化物質の相転移を検知することができる。
(10)
In the temperature measuring device according to any one of (6) to (8), the phase transition detection unit includes a piezoelectric body such as a piezoelectric film in which the phase change material is laminated, Any change in volume, stiffness and natural frequency is detected to detect that a phase transition has occurred. When the phase change material undergoes phase transition and the volume and rigidity change, the stress applied to the laminated piezoelectric material in the phase change material changes. As a result, the resistance of the piezoelectric body changes. Therefore, by detecting the resistance change of the piezoelectric body, the piezoelectric body can detect a change in volume and rigidity accompanying the phase change of the phase change material, and accurately detect the phase transition of the phase change material. Can do. Further, by vibrating the piezoelectric body to vibrate the phase change material, the phase change material undergoes phase transition, the natural frequency changes, and the amplitude of the piezoelectric body changes. Therefore, by detecting the amplitude change of the piezoelectric body, the piezoelectric body can detect the change of the natural frequency accompanying the phase transition of the phase change material, and accurately detect the phase transition of the phase change material. Can do.

(11)
上記(6)乃至(8)いずれかに記載の態様の温度測定装置において、上記相変化物質は、導電性であって、上記相転移検出手段は、上記相変化物質の電気特性の変化に基づいて、相転移が起きたことを検出する。相変化物質によっては、相変化に伴って抵抗値や電気容量などの電気特性が変化する。よって、上記相変化物質の相変化に伴う抵抗値や電気容量などの電気特性を検知することで、精度よく相変化物質の相転移を検知することができる。
(11)
In the temperature measuring device according to any of the above aspects (6) to (8), the phase change material is conductive, and the phase transition detection means is based on a change in electrical characteristics of the phase change material. Detecting that a phase transition has occurred. Depending on the phase change material, electrical characteristics such as resistance and capacitance change with the phase change. Therefore, it is possible to detect the phase transition of the phase change material with high accuracy by detecting electrical characteristics such as a resistance value and an electric capacity associated with the phase change of the phase change material.

(12)
上記(6)乃至(11)いずれかに記載の態様の温度測定装置において、上記相変化物質を、国際温度目盛ITS−90に定義されている物質にした。これにより、精度の高い冷接点温度測定手段の温度キャリブレーションを行うことができる。
(12)
In the temperature measuring device according to any of the above aspects (6) to (11), the phase change substance is a substance defined in International Temperature Scale ITS-90. Thereby, temperature calibration of the cold junction temperature measuring means with high accuracy can be performed.

(13)
上記(6)乃至(12)いずれかに記載の態様の温度測定装置において、少なくとも上記相変化物質と上記加熱手段とを上記冷接点が設けられた基板に積層させた。これにより、相変化物質と加熱手段との伝熱効率が良くなり、迅速に相変化物質を相変化温度にまで加熱することができる。これにより、冷接点温度測定手段の温度キャリブレーションを迅速に行うことができる。
(13)
In the temperature measuring device according to any of the above aspects (6) to (12), at least the phase change material and the heating unit are laminated on a substrate provided with the cold junction. Thereby, the heat transfer efficiency between the phase change material and the heating means is improved, and the phase change material can be rapidly heated to the phase change temperature. Thereby, the temperature calibration of the cold junction temperature measuring means can be performed quickly.

(14)
上記(6)乃至(12)いずれかに記載の態様の温度測定装置において、少なくとも上記相変化物質と上記加熱手段とを上記冷接点が設けられた基板に並列に配置した。上記相変化物質と上記加熱手段とを上記冷接点が設けられた基板に積層させる場合は、加熱手段を基板に形成した後、加熱手段の上に絶縁層を積層させ、その上に相変化物質を設ける必要がある。一方、上記相変化物質と上記加熱手段とを上記冷接点が設けられた基板に並列に配置することにより、基板に加熱手段と相変化物質とを形成することができ、上記相変化物質と上記加熱手段とを上記冷接点が設けられた基板に積層させる場合に比べて、製造工程を減らすことができ、その結果、製造コストを抑えることができる。
(14)
In the temperature measuring device according to any of the above aspects (6) to (12), at least the phase change material and the heating unit are arranged in parallel on the substrate provided with the cold junction. When laminating the phase change material and the heating means on the substrate provided with the cold junction, after forming the heating means on the substrate, an insulating layer is laminated on the heating means, and the phase change material is formed thereon. It is necessary to provide. On the other hand, by arranging the phase change material and the heating means in parallel on the substrate provided with the cold junction, the heating means and the phase change material can be formed on the substrate. Compared with the case where the heating means is laminated on the substrate provided with the cold junction, the number of manufacturing steps can be reduced, and as a result, the manufacturing cost can be reduced.

(15)
上記(6)乃至(14)いずれかに記載の態様の温度測定装置において、上記冷接点が設けられた基板に、上記相変化物質と、上記加熱手段とが設けられており、上記相変化物質を、上記加熱手段に隣接する箇所に分散配置した。これにより、各相変化物質の熱容量を少なくすることができ、迅速に相変化物質を相転移温度にまで加熱することができる。
(15)
In the temperature measuring device according to any one of the above aspects (6) to (14), the phase change material and the heating unit are provided on the substrate provided with the cold junction, and the phase change material is provided. Were dispersedly arranged at locations adjacent to the heating means. Thereby, the heat capacity of each phase change material can be reduced, and the phase change material can be rapidly heated to the phase transition temperature.

(16)
上記(6)乃至(15)いずれかに記載の態様の温度測定装置において、少なくとも上記相変化物質と上記加熱手段と上記冷接点温度測定手段とを、一対の冷接点の間に形状と配置が対称となるように上記冷接点が設けられた基板に設けた。これにより、一対の冷接点を加熱手段で均一に加熱することができ、ゼーベック係数を精度よく算出することができる。また、冷接点の周囲の熱容量がほぼ同じとなるので、測定対象物の温度を高精度に測定することができる。
(16)
In the temperature measuring device according to any one of the above (6) to (15), at least the phase change material, the heating unit, and the cold junction temperature measuring unit are arranged and arranged between a pair of cold junctions. It provided in the board | substrate with which the said cold junction was provided so that it might become symmetrical. Thereby, a pair of cold junction can be heated uniformly with a heating means, and the Seebeck coefficient can be calculated with high accuracy. Moreover, since the heat capacities around the cold junctions are substantially the same, the temperature of the measurement object can be measured with high accuracy.

(17)
上記(6)乃至(16)いずれかに記載の態様の温度測定装置において、上記相変化物質、上記加熱手段および上記冷接点温度測定手段のいずれかが導電性部材で構成されており、導電性部材で構成された部材を電気絶縁材で他の部材間で電気的に絶縁した。これにより、電気的な短絡によるノイズを抑制することができ、冷接点温度測定手段で高精度に冷接点の温度を測定することができる。
(17)
In the temperature measuring device according to any one of the above (6) to (16), any one of the phase change material, the heating unit, and the cold junction temperature measuring unit is formed of a conductive member, The member comprised by the member was electrically insulated between other members with the electrical insulating material. Thereby, noise due to an electrical short circuit can be suppressed, and the temperature of the cold junction can be measured with high accuracy by the cold junction temperature measuring means.

(18)
上記(6)乃至(17)いずれかに記載の態様の温度測定装置において、上記相変化物質を相転移させるときの上記加熱手段の加熱温度を、上記相転移物質の相転移温度付近にした。これにより、温度キャリブレーション時の無駄な電力消費を抑えることができる。
(18)
In the temperature measuring device according to any of the above aspects (6) to (17), the heating temperature of the heating means when causing the phase change material to undergo phase transition is set in the vicinity of the phase transition temperature of the phase change material. Thereby, useless power consumption at the time of temperature calibration can be suppressed.

(19)
上記(6)乃至(18)いずれかに記載の態様の温度測定装置において、上記冷接点が設けられた基板に、互いに異なる2種類以上の相変化物質を分散配置し、上記相転移検出手段は、各相変化物質の相転移をそれぞれ検出し、上記温度較正手段は、上記相転移検出手段が検出した各相変化物質が相転移したときの上記冷接点温度測定手段の検知結果を、各相変化物質の既知の相転移温度として上記冷接点温度測定手段の温度較正を行う。
かかる構成を備えることで、上記冷接点温度測定手段の温度依存性の関数を求めるので、上記冷接点温度測定手段として、未知の抵抗温度係数(TCR)の抵抗体材料を用いることができる。
(19)
In the temperature measuring device according to any one of the above (6) to (18), two or more kinds of different phase change substances are dispersedly arranged on the substrate provided with the cold junction, and the phase transition detection means includes: Detecting the phase transition of each phase change substance, and the temperature calibration means detects the detection result of the cold junction temperature measurement means when each phase change substance detected by the phase transition detection means undergoes phase transition. The temperature of the cold junction temperature measuring means is calibrated as a known phase transition temperature of the change substance.
By providing such a configuration, a function of temperature dependency of the cold junction temperature measuring means is obtained, and therefore, a resistor material having an unknown resistance temperature coefficient (TCR) can be used as the cold junction temperature measuring means.

(20)
上記(6)乃至(19)いずれかに記載の態様の温度測定装置において、少なくとも上記相変化物質の周囲を絶縁材で覆う表面保護膜を形成する。これにより、相変化物質の化学的変化などを抑制することができ、相転移温度が変化してしまうのを抑制することができる。また、圧力変化に伴う相変化温度の変動を防ぐこともできる。これにより、長期にわたり安定した温度キャリブレーションを行うことができる。
(20)
In the temperature measuring device according to any one of (6) to (19) above, a surface protective film is formed that covers at least the periphery of the phase change material with an insulating material. Thereby, the chemical change etc. of a phase change substance can be suppressed and it can suppress that a phase transition temperature changes. In addition, fluctuations in the phase change temperature associated with pressure changes can be prevented. Thereby, stable temperature calibration can be performed over a long period of time.

(21)
熱電対の温度測定方法において、上記冷接点の温度が第1温度t1aときの上記熱電対の出力値ΔV1を計測するステップと、上記第1の温度t1aとは異なる第2温度t1bときの上記熱電停の出力値ΔV2を計測するステップと、上記ゼーベック係数をS、温接点の温度をt2としたとき、ΔV1=S×(t1a−t2)からなる第1式と、ΔV2=S×(t1b−t2)からなる第2式との連立解から上記ゼーベック係数Sと、温接点の温度t2とを求めるステップとを有する。これにより、熱電対のゼーベック係数がわからずとも、温接点の温度を測定することができる。
(21)
In the thermocouple temperature measurement method, the step of measuring the output value ΔV1 of the thermocouple when the temperature of the cold junction is the first temperature t1a and the thermocouple when the second temperature t1b is different from the first temperature t1a. When the stop output value ΔV2 is measured, the Seebeck coefficient is S, and the temperature of the hot junction is t2, the first expression of ΔV1 = S × (t1a−t2) and ΔV2 = S × (t1b− a step of obtaining the Seebeck coefficient S and the temperature t2 of the hot junction from simultaneous solutions with the second equation consisting of t2). Thereby, the temperature of the hot junction can be measured without knowing the Seebeck coefficient of the thermocouple.

1:基板
2:ベース材
3:電気絶縁層
5:冷接点温度測定部
6:相変化物質
7:回路接続電極
9:貫通孔
10:第1接続電極
11:第2接続電極
15:加熱部
16:検出リード線
17:圧電膜
20:信号処理回路部
21:空洞部
22:計測領域
30:測定対象物
100:温度測定装置
101:シース部
102:金属保護管
103:熱電対
103a:第1熱電材料
103b:第2熱電材料
104:無機物質
110:温度計測部
111:ケース
111a:接続口
112:加圧板バネ
114:スライドノブ
201:電源
202:抵抗値検出部
203:レジスタ
204:熱起電力電圧検出部
206:ゼーベック係数算出回路
207:温度変換部
209:制御回路
C:冷接点
S:ゼーベック係数
t1a:第1温度
t1b:第2温度
t2:温接点温度
W:温接点
1: Substrate 2: Base material 3: Electrical insulating layer 5: Cold junction temperature measurement unit 6: Phase change material 7: Circuit connection electrode 9: Through hole 10: First connection electrode 11: Second connection electrode 15: Heating unit 16 : Detection lead wire 17: piezoelectric film 20: signal processing circuit unit 21: cavity portion 22: measurement region 30: measurement object 100: temperature measuring device 101: sheath portion 102: metal protective tube 103: thermocouple 103 a: first thermoelectric Material 103b: Second thermoelectric material 104: Inorganic substance 110: Temperature measuring unit 111: Case 111a: Connection port 112: Pressure plate spring 114: Slide knob 201: Power source 202: Resistance value detection unit 203: Register 204: Thermoelectromotive voltage Detection unit 206: Seebeck coefficient calculation circuit 207: temperature conversion unit 209: control circuit C: cold junction S: Seebeck coefficient t1a: first temperature t1b: second temperature t2: hot junction temperature W: Contact

特開2002−156279号公報JP 2002-156279 A 特許第3692908号公報Japanese Patent No. 3692908

Claims (21)

熱電対と、
上記熱電対の冷接点の温度を測定する冷接点温度測定手段と、
上記熱電対の出力値と、上記冷接点温度測定手段の測定結果と、ゼーベック係数とに基づいて測定対象物の温度を測定する温度測定装置において、
上記冷接点を加熱する加熱手段と、
上記加熱手段で冷接点を加熱し、上記冷接点の温度が第1温度ときの上記熱電対の出力値と、上記第1温度とは異なる第2温度ときの上記熱電対の出力値とを検出し、
上記第1温度、上記第1温度ときの上記熱電対の出力値、上記第2温度および上記第2温度ときの上記熱電対の出力値に基づいて、上記ゼーベック係数を算出するゼーベック係数算出手段を備えたことを特徴とする温度測定装置。
A thermocouple,
Cold junction temperature measuring means for measuring the temperature of the cold junction of the thermocouple;
In the temperature measurement device that measures the temperature of the measurement object based on the output value of the thermocouple, the measurement result of the cold junction temperature measurement means, and the Seebeck coefficient,
Heating means for heating the cold junction;
The cold junction is heated by the heating means, and the output value of the thermocouple when the temperature of the cold junction is the first temperature and the output value of the thermocouple when the second temperature is different from the first temperature are detected. And
Seebeck coefficient calculating means for calculating the Seebeck coefficient based on the first temperature, the output value of the thermocouple at the first temperature, the second temperature, and the output value of the thermocouple at the second temperature. A temperature measuring device characterized by comprising.
請求項1の温度測定装置において、
上記ゼーベック係数算出手段は、上記冷接点の温度が上記第1温度のときの上記熱電対の出力値と、上記冷接点の温度が上記第2温度のときの上記熱電対の出力値とを複数回計測し、上記第1温度のときの上記熱電対の出力値の誤差、上記第2温度のときの上記熱電対の出力値の誤差が、閾値以下のとき、上記ゼーベック係数を算出することを特徴とする温度測定装置。
The temperature measuring device according to claim 1,
The Seebeck coefficient calculating means includes a plurality of output values of the thermocouple when the temperature of the cold junction is the first temperature and output values of the thermocouple when the temperature of the cold junction is the second temperature. And measuring the Seebeck coefficient when an error in the output value of the thermocouple at the first temperature and an error in the output value of the thermocouple at the second temperature are equal to or less than a threshold value. A characteristic temperature measuring device.
請求項1または2の温度測定装置において、
上記冷接点温度測定手段を、温度依存性を有する抵抗体で構成し、
上記冷接点温度測定手段を、上記加熱手段として用いたことを特徴とする温度測定装置。
The temperature measuring device according to claim 1 or 2,
The cold junction temperature measuring means is composed of a resistor having temperature dependence,
A temperature measuring apparatus using the cold junction temperature measuring means as the heating means.
請求項1乃至3いずれかの温度測定装置において、
上記冷接点が設けられた基板は、ベース材上に積層された絶縁層が設けられており、
上記絶縁層に上記ベース材と接していない非接触領域を設け、上記非接触領域に、上記冷接点と、上記加熱手段と、上記冷接点温度測定手段とを設けたことを特徴とする温度測定装置。
In the temperature measuring device in any one of Claims 1 thru | or 3,
The substrate provided with the cold junction is provided with an insulating layer laminated on a base material,
A temperature measurement characterized in that a non-contact area not in contact with the base material is provided in the insulating layer, and the cold junction, the heating means, and the cold junction temperature measurement means are provided in the non-contact area. apparatus.
請求項4の温度測定装置において、
上記絶縁層の上記非接触領域の近傍に貫通孔を設けたことを特徴とする温度測定装置。
The temperature measuring device according to claim 4, wherein
A temperature measuring device, wherein a through hole is provided in the vicinity of the non-contact region of the insulating layer.
請求項1乃至5いずれかの温度測定装置において、
既知の相転移温度を持つ相変化物質と、
温度の変化に伴って上記相変化物質の相転移が起きたことを検出する相転移検出手段と、
相転移が起きたことを上記相転移検出手段が検出したときの上記冷接点温度測定手段の検知結果を、既知の上記相転移温度とする上記冷接点温度測定手段の温度較正を行う温度較正手段とを備えたことを特徴とする温度測定装置。
The temperature measuring device according to any one of claims 1 to 5,
A phase change material having a known phase transition temperature; and
A phase transition detection means for detecting that the phase transition of the phase change material has occurred with a change in temperature;
Temperature calibration means for performing temperature calibration of the cold junction temperature measuring means with the detection result of the cold junction temperature measuring means when the phase transition detecting means detects that a phase transition has occurred as the known phase transition temperature. And a temperature measuring device.
請求項6の温度測定装置において、
上記冷接点と、上記相変化物質と、上記加熱手段と、上記冷接点温度測定手段とを同じ基板に設けたことを特徴とする温度測定装置。
The temperature measuring device according to claim 6, wherein
A temperature measuring apparatus, wherein the cold junction, the phase change material, the heating means, and the cold junction temperature measuring means are provided on the same substrate.
請求項6または7の温度測定装置において、
上記相転移検出手段、上記温度較正手段、上記ゼーベック係数算出手段とを上記冷接点が設けられた基板に設けたことを特徴とする温度測定装置。
The temperature measuring device according to claim 6 or 7,
A temperature measuring device, wherein the phase transition detection means, the temperature calibration means, and the Seebeck coefficient calculation means are provided on a substrate provided with the cold junction.
請求項6乃至8いずれかの温度測定装置において、
上記相転移検出手段は、上記冷接点温度測定手段が測定した温度変化に基づいて、相転移が起きたことを検出することを特徴とする温度測定装置。
The temperature measuring device according to any one of claims 6 to 8,
The temperature measurement apparatus characterized in that the phase transition detection means detects that a phase transition has occurred based on a temperature change measured by the cold junction temperature measurement means.
請求項6乃至8いずれかの温度測定装置において、
上記相転移検出手段は、上記相変化物質に積層させた圧電体を有し、上記圧電体で上記相変化物質の体積、剛性および固有振動数のいずれかの変化を検出して、相転移が起きたことを検出することを特徴とする温度測定装置。
The temperature measuring device according to any one of claims 6 to 8,
The phase transition detection means includes a piezoelectric body laminated on the phase change material, and detects any change in volume, rigidity, or natural frequency of the phase change material with the piezoelectric body, and the phase transition is detected. A temperature measuring device characterized by detecting what has happened.
請求項6乃至8いずれかの温度測定装置において、
上記相変化物質は、導電性であって、
上記相転移検出手段は、上記相変化物質の電気特性の変化に基づいて、相転移が起きたことを検出することを特徴とする温度測定装置。
The temperature measuring device according to any one of claims 6 to 8,
The phase change material is conductive,
The temperature measurement apparatus, wherein the phase transition detection means detects that a phase transition has occurred based on a change in electrical characteristics of the phase change material.
請求項6乃至11いずれかの温度測定装置において、
上記相変化物質は、国際温度目盛ITS−90に定義されている物質であることを特徴する温度測定装置。
The temperature measuring device according to any one of claims 6 to 11,
The temperature measuring device, wherein the phase change material is a material defined in International Temperature Scale ITS-90.
請求項6乃至12いずれかの温度測定装置において、
少なくとも上記相変化物質と上記加熱手段とを上記冷接点が設けられた基板に積層させたことを特徴とする温度測定装置。
The temperature measuring device according to any one of claims 6 to 12,
At least the phase change material and the heating means are laminated on a substrate provided with the cold junction.
請求項6乃至12いずれかの温度測定装置において、
少なくとも上記相変化物質と上記加熱手段とを上記冷接点が設けられた基板に並列に配置したことを特徴とする温度測定装置。
The temperature measuring device according to any one of claims 6 to 12,
At least the phase change material and the heating means are arranged in parallel on a substrate provided with the cold junction.
請求項6乃至14いずれかの温度測定装置において、
上記冷接点が設けられた基板に、上記相変化物質と、上記加熱手段とが設けられており、
上記相変化物質を、上記加熱手段に隣接する箇所に分散配置したことを特徴とする温度測定装置。
The temperature measuring device according to any one of claims 6 to 14,
The substrate provided with the cold junction is provided with the phase change material and the heating means,
A temperature measuring apparatus, wherein the phase change substance is dispersedly arranged at a location adjacent to the heating means.
請求項6乃至15いずれかの温度測定装置において、
少なくとも上記相変化物質と上記加熱手段と上記冷接点温度測定手段とを、一対の冷接点の間に形状と配置が対称となるように上記冷接点が設けられた基板に設けたことを特徴とする冷却点温度測定装置。
The temperature measuring device according to any one of claims 6 to 15,
At least the phase change material, the heating means, and the cold junction temperature measurement means are provided on a substrate provided with the cold junction so that the shape and arrangement are symmetrical between a pair of cold junctions. Cooling point temperature measuring device.
請求項6乃至16いずれかの温度測定装置において、
上記相変化物質、上記加熱手段および上記冷接点温度測定手段のいずれかが導電性部材で構成されており、導電性部材で構成された部材を電気絶縁材で他の部材間で電気的に絶縁したことを特徴とする温度測定装置。
The temperature measuring device according to any one of claims 6 to 16,
Any one of the phase change material, the heating unit, and the cold junction temperature measurement unit is formed of a conductive member, and the member formed of the conductive member is electrically insulated from other members by an electrical insulating material. A temperature measuring device characterized by that.
請求項6乃至17いずれかの温度測定装置において、
上記相変化物質を相転移させるときの上記加熱手段の加熱温度を、上記相転移物質の相転移温度付近にしたことを特徴とする温度測定装置。
The temperature measuring device according to any one of claims 6 to 17,
A temperature measuring apparatus characterized in that the heating temperature of the heating means when causing the phase change substance to undergo phase transition is set in the vicinity of the phase transition temperature of the phase change substance.
請求項6乃至18いずれかの温度測定装置において、
上記冷接点が設けられた基板に、互いに異なる2種類以上の相変化物質を分散配置し、上記相転移検出手段は、各相変化物質の相転移をそれぞれ検出し、
上記温度較正手段は、上記相転移検出手段が検出した各相変化物質が相転移したときの上記冷接点温度測定手段の検知結果を、各相変化物質の既知の相転移温度として上記冷接点温度測定手段の温度較正を行うことを特徴とする温度測定装置。
The temperature measuring device according to any one of claims 6 to 18,
Two or more types of phase change materials different from each other are dispersedly disposed on the substrate provided with the cold junction, and the phase transition detection means detects the phase transition of each phase change material,
The temperature calibration means uses the detection result of the cold junction temperature measurement means when each phase change material detected by the phase transition detection means has undergone a phase transition as a known phase transition temperature of each phase change substance as the cold junction temperature. A temperature measuring apparatus for performing temperature calibration of a measuring means.
請求項6乃至19いずれかの温度測定装置において、
少なくとも上記相変化物質の周囲を絶縁材で覆う表面保護膜を形成することを特徴とする
温度測定装置。
The temperature measuring device according to any one of claims 6 to 19,
A temperature measuring apparatus comprising a surface protective film that covers at least the periphery of the phase change material with an insulating material.
熱電対のゼーベック係数算出方法において、
上記熱電対の冷接点の温度が第1温度t1aときの上記熱電対の出力値ΔV1を計測するステップと、
上記第1の温度t1aとは異なる第2温度t1bときの上記熱電対の出力値ΔV2を計測するステップと、
上記ゼーベック係数をS、温接点の温度をt2としたとき、ΔV1=S×(t2−t1a)からなる第1式と、ΔV2=S×(t2−t1b)からなる第2式との連立解から上記ゼーベック係数Sを求めるステップとを有することを特徴とするゼーベック係数算出方法。
In the thermocouple Seebeck coefficient calculation method,
Measuring the thermocouple output value ΔV1 when the temperature of the cold junction of the thermocouple is a first temperature t1a;
A step of measuring the output value ΔV2 of the thermocouple when different second temperatures t1b to the above first temperature t1a,
Assuming that the Seebeck coefficient is S and the temperature of the hot junction is t2, simultaneous solutions of the first equation consisting of ΔV1 = S × (t2−t1a) and the second equation consisting of ΔV2 = S × (t2−t1b) A step of obtaining the Seebeck coefficient S from the above.
JP2011179222A 2011-08-18 2011-08-18 Temperature measuring device and Seebeck coefficient calculation method Expired - Fee Related JP5835650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011179222A JP5835650B2 (en) 2011-08-18 2011-08-18 Temperature measuring device and Seebeck coefficient calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011179222A JP5835650B2 (en) 2011-08-18 2011-08-18 Temperature measuring device and Seebeck coefficient calculation method

Publications (2)

Publication Number Publication Date
JP2013040885A JP2013040885A (en) 2013-02-28
JP5835650B2 true JP5835650B2 (en) 2015-12-24

Family

ID=47889421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011179222A Expired - Fee Related JP5835650B2 (en) 2011-08-18 2011-08-18 Temperature measuring device and Seebeck coefficient calculation method

Country Status (1)

Country Link
JP (1) JP5835650B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210133750A (en) * 2020-04-29 2021-11-08 중앙대학교 산학협력단 Method for measuring seebeck coefficient of high resistance transition metal dischalcogenide material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5804366B2 (en) * 2011-08-26 2015-11-04 株式会社リコー Temperature measuring device
KR102031315B1 (en) * 2017-12-14 2019-10-11 주식회사 포스코 Apparatus and method of compensating temperature of therocouple in x-ray diffractometry system and sample for compensating temperature of thermocouple
WO2020204231A1 (en) * 2019-04-04 2020-10-08 임태영 Method and apparatus for measuring seebeck coefficient in order to identify alloy

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3687030B2 (en) * 1999-06-23 2005-08-24 独立行政法人科学技術振興機構 Micro surface temperature distribution measurement method and apparatus therefor
JP2002156279A (en) * 2000-11-20 2002-05-31 Seiko Epson Corp Thermopile type infrared sensor
JP4360594B2 (en) * 2002-06-06 2009-11-11 財団法人電力中央研究所 Thermoelectric material and thermoelectric element
JP2007033154A (en) * 2005-07-25 2007-02-08 Denso Corp Infrared detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210133750A (en) * 2020-04-29 2021-11-08 중앙대학교 산학협력단 Method for measuring seebeck coefficient of high resistance transition metal dischalcogenide material
KR102338444B1 (en) 2020-04-29 2021-12-10 중앙대학교 산학협력단 Method for measuring seebeck coefficient of high resistance transition metal dischalcogenide material

Also Published As

Publication number Publication date
JP2013040885A (en) 2013-02-28

Similar Documents

Publication Publication Date Title
US9184380B2 (en) Electric element
JP5590460B2 (en) Dew point measuring device and gas characteristic measuring device
KR101537139B1 (en) Heat conduction-type barometric sensor utilizing thermal excitation
US8943888B2 (en) Micromachined flow sensor integrated with flow inception detection and make of the same
JP5835650B2 (en) Temperature measuring device and Seebeck coefficient calculation method
JP5590459B2 (en) Dew point measuring device and gas characteristic measuring device
JP6631049B2 (en) Gas detector
JP2010190735A (en) Temperature measuring element and temperature measuring instrument
JP5804366B2 (en) Temperature measuring device
Han et al. A built-in temperature sensor in an integrated microheater
JP5769043B2 (en) Electrical device, integrated device, electronic circuit and temperature calibration device
JP5765609B2 (en) Electrical device, integrated device, electronic circuit and temperature calibration device
JP6222443B2 (en) Absolute humidity sensor and absolute humidity sensor chip used therefor
JP5590461B2 (en) Dew point measuring device and gas characteristic measuring device
JP2011257426A (en) Heat conduction type barometric sensor using thermal excitation
JP5761589B2 (en) Electrical device, integrated device, electronic circuit and temperature calibration device
KR100612203B1 (en) Temperature sensor
JP2014185855A (en) Absolute humidity sensor and absolute humidity sensor chip used for the same
JP5590454B2 (en) Electrical element, integrated element and electronic circuit
JP2019138780A (en) Heat type flow sensor
JP2011069733A5 (en)
JP2011069733A (en) Heat conduction type barometric sensor utilizing thermal excitation
JP2014122870A (en) Absolute temperature output sensor formed by combination of temperature difference sensor and absolute temperature sensor
US10816411B1 (en) Temperature sensing within integrated microheater
KR20150098743A (en) Thermopile sensor module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151022

R151 Written notification of patent or utility model registration

Ref document number: 5835650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees