TWI630230B - Materials for semiconductor device and semiconductor element protection - Google Patents

Materials for semiconductor device and semiconductor element protection Download PDF

Info

Publication number
TWI630230B
TWI630230B TW105126219A TW105126219A TWI630230B TW I630230 B TWI630230 B TW I630230B TW 105126219 A TW105126219 A TW 105126219A TW 105126219 A TW105126219 A TW 105126219A TW I630230 B TWI630230 B TW I630230B
Authority
TW
Taiwan
Prior art keywords
semiconductor element
semiconductor device
compound
weight
hardened
Prior art date
Application number
TW105126219A
Other languages
Chinese (zh)
Other versions
TW201723071A (en
Inventor
西村貴史
前中寬
中村秀
青山卓司
小林祐輔
Original Assignee
日商積水化學工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商積水化學工業股份有限公司 filed Critical 日商積水化學工業股份有限公司
Publication of TW201723071A publication Critical patent/TW201723071A/en
Application granted granted Critical
Publication of TWI630230B publication Critical patent/TWI630230B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3171Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本發明提供一種硬化物之散熱性優異、硬化物之孔隙較少、硬化物之絕緣可靠性優異且可良好地保護半導體元件之半導體裝置。 本發明之半導體裝置具備半導體元件、及配置於上述半導體元件之第1表面上之硬化物,用以獲得上述硬化物之半導體元件保護用材料包含熱硬化性化合物、硬化劑或硬化觸媒、及導熱率為10 W/m・K以上之無機填料,且不含三聚物至十聚物之環狀矽氧烷化合物,或包含500 ppm以下之三聚物至十聚物之環狀矽氧烷化合物,上述硬化物中之上述無機填料之含量為60重量%以上、92重量%以下,上述硬化物之導電率為50 μS/cm以下。The present invention provides a semiconductor device having excellent heat dissipation of a cured product, few voids in the cured product, excellent insulation reliability of the cured product, and good protection of semiconductor elements. The semiconductor device of the present invention includes a semiconductor element and a hardened object disposed on the first surface of the semiconductor element, and the semiconductor element protection material used to obtain the hardened object includes a thermosetting compound, a curing agent or a curing catalyst, and Inorganic filler with a thermal conductivity of 10 W / m · K or more, and does not contain cyclic silicone compounds from trimer to decamer, or cyclic silicone compounds containing trimer to depolymer from 500 ppm or less For the alkane compound, the content of the inorganic filler in the hardened material is 60% by weight or more and 92% by weight or less, and the conductivity of the hardened material is 50 μS / cm or less.

Description

半導體裝置及半導體元件保護用材料Materials for semiconductor device and semiconductor element protection

本發明係關於一種使用半導體元件保護用材料之半導體裝置。又,本發明係關於一種為了保護半導體元件而塗佈於上述半導體元件之表面上使用之半導體元件保護用材料。The invention relates to a semiconductor device using materials for protecting semiconductor elements. In addition, the present invention relates to a material for protecting a semiconductor element that is applied to the surface of the semiconductor element for protection of the semiconductor element.

正在推進半導體裝置之高性能化。隨之,使自半導體裝置散發之熱釋放之需求高漲。又,於半導體裝置中,半導體元件之電極例如與表面具有電極之其他連接對象構件中之電極電性連接。 於半導體裝置中,例如於將環氧樹脂組合物配置於半導體元件與其他連接對象構件之間後,使該環氧樹脂組合物硬化,藉此將半導體元件與其他連接對象構件接著及固定。再者,配置於半導體元件與其他連接對象構件之間之上述環氧樹脂組合物之硬化物與用以保護半導體元件之表面之材料不同。 又,於半導體裝置中,為了對半導體元件進行密封,有使用環氧樹脂組合物之情況。 如上述之環氧樹脂組合物例如係揭示於下述專利文獻1~5中。 於下述專利文獻1中揭示有包含環氧樹脂、酚系硬化劑、作為三(2,6-二甲氧基苯基)膦或三(2,4,6-三甲氧基苯基)膦之硬化促進劑、及氧化鋁之環氧樹脂組合物。於專利文獻1之實施例中記載有粉體之環氧樹脂組合物。關於上述環氧樹脂組合物之用途,於專利文獻1中記載有較佳地使用於IC(Integrated Circuit,積體電路)、LSI(Large Scale Integration,大規模積體電路)、電晶體、閘流體、二極體等半導體裝置之密封用、印刷電路板之製造等。 於下述專利文獻2中揭示有包含環氧樹脂、酚系樹脂硬化劑、硬化促進劑、及無機填充劑之密封用環氧樹脂組合物。於專利文獻2之實施例中記載有粉體之密封用環氧樹脂組合物。關於上述環氧樹脂組合物之用途,於專利文獻2中記載有可用作一般成形材料,進而記載有用於半導體裝置之密封材,尤其較佳地用於薄型、多接腳、長導線、窄焊墊間距、或於有機基板或者有機膜等封裝基板上配置有半導體晶片之半導體裝置之密封材。 於下述專利文獻3中揭示有包含雙酚F型液狀環氧樹脂、硬化劑、及無機質填充劑之環氧樹脂組合物。於專利文獻3之實施例中記載有固體之環氧樹脂組合物(熔融黏度為75℃以上)。關於上述環氧樹脂組合物之用途,於專利文獻3中記載有雖亦可用作一般成形材料,但較佳地用作半導體裝置、例如使用TQFP(Thin Quad Flat Package,薄型四方扁平封裝)、TSOP(Thin Small Outline Package,薄型小尺寸封裝)、QFP(Quad Flat Package,方形扁平封裝)等多接腳薄型封裝、尤其是矩陣框架之半導體裝置之密封材。 於下述專利文獻4中揭示有包含環氧樹脂、酚系樹脂硬化劑、高導熱性填充劑、及無機質填充劑之半導體密封用環氧樹脂組合物。於專利文獻4之實施例中記載有粉體之半導體密封用環氧樹脂組合物。關於上述半導體密封用環氧樹脂組合物之用途,於專利文獻4中記載有用作半導體元件等電子零件之密封材料。 又,於下述專利文獻5中揭示有二液型之環氧樹脂組合物,其具有包含雙酚A型環氧樹脂及於骨架內具有可撓性之環氧樹脂之第1劑、與包含酸酐化合物及硬化促進劑之第2劑。於專利文獻5中,關於二液型之環氧樹脂組合物之用途,記載有用作盒體內填充材。 [先前技術文獻] [專利文獻] [專利文獻1]日本專利特開平5-86169號公報 [專利文獻2]日本專利特開2007-217469號公報 [專利文獻3]日本專利特開平10-176100號公報 [專利文獻4]日本專利特開2005-200533號公報 [專利文獻5]日本專利特開2014-40538號公報The performance of semiconductor devices is being advanced. As a result, the demand for heat release from semiconductor devices has increased. In addition, in the semiconductor device, the electrode of the semiconductor element is electrically connected to, for example, an electrode in another connection target member having an electrode on the surface. In the semiconductor device, for example, after the epoxy resin composition is disposed between the semiconductor element and the other connection target member, the epoxy resin composition is hardened, thereby bonding and fixing the semiconductor element and the other connection target member. Furthermore, the hardened material of the epoxy resin composition disposed between the semiconductor element and the other connection object member is different from the material used to protect the surface of the semiconductor element. In addition, in a semiconductor device, in order to seal a semiconductor element, an epoxy resin composition may be used. The epoxy resin composition as described above is disclosed in Patent Documents 1 to 5 below, for example. Patent Document 1 below discloses that it contains epoxy resin, phenolic hardener, as tris (2,6-dimethoxyphenyl) phosphine or tris (2,4,6-trimethoxyphenyl) phosphine Epoxy resin composition of hardening accelerator and alumina. The examples of Patent Document 1 describe powdered epoxy resin compositions. Regarding the use of the above epoxy resin composition, Patent Document 1 describes that it is preferably used in IC (Integrated Circuit), LSI (Large Scale Integration), transistor, and thyristor , The sealing of semiconductor devices such as diodes, the manufacture of printed circuit boards, etc. The following Patent Document 2 discloses an epoxy resin composition for sealing including an epoxy resin, a phenol resin curing agent, a curing accelerator, and an inorganic filler. An example of Patent Document 2 describes a powdery epoxy resin composition for sealing. Regarding the use of the above epoxy resin composition, Patent Document 2 describes that it can be used as a general molding material, and further describes a sealing material for semiconductor devices, and is particularly preferably used for thin, multi-pin, long lead, narrow The sealing material of a semiconductor device in which a semiconductor wafer is arranged on a packaging substrate such as an organic substrate or an organic film, with a pad pitch. The following Patent Document 3 discloses an epoxy resin composition containing a bisphenol F-type liquid epoxy resin, a hardener, and an inorganic filler. Examples of Patent Document 3 describe a solid epoxy resin composition (melt viscosity is 75 ° C. or higher). Regarding the use of the above epoxy resin composition, it is described in Patent Document 3 that although it can also be used as a general molding material, it is preferably used as a semiconductor device, for example, using TQFP (Thin Quad Flat Package). Multi-pin thin package such as TSOP (Thin Small Outline Package), QFP (Quad Flat Package), especially the sealing material of matrix frame semiconductor devices. The following Patent Document 4 discloses an epoxy resin composition for semiconductor sealing including an epoxy resin, a phenol-based resin hardener, a high thermal conductivity filler, and an inorganic filler. The examples of Patent Document 4 describe powdered epoxy resin compositions for semiconductor sealing. Regarding the use of the epoxy resin composition for semiconductor sealing described above, Patent Document 4 describes the use as a sealing material for electronic components such as semiconductor elements. In addition, Patent Document 5 below discloses a two-component epoxy resin composition, which includes a first agent including a bisphenol A epoxy resin and a flexible epoxy resin in a framework, and The second agent of anhydride compound and hardening accelerator. Patent Document 5 describes the use of a two-component epoxy resin composition as a filling material in a case. [Prior Art Literature] [Patent Literature] [Patent Literature 1] Japanese Patent Laid-Open No. 5-86169 [Patent Literature 2] Japanese Patent Laid-Open No. 2007-217469 [Patent Literature 3] Japanese Patent Laid-Open No. 10-176100 Gazette [Patent Document 4] Japanese Patent Laid-Open No. 2005-200533 [Patent Document 5] Japanese Patent Laid-Open No. 2014-40538

[發明所欲解決之問題] 於專利文獻1~4中,具體而言揭示有粉體或固體之環氧樹脂組合物。此種粉體或固體之環氧樹脂組合物係塗佈性較低,難以高精度地配置於特定之區域。 又,先前之環氧樹脂組合物之硬化物存在散熱性較低之情況。進而,先前之環氧樹脂組合物之硬化物存在產生孔隙之情況。若產生孔隙,則有產生硬化物之剝離之情況。 又,於專利文獻1~4中,作為環氧樹脂組合物之具體用途,主要記載有密封用途。於專利文獻5中,作為環氧樹脂組合物之具體用途,主要記載有盒體內填充材用途。另一方面,於半導體裝置中,較理想為即便不對半導體元件進行密封,亦充分地保護半導體元件。又,專利文獻1~5所記載之環氧樹脂組合物通常並非係為了保護半導體元件而塗佈於該半導體元件之表面上使用。 又,近年來就裝置之薄型或設計性之觀點而言,要求減少IC驅動器。若減少IC驅動器,則半導體元件所受之負擔增大,進而容易帶有相當多之熱。先前之硬化物係散熱性較低,故而謀求散熱性較高之硬化物。 本發明之目的在於提供一種硬化物之散熱性優異、硬化物之孔隙較少、硬化物之絕緣可靠性優異且可良好地保護半導體元件之半導體裝置。 又,本發明之目的在於提供一種於半導體裝置中,用於為了保護半導體元件而塗佈於該半導體元件之表面上,於上述半導體元件之表面上形成硬化物之半導體元件保護用材料。 進而,本發明之目的在於提供一種於上述用途中,可獲得散熱性優異、孔隙較少、絕緣可靠性優異之硬化物,且可良好地保護半導體元件之半導體元件保護用材料。 [解決問題之技術手段] 於本發明之廣泛之態樣中,提供一種半導體裝置,其具備半導體元件、及配置於上述半導體元件之第1表面上之硬化物,上述硬化物係半導體元件保護用材料之硬化物,上述半導體元件保護用材料包含熱硬化性化合物、硬化劑或硬化觸媒、及導熱率為10 W/m・K以上之無機填料,上述半導體元件保護用材料不含三聚物至十聚物之環狀矽氧烷化合物,或包含500 ppm以下之三聚物至十聚物之環狀矽氧烷化合物,上述硬化物中之上述無機填料之含量為60重量%以上、92重量%以下,上述硬化物之導電率為50 μS/cm以下。 於本發明之廣泛之態樣中,提供一種半導體元件保護用材料,其係用於為了保護半導體元件而塗佈於上述半導體元件之表面上,於上述半導體元件之表面上形成硬化物者,且其與配置於半導體元件與其他連接對象構件之間、形成將上述半導體元件與上述其他連接對象構件以不剝離之方式接著及固定之硬化物者不同,包含熱硬化性化合物、硬化劑或硬化觸媒、及導熱率為10 W/m・K以上之無機填料,不含三聚物至十聚物之環狀矽氧烷化合物,或包含500 ppm以下之三聚物至十聚物之環狀矽氧烷化合物,上述無機填料之含量為60重量%以上、92重量%以下,於在150℃下加熱2小時而獲得硬化物時,上述硬化物之導電率為50 μS/cm以下。 於本發明之廣泛之態樣中,提供一種半導體元件保護用材料,其係用於為了保護封裝於連接對象構件上之半導體元件而塗佈於上述半導體元件之與上述連接對象構件側相反之表面上,於上述半導體元件之與上述連接對象構件側相反之表面上形成硬化物者,且包含熱硬化性化合物、硬化劑或硬化觸媒、及導熱率為10 W/m・K以上之無機填料,不含三聚物至十聚物之環狀矽氧烷化合物,或包含500 ppm以下之三聚物至十聚物之環狀矽氧烷化合物,上述無機填料之含量為60重量%以上、92重量%以下,於在150℃下加熱2小時而獲得硬化物時,上述硬化物之導電率為50 μS/cm以下。 於本發明之半導體裝置及半導體元件保護用材料之某一特定之態樣中,上述熱硬化性化合物包含環氧化合物或聚矽氧化合物。 於本發明之半導體裝置及半導體元件保護用材料之某一特定之態樣中,上述熱硬化性化合物包含聚矽氧化合物。 於本發明之半導體裝置及半導體元件保護用材料之某一特定之態樣中,上述硬化劑為烯丙基苯酚酚醛清漆化合物。 於本發明之半導體裝置及半導體元件保護用材料之某一特定之態樣中,上述熱硬化性化合物包含可撓性環氧化合物。 於本發明之半導體裝置及半導體元件保護用材料之某一特定之態樣中,上述熱硬化性化合物包含上述可撓性環氧化合物、及與可撓性環氧化合物不同之環氧化合物。 於本發明之半導體裝置及半導體元件保護用材料之某一特定之態樣中,上述半導體元件保護用材料所含之上述可撓性環氧化合物係具有將伸烷基二醇基重複9個以上而成之結構單元之聚伸烷基二醇二縮水甘油醚。 於本發明之半導體元件保護用材料之某一特定之態樣中,上述半導體元件保護用材料不含水或包含1000 ppm以下之水。 於本發明之半導體裝置之某一特定之態樣中,上述半導體裝置具備連接對象構件,且將上述半導體元件自與上述第1表面相反之第2表面側而封裝於上述連接對象構件上。 於本發明之半導體裝置之某一特定之態樣中,上述半導體裝置具備表面具有第2電極之連接對象構件,上述半導體元件於與上述第1表面側相反之第2表面側具有第1電極,上述半導體元件之第1電極與表面具有第2電極之連接對象構件中之上述第2電極電性連接。 於本發明之半導體裝置之某一特定之態樣中,於上述硬化物之與上述半導體元件側相反之表面上配置有保護膜,或上述硬化物之與上述半導體元件側相反之表面露出。 本發明之半導體元件保護用材料係用於為了保護半導體元件而於上述半導體元件之表面上形成硬化物,且於上述硬化物之與上述半導體元件側相反之表面上配置保護膜而獲得半導體裝置,或者用於獲得為了保護半導體元件而於上述半導體元件之表面上形成硬化物、且上述硬化物之與上述半導體元件側相反之表面露出之半導體裝置。 [發明之效果] 本發明之半導體元件裝置具備半導體元件、及配置於上述半導體元件之第1表面上之硬化物,上述硬化物係半導體元件保護用材料之硬化物,上述半導體元件保護用材料包含熱硬化性化合物、硬化劑或硬化觸媒、及導熱率為10 W/m・K以上之無機填料,上述半導體元件保護用材料不含三聚物至十聚物之環狀矽氧烷化合物,或包含500 ppm以下三聚物至十聚物之環狀矽氧烷化合物,上述硬化物中之上述無機填料之含量為60重量%以上、92重量%以下,上述硬化物之導電率為50 μS/cm以下,因此硬化物之散熱性優異,硬化物之孔隙較少,硬化物之絕緣可靠性優異,可良好地保護半導體元件。 本發明之半導體元件保護用材料包含熱硬化性化合物、硬化劑或硬化觸媒、及導熱率為10 W/m・K以上之無機填料,不含三聚物至十聚物之環狀矽氧烷化合物,或包含500 ppm以下之三聚物至十聚物之環狀矽氧烷化合物,不含水或包含1000 ppm以下之水,上述無機填料之含量為60重量%以上、92重量%以下,於在150℃下加熱2小時而獲得硬化物時,上述硬化物之導電率為50 μS/cm以下,因此可獲得散熱性優異、孔隙較少、絕緣可靠性優異之硬化物。因此,為了保護半導體元件,將本發明之半導體元件保護用材料塗佈於上述半導體元件之表面上並使其硬化,藉此可良好地保護上述半導體元件。又,為了保護封裝於連接對象構件上之半導體元件,將本發明之半導體元件保護用材料塗佈於上述半導體元件之與上述連接對象構件側相反之表面上並使其硬化,藉此可良好地保護上述半導體元件。[Problems to be Solved by the Invention] Patent Documents 1 to 4 specifically disclose powder or solid epoxy resin compositions. Such a powder or solid epoxy resin composition has low coatability and it is difficult to arrange it in a specific area with high accuracy. In addition, the cured product of the previous epoxy resin composition may have low heat dissipation. Furthermore, the hardened product of the previous epoxy resin composition may have pores. If voids are generated, peeling of the hardened product may occur. In addition, Patent Documents 1 to 4 mainly describe sealing applications as specific uses of epoxy resin compositions. In Patent Document 5, the specific use of the epoxy resin composition mainly describes the use of the filling material in the case. On the other hand, in the semiconductor device, it is preferable that the semiconductor element is sufficiently protected even if the semiconductor element is not sealed. In addition, the epoxy resin compositions described in Patent Documents 1 to 5 are not usually applied on the surface of the semiconductor element in order to protect the semiconductor element. In addition, in recent years, from the viewpoint of thinness or designability of devices, there has been a demand for reduction of IC drivers. If the number of IC drivers is reduced, the burden on the semiconductor element increases, and it tends to carry a considerable amount of heat. The previous hardened material has low heat dissipation, so a hardened material with high heat dissipation is sought. An object of the present invention is to provide a semiconductor device having excellent heat dissipation of a cured product, few voids in the cured product, excellent insulation reliability of the cured product, and good protection of semiconductor devices. In addition, an object of the present invention is to provide a semiconductor device protection material for coating a surface of a semiconductor device in order to protect the semiconductor device and forming a hardened material on the surface of the semiconductor device. Furthermore, an object of the present invention is to provide a semiconductor device protection material that can obtain a hardened product excellent in heat dissipation, less voids, and excellent insulation reliability in the above-mentioned applications, and can well protect semiconductor devices. [Technical Means for Solving the Problems] In a broad aspect of the present invention, there is provided a semiconductor device including a semiconductor element and a hardened object disposed on the first surface of the semiconductor element, the hardened object being used for semiconductor element protection The hardened material of the material, the material for semiconductor device protection includes a thermosetting compound, a curing agent or a curing catalyst, and an inorganic filler having a thermal conductivity of 10 W / m · K or more, and the material for semiconductor device protection does not contain a trimer Cyclosiloxane compound to decamer, or cyclic siloxane compound containing trimer to depolymer from 500 ppm or less, the content of the above-mentioned inorganic filler in the above hardened product is 60% by weight or more, 92 When the weight is less than or equal to 50%, the conductivity of the cured product is 50 μS / cm or less. In a broad aspect of the present invention, a material for protecting a semiconductor element is provided, which is applied to the surface of the semiconductor element for protection of the semiconductor element, and a hardened substance is formed on the surface of the semiconductor element, and It is different from the one which is arranged between the semiconductor element and the other connection object member and forms the hardened object which adheres and fixes the semiconductor element and the other connection object member without peeling off. Media, and inorganic fillers with thermal conductivity above 10 W / m · K, cyclic siloxane compounds without terpolymer to decamer, or cyclic containing terpolymer to decamer with 500 ppm or less For the siloxane compound, the content of the inorganic filler is 60% by weight or more and 92% by weight or less. When the cured product is obtained by heating at 150 ° C for 2 hours, the conductivity of the cured product is 50 μS / cm or less. In a broad aspect of the present invention, a material for protecting a semiconductor element is provided, which is applied to the surface of the semiconductor element opposite to the side of the connection object to protect the semiconductor element encapsulated on the connection object On the surface of the semiconductor element opposite to the connection member side, a hardened material is formed, and contains a thermosetting compound, a curing agent or a curing catalyst, and an inorganic filler having a thermal conductivity of 10 W / m · K or more , Cyclic siloxane compounds that do not contain terpolymers to demers, or cyclic siloxane compounds containing terpolymers to demers below 500 ppm, the content of the above inorganic filler is more than 60% by weight, 92% by weight or less, when heated at 150 ° C. for 2 hours to obtain a cured product, the conductivity of the cured product is 50 μS / cm or less. In a specific aspect of the semiconductor device and semiconductor device protection material of the present invention, the thermosetting compound includes an epoxy compound or a polysiloxane compound. In a specific aspect of the semiconductor device and semiconductor device protection material of the present invention, the thermosetting compound includes polysilicon compound. In a specific aspect of the semiconductor device and semiconductor device protection material of the present invention, the hardener is an allylphenol novolak compound. In a specific aspect of the semiconductor device and semiconductor device protection material of the present invention, the thermosetting compound includes a flexible epoxy compound. In a specific aspect of the semiconductor device and semiconductor device protection material of the present invention, the thermosetting compound includes the flexible epoxy compound and an epoxy compound different from the flexible epoxy compound. In a specific aspect of the semiconductor device and semiconductor device protection material of the present invention, the flexible epoxy compound contained in the semiconductor device protection material has 9 or more alkylene glycol groups repeated The resulting structural unit of polyalkylene glycol diglycidyl ether. In a specific aspect of the material for semiconductor device protection of the present invention, the material for semiconductor device protection does not contain water or contains water of 1000 ppm or less. In a specific aspect of the semiconductor device of the present invention, the semiconductor device includes a connection target member, and the semiconductor element is packaged on the connection target member from a second surface side opposite to the first surface. In a specific aspect of the semiconductor device of the present invention, the semiconductor device includes a connection object member having a second electrode on a surface, and the semiconductor element has a first electrode on a second surface side opposite to the first surface side, The first electrode of the semiconductor element is electrically connected to the second electrode in the connection object member having the second electrode on the surface. In a specific aspect of the semiconductor device of the present invention, a protective film is disposed on the surface of the cured product opposite to the semiconductor element side, or the surface of the cured product opposite to the semiconductor element side is exposed. The material for protecting a semiconductor element of the present invention is used to form a hardened material on the surface of the semiconductor element in order to protect the semiconductor element, and a protective film is arranged on the surface of the hardened material opposite to the side of the semiconductor element to obtain a semiconductor device, Or for obtaining a semiconductor device in which a hardened material is formed on the surface of the semiconductor element in order to protect the semiconductor element, and the surface of the hardened material opposite to the semiconductor element side is exposed. [Effects of the Invention] The semiconductor element device of the present invention includes a semiconductor element and a cured product disposed on the first surface of the semiconductor element. The cured product is a cured product of a semiconductor element protection material. The semiconductor element protection material includes Thermosetting compounds, curing agents or curing catalysts, and inorganic fillers with a thermal conductivity of 10 W / m · K or more. The above-mentioned materials for protecting semiconductor devices do not contain cyclic siloxane compounds from trimer to decamer. Or a cyclic siloxane compound containing a terpolymer to a terpolymer of 500 ppm or less, the content of the inorganic filler in the hardened product is 60% by weight or more and 92% by weight or less, and the conductivity of the hardened product is 50 μS / cm or less, the cured product is excellent in heat dissipation, the porosity of the cured product is small, and the insulation reliability of the cured product is excellent, and the semiconductor device can be well protected. The material for semiconductor device protection of the present invention includes a thermosetting compound, a curing agent or a curing catalyst, and an inorganic filler having a thermal conductivity of 10 W / m · K or more, and does not contain cyclic silica from trimer to decamer. Alkane compounds, or cyclic silicone compounds containing terpolymers up to 500 ppm, containing no water or water containing less than 1000 ppm, the content of the above inorganic fillers is 60% by weight or more and 92% by weight or less, When a cured product is obtained by heating at 150 ° C. for 2 hours, the conductivity of the cured product is 50 μS / cm or less. Therefore, a cured product having excellent heat dissipation, few voids, and excellent insulation reliability can be obtained. Therefore, in order to protect the semiconductor element, the semiconductor element protection material of the present invention is coated on the surface of the semiconductor element and hardened, thereby the semiconductor element can be well protected. In addition, in order to protect the semiconductor element encapsulated on the connection object member, the semiconductor element protection material of the present invention is applied to the surface of the semiconductor element opposite to the connection object member side and hardened, whereby good Protect the above semiconductor elements.

以下,對本發明詳細地進行說明。 本發明之半導體裝置具備半導體元件及硬化物。於本發明之半導體裝置中,上述硬化物係配置於上述半導體元件之第1表面上。於本發明之半導體裝置中,上述硬化物係半導體元件保護用材料之硬化物。 本發明之半導體元件保護用材料於某一特定之態樣中,係用於為了保護半導體元件而塗佈於上述半導體元件之表面上,於上述半導體元件之表面上形成硬化物。本發明之半導體元件保護用材料與配置於半導體元件與其他連接對象構件之間、形成將上述半導體元件與上述其他連接對象構件以不剝離之方式接著及固定之硬化物者(材料)不同。 又,本發明之半導體元件保護用材料於某一特定之態樣中,係用於為了保護封裝於連接對象構件上之半導體元件而塗佈於上述半導體元件之與上述連接對象構件側相反之表面上,於上述半導體元件之表面上形成硬化物。 本發明之半導體裝置所使用之半導體元件保護用材料及本發明之半導體元件保護用材料包含(A)熱硬化性化合物、(B)硬化劑或硬化觸媒((B1)硬化劑或(B2)硬化觸媒)、及(C)導熱率為10 W/m・K以上之無機填料。本發明之半導體裝置所使用之半導體元件保護用材料及本發明之半導體元件保護用材料例如係塗佈於半導體元件之表面上,故而較佳為於23℃下為液狀,較佳為於23℃下並非固體。再者,液狀亦包含黏稠之糊劑。 本發明之半導體裝置所使用之半導體元件保護用材料及本發明之半導體元件保護用材料不含(X)三聚物至十聚物之環狀矽氧烷化合物,或包含500 ppm以下之(X)三聚物至十聚物之環狀矽氧烷化合物。本發明之半導體裝置所使用之半導體元件保護用材料及本發明之半導體元件保護用材料中之低分子量之(X)矽氧烷化合物之含量較少。於本發明之半導體裝置之硬化物100重量%中,(C)導熱率為10 W/m・K以上之無機填料之含量為60重量%以上、92重量%以下。於本發明之半導體裝置所使用之半導體元件保護用材料100重量%中,(C)導熱率為10 W/m・K以上之無機填料之含量較佳為60重量%以上,較佳為92重量%以下。於本發明之半導體元件保護用材料100重量%中,(C)導熱率為10 W/m・K以上之無機填料之含量為60重量%以上、92重量%以下。 本發明之半導體裝置之硬化物及本發明之半導體元件保護用材料之硬化物之導電率為50 μS/cm以下。 上述半導體元件保護用材料可塗佈於半導體元件之表面上。例如可選擇性地將上述半導體元件保護用材料高精度地塗佈於半導體元件之欲提高散熱性之部位之表面上。 本發明之半導體裝置具備上述構成,故而硬化物之散熱性優異。因此,可使熱自半導體元件之表面經由硬化物充分地釋放。因此,可有效地抑制半導體裝置之熱劣化。 又,本發明之半導體元件保護用材料具備上述構成,故而硬化物之散熱性優異。因此,藉由將硬化物配置於半導體元件之表面上,可使熱自半導體元件之表面經由硬化物充分地釋放。因此,可有效地抑制半導體裝置之熱劣化。 進而,於本發明之半導體裝置及本發明之半導體元件保護用材料中,可使硬化物中不易產生孔隙,從而可使硬化物不易自半導體元件之表面剝離。 進而,於本發明之半導體裝置中,硬化物之絕緣可靠性優異。因此,可良好地保護上述半導體元件。 又,於本發明之半導體元件保護用材料中,可獲得絕緣可靠性優異之硬化物。因此,為了保護半導體元件,將本發明之半導體元件保護用材料塗佈於上述半導體元件之表面上並使其硬化,藉此可良好地保護上述半導體元件。又,為了保護封裝於連接對象構件上之半導體元件,將本發明之半導體元件保護用材料塗佈於上述半導體元件之與上述連接對象構件側相反之表面上並使其硬化,藉此可良好地保護上述半導體元件。 就提高絕緣可靠性之觀點而言,(X)三聚物至十聚物之環狀矽氧烷化合物之含量至多為500 ppm。就進一步提高絕緣可靠性之觀點而言,(X)三聚物至十聚物之環狀矽氧烷化合物之含量較佳為250 ppm以下。(X)三聚物至十聚物之環狀矽氧烷化合物之含量越少越佳。 所謂三聚物至十聚物之環狀矽氧烷化合物,意指六甲基環三矽氧烷、八甲基環四矽氧烷、十甲基環五矽氧烷、十二甲基環六矽氧烷、十四甲基環七矽氧烷、十六甲基環八矽氧烷、十八甲基環九矽氧烷、二十甲基環十矽氧烷。 就進一步有效地抑制孔隙之觀點而言,本發明之半導體元件保護用材料較佳為不含(Y)水或包含1000 ppm以下之(Y)水。就更進一步抑制孔隙之觀點而言,(Y)水之含量較佳為800 ppm以下。(Y)水之含量越少越佳。 上述水之含量係使用卡氏水分計(京都電子工業公司製造之「MKV-710B」)進行測定。 就提高絕緣可靠性之觀點而言,本發明之半導體裝置之上述硬化物之導電率為50 μS/cm以下。就提高絕緣可靠性之觀點而言,於在150℃下將本發明之半導體元件保護用材料加熱2小時而獲得硬化物時,上述硬化物之導電率為50 μS/cm以下。就進一步提高絕緣可靠性之觀點而言,上述硬化物之導電率較佳為30 μS/cm以下。上述硬化物之導電率之下限並無特別限定。 上述導電率係以如下方式進行測定。對於本發明之半導體裝置而言,準備上述半導體裝置之硬化物。對於本發明之半導體裝置保護用材料而言,使上述半導體元件保護用材料於150℃下硬化2小時而獲得硬化物。將該等硬化物粉碎成5 mm見方左右,向粉碎物2.5 g中添加離子交換水25 mL,並於PCT(121℃±2℃/濕度100%/2 atm之槽)中放置20 Hr。其後,獲得冷卻至室溫(25℃)而得之萃取液作為試驗液。使用導度計(東亞電波工業公司製造之電導計「CM-30G」、「CM-42X」等)測定該試驗液之導電率。 就進一步提高塗佈性之觀點而言,上述半導體元件保護用材料之25℃及10 rpm下之黏度較佳為40 Pa・s以上,更佳為50 Pa・s以上,且較佳為140 Pa・s以下,更佳為130 Pa・s以下。 上述黏度係使用B型黏度計(東機產業公司製造之「TVB-10型」)進行測定。 就進一步提高硬化性之觀點而言,上述半導體元件保護用材料較佳為包含(B1)硬化劑及(D)硬化促進劑。 又,就提高半導體元件保護用材料對半導體元件之表面之潤濕性、進一步提高硬化物之柔軟性、進而進一步提高硬化物之耐濕性之觀點而言,上述半導體元件保護用材料較佳為包含(E)偶合劑。 就有效地提高硬化物之絕緣可靠性之觀點而言,上述半導體元件保護用材料較佳為包含(F)離子捕捉劑。 以下,對可用於上述半導體元件保護用材料之各成分之詳細內容進行說明。 ((A)熱硬化性化合物) 作為(A)熱硬化性化合物,可列舉氧雜環丁烷化合物、環氧化合物、環硫化合物、(甲基)丙烯酸系化合物、酚化合物、胺基化合物、不飽和聚酯化合物、聚胺基甲酸酯化合物、聚矽氧化合物及聚醯亞胺化合物等。(A)熱硬化性化合物可僅使用1種,亦可併用2種以上。 就有效地發揮本發明之效果、進一步提高耐熱性、且更不易產生龜裂之觀點而言,(A)熱硬化性化合物較佳為包含(A1)環氧化合物或(A2)聚矽氧化合物。(A)熱硬化性化合物可包含(A1)環氧化合物,亦可包含(A2)聚矽氧化合物。就進一步抑制暴露於高溫下後之連接對象構件之翹曲之觀點而言,(A2)聚矽氧化合物之分子量較佳為300以上。就進一步抑制暴露於高溫下後之連接對象構件之翹曲之觀點而言,(A)熱硬化性化合物較佳為包含(A2)聚矽氧化合物。 於上述半導體元件保護用材料100重量%中,(A)熱硬化性化合物之含量較佳為1重量%以上,更佳為2重量%以上,且較佳為20重量%以下,更佳為15重量%以下,進而較佳為10重量%以下,尤佳為8重量%以下。若(A)熱硬化性化合物之含量為上述下限以上及上述上限以下,則半導體元件保護用材料之塗佈性、硬化物之柔軟性及耐濕性變得更良好,硬化物對半導體元件之接著性變得更良好,可進一步抑制對保護膜之貼附。 於上述半導體元件保護用材料100重量%中,(A1)環氧化合物與(A2)聚矽氧化合物之合計含量較佳為1重量%以上,更佳為2重量%以上,且較佳為20重量%以下,更佳為15重量%以下。若(A1)環氧化合物與(A2)聚矽氧化合物之合計含量為上述下限以上及上述上限以下,則半導體元件保護用材料之塗佈性、硬化物之柔軟性及耐濕性變得更良好,硬化物對半導體元件之接著性變得更良好,可進一步抑制對保護膜之貼附。 (A1)環氧化合物: 於上述半導體元件保護用材料100重量%中,(A1)環氧化合物之含量較佳為1重量%以上,更佳為2重量%以上,且較佳為10重量%以下,更佳為8重量%以下。若(A1)環氧化合物之含量為上述下限以上及上述上限以下,則半導體元件保護用材料之塗佈性、硬化物之柔軟性及耐濕性變得更良好,硬化物對半導體元件之接著性變得更良好,可進一步抑制對保護膜之貼附。 作為(A1)環氧化合物,可列舉(A11)可撓性環氧化合物及(A12)與可撓性環氧化合物不同之環氧化合物。就有效地發揮本發明之效果之觀點而言,(A)熱硬化性化合物較佳為包含(A11)可撓性環氧化合物及(A12)與可撓性環氧化合物不同之環氧化合物。 (A12)與可撓性環氧化合物不同之環氧化合物不具有可撓性。藉由將(A12)環氧化合物與(A11)可撓性環氧化合物一併使用,半導體元件保護用材料之硬化物之耐濕性增高,可降低對保護膜之貼附性。(A12)環氧化合物可僅使用1種,亦可併用2種以上。 (A)熱硬化性化合物較佳為包含(A11)可撓性環氧化合物。藉由使用(A11)可撓性環氧化合物,可提高硬化物之柔軟性。藉由使用(A11)可撓性環氧化合物,不易因對半導體元件之變形應力等而產生半導體元件之損傷,進而可使硬化物不易自半導體元件之表面剝離。(A11)可撓性環氧化合物可僅使用1種,亦可併用2種以上。 作為(A11)可撓性環氧化合物,可列舉:聚伸烷基二醇二縮水甘油醚、聚丁二烯二縮水甘油醚、硫化物改性環氧樹脂、及聚環氧烷改性雙酚A型環氧樹脂等。就進一步提高硬化物之柔軟性之觀點而言,較佳為聚伸烷基二醇二縮水甘油醚。 就進一步提高硬化物之柔軟性而提高接著力之觀點而言,上述聚伸烷基二醇二縮水甘油醚較佳為具有將伸烷基二醇基重複9個以上而成之結構單元。伸烷基之重複數之上限並無特別限定。伸烷基之重複數亦可為30以下。上述伸烷基之碳數較佳為2以上,較佳為5以下。 作為上述聚伸烷基二醇二縮水甘油醚,可列舉聚乙二醇二縮水甘油醚、聚丙二醇二縮水甘油醚及聚四亞甲基二醇二縮水甘油醚等。 於上述半導體元件保護用材料100重量%中,(A11)可撓性環氧化合物之含量較佳為3重量%以上,更佳為5重量%以上,且較佳為10重量%以下,更佳為8重量%以下。若(A11)可撓性環氧化合物之含量為上述下限以上,則硬化物之柔軟性進一步增高。若(A11)可撓性環氧化合物之含量為上述上限以下,則半導體元件保護用材料之塗佈性進一步增高。 於上述半導體元件保護用材料100重量%中,(A11)可撓性環氧化合物與(A12)環氧化合物之合計含量較佳為5重量%以上,更佳為8重量%以上,且較佳為15重量%以下,更佳為12重量%以下。若(A11)可撓性環氧化合物與(A12)環氧化合物之合計含量為上述下限以上及上述上限以下,則半導體元件保護用材料之塗佈性、硬化物之柔軟性及耐濕性變得更良好,硬化物對半導體元件之接著性變得更良好,可進一步抑制對保護膜之貼附。 作為(A12)環氧化合物,可列舉:具有雙酚骨架之環氧化合物、具有二環戊二烯骨架之環氧化合物、具有萘骨架之環氧化合物、具有金剛烷骨架之環氧化合物、具有茀骨架之環氧化合物、具有聯苯骨架之環氧化合物、具有雙(縮水甘油氧基苯基)甲烷骨架之環氧化合物、具有 骨架之環氧化合物、具有蒽骨架之環氧化合物、及具有芘骨架之環氧化合物等。亦可使用該等之氫化物或改性物。(A12)環氧化合物較佳為並非聚伸烷基二醇二縮水甘油醚。 就本發明之效果更優異之方面而言,(A12)環氧化合物較佳為具有雙酚骨架之環氧化合物(雙酚型環氧化合物)。 作為上述具有雙酚骨架之環氧化合物,例如可列舉具有雙酚A型、雙酚F型或雙酚S型之雙酚骨架之環氧單體等。 作為上述具有二環戊二烯骨架之環氧化合物,可列舉二氧化二環戊二烯、及具有二環戊二烯骨架之苯酚酚醛清漆環氧單體等。 作為上述具有萘骨架之環氧化合物,可列舉1-縮水甘油基萘、2-縮水甘油基萘、1,2-二縮水甘油基萘、1,5-二縮水甘油基萘、1,6-二縮水甘油基萘、1,7-二縮水甘油基萘、2,7-二縮水甘油基萘、三縮水甘油基萘、及1,2,5,6-四縮水甘油基萘等。 作為上述具有金剛烷骨架之環氧化合物,可列舉1,3-雙(4-縮水甘油氧基苯基)金剛烷、及2,2-雙(4-縮水甘油氧基苯基)金剛烷等。 作為上述具有茀骨架之環氧化合物,可列舉:9,9-雙(4-縮水甘油氧基苯基)茀、9,9-雙(4-縮水甘油氧基-3-甲基苯基)茀、9,9-雙(4-縮水甘油氧基-3-氯苯基)茀、9,9-雙(4-縮水甘油氧基-3-溴苯基)茀、9,9-雙(4-縮水甘油氧基-3-氟苯基)茀、9,9-雙(4-縮水甘油氧基-3-甲氧基苯基)茀、9,9-雙(4-縮水甘油氧基-3,5-二甲基苯基)茀、9,9-雙(4-縮水甘油氧基-3,5-二氯苯基)茀、及9,9-雙(4-縮水甘油氧基-3,5-二溴苯基)茀等。 作為上述具有聯苯骨架之環氧化合物,可列舉4,4'-二縮水甘油基聯苯、及4,4'-二縮水甘油基-3,3',5,5'-四甲基聯苯等。 作為上述具有雙(縮水甘油氧基苯基)甲烷骨架之環氧化合物,可列舉:1,1'-雙(2,7-縮水甘油氧基萘基)甲烷、1,8'-雙(2,7-縮水甘油氧基萘基)甲烷、1,1'-雙(3,7-縮水甘油氧基萘基)甲烷、1,8'-雙(3,7-縮水甘油氧基萘基)甲烷、1,1'-雙(3,5-縮水甘油氧基萘基)甲烷、1,8'-雙(3,5-縮水甘油氧基萘基)甲烷、1,2'-雙(2,7-縮水甘油氧基萘基)甲烷、1,2'-雙(3,7-縮水甘油氧基萘基)甲烷、及1,2'-雙(3,5-縮水甘油氧基萘基)甲烷等。 作為上述具有 骨架之環氧化合物,可列舉1,3,4,5,6,8-六甲基-2,7-雙-氧雜環丙基甲氧基-9-苯基-9H- 等。 相對於(A11)可撓性環氧化合物100重量份,(A12)環氧化合物之含量較佳為10重量份以上,更佳為20重量份以上,且較佳為100重量份以下,更佳為90重量份以下。若(A12)環氧化合物之含量為上述下限以上,則半導體元件保護用材料之塗佈性進一步增高,硬化物對半導體元件之接著性進一步增高。若(A12)環氧化合物之含量為上述上限以下,則硬化物之柔軟性進一步增高。 (A2)聚矽氧化合物例如包含具有鍵結於矽原子之烯基之聚矽氧化合物、及具有鍵結於矽原子之氫原子之聚矽氧化合物。具有鍵結於矽原子之烯基之聚矽氧化合物亦可不具有鍵結於矽原子之氫原子。 上述具有鍵結於矽原子之烯基之聚矽氧化合物較佳為下述式(1A)所表示之聚矽氧化合物、下述式(2A)所表示之聚矽氧化合物、或下述式(3A)所表示之聚矽氧化合物。 (R1R2R3SiO1/2 )a (R4R5SiO2/2 )b …(1A) 上述式(1A)中,a及b滿足0.01≦a≦0.2、0.8≦b≦0.99,R1~R5之1 mol%以上、20 mol%以下表示烯基,R1~R5之80 mol%以上、99 mol%以下表示甲基及苯基,烯基、甲基及苯基以外之R1~R5表示碳數2~6之烷基。 (R1R2R3SiO1/2 )a (SiO4/2 )b …(2A) 上述式(2A)中,a及b滿足0.7≦a≦0.9、0.1≦b≦0.3,R1~R3之1 mol%以上、33 mol%以下表示烯基,R1~R3之67 mol%以上、99 mol%以下表示甲基及苯基,烯基、甲基及苯基以外之R1~R3表示碳數2~6之烷基。R1~R3之1 mol%以上、20 mol%以下亦可表示烯基,R1~R3之80 mol%以上、99 mol%以下亦可表示甲基及苯基。 (R1R2R3SiO1/2 )a (R4R5SiO2/2 )b (R6SiO3/2 )c …(3A) 上述式(3A)中,a、b及c滿足0.05≦a≦0.3、0≦b≦0.8、0.15≦c≦0.85,R1~R6之2 mol%以上、20 mol%以下表示烯基,R1~R6之80 mol%以上、95 mol%以下表示甲基及苯基,烯基、甲基及苯基以外之R1~R6表示碳數2~6之烷基。 上述具有鍵結於矽原子之氫原子之聚矽氧化合物較佳為下述式(1B)所表示之聚矽氧化合物。 (R1R2R3SiO1/2 )a (R4R5SiO2/2 )b …(1B) 上述式(1B)中,a及b滿足0.1≦a≦0.67、0.33≦b≦0.9,R1~R5之1 mol%以上、25 mol%以下表示氫原子,R1~R5之75 mol%以上、99 mol%以下表示甲基及苯基,氫原子、甲基及苯基以外之R1~R5表示碳數2~6之烷基。 (A2)聚矽氧化合物較佳為包含上述式(1A)所表示之聚矽氧化合物。(A2)聚矽氧化合物較佳為包含上述式(1A)所表示之聚矽氧化合物、及上述式(2A)所表示之聚矽氧化合物,或包含上述式(1A)所表示之聚矽氧化合物、及上述式(3A)所表示之聚矽氧化合物。 就有效地提高硬化物之接著性、有效地提高硬化物之剝離之觀點而言,較佳為(A)熱硬化性化合物包含上述式(2A)或(3A)所表示之聚矽氧化合物、及上述式(1B)所表示之聚矽氧化合物作為(A1)聚矽氧化合物。就提高絕緣可靠性之觀點而言,較佳為(A)熱硬化性化合物包含上述式(3A)所表示之聚矽氧化合物、及上述式(1B)所表示之聚矽氧化合物作為(A1)聚矽氧化合物。就進一步抑制連接對象構件之翹曲之觀點而言,較佳為(A)熱硬化性化合物包含上述式(1A)所表示之聚矽氧化合物、及上述式(1B)所表示之聚矽氧化合物作為(A1)聚矽氧化合物。 於上述半導體元件保護用材料100重量%中,(A2)聚矽氧化合物之含量較佳為5重量%以上,更佳為8重量%以上,且較佳為20重量%以下,更佳為15重量%以下。若(A2)聚矽氧化合物之含量為上述下限以上及上述上限以下,則半導體元件保護用材料之塗佈性、硬化物之柔軟性及耐濕性變得更良好,硬化物對半導體元件之接著性變得更良好,可進一步抑制對保護膜之貼附。 相對於上述具有鍵結於矽原子之氫原子之聚矽氧化合物100重量份,上述具有鍵結於矽原子之烯基之聚矽氧化合物之含量較佳為10重量份以上,且較佳為400重量份以下。若滿足該含量之關係,則半導體元件保護用材料之塗佈性、硬化物之柔軟性及耐濕性變得更良好,硬化物對半導體元件之接著性變得更良好,可進一步抑制對保護膜之貼附。 ((B)硬化劑或硬化觸媒) 作為(B)硬化劑或硬化觸媒,可使用(B1)硬化劑,亦可使用(B2)硬化觸媒。於使用(A1)環氧化合物之情形時,較佳為(B1)硬化劑。於使用(A2)聚矽氧化合物之情形時,較佳為(B2)硬化觸媒。 (B1)硬化劑於23℃下可為液狀,亦可為固態。就進一步提高半導體元件保護用材料之塗佈性之觀點而言,(B1)硬化劑較佳為於23℃下為液狀之硬化劑。又,藉由使用於23℃下為液狀之硬化劑,半導體元件保護用材料對半導體元件之表面之潤濕性增高。(B1)硬化劑可僅使用1種,亦可併用2種以上。(B2)硬化觸媒可僅使用1種,亦可併用2種以上。 作為(B1)硬化劑,可列舉胺化合物(胺硬化劑)、咪唑化合物(咪唑硬化劑)、酚化合物(酚硬化劑)及酸酐(酸酐硬化劑)等。(B1)硬化劑亦可不為咪唑化合物。 就進一步抑制硬化物中之孔隙之產生、進一步提高硬化物之耐熱性之觀點而言,(B1)硬化劑較佳為酚化合物。 就進一步提高半導體元件保護用材料之塗佈性、進一步抑制硬化物中之孔隙之產生、進一步提高硬化物之耐熱性之觀點而言,(B1)硬化劑較佳為具有烯丙基,較佳為上述酚化合物具有烯丙基。 作為上述酚化合物,可列舉:苯酚酚醛清漆、鄰甲酚酚醛清漆、對甲酚酚醛清漆、第三丁基苯酚酚醛清漆、二環戊二烯甲酚、聚對乙烯基苯酚、雙酚A型酚醛清漆、苯二甲基改性酚醛清漆、十氫萘改性酚醛清漆、聚(二-鄰羥基苯基)甲烷、聚(二-間羥基苯基)甲烷、及聚(二-對羥基苯基)甲烷等。 於使用(B1)硬化劑之情形時,相對於(A)熱硬化性化合物100重量份,(B1)硬化劑之含量較佳為50重量份以上,更佳為75重量份以上,進而較佳為100重量份以上,且較佳為250重量份以下,更佳為225重量份以下,進而較佳為200重量份以下。若(B1)硬化劑之含量為上述下限以上,則可使半導體元件保護用材料良好地硬化。若(B1)硬化劑之含量為上述上限以下,則硬化物內之無助於硬化之(B1)硬化劑之殘存量減少。 作為(B2)硬化觸媒,可列舉矽氫化反應用觸媒及縮合觸媒等金屬觸媒等。 作為上述硬化觸媒,例如可列舉錫系觸媒、鉑系觸媒、銠系觸媒及鈀系觸媒等。為了可提高透明性,較佳為鉑系觸媒。 上述矽氫化反應用觸媒係使聚矽氧化合物中之鍵結於矽原子之氫原子與聚矽氧化合物中之烯基進行矽氫化反應之觸媒。上述矽氫化反應用觸媒可僅使用1種,亦可併用2種以上。 作為上述鉑系觸媒,可列舉鉑粉末、氯化鉑酸、鉑-烯基矽氧烷錯合物、鉑-烯烴錯合物及鉑-羰基錯合物。尤佳為鉑-烯基矽氧烷錯合物或鉑-烯烴錯合物。 作為上述鉑-烯基矽氧烷錯合物中之烯基矽氧烷,例如可列舉1,3-二乙烯基-1,1,3,3-四甲基二矽氧烷、及1,3,5,7-四甲基-1,3,5,7-四乙烯基環四矽氧烷等。作為上述鉑-烯烴錯合物中之烯烴,例如可列舉烯丙醚及1,6-庚二烯等。 為了可提高上述鉑-烯基矽氧烷錯合物及鉑-烯烴錯合物之穩定性,較佳為於上述鉑-烯基矽氧烷錯合物或鉑-烯烴錯合物中添加烯基矽氧烷、有機矽氧烷低聚物、烯丙醚或烯烴。上述烯基矽氧烷較佳為1,3-二乙烯基-1,1,3,3-四甲基二矽氧烷。上述有機矽氧烷低聚物較佳為二甲基矽氧烷低聚物。上述烯烴較佳為1,6-庚二烯。 於使用(B2)硬化觸媒之情形時,相對於(A)熱硬化性化合物100重量份,(B2)硬化觸媒之含量較佳為0.001重量份以上,更佳為0.01重量份以上,進而較佳為0.05重量份以上,且較佳為2重量份以下,更佳為1重量份以下,進而較佳為0.5重量份以下。若(B2)硬化觸媒之含量為上述下限以上,則可使半導體元件保護用材料良好地硬化。若(B2)硬化觸媒之含量為上述上限以下,則硬化物內之無助於硬化之(B2)硬化觸媒之殘存量減少。 ((C)導熱率為10 W/m・K以上之無機填料) 藉由使用(C)導熱率為10 W/m・K以上之無機填料,可將半導體元件保護用材料之塗佈性維持為較高,且可將硬化物之柔軟性維持為較高,並且可提高硬化物之散熱性。(C)無機填料可僅使用1種,亦可併用2種以上。 就進一步提高硬化物之散熱性之觀點而言,(C)無機填料之導熱率較佳為10 W/m・K以上,更佳為15 W/m・K以上,進而較佳為20 W/m・K以上。(C)無機填料之導熱率之上限並無特別限定。導熱率為300 W/m・K左右之無機填料係廣為人知,又,導熱率為200 W/m・K左右之無機填料可容易地獲取。 就有效地提高硬化物之散熱性之觀點而言,(C)無機填料較佳為氧化鋁、氮化鋁或碳化矽。於使用該等較佳之無機填料之情形時,該等無機填料可僅使用1種,亦可併用2種以上。作為(C)無機填料,亦可適當使用上述以外之無機填料。 就將半導體元件保護用材料之塗佈性有效地維持為較高、且將硬化物之柔軟性有效地維持為較高、並且有效地提高硬化物之散熱性之觀點而言,(C)無機填料較佳為導熱率為10 W/m・K以上且為球狀之無機填料。所謂球狀,係指縱橫比(長徑/短徑)為1以上、2以下。 (C)無機填料之平均粒徑較佳為0.1 μm以上,且較佳為150 μm以下。若(C)無機填料之平均粒徑為上述下限以上,則能以高密度容易地填充(C)無機填料。若(C)無機填料之平均粒徑為上述上限以下,則半導體元件保護用材料之塗佈性進一步增高。 所謂上述「平均粒徑」,係根據藉由雷射繞射式粒度分佈測定裝置所測得之體積平均之粒度分佈測定結果所求出之平均粒徑。 於上述硬化物100重量%中及上述半導體元件保護用材料100重量%中,(C)無機填料之含量較佳為60重量%以上、92重量%以下。於上述半導體元件保護用材料100重量%中,(C)無機填料之含量更佳為70重量%以上,進而較佳為80重量%以上,尤佳為82重量%以上,且更佳為90重量%以下。若(C)無機填料之含量為上述下限以上,則硬化物之散熱性進一步增高。若(C)無機填料之含量為上述上限以下,則半導體元件保護用材料之塗佈性進一步增高,硬化物之性狀變得更良好。 ((D)硬化促進劑) 可藉由使用(D)硬化促進劑而使硬化速度加快,使半導體元件保護用材料有效率地硬化。(D)硬化促進劑可僅使用1種,亦可併用2種以上。 作為(D)硬化促進劑,可列舉咪唑化合物、磷化合物、胺化合物、及有機金屬化合物等。其中,就本發明之效果更優異之方面而言,較佳為咪唑化合物。 作為上述咪唑化合物,可列舉:2-十一烷基咪唑、2-十七烷基咪唑、2-甲基咪唑、2-乙基-4-甲基咪唑、2-苯基咪唑、2-苯基-4-甲基咪唑、1-苄基-2-甲基咪唑、1-苄基-2-苯基咪唑、1,2-二甲基咪唑、1-氰基乙基-2-甲基咪唑、1-氰基乙基-2-乙基-4-甲基咪唑、1-氰基乙基-2-十一烷基咪唑、1-氰基乙基-2-苯基咪唑、1-氰基乙基-2-十一烷基咪唑鎓偏苯三酸鹽、1-氰基乙基-2-苯基咪唑鎓偏苯三酸鹽、2,4-二胺基-6-[2'-甲基咪唑基-(1')]-乙基-對稱三、2,4-二胺基-6-[2'-十一烷基咪唑基-(1')]-乙基-對稱三、2,4-二胺基-6-[2'-乙基-4'-甲基咪唑基-(1')]-乙基-對稱三、2,4-二胺基-6-[2'-甲基咪唑基-(1')]-乙基-對稱三異三聚氰酸加成物、2-苯基咪唑異三聚氰酸加成物、2-甲基咪唑異三聚氰酸加成物、2-苯基-4,5-二羥基甲基咪唑及2-苯基-4-甲基-5-二羥基甲基咪唑等。又,可使用公知之咪唑系潛伏性硬化劑。作為具體例,可列舉PN23、PN40、PN-H(商品名,均為Ajinomoto Fine-Techno公司製造)。又,可列舉亦被稱為微膠囊化咪唑之與胺化合物之環氧加成物之羥基進行加成反應而成之硬化促進劑,例如可列舉Novacure HX-3088、Novacure HX-3941、HX-3742、HX-3722(商品名,均為旭化成E-MATERIALS公司製造)等。進而,亦可使用內包咪唑。作為具體例,可列舉TIC-188(商品名,日本曹達公司製造)。 作為上述磷化合物,可列舉三苯基膦等。 作為上述胺化合物,可列舉2,4,6-三(二甲胺甲基)苯酚、二乙胺、三乙胺、二伸乙基四胺、三伸乙基四胺及4,4-二甲胺基吡啶等。 作為上述有機金屬化合物,可列舉環烷酸鋅、環烷酸鈷、辛酸錫、辛酸鈷、雙乙醯丙酮鈷(II)及三乙醯丙酮鈷(III)等。 相對於與(A)熱硬化性化合物之合計100重量份,(D)硬化促進劑之含量較佳為0.1重量份以上,更佳為0.5重量份以上,且較佳為10重量份以下,更佳為8重量份以下。若(D)硬化促進劑之含量為上述下限以上,則可使半導體元件保護用材料良好地硬化。若(D)硬化促進劑之含量為上述上限以下,則硬化物內之無助於硬化之(D)硬化促進劑之殘存量減少。 ((E)偶合劑) 上述半導體元件保護用材料較佳為包含(E)偶合劑。藉由使用(E)偶合劑,半導體元件保護用材料之硬化物之耐濕性進一步增高。(E)偶合劑可僅使用1種,亦可併用2種以上。 於上述硬化物100重量%中及上述半導體元件保護用材料100重量%中,(E)偶合劑之含量較佳為0.1重量%以上,更佳為0.2重量%以上,且較佳為2重量%以下,更佳為1重量%以下。若(E)偶合劑之含量為上述下限以上,則半導體元件保護用材料之硬化物之耐濕性進一步增高。若(E)偶合劑之含量為上述上限以下,則半導體元件保護用材料之塗佈性進一步增高。 上述(E)偶合劑較佳為包含100℃下之重量減少為10重量%以下之矽烷偶合劑、100℃下之重量減少為10重量%以下之鈦酸酯偶合劑、或100℃下之重量減少為10重量%以下之鋁酸酯偶合劑。於使用該等較佳之偶合劑之情形時,該等偶合劑可僅使用1種,亦可併用2種以上。 若100℃下之重量減少為10重量%以下,則於硬化中(E)偶合劑之揮發得到抑制,對半導體元件之潤濕性進一步增高,硬化物之散熱性進一步增高。 再者,100℃下之重量減少可藉由使用紅外水分計(凱特科學研究所公司製造之「FD-720」),以50℃/min之升溫速度升溫至100℃,測定10分鐘後之重量減少而求出。 ((F)離子捕捉劑) 就有效地提高硬化物之絕緣可靠性之觀點而言,上述半導體元件保護用材料較佳為包含(F)離子捕捉劑。(F)離子捕捉劑可僅使用1種,亦可併用2種以上。 (F)離子捕捉劑並無特別限定。作為該(F)離子捕捉劑,可使用先前公知之離子捕捉劑。 作為(F)離子捕捉劑之具體例,可列舉為了防止銅離子化後溶出而作為銅毒抑制劑為人所知之化合物,例如可使用三硫醇化合物、雙酚系還原劑等。作為雙酚系還原劑,可列舉2,2'-亞甲基-雙-(4-甲基-6-第三丁基苯酚)、及4,4'-硫基-雙-(3-甲基-6-第三丁基苯酚)等。又,作為(F)離子捕捉劑之具體例,亦可列舉無機陰離子交換體、無機陽離子交換體及無機兩性離子交換體等,具體而言,可列舉通式BiOX (OH)Y (NO3 )Z [此處,X為0.9~1.1、Y為0.6~0.8、Z為0.2~0.4之正數]所表示之氧化鉍系離子捕捉劑、氧化銻系離子捕捉劑、磷酸鈦系離子捕捉劑、磷酸鋯系離子捕捉劑、以及通式MgX AlY (OH)2X 3Y-2Z (CO3 )Z ・mH2 O[此處,X、Y、Z為滿足2X+3Y-2Z≧0之正數,m為正數]所表示之鋁碳酸鎂系離子捕捉劑等。作為該等離子捕捉劑之市售品,例如可列舉:IXE-100(東亞合成公司製造,磷酸鋯系離子捕捉劑)、IXE-300(東亞合成公司製造,氧化銻系離子捕捉劑)、IXE-400(東亞合成公司製造,磷酸鈦系離子捕捉劑)、IXE-500(東亞合成公司製造,氧化鉍系離子捕捉劑)、IXE-600(東亞合成公司製造,氧化銻・氧化鉍系離子捕捉劑)、DHT-4A(鋁碳酸鎂系離子捕捉劑,協和化學工業公司製造)、及Kyoward KW-2000(鋁碳酸鎂系離子捕捉劑,協和化學工業公司製造)等。就進一步降低硬化物之電氣可靠性之觀點而言,(F)離子捕捉劑較佳為無機陽離子交換體或無機兩性離子交換體。 就進一步抑制遷移而進一步提高絕緣可靠性之觀點而言,上述陽離子交換體較佳為Zr系陽離子交換體或Sb系陽離子交換體,更佳為Zr系陽離子交換體,又,上述陽離子交換體較佳為包含鋯原子。 就進一步抑制遷移而進一步提高絕緣可靠性之觀點而言,上述陰離子交換體較佳為Bi系陰離子交換體、Mg-Al系陰離子交換體或Zr系陰離子交換體,更佳為Mg-Al系陰離子交換體,又,上述陰離子交換體較佳為包含鎂原子與鋁原子。 就進一步抑制遷移而進一步提高絕緣可靠性之觀點而言,上述陽離子交換體之中性交換容量較佳為1 meq/g以上,更佳為2 meq/g以上,且較佳為10 meq/g以下,更佳為4 meq/g以下。 就進一步抑制遷移而進一步提高絕緣可靠性之觀點而言,上述陰離子交換體之中性交換容量較佳為0.1 meq/g以上,更佳為1 meq/g以上,且較佳為10 meq/g以下,更佳為5 meq/g以下。 就進一步抑制遷移而進一步提高絕緣可靠性之觀點而言,上述陽離子交換體之中值徑較佳為0.1 μm以上,更佳為0.5 μm以上,且較佳為10 μm以下,更佳為3 μm以下。 就進一步抑制遷移而進一步提高絕緣可靠性之觀點而言,上述陰離子交換體之中值徑較佳為0.1 μm以上,更佳為0.5 μm以上,且較佳為10 μm以下,更佳為3 μm以下。 就進一步抑制遷移而進一步提高絕緣可靠性之觀點而言,於上述硬化物100重量%中及上述半導體元件保護用材料100重量%中,(F)離子捕捉劑之含量較佳為0.1量%以上,更佳為0.3重量%以上,且較佳為3重量%以下,更佳為2重量%以下。 (其他成分) 上述半導體元件保護用材料亦可視需要包含:巴西棕櫚蠟等天然蠟、聚乙烯蠟等合成蠟、硬脂酸或硬脂酸鋅等高級脂肪酸及其金屬鹽類或石蠟等脫模劑;碳黑、鐵丹等著色劑;溴化環氧樹脂、三氧化銻、氫氧化鋁、氫氧化鎂、硼酸鋅、鉬酸鋅、磷腈等阻燃劑;氧化鉍水合物等無機離子交換體;聚矽氧油、聚矽氧橡膠等低應力化成分;及抗氧化劑等各種添加劑。 上述半導體元件保護用材料較佳為包含分散劑。作為分散劑之具體例,可列舉多羧酸鹽、烷基銨鹽、羥烷基銨鹽、磷酸酯鹽、丙烯酸系嵌段共聚物、及聚合物鹽等。 於上述硬化物100重量%中及上述半導體元件保護用材料100重量%中,分散劑之含量較佳為0.1重量%以上,更佳為0.2重量%以上,且較佳為2重量%以下,更佳為1重量%以下。 (半導體元件保護用材料之其他詳細內容及半導體裝置) 上述半導體元件保護用材料係為了保護半導體元件而塗佈於上述半導體元件之表面上使用。上述半導體元件保護用材料與配置於半導體元件與其他連接對象構件之間、形成將上述半導體元件與上述其他連接對象構件以不剝離之方式接著及固定之硬化物者不同。上述半導體元件保護用材料較佳為被覆半導體元件之表面之被覆材料。上述半導體元件保護用材料較佳為不塗佈於半導體元件之側面上。上述半導體元件保護用材料較佳為與用以對上述半導體元件進行密封之材料不同,較佳為並非用以對上述半導體元件進行密封之密封劑。上述半導體元件保護用材料較佳為並非底部填充材。上述半導體元件於第2表面側具有第1電極,上述半導體元件保護用材料較佳為塗佈於上述半導體元件之與上述第2表面側相反之第1表面上而使用。上述半導體元件保護用材料於半導體裝置中,可較佳地用於為了保護半導體元件而於上述半導體元件之表面上形成硬化物。上述半導體元件保護用材料可較佳地用於為了保護半導體元件而於上述半導體元件之表面上形成硬化物,且可較佳地用於將保護膜配置於上述硬化物之與上述半導體元件側相反之表面上而獲得半導體裝置。於上述半導體裝置中,上述硬化物之導電率較佳為50 μS/cm以下。 作為塗佈上述半導體元件保護用材料之方法,可列舉利用分注器之塗佈方法、利用網版印刷之塗佈方法、及利用噴墨裝置之塗佈方法等。上述半導體元件保護用材料較佳為藉由利用分注器、網版印刷、真空網版印刷或噴墨裝置之塗佈方法進行塗佈後使用。就容易塗佈且於硬化物中更不易產生孔隙之觀點而言,上述半導體元件保護用材料較佳為藉由分注器進行塗佈後使用。 本發明之半導體裝置具備半導體元件、及配置於上述半導體元件之第1表面上之硬化物。於本發明之半導體裝置中,上述硬化物係藉由使上述半導體元件保護用材料硬化而形成。 上述半導體元件保護用材料較佳為用於為了保護半導體元件而於上述半導體元件之表面上形成硬化物,且於上述硬化物之與上述半導體元件側相反之表面上配置保護膜而獲得半導體裝置,或者用於獲得為了保護半導體元件而於上述半導體元件之表面上形成硬化物、且上述硬化物之與上述半導體元件側相反之表面露出之半導體裝置。就更有效地發揮本發明之效果之方面而言,上述半導體元件保護用材料較佳為驅動器IC晶片之保護用材料。 圖1係表示使用本發明之第1實施形態之半導體元件保護用材料之半導體裝置的局部缺口前視剖面圖。 圖1所示之半導體裝置1具備半導體元件2、及配置於半導體元件2之第1表面2a上之硬化物3。硬化物3係藉由使上述半導體元件保護用材料硬化而形成。硬化物3係配置於半導體元件2之第1表面2a上之一部分區域中。 半導體元件2於與第1表面2a側相反之第2表面2b側具有第1電極2A。半導體裝置1進而具備連接對象構件4。連接對象構件4於表面4a具有第2電極4A。半導體元件2與連接對象構件4係經由其他硬化物5(連接部)而接著及固定。半導體元件2係封裝於連接對象構件4上。半導體元件2之第1電極2A與連接對象構件4之第2電極4A對向,且係藉由導電性粒子6而電性連接。亦可藉由第1電極2A與第2電極4A接觸而電性連接。硬化物3係配置於半導體元件2之與配置有第1電極2A之側相反之第1表面2a上。硬化物3係配置於半導體元件2之與連接對象構件4側相反之第1表面2a上。 於硬化物3之與半導體元件2側相反之表面上配置有保護膜7。藉此,不僅可藉由硬化物3而提高散熱性及半導體元件之保護性,而且亦可藉由保護膜7而進一步提高半導體元件之保護性。由於硬化物3係具有上述組成而獲得,故而可抑制硬化物3對保護膜7之貼附。 作為上述連接對象構件,可列舉玻璃基板、玻璃環氧基板及軟性印刷基板等。作為上述軟性印刷基板,可列舉聚醯亞胺基板等樹脂基板等。就更有效地發揮本發明之效果之方面而言,上述連接對象構件較佳為基板,較佳為軟性印刷基板,較佳為樹脂基板,更佳為聚醯亞胺基板。 於半導體元件之表面上,半導體元件保護用材料之硬化物之厚度較佳為400 μm以上,更佳為500 μm以上,且較佳為2000 μm以下,更佳為1900 μm以下。半導體元件保護用材料之硬化物之厚度亦可薄於半導體元件之厚度。 圖2係表示使用本發明之第2實施形態之半導體元件保護用材料之半導體裝置的局部缺口前視剖面圖。 圖2所示之半導體裝置1X具備半導體元件2、及配置於半導體元件2之第1表面2a上之硬化物3X。硬化物3X係藉由使上述半導體元件保護用材料硬化而形成。硬化物3X係配置於半導體元件2之第1表面2a上之整個區域中。於硬化物3X之與半導體元件2側相反之表面上並未配置保護膜。硬化物3X之與半導體元件2側相反之表面露出。 於上述半導體裝置中,較佳為於上述硬化物之與上述半導體元件側相反之表面上配置有保護膜,或上述硬化物之與上述半導體元件側相反之表面露出。 再者,圖1、2所示之結構僅為半導體裝置之一例,半導體元件保護用材料之硬化物之配置結構等可適當變化。 半導體元件保護用材料之硬化物之導熱率並無特別限定,較佳為超過1.1 W/m・K,更佳為1.5 W/m・K以上,進而較佳為1.8 W/m・K以上。 以下,藉由列舉本發明之具體之實施例及比較例而明確本發明。再者,本發明並不限定於以下之實施例。 使用以下材料。 (A1)環氧化合物 EX-821(n=4)((A11)可撓性環氧化合物,Nagase chemteX公司製造,聚乙二醇二縮水甘油醚,環氧當量:185) EX-830(n=9)((A11)可撓性環氧化合物,Nagase chemteX公司製造,聚乙二醇二縮水甘油醚,環氧當量:268) EX-931(n=11)((A11)可撓性環氧化合物,Nagase chemteX公司製造,聚丙二醇二縮水甘油醚,環氧當量:471) EX-861(n=22)((A11)可撓性環氧化合物,Nagase chemteX公司製造,聚乙二醇二縮水甘油醚,環氧當量:551) PB3600(大賽璐公司製造,聚丁二烯改性環氧樹脂,環氧當量:200) jER828((A12)環氧化合物,三菱化學公司製造,雙酚A型環氧樹脂,環氧當量:188) jER834((A12)環氧化合物,三菱化學公司製造,雙酚A型環氧樹脂,軟化點:30℃,環氧當量:255) (A2)聚矽氧化合物 [作為聚矽氧化合物之聚合物A之合成] 向具備溫度計、滴液裝置及攪拌機之1000 mL之可分離式燒瓶中,加入二甲基二甲氧基矽烷164.1 g、甲基苯基二甲氧基矽烷20.1 g及1,3-二乙烯基-1,1,3,3-四甲基二矽氧烷4.7 g,並於50℃下進行攪拌。向其中緩慢滴加將氫氧化鉀2.2 g溶解於水35.1 g中而成之溶液,滴加後於50℃下攪拌6小時,使其反應而獲得反應液。繼而,進行減壓而將揮發成分去除,向反應液中添加乙酸2.4 g,並於減壓下進行加熱。其後,藉由過濾將乙酸鉀去除,獲得聚合物A。 所獲得之聚合物A之數量平均分子量為15000。藉由29 Si-NMR(Nuclear Magnetic Resonance,核磁共振)對化學結構進行鑑定,結果聚合物A具有下述平均組成式。 (Me2 SiO2/2 )0.85 (PhMeSiO2/2 )0.10 (ViMe2 SiO1/2 )0.05 上述式中,Me表示甲基,Vi表示乙烯基,Ph表示苯基。所獲得之聚合物A之苯基及甲基之含有比率為97.6莫耳%,乙烯基之含有比率為2.4莫耳%。 再者,各聚合物之分子量係向10 mg中添加四氫呋喃1 mL,攪拌直至溶解,並藉由GPC(Gel Permeation Chromatograph,凝膠滲透層析)測定而測定。GPC測定中,使用Waters公司製造之測定裝置(管柱:昭和電工公司製造 之Shodex GPC LF-804(長度300 mm)×2根,測定溫度:40℃,流速:1 mL/min,溶劑:四氫呋喃,標準物質:聚苯乙烯)。 [作為聚矽氧化合物之聚合物B~D之合成] 改變用於合成之有機矽化合物之種類及調配量,除此以外,以與聚合物A之合成相同之方式獲得聚合物B~D。 聚合物B: (SiO4/2 )0.20 (ViMe2 SiO1/2 )0.40 (Me3 SiO1/2 )0.40 數量平均分子量 2000 苯基及甲基之含有比率為83.3莫耳%,乙烯基之含有比率為16.7莫耳% 聚合物C: (MeSiO3/2 )0.20 (PhMeSiO2/2 )0.70 (ViMe2 SiO1/2 )0.10 數量平均分子量 4000 苯基及甲基之含有比率為94.7莫耳%,乙烯基之含有比率為5.3莫耳% 聚合物D: (PhSiO3/2 )0.80 (ViMe2 SiO1/2 )0.20 數量平均分子量 1700 苯基及甲基之含有比率為85.7莫耳%,乙烯基之含有比率為14.3莫耳% [作為聚矽氧化合物之聚合物E之合成] 向具備溫度計、滴液裝置及攪拌機之1000 mL之可分離式燒瓶中,加入二苯基二甲氧基矽烷80.6 g、及1,1,3,3-四甲基二矽氧烷45 g,並於50℃下進行攪拌。向其中緩慢滴加乙酸100 g與水27 g之溶液,滴加後於50℃下攪拌6小時,使其反應而獲得反應液。繼而,進行減壓將揮發成分去除而獲得聚合物。向所獲得之聚合物中添加己烷150 g與乙酸乙酯150 g,並利用離子交換水300 g進行10次洗淨,進行減壓將揮發成分去除而獲得聚合物E。 所獲得之聚合物E之數量平均分子量為850。藉由29 Si-NMR對化學結構進行鑑定,結果聚合物E具有下述平均組成式。 (Ph2 SiO2/2 )0.67 (HMe2 SiO1/2 )0.33 上述式中,Me表示甲基,Ph表示苯基。所獲得之聚合物E之苯基及甲基之含有比率為74.9莫耳%,鍵結於矽原子之氫原子之含有比率為25.1%。 [作為聚矽氧化合物之聚合物F之合成] 於聚合物E之合成中,將利用離子交換水之洗淨變更為1次,除此以外,以相同之方式獲得聚合物F。 [作為聚矽氧化合物之聚合物G之合成] 向具備溫度計、滴液裝置及攪拌機之1000 mL之可分離式燒瓶中,加入二甲基二甲氧基矽烷80.6 g、及1,1,3,3-四甲基二矽氧烷45 g,並於50℃下進行攪拌。向其中緩慢滴加乙酸100 g與水27 g之溶液,滴加後於50℃下攪拌6小時,使其反應而獲得反應液。繼而,向所獲得之反應液中添加己烷150 g與乙酸乙酯150 g,並利用離子交換水300 g進行10次洗淨,藉由分液將溶劑成分去除而獲得聚合物G。 所獲得之聚合物G之數量平均分子量為350。藉由29 Si-NMR對化學結構進行鑑定,結果聚合物G具有下述平均組成式。 (Me2 SiO2/2 )0.50 (HMe2 SiO1/2 )0.50 上述式中,Me表示甲基。所獲得之聚合物G之苯基及甲基之含有比率為80莫耳%,鍵結於矽原子之氫原子之含有比率為20%。 (B)硬化劑或硬化觸媒 Fujicure 7000(富士化成公司製造,23℃下為液狀,胺化合物) MEH-8005(明和化成公司製造,23℃下為液狀,烯丙基苯酚酚醛清漆化合物) TD-2131(DIC公司製造,23℃下為固體狀,苯酚酚醛清漆化合物) 鉑之1,3-二乙烯基-1,1,3,3-四甲基二矽氧烷錯合物 (D)硬化促進劑 SA-102(SAN-APRO公司製造,DBU辛酸鹽) (C)導熱率為10 W/m・K以上之無機填料 FAN-f05(古河電子公司製造,氮化鋁,導熱率:100 W/m・K,球狀,平均粒徑:6 μm) FAN-f50(古河電子公司製造,氮化鋁,導熱率:100 W/m・K,球狀,平均粒徑:30 μm) CB-P05(昭和電工公司製造,氧化鋁,導熱率:20 W/m・K,球狀,平均粒徑:4 μm) CB-P40(昭和電工公司製造,氧化鋁,導熱率:20 W/m・K,球狀,平均粒徑:44 μm) SSC-A15(信濃電氣精煉公司製造,碳化矽,導熱率:100 W/m・K,球狀,平均粒徑:19 μm) SSC-A30(信濃電氣精煉公司製造,碳化矽,導熱率:100 W/m・K,球狀,平均粒徑:34 μm) (C')其他無機填料 HS-306(Micron公司製造,氧化矽,導熱率:2 W/m・K,球狀,平均粒徑:2.5 μm) HS-304(Micron公司製造,氧化矽,導熱率:2 W/m・K,球狀,平均粒徑:25 μm) (E)偶合劑 KBM-403(信越化學工業公司製造,3-縮水甘油氧基丙基三甲氧基矽烷,100℃下之重量減少:超過10重量%) A-LINK599(momentive公司製造,3-辛醯基硫基-1-丙基三乙氧基矽烷,100℃下之重量減少:10重量%以下) TOG(IPA截止)(日本曹達公司製造,異丙氧基辛二醇鈦,100℃下之重量減少:10重量%以下) AL-M(Ajinomoto Fine-Techno公司製造,乙醯烷氧基鋁二異丙酯,100℃下之重量減少:10重量%以下) (其他成分) BYK-9076(BYK公司製造,分散劑) (F)離子捕捉劑 IXE-300(東亞合成公司製造,氧化銻系離子捕捉劑) IXE-600(東亞合成公司製造,氧化銻・氧化鉍系離子捕捉劑) DHT-4A(協和化學工業公司製造,鋁碳酸鎂系離子捕捉劑) (實施例1) 將EX-821(n=4)6.5重量份、jER828 2.5重量份、Fujicure 7000 5重量份、SA-102 0.5重量份、CB-P05 42.5重量份、CB-P40 42.5重量份、及BYK-9076 0.5重量份混合,並進行消泡而獲得半導體元件保護用材料。 (實施例2~22及比較例1,2) 如下述表1~4所示般變更調配成分之種類及調配量,除此以外,以與實施例1相同之方式獲得半導體元件保護用材料。 (評價) (1)25℃下之黏度之測定 使用B型黏度計(東機產業公司製造之「TVB-10型」)測定半導體元件保護用材料之25℃下之10 rpm時之黏度(Pa・s)。 (2)(X)三聚物至十聚物之環狀矽氧烷化合物之含量 於所獲得之半導體元件保護用材料中,使用氣相層析質譜分析裝置(GC-MS)(島津製作所公司製造之「QP2010SE」)對(X)三聚物至十聚物之環狀矽氧烷化合物之含量進行評價。 (3)(Y)水之含量 於所獲得之半導體元件保護用材料中,依據JIS K7215使用卡氏水分計(京都電子工業公司製造之「MKV-710B」)對(Y)水之含量進行評價。 (4)導電率 使半導體元件保護用材料於150℃下硬化2小時而獲得硬化物。將所獲得之硬化物粉碎成5 mm見方左右,向粉碎物2.5 g中添加離子交換水25 mL,於PCT(121℃±2℃/濕度100%/2 atm之槽)中放置20 Hr。其後,獲得冷卻至室溫而得之萃取液作為試驗液。使用導度計(東亞電波工業公司製造之電導計「CM-42X」)測定該試驗液之導電率。 (5)導熱率 將所獲得之半導體元件保護用材料於150℃下加熱2小時而使其硬化,獲得100 mm×100 mm×厚度50 μm之硬化物。將該硬化物作為評價樣本。 使用京都電子工業公司製造之導熱率計「迅速導熱率計QTM-500」測定所獲得之評價樣本之導熱率。再者,於導熱率為1.1 W/m・K以下之情形時,將導熱率判定為「×」。 (6)塗佈性 將所獲得之半導體元件保護用材料自分注器裝置(武藏高科技公司製造之「SHOTMASTER-300」)中以成為直徑5 mm、高度2 mm之方式直接噴出至聚醯亞胺膜上後,將半導體元件保護用材料於150℃下加熱2小時而使其硬化。根據硬化後之半導體元件保護用材料之形狀按下述基準對塗佈性進行判定。 [塗佈性之判定基準] ○:直徑5.3 mm以上,高度未達1.8 mm(具有流動性) △:直徑超過5 mm且未達5.3 mm,高度超過1.8 mm且未達2 mm(略微有流動性) ×:保持直徑5 mm、高度2 mm(無流動性) (7)有無孔隙 將底部填充劑(NAMICS公司製造,U8437-2)以成為寬度3 mm、長度18 mm之方式塗佈於聚醯亞胺膜上,載置寬度3 mm、長度18 mm、厚度0.3 mm之Si晶片,並於150℃下使其硬化1小時而準備試片。將所獲得之半導體元件保護用材料自分注器裝置(武藏高科技公司製造之「SHOTMASTER-300」)中以覆蓋整個Si晶片且成為寬度5 mm、長度21 mm、厚度0.9 mm之方式直接噴出至所準備之試片上後,將半導體元件保護用材料於150℃下加熱2小時而使其硬化。利用顯微鏡觀察硬化後之半導體元件保護用材料中之孔隙之有無並進行評價。 [有無孔隙之判定基準] ○:無孔隙 △:具有直徑未達100 μm之無法目測之孔隙 △△:具有直徑100 μm以上且未達150 μm之可目測之孔隙 ×:具有直徑150 μm以上之可目測之孔隙 (8)耐濕性 將所獲得之半導體元件保護用材料於150℃下加熱2小時而使其硬化,獲得100 mm×100 mm×厚度50 μm之硬化物。將該硬化物作為評價樣本。 使用DSM-8104(日置電機公司製造,數位超絕緣/微小電流計)、平板試樣用電極SME-8310(日置電機公司製造)對所獲得之評價樣本測定體積電阻率。 繼而,利用高度加速壽命試驗裝置EHS-211(ESPEC公司製造)進行高壓鍋試驗。於121℃、濕度100%RH及2 atm之條件下放置24小時,繼而於23℃及濕度50%RH之環境下放置24小時後,測定體積電阻率。計算高壓鍋試驗前後之體積電阻率之降低率,按下述基準對耐濕性進行判定。 [耐濕性之判定基準] ○:試驗前後之體積電阻率之降低率為10%以下 △:試驗前後之體積電阻率之降低率超過10%且為20%以下 ×:試驗前後之體積電阻率之降低率超過20% (9)接著力(晶片剪切強度) 以接著面積成為3 mm×3 mm之方式將半導體元件保護用材料塗佈於聚醯亞胺基板上,並載置3 mm見方之Si晶片而獲得測試樣本。 將所獲得之測試樣本於150℃下加熱2小時而使半導體元件保護用材料硬化。繼而,使用晶片剪切強度測試機(ARCTEC公司製造之「DAGE 4000」)以300 μm/秒之速度對25℃下之晶片剪切強度進行評價。 [晶片剪切強度之判定基準] ○:晶片剪切強度為10 N以上 △:晶片剪切強度為6 N以上且未達10 N △△:晶片剪切強度為5 N以上且未達6 N ×:晶片剪切強度未達5 N (10)黏性(保護膜之貼附性) 將所獲得之半導體元件保護用材料於150℃下加熱2小時而使其硬化,獲得100 mm×100 mm×厚度50 μm之硬化物。將該硬化物作為評價樣本。 將所獲得之評價樣本於23℃及濕度50%RH之環境下放置24小時。於放置24小時後,立刻使用黏性測試機TA-500(UBM公司製造)對評價樣本之表面之黏著性測定黏性。 [黏性之判定基準] ○:應力未達50 gf/cm2 △:應力為50 gf/cm2 以上且未達100 gf/cm2 ×:應力為100 gf/cm2 以上 (11)膜翹曲 將所獲得之半導體元件保護用材料自分注器裝置(武藏高科技公司製造之「SHOTMASTER-300」)中以成為縱20 mm、寬100 mm、高度10 mm之方式直接噴出至聚醯亞胺膜上後,將半導體元件保護用材料於150℃下加熱2小時而使其硬化。硬化後目測確認聚醯亞胺膜之翹曲,按下述基準對膜翹曲進行判定。 [膜翹曲之判定基準] ○:不存在聚醯亞胺膜之翹曲 △:略微產生聚醯亞胺膜之翹曲(使用上無問題) ×:產生聚醯亞胺膜之翹曲(使用上有問題) (12)耐熱性 將所獲得之半導體元件保護用材料於150℃下加熱2小時而使其硬化,獲得100 mm×100 mm×厚度50 μm之硬化物。將該硬化物作為評價樣本。 使用DSM-8104(日置電機公司製造,數位超絕緣/微小電流計)、平板試樣用電極SME-8310(日置電機公司製造)對所獲得之評價樣本進行體積電阻率之測定。 繼而,於180℃下放置100小時,繼而於23℃及濕度50%RH之環境下放置24小時後,測定體積電阻率。計算耐熱試驗前後之體積電阻率之降低率,按下述基準對耐熱性進行判定。 [耐熱性之判定基準] ○○:試驗前後之體積電阻率之降低率為5%以下 ○:試驗前後之體積電阻率之降低率超過5%且為10%以下 △:試驗前後之體積電阻率之降低率超過10%且為20%以下 ×:試驗前後之體積電阻率之降低率超過20% (13)絕緣可靠性 將熱硬化阻焊劑(日本Poly-tech公司製造之「NPR-3300」)以10 μm之膜厚塗佈於形成於基板(聚醯亞胺膜)上之梳齒型電極(材質:於銅上鍍錫,圖案間距:50 μm,L/S=25 μm/25 μm)之上,並於150℃下加熱1小時而使其硬化,準備測試圖案。將半導體元件保護用材料塗佈於上述測試圖案上,並於150℃下加熱2小時而使其硬化,獲得試片。將加熱後之試片放入至85℃及濕度85%之槽(ESPEC公司製造之「SH641」)中,使用遷移測試機(IMV公司製造之「MIG-8600B」)於電極間施加40 V之直流電壓,測定電極間之電阻。按以下基準對絕緣可靠性進行判定。於為○、△或△△之判定基準之情形時,判斷絕緣可靠性合格,具有不妨礙實際使用之絕緣性保持性,絕緣可靠性優異。 [絕緣可靠性之判定基準] ○:電阻持續100小時以上為1×109 Ω以上,絕緣性非常良好 △:電阻持續100小時以上為1×108 Ω以上且未達1×109 Ω,絕緣性良好 △△:電阻於未達100小時之時間內降低至未達1×108 Ω,但持續50小時以上且未達100小時之1×108 Ω以上之電阻,絕緣性略微良好 ×:電阻於未達50小時之時間內降低至未達1×108 Ω,視為絕緣不良 (14)耐熱試驗後之膜翹曲 於上述(11)膜翹曲之評價後,將半導體元件保護用材料之硬化物與聚醯亞胺膜之積層體於180℃下放置100小時。於放置後,目測確認聚醯亞胺膜之翹曲,按下述基準對耐熱試驗後之膜翹曲進行判定。 [耐熱試驗後之膜翹曲之判定基準] ○:相對於耐熱試驗前之膜之翹曲量,耐熱試驗後之膜之翹曲量未達1.1倍 △:相對於耐熱試驗前之膜之翹曲量,耐熱試驗後之膜之翹曲量為1.1倍以上且未達1.2倍 ×:相對於耐熱試驗前之膜之翹曲量,耐熱試驗後之膜之翹曲量為1.2倍以上 將調配成分之詳細內容、組成及結果示於下述表1~4。 [表1] [表2] [表3] [表4] (實施例23) 於半導體元件保護用材料之製備中,進而添加IXE-300(東亞合成公司製造,氧化銻系離子捕捉劑)0.5重量份,除此以外,以與實施例1相同之方式獲得半導體元件保護用材料。 (實施例24) 於半導體元件保護用材料之製備中,進而添加IXE-600(東亞合成公司製造,氧化銻・氧化鉍系離子捕捉劑)0.5重量份,除此以外,以與實施例1相同之方式獲得半導體元件保護用材料。 (實施例25) 於半導體元件保護用材料之製備中,進而添加DHT-4A(協和化學工業公司製造,鋁碳酸鎂系離子捕捉劑)0.5重量份,除此以外,以與實施例1相同之方式獲得半導體元件保護用材料。 (實施例26) 於半導體元件保護用材料之製備中,進而添加IXE-300(東亞合成公司製造,氧化銻系離子捕捉劑)0.5重量份,除此以外,以與實施例18相同之方式獲得半導體元件保護用材料。 (實施例27) 於半導體元件保護用材料之製備中,進而添加IXE-600(東亞合成公司製造,氧化銻・氧化鉍系離子捕捉劑)0.5重量份,除此以外,以與實施例18相同之方式獲得半導體元件保護用材料。 (實施例28) 於半導體元件保護用材料之製備中,進而添加DHT-4A(協和化學工業公司製造,鋁碳酸鎂系離子捕捉劑)0.5重量份,除此以外,以與實施例18相同之方式獲得半導體元件保護用材料。 (實施例29) 於半導體元件保護用材料之製備中,進而添加IXE-600(東亞合成公司製造,氧化銻・氧化鉍系離子捕捉劑)0.5重量份,除此以外,以與實施例19相同之方式獲得半導體元件保護用材料。 (實施例30) 於半導體元件保護用材料之製備中,進而添加IXE-600(東亞合成公司製造,氧化銻・氧化鉍系離子捕捉劑)0.5重量份,除此以外,以與實施例20相同之方式獲得半導體元件保護用材料。 (實施例31) 於半導體元件保護用材料之製備中,進而添加IXE-600(東亞合成公司製造,氧化銻・氧化鉍系離子捕捉劑)0.5重量份,除此以外,以與實施例21相同之方式獲得半導體元件保護用材料。 (評價) 關於實施例23~31,實施上述(13)絕緣可靠性之評價。 結果,實施例23~31之絕緣可靠性之結果均為「○」。 又,實施例1及實施例23~25之絕緣可靠性之結果為「○」,但關於100小時後之電壓施加時之電阻,實施例23~25高於實施例1,實施例23~25之絕緣可靠性較實施例1優異。又,實施例20及實施例30之絕緣可靠性之結果為「○」,但關於100小時後之電壓施加時之電阻,實施例30高於實施例20,實施例30之絕緣可靠性較實施例20優異。又,實施例21及實施例31之絕緣可靠性之結果為「○」,但關於100小時後之電壓施加時之電阻,實施例31高於實施例21,實施例31之絕緣可靠性較實施例21優異。 再者,關於實施例23~31,實施例1~22及比較例1、2中所進行之其他評價項目亦獲得了良好之結果。又,使用(A2)聚矽氧化合物之實施例19~21之耐熱試驗後之膜翹曲之結果中之翹曲量之增加比率小於使用(A1)環氧化合物之實施例1~17之耐熱試驗後之膜翹曲之結果中之翹曲量之增加比率。Hereinafter, the present invention will be described in detail. The semiconductor device of the present invention includes a semiconductor element and a cured product. In the semiconductor device of the present invention, the hardened material is disposed on the first surface of the semiconductor element. In the semiconductor device of the present invention, the above-mentioned cured product is a cured product of a semiconductor element protection material. In a specific aspect, the material for protecting a semiconductor element of the present invention is applied to the surface of the semiconductor element for the purpose of protecting the semiconductor element, and a hardened substance is formed on the surface of the semiconductor element. The material for protecting a semiconductor element of the present invention is different from a material (material) that is disposed between a semiconductor element and another connection object member, and forms a hardened material that adheres and fixes the semiconductor element and the other connection object member without peeling. Furthermore, in a specific aspect, the material for protecting a semiconductor element of the present invention is applied to the surface of the semiconductor element opposite to the side of the connection object to protect the semiconductor element encapsulated on the connection object member On the surface, a hardened material is formed on the surface of the semiconductor element. The material for protecting a semiconductor element used in the semiconductor device of the present invention and the material for protecting a semiconductor element of the present invention include (A) a thermosetting compound, (B) a curing agent or a curing catalyst ((B1) curing agent or (B2) (Hardening catalyst), and (C) inorganic filler with a thermal conductivity of 10 W / m · K or more. The semiconductor element protection material used in the semiconductor device of the present invention and the semiconductor element protection material of the present invention are coated on the surface of a semiconductor element, for example, so it is preferably liquid at 23 ° C, preferably 23 It is not solid at ℃. Furthermore, the liquid form also contains a thick paste. The semiconductor device protection material used in the semiconductor device of the present invention and the semiconductor device protection material of the present invention do not contain (X) cyclic siloxane compounds of terpolymer to decamer, or contain 500 ppm or less (X ) Cyclosiloxane compounds from terpolymer to decamer. The content of the low molecular weight (X) siloxane compound used in the semiconductor device protection material used in the semiconductor device of the present invention and the semiconductor device protection material of the present invention is small. In 100% by weight of the cured product of the semiconductor device of the present invention, (C) the content of the inorganic filler having a thermal conductivity of 10 W / m · K or more is 60% by weight or more and 92% by weight or less. In 100% by weight of the semiconductor element protection material used in the semiconductor device of the present invention, (C) the content of the inorganic filler having a thermal conductivity of 10 W / m · K or more is preferably 60% by weight or more, preferably 92% by weight %the following. In the 100% by weight of the semiconductor element protection material of the present invention, (C) the content of the inorganic filler having a thermal conductivity of 10 W / m · K or more is 60% by weight or more and 92% by weight or less. The cured product of the semiconductor device of the present invention and the cured material of the semiconductor device protection material of the present invention have a conductivity of 50 μS / cm or less. The above-mentioned semiconductor element protection material can be coated on the surface of the semiconductor element. For example, the above-mentioned semiconductor element protection material can be selectively applied to the surface of the semiconductor element at a location where heat dissipation is to be improved with high precision. Since the semiconductor device of the present invention has the above-mentioned configuration, the cured product has excellent heat dissipation. Therefore, heat can be sufficiently released from the surface of the semiconductor element through the hardened material. Therefore, thermal degradation of the semiconductor device can be effectively suppressed. In addition, the material for protecting a semiconductor element of the present invention has the above-mentioned structure, so the cured product has excellent heat dissipation. Therefore, by disposing the hardened object on the surface of the semiconductor element, heat can be sufficiently released from the surface of the semiconductor element through the hardened object. Therefore, thermal degradation of the semiconductor device can be effectively suppressed. Furthermore, in the semiconductor device of the present invention and the material for protecting a semiconductor element of the present invention, it is possible to prevent voids in the hardened material, so that the hardened material is not easily peeled from the surface of the semiconductor element. Furthermore, in the semiconductor device of the present invention, the cured product has excellent insulation reliability. Therefore, the above semiconductor element can be well protected. In addition, in the material for semiconductor device protection of the present invention, a hardened product excellent in insulation reliability can be obtained. Therefore, in order to protect the semiconductor element, the semiconductor element protection material of the present invention is coated on the surface of the semiconductor element and hardened, thereby the semiconductor element can be well protected. In addition, in order to protect the semiconductor element encapsulated on the connection object member, the semiconductor element protection material of the present invention is applied to the surface of the semiconductor element opposite to the connection object member side and hardened, whereby good Protect the above semiconductor elements. From the viewpoint of improving insulation reliability, the content of (X) terpolymer to decamer cyclic siloxane compound is at most 500 ppm. From the viewpoint of further improving insulation reliability, the content of the cyclic siloxane compound of (X) terpolymer to decamer is preferably 250 ppm or less. (X) The smaller the content of cyclic siloxane compound from terpolymer to decamer, the better. The so-called terpolymer to decamer cyclic siloxane compound means hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecylcyclo Hexasiloxane, 14-methylcycloheptasiloxane, hexadecylmethylcyclooctasiloxane, octadecylcyclohexanonasiloxane, 20-methylcyclodecasiloxane. From the viewpoint of further effectively suppressing voids, the material for semiconductor device protection of the present invention preferably contains no (Y) water or contains (Y) water of 1000 ppm or less. From the viewpoint of further suppressing porosity, the content of (Y) water is preferably 800 ppm or less. (Y) The smaller the water content, the better. The above-mentioned water content was measured using a Karl Fischer moisture meter ("MKV-710B" manufactured by Kyoto Electronics Industry Co., Ltd.). From the viewpoint of improving insulation reliability, the conductivity of the hardened product of the semiconductor device of the present invention is 50 μS / cm or less. From the viewpoint of improving insulation reliability, when the material for semiconductor element protection of the present invention is heated at 150 ° C. for 2 hours to obtain a cured product, the conductivity of the cured product is 50 μS / cm or less. From the viewpoint of further improving insulation reliability, the conductivity of the hardened product is preferably 30 μS / cm or less. The lower limit of the electrical conductivity of the hardened product is not particularly limited. The above conductivity is measured as follows. For the semiconductor device of the present invention, the cured product of the semiconductor device described above is prepared. For the material for protecting a semiconductor device of the present invention, the material for protecting a semiconductor element is cured at 150 ° C. for 2 hours to obtain a cured product. The hardened material was crushed to about 5 mm square, 25 mL of ion-exchanged water was added to 2.5 g of the crushed material, and placed in PCT (121 ° C ± 2 ° C / humidity 100% / 2 atm tank) for 20 Hr. Thereafter, an extract obtained by cooling to room temperature (25 ° C) was obtained as a test liquid. The conductivity of the test solution was measured using a conductivity meter (conductivity meters "CM-30G", "CM-42X", etc. manufactured by East Asia Radio Industry Co., Ltd.). From the viewpoint of further improving the coatability, the viscosity of the above-mentioned semiconductor element protection material at 25 ° C. and 10 rpm is preferably 40 Pa · s or more, more preferably 50 Pa · s or more, and preferably 140 Pa・ S or less, more preferably 130 Pa · s or less. The above-mentioned viscosity was measured using a B-type viscometer ("TVB-10" manufactured by Toki Industries Co., Ltd.). From the viewpoint of further improving curability, it is preferable that the material for semiconductor element protection contains (B1) a curing agent and (D) a curing accelerator. Further, from the viewpoint of improving the wettability of the semiconductor element protection material to the surface of the semiconductor element, further improving the flexibility of the hardened object, and further improving the moisture resistance of the hardened object, the above-mentioned semiconductor element protection material is preferably Contains (E) coupling agent. From the viewpoint of effectively improving the insulation reliability of the cured product, the above-mentioned semiconductor element protection material preferably contains (F) an ion trapping agent. Hereinafter, the details of each component that can be used for the above-mentioned semiconductor element protection material will be described. ((A) Thermosetting compound) Examples of (A) thermosetting compounds include oxetane compounds, epoxy compounds, episulfide compounds, (meth) acrylic compounds, phenol compounds, and amino compounds. Unsaturated polyester compounds, polyurethane compounds, polysiloxane compounds, polyimide compounds, etc. (A) Only one type of thermosetting compound may be used, or two or more types may be used in combination. From the viewpoint of effectively exerting the effects of the present invention, further improving heat resistance, and less likely to cause cracking, the (A) thermosetting compound preferably contains (A1) an epoxy compound or (A2) a polysiloxane compound . (A) The thermosetting compound may contain (A1) an epoxy compound, and may also contain (A2) a polysiloxane compound. From the viewpoint of further suppressing the warpage of the member to be connected after being exposed to high temperature, the molecular weight of the (A2) polysiloxane compound is preferably 300 or more. From the viewpoint of further suppressing warpage of the member to be connected after being exposed to high temperature, (A) the thermosetting compound preferably contains (A2) a polysiloxane compound. The content of the (A) thermosetting compound is preferably 1% by weight or more, more preferably 2% by weight or more, and preferably 20% by weight or less, more preferably 15% of the above-mentioned 100% by weight of the semiconductor device protection material It is preferably 10% by weight or less, more preferably 8% by weight or less. If the content of the (A) thermosetting compound is above the lower limit and below the upper limit, the coatability of the material for semiconductor element protection, the flexibility of the cured product, and the moisture resistance become better, and the cured product The adherence becomes better, and the adhesion to the protective film can be further suppressed. In 100% by weight of the above-mentioned semiconductor device protection material, the total content of (A1) epoxy compound and (A2) polysiloxane compound is preferably 1% by weight or more, more preferably 2% by weight or more, and preferably 20 Less than 15% by weight, more preferably less than 15% by weight. If the total content of (A1) epoxy compound and (A2) polysiloxane compound is above the above lower limit and below the above upper limit, the coatability of the semiconductor element protection material, the flexibility of the cured product, and the moisture resistance become more Good, the adhesion of the cured product to the semiconductor element becomes better, and the adhesion to the protective film can be further suppressed. (A1) Epoxy compound: The content of (A1) epoxy compound is preferably 1% by weight or more, more preferably 2% by weight or more, and preferably 10% by weight in 100% by weight of the above material for semiconductor device protection Below, more preferably 8% by weight or less. If the content of (A1) epoxy compound is above the above lower limit and below the above upper limit, the coatability of the material for semiconductor element protection, the flexibility of the cured product and the moisture resistance become better, and the adhesion of the cured product to the semiconductor device The performance becomes better, and the adhesion to the protective film can be further suppressed. Examples of (A1) epoxy compounds include (A11) flexible epoxy compounds and (A12) epoxy compounds different from flexible epoxy compounds. From the viewpoint of effectively exerting the effect of the present invention, the (A) thermosetting compound preferably includes (A11) a flexible epoxy compound and (A12) an epoxy compound different from the flexible epoxy compound. (A12) The epoxy compound different from the flexible epoxy compound does not have flexibility. By using the (A12) epoxy compound together with the (A11) flexible epoxy compound, the moisture resistance of the cured product of the semiconductor element protection material is increased, and the adhesion to the protective film can be reduced. (A12) Only one type of epoxy compound may be used, or two or more types may be used in combination. (A) The thermosetting compound preferably contains (A11) a flexible epoxy compound. By using (A11) flexible epoxy compound, the flexibility of the cured product can be improved. By using the (A11) flexible epoxy compound, the semiconductor device is less likely to be damaged due to deformation stress on the semiconductor device, etc., and the hardened material is not easily peeled from the surface of the semiconductor device. (A11) Only one type of flexible epoxy compound may be used, or two or more types may be used in combination. Examples of the (A11) flexible epoxy compound include polyalkylene glycol diglycidyl ether, polybutadiene diglycidyl ether, sulfide-modified epoxy resin, and polyalkylene oxide-modified bis Phenolic A type epoxy resin etc. From the viewpoint of further improving the flexibility of the cured product, polyalkylene glycol diglycidyl ether is preferred. From the viewpoint of further improving the flexibility of the cured product and improving the adhesion, the polyalkylene glycol diglycidyl ether preferably has a structural unit obtained by repeating 9 or more alkylene glycol groups. The upper limit of the number of repeating alkylene groups is not particularly limited. The repeat number of the alkylene group can also be 30 or less. The carbon number of the alkylene group is preferably 2 or more, and preferably 5 or less. Examples of the polyalkylene glycol diglycidyl ether include polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, and polytetramethylene glycol diglycidyl ether. The content of the (A11) flexible epoxy compound is preferably 3% by weight or more, more preferably 5% by weight or more, and preferably 10% by weight or less in 100% by weight of the above material for semiconductor device protection 8% by weight or less. If the content of (A11) flexible epoxy compound is more than the above lower limit, the flexibility of the cured product is further increased. If the content of the (A11) flexible epoxy compound is equal to or less than the above upper limit, the coatability of the material for semiconductor element protection further increases. In the above-mentioned 100% by weight of the semiconductor device protection material, the total content of (A11) flexible epoxy compound and (A12) epoxy compound is preferably 5% by weight or more, more preferably 8% by weight or more, and preferably 15% by weight or less, more preferably 12% by weight or less. If the total content of the (A11) flexible epoxy compound and (A12) epoxy compound is above the above lower limit and below the above upper limit, the coatability of the semiconductor element protection material, the flexibility of the cured product, and the moisture resistance become The better the adhesion of the cured product to the semiconductor element becomes, the more the adhesion to the protective film can be further suppressed. As the (A12) epoxy compound, an epoxy compound having a bisphenol skeleton, an epoxy compound having a dicyclopentadiene skeleton, an epoxy compound having a naphthalene skeleton, an epoxy compound having an adamantane skeleton, Epoxy compound with stilbene skeleton, epoxy compound with biphenyl skeleton, epoxy compound with bis (glycidoxyphenyl) methane skeleton, with Epoxy compound with skeleton, epoxy compound with anthracene skeleton, epoxy compound with pyrene skeleton, etc. These hydrides or modified products can also be used. (A12) The epoxy compound is preferably not polyalkylene glycol diglycidyl ether. In terms of more excellent effects of the present invention, the (A12) epoxy compound is preferably an epoxy compound having a bisphenol skeleton (bisphenol-type epoxy compound). Examples of the epoxy compound having a bisphenol skeleton include epoxy monomers having a bisphenol skeleton of bisphenol A type, bisphenol F type or bisphenol S type. Examples of the epoxy compound having a dicyclopentadiene skeleton include dicyclopentadiene dioxide, a phenol novolac epoxy monomer having a dicyclopentadiene skeleton, and the like. Examples of the epoxy compound having a naphthalene skeleton include 1-glycidylnaphthalene, 2-glycidylnaphthalene, 1,2-diglycidylnaphthalene, 1,5-diglycidylnaphthalene, and 1,6- Diglycidyl naphthalene, 1,7-diglycidyl naphthalene, 2,7-diglycidyl naphthalene, triglycidyl naphthalene, and 1,2,5,6-tetraglycidyl naphthalene, etc. Examples of the epoxy compound having an adamantane skeleton include 1,3-bis (4-glycidoxyphenyl) adamantane, 2,2-bis (4-glycidoxyphenyl) adamantane, and the like. . Examples of the epoxy compound having a stilbene skeleton include: 9,9-bis (4-glycidoxyphenyl) stilbene and 9,9-bis (4-glycidoxy-3-methylphenyl) Fusel, 9,9-bis (4-glycidoxy-3-chlorophenyl) stilbene, 9,9-bis (4-glycidoxy-3-bromophenyl) stilbene, 9,9-bis ( 4-glycidoxy-3-fluorophenyl) stilbene, 9,9-bis (4-glycidoxy-3-methoxyphenyl) stilbene, 9,9-bis (4-glycidoxy) -3,5-dimethylphenyl) stilbene, 9,9-bis (4-glycidoxy-3,5-dichlorophenyl) stilbene, and 9,9-bis (4-glycidoxy) -3,5-dibromophenyl) fusi etc. Examples of the epoxy compound having a biphenyl skeleton include 4,4'-diglycidyl biphenyl and 4,4'-diglycidyl-3,3 ', 5,5'-tetramethyl diphenyl Benzene and so on. Examples of the epoxy compound having the bis (glycidoxyphenyl) methane skeleton include 1,1′-bis (2,7-glycidoxynaphthyl) methane and 1,8′-bis (2 , 7-glycidoxynaphthyl) methane, 1,1'-bis (3,7-glycidoxynaphthyl) methane, 1,8'-bis (3,7-glycidoxynaphthyl) Methane, 1,1'-bis (3,5-glycidoxynaphthyl) methane, 1,8'-bis (3,5-glycidoxynaphthyl) methane, 1, 2'-bis (2 , 7-glycidoxynaphthyl) methane, 1,2-bis (3,7-glycidoxynaphthyl) methane, and 1,2-bis (3,5-glycidoxynaphthyl) ) Methane, etc. As the above has Examples of the epoxy compounds of the skeleton include 1,3,4,5,6,8-hexamethyl-2,7-bis-oxetanylmethoxy-9-phenyl-9H- Wait. The content of the (A12) epoxy compound is preferably 10 parts by weight or more, more preferably 20 parts by weight or more, and preferably 100 parts by weight or less with respect to 100 parts by weight of the (A11) flexible epoxy compound. 90 parts by weight or less. If the content of the (A12) epoxy compound is at least the above lower limit, the coatability of the material for semiconductor element protection further increases, and the adhesion of the cured product to the semiconductor element further increases. If the content of the (A12) epoxy compound is equal to or lower than the above upper limit, the flexibility of the cured product is further increased. (A2) The polysilicon compound includes, for example, a polysilicon compound having an alkenyl group bonded to a silicon atom, and a polysilicon compound having a hydrogen atom bonded to a silicon atom. The polysiloxane compound having an alkenyl group bonded to a silicon atom may not have a hydrogen atom bonded to a silicon atom. The polysiloxane compound having an alkenyl group bonded to a silicon atom is preferably a polysiloxane compound represented by the following formula (1A), a polysiloxane compound represented by the following formula (2A), or the following formula (3A) The polysiloxane compound represented. (R1R2R3SiO1/2 )a (R4R5SiO2/2 )b … (1A) In the above formula (1A), a and b satisfy 0.01 ≦ a ≦ 0.2, 0.8 ≦ b ≦ 0.99, 1 mol% or more of R1 to R5, and 20 mol% or less represent alkenyl groups, and 80 mol of R1 to R5 % Or more and 99 mol% or less represent methyl and phenyl groups, and R1 to R5 other than alkenyl, methyl and phenyl groups represent alkyl groups having 2 to 6 carbon atoms. (R1R2R3SiO1/2 )a (SiO4/2 )b … (2A) In the above formula (2A), a and b satisfy 0.7 ≦ a ≦ 0.9, 0.1 ≦ b ≦ 0.3, 1 mol% or more of R1 to R3, and 33 mol% or less represent an alkenyl group, and 67 mol of R1 to R3 % Or more and 99 mol% or less represent methyl and phenyl groups, and R1 to R3 other than alkenyl, methyl and phenyl groups represent alkyl groups having 2 to 6 carbon atoms. 1 mol% or more and 20 mol% or less of R1 to R3 may also represent an alkenyl group, and 80 mol% or more and 99 mol% of R1 to R3 may also represent a methyl group and a phenyl group. (R1R2R3SiO1/2 )a (R4R5SiO2/2 )b (R6SiO3/2 )c … (3A) In the above formula (3A), a, b and c satisfy 0.05 ≦ a ≦ 0.3, 0 ≦ b ≦ 0.8, 0.15 ≦ c ≦ 0.85, and 2 mol% or more and 20 mol% or less of R1 to R6 represent alkene The radicals, 80 mol% or more and 95 mol% or less of R1 to R6, represent methyl and phenyl groups, and R1 to R6 other than alkenyl, methyl, and phenyl represent alkyl groups having 2 to 6 carbon atoms. The polysiloxane compound having a hydrogen atom bonded to a silicon atom is preferably a polysiloxane compound represented by the following formula (1B). (R1R2R3SiO1/2 )a (R4R5SiO2/2 )b … (1B) In the above formula (1B), a and b satisfy 0.1 ≦ a ≦ 0.67, 0.33 ≦ b ≦ 0.9, 1 mol% or more of R1 to R5, and 25 mol% or less represent hydrogen atoms, and 75 mol of R1 to R5 % Or more and 99 mol% or less represent a methyl group and a phenyl group, and R1 to R5 other than a hydrogen atom, a methyl group and a phenyl group represent an alkyl group having 2 to 6 carbon atoms. (A2) The polysiloxane compound preferably contains the polysiloxane compound represented by the above formula (1A). (A2) The polysiloxane compound preferably includes the polysiloxane compound represented by the above formula (1A) and the polysiloxane compound represented by the above formula (2A), or includes the polysilicon compound represented by the above formula (1A) Oxygen compounds, and polysiloxane compounds represented by the above formula (3A). From the viewpoint of effectively improving the adhesion of the cured product and effectively improving the peeling of the cured product, it is preferable that (A) the thermosetting compound includes the polysiloxane compound represented by the above formula (2A) or (3A), And the polysiloxane compound represented by the above formula (1B) is used as (A1) polysiloxane compound. From the viewpoint of improving insulation reliability, it is preferable that (A) the thermosetting compound includes the polysilicon compound represented by the above formula (3A), and the polysilicon compound represented by the above formula (1B) as (A1 ) Polysiloxane. From the viewpoint of further suppressing the warpage of the member to be connected, it is preferable that (A) the thermosetting compound includes the polysiloxane compound represented by the above formula (1A), and the polysiloxane compound represented by the above formula (1B) The compound is (A1) polysiloxane compound. In the above-mentioned 100% by weight of the semiconductor device protection material, the content of (A2) polysiloxane compound is preferably 5% by weight or more, more preferably 8% by weight or more, and preferably 20% by weight or less, more preferably 15 Weight% or less. If the content of (A2) polysiloxane compound is above the above lower limit and below the above upper limit, the coating properties of the semiconductor element protection material, the flexibility of the cured product, and the moisture resistance become better, and the cured product The adherence becomes better, and the adhesion to the protective film can be further suppressed. The content of the polysiloxane compound having an alkenyl group bonded to a silicon atom is preferably 10 parts by weight or more with respect to 100 parts by weight of the polysiloxane compound having a hydrogen atom bonded to a silicon atom. 400 parts by weight or less. If the relationship of this content is satisfied, the coatability of the material for semiconductor element protection, the flexibility of the cured product, and the moisture resistance become better, and the adhesion of the cured product to the semiconductor element becomes better, which can further suppress the protection Attachment of the film. ((B) Curing agent or curing catalyst) As (B) curing agent or curing catalyst, (B1) curing agent or (B2) curing catalyst may be used. When the (A1) epoxy compound is used, the (B1) hardener is preferred. In the case of using (A2) polysiloxane compound, (B2) hardening catalyst is preferred. (B1) The curing agent may be liquid or solid at 23 ° C. From the viewpoint of further improving the coatability of the material for protecting semiconductor devices, (B1) the curing agent is preferably a liquid curing agent at 23 ° C. In addition, by using a liquid hardener at 23 ° C., the wettability of the semiconductor element protection material on the surface of the semiconductor element is increased. (B1) Only one type of curing agent may be used, or two or more types may be used in combination. (B2) Only one type of curing catalyst may be used, or two or more types may be used in combination. Examples of the (B1) hardener include amine compounds (amine hardeners), imidazole compounds (imidazole hardeners), phenol compounds (phenol hardeners), and acid anhydrides (acid anhydride hardeners). (B1) The hardener may not be an imidazole compound. From the viewpoint of further suppressing the generation of voids in the hardened product and further improving the heat resistance of the hardened product, the (B1) hardener is preferably a phenol compound. From the viewpoints of further improving the coatability of the material for protecting semiconductor devices, further suppressing the generation of voids in the hardened material, and further improving the heat resistance of the hardened material, (B1) the hardener preferably has an allyl group, preferably The phenol compound has an allyl group. Examples of the phenol compounds include phenol novolak, o-cresol novolak, p-cresol novolak, tertiary butylphenol novolak, dicyclopentadiene cresol, poly-p-vinylphenol, and bisphenol A type. Novolak, xylylene modified novolak, decalin modified novolak, poly (di-o-hydroxyphenyl) methane, poly (di-m-hydroxyphenyl) methane, and poly (di-p-hydroxybenzene Radical) methane, etc. In the case of using (B1) hardener, the content of (B1) hardener is preferably 50 parts by weight or more, more preferably 75 parts by weight or more, and more preferably 100 parts by weight of (A) thermosetting compound. It is 100 parts by weight or more, and preferably 250 parts by weight or less, more preferably 225 parts by weight or less, and further preferably 200 parts by weight or less. If the content of (B1) hardener is at least the above lower limit, the material for semiconductor element protection can be cured well. If the content of (B1) hardener is below the above upper limit, the residual amount of (B1) hardener in the hardened product that does not contribute to hardening decreases. Examples of the (B2) hardening catalyst include metal catalysts such as hydrosilylation catalysts and condensation catalysts. Examples of the hardening catalyst include tin-based catalysts, platinum-based catalysts, rhodium-based catalysts, and palladium-based catalysts. In order to improve transparency, a platinum catalyst is preferred. The above catalyst for hydrosilation reaction is a catalyst that causes a hydrogen atom bonded to a silicon atom in the polysilicon compound and an alkenyl group in the polysilicon compound to undergo a hydrosilation reaction. Only one kind of the above catalyst for hydrosilation reaction may be used, or two or more kinds may be used in combination. Examples of the platinum-based catalyst include platinum powder, chloroplatinic acid, platinum-alkenyl siloxane complex, platinum-olefin complex and platinum-carbonyl complex. Particularly preferred are platinum-alkenyl siloxane complexes or platinum-olefin complexes. As the alkenyl siloxane in the platinum-alkenyl siloxane complex, for example, 1,3-divinyl-1,1,3,3-tetramethyldisilaxane, and 1, 3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, etc. Examples of the olefin in the platinum-olefin complex include allyl ether and 1,6-heptadiene. In order to improve the stability of the platinum-alkenyl siloxane complex and platinum-olefin complex, it is preferable to add olefin to the platinum-alkenyl siloxane complex or platinum-olefin complex. Base siloxane, organic siloxane oligomer, allyl ether or olefin. The above alkenylsiloxane is preferably 1,3-divinyl-1,1,3,3-tetramethyldisilaxane. The organic silicone oligomer is preferably a dimethyl silicone oligomer. The aforementioned olefin is preferably 1,6-heptadiene. In the case of using (B2) hardening catalyst, the content of (B2) hardening catalyst is preferably 0.001 part by weight or more, more preferably 0.01 part by weight or more, relative to 100 parts by weight of (A) thermosetting compound. It is preferably 0.05 parts by weight or more, and preferably 2 parts by weight or less, more preferably 1 part by weight or less, and further preferably 0.5 parts by weight or less. If the content of (B2) hardening catalyst is at least the above lower limit, the semiconductor element protection material can be hardened well. If the content of (B2) hardening catalyst is below the above upper limit, the residual amount of (B2) hardening catalyst in the hardened product that does not contribute to hardening decreases. ((C) Inorganic filler with a thermal conductivity of 10 W / m · K or more) By using (C) inorganic filler with a thermal conductivity of 10 W / m · K or more, the coating properties of the semiconductor element protection material can be maintained It is higher, and the softness of the hardened material can be maintained high, and the heat dissipation of the hardened material can be improved. (C) Only one type of inorganic filler may be used, or two or more types may be used in combination. From the viewpoint of further improving the heat dissipation of the hardened material, (C) the thermal conductivity of the inorganic filler is preferably 10 W / m · K or more, more preferably 15 W / m · K or more, and further preferably 20 W / m ・ K or more. (C) The upper limit of the thermal conductivity of the inorganic filler is not particularly limited. Inorganic fillers with a thermal conductivity of about 300 W / m · K are widely known, and inorganic fillers with a thermal conductivity of about 200 W / m · K can be easily obtained. From the viewpoint of effectively improving the heat dissipation of the hardened product, (C) the inorganic filler is preferably alumina, aluminum nitride, or silicon carbide. When using these preferred inorganic fillers, only one type of these inorganic fillers may be used, or two or more types may be used in combination. As the (C) inorganic filler, inorganic fillers other than the above can also be suitably used. From the viewpoint of effectively maintaining the coatability of the material for protecting semiconductor devices effectively, and maintaining the flexibility of the cured product effectively, and effectively improving the heat dissipation of the cured product, (C) inorganic The filler is preferably a spherical inorganic filler having a thermal conductivity of 10 W / m · K or more. The spherical shape means that the aspect ratio (long axis / short axis) is 1 or more and 2 or less. (C) The average particle diameter of the inorganic filler is preferably 0.1 μm or more, and preferably 150 μm or less. If the average particle diameter of the (C) inorganic filler is equal to or greater than the above lower limit, the (C) inorganic filler can be easily filled at a high density. If the average particle diameter of the (C) inorganic filler is equal to or less than the above upper limit, the coatability of the material for semiconductor element protection further increases. The above-mentioned "average particle diameter" refers to the average particle diameter obtained from the volume average particle size distribution measurement result measured by a laser diffraction particle size distribution measuring device. The content of the (C) inorganic filler is preferably 60% by weight or more and 92% by weight or less in 100% by weight of the hardened product and 100% by weight of the material for semiconductor element protection. In the above 100% by weight of the semiconductor element protection material, the content of (C) inorganic filler is more preferably 70% by weight or more, further preferably 80% by weight or more, particularly preferably 82% by weight or more, and more preferably 90% by weight %the following. If the content of (C) inorganic filler is more than the above lower limit, the heat dissipation of the cured product will be further increased. If the content of (C) the inorganic filler is equal to or less than the above upper limit, the coatability of the material for semiconductor element protection further increases, and the properties of the cured product become better. ((D) Hardening accelerator) By using (D) hardening accelerator, the curing speed can be accelerated, and the material for semiconductor element protection can be efficiently cured. (D) Only one type of curing accelerator may be used, or two or more types may be used in combination. Examples of (D) curing accelerators include imidazole compounds, phosphorus compounds, amine compounds, and organometallic compounds. Among them, in terms of more excellent effects of the present invention, an imidazole compound is preferred. Examples of the imidazole compounds include 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, and 2-benzene 4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methyl Imidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 1- Cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [2 '-Methylimidazolyl- (1')]-ethyl-symmetric three, 2,4-Diamino-6- [2'-undecylimidazolyl- (1 ')]-ethyl-symmetric three, 2,4-Diamino-6- [2'-ethyl-4'-methylimidazolyl- (1 ')]-ethyl-symmetric three, 2,4-Diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-symmetric threeIsocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-methylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethyl Imidazole and 2-phenyl-4-methyl-5-dihydroxymethylimidazole etc. In addition, a well-known imidazole-based latent hardener can be used. Specific examples include PN23, PN40, and PN-H (trade names, all manufactured by Ajinomoto Fine-Techno). Further, there may be mentioned a hardening accelerator which is also called microencapsulated imidazole by addition reaction with the hydroxyl group of the epoxy adduct of the amine compound, for example, Novavacure HX-3088, Novavacure HX-3941, HX- 3742, HX-3722 (trade names, all manufactured by Asahi Kasei E-MATERIALS), etc. Furthermore, imidazole encapsulated may also be used. As a specific example, TIC-188 (trade name, manufactured by Japan Soda Corporation) can be cited. Examples of the phosphorus compound include triphenylphosphine. Examples of the above-mentioned amine compounds include 2,4,6-tris (dimethylaminomethyl) phenol, diethylamine, triethylamine, diethylenetetramine, triethylenetetramine, and 4,4-diamine Methylaminopyridine and so on. Examples of the organometallic compounds include zinc naphthenate, cobalt naphthenate, tin octoate, cobalt octoate, cobalt (II) diacetone acetone, and cobalt (III) triacetone acetone. The content of the (D) hardening accelerator is preferably 0.1 parts by weight or more, more preferably 0.5 parts by weight or more, and preferably 10 parts by weight or less with respect to 100 parts by weight in total with the (A) thermosetting compound. It is preferably 8 parts by weight or less. If the content of the (D) hardening accelerator is at least the above lower limit, the material for semiconductor element protection can be hardened well. If the content of the (D) hardening accelerator is equal to or lower than the above upper limit, the residual amount of the (D) hardening accelerator in the hardened product that does not contribute to hardening decreases. ((E) Coupling agent) It is preferable that the material for semiconductor element protection contains (E) a coupling agent. By using the (E) coupling agent, the moisture resistance of the cured product of the semiconductor element protection material is further increased. (E) Only one type of coupling agent may be used, or two or more types may be used in combination. The content of the (E) coupling agent is preferably 0.1% by weight or more, more preferably 0.2% by weight or more, and preferably 2% by weight in 100% by weight of the hardened product and 100% by weight of the material for semiconductor device protection. Below, it is more preferably 1% by weight or less. If the content of the (E) coupling agent is at least the above lower limit, the moisture resistance of the cured product of the semiconductor element protection material will be further increased. If the content of the (E) coupling agent is equal to or less than the above upper limit, the coatability of the material for semiconductor element protection further increases. The above-mentioned (E) coupling agent preferably contains a silane coupling agent having a weight reduction of 100% or less at 100 ° C, a titanate coupling agent having a weight reduction of 10% or less at 100 ° C, or a weight at 100 ° C Reduce the aluminate coupling agent to 10% by weight or less. In the case of using these better coupling agents, these coupling agents may use only one kind, or may use two or more kinds together. If the weight reduction at 100 ° C is 10% by weight or less, the volatilization of (E) coupling agent during curing is suppressed, the wettability of the semiconductor element is further increased, and the heat dissipation of the cured product is further increased. Furthermore, the weight loss at 100 ° C can be measured by using an infrared moisture meter ("FD-720" manufactured by Kate Scientific Research Institute) at a heating rate of 50 ° C / min to 100 ° C, and measuring the weight after 10 minutes Reduce and find. ((F) Ion-trapping agent) From the viewpoint of effectively improving the insulation reliability of the cured product, the above-mentioned semiconductor element protection material preferably contains (F) an ion-trapping agent. (F) Only one kind of ion trapping agent may be used, or two or more kinds may be used in combination. (F) The ion trapping agent is not particularly limited. As the (F) ion trapping agent, previously known ion trapping agents can be used. Specific examples of the (F) ion trapping agent include compounds known as copper poisoning inhibitors in order to prevent copper ionization and elution. For example, three compounds can be used.Thiol compounds, bisphenol-based reducing agents, etc. Examples of the bisphenol-based reducing agent include 2,2'-methylene-bis- (4-methyl-6-tert-butylphenol) and 4,4'-thio-bis- (3-methyl Yl-6-tert-butylphenol) etc. In addition, as specific examples of the (F) ion trapping agent, inorganic anion exchangers, inorganic cation exchangers, inorganic amphoteric ion exchangers, etc. may be cited, and specifically, the general formula BiO may be cited.X (OH)Y (NO3 )Z [Here, X is 0.9 to 1.1, Y is 0.6 to 0.8, and Z is a positive number of 0.2 to 0.4] represented by the bismuth oxide ion trap, antimony oxide ion trap, titanium phosphate ion trap, zirconium phosphate System ion trapping agent and general formula MgX AlY (OH)2X 3Y-2Z (CO3 )Z ・ MH2 O [Here, X, Y, Z are positive numbers satisfying 2X + 3Y-2Z ≧ 0, m is a positive number] an aluminum magnesium carbonate-based ion trapping agent, etc., represented. Examples of commercially available products of the plasma trapping agent include IXE-100 (manufactured by East Asia Synthesizer, zirconium phosphate ion trapping agent), IXE-300 (manufactured by East Asia Synthetic Company, antimony oxide ion trapping agent), and IXE- 400 (manufactured by East Asia Synthesizer, titanium phosphate ion trap), IXE-500 (manufactured by East Asia Synthesizer, bismuth oxide ion trap), IXE-600 (manufactured by East Asia Synthesizer, antimony oxide / bismuth oxide ion trap) ), DHT-4A (aluminum magnesium carbonate ion trapping agent, manufactured by Kyowa Chemical Industry Company), and Kyoward KW-2000 (aluminum magnesium carbonate ion trapping agent, manufactured by Kyowa Chemical Industry Company), etc. From the viewpoint of further reducing the electrical reliability of the cured product, the (F) ion trapping agent is preferably an inorganic cation exchanger or an inorganic amphoteric ion exchanger. From the viewpoint of further suppressing migration and further improving insulation reliability, the cation exchanger is preferably a Zr-based cation exchanger or an Sb-based cation exchanger, more preferably a Zr-based cation exchanger, and the cation exchanger is more Preferably, it contains zirconium atoms. From the viewpoint of further suppressing migration and further improving insulation reliability, the anion exchanger is preferably a Bi-based anion exchanger, a Mg-Al-based anion exchanger or a Zr-based anion exchanger, and more preferably a Mg-Al-based anion The exchanger, and the anion exchanger preferably contains magnesium atoms and aluminum atoms. From the viewpoint of further suppressing migration and further improving insulation reliability, the neutral exchange capacity of the cation exchanger is preferably 1 meq / g or more, more preferably 2 meq / g or more, and preferably 10 meq / g Below, it is more preferably 4 meq / g or less. From the viewpoint of further suppressing migration and further improving insulation reliability, the neutral exchange capacity of the anion exchanger is preferably 0.1 meq / g or more, more preferably 1 meq / g or more, and preferably 10 meq / g Below, more preferably 5 meq / g or less. From the viewpoint of further suppressing migration and further improving insulation reliability, the median diameter of the cation exchanger is preferably 0.1 μm or more, more preferably 0.5 μm or more, and preferably 10 μm or less, more preferably 3 μm the following. From the viewpoint of further suppressing migration and further improving insulation reliability, the median diameter of the anion exchanger is preferably 0.1 μm or more, more preferably 0.5 μm or more, and preferably 10 μm or less, more preferably 3 μm the following. From the viewpoint of further suppressing migration and further improving insulation reliability, the content of (F) ion trapping agent is preferably 0.1% by mass or more in 100% by weight of the hardened product and 100% by weight of the material for protecting semiconductor devices. It is more preferably 0.3% by weight or more, and preferably 3% by weight or less, and more preferably 2% by weight or less. (Other ingredients) The above-mentioned materials for semiconductor device protection may also include, if necessary, natural waxes such as carnauba wax, synthetic waxes such as polyethylene wax, higher fatty acids such as stearic acid or zinc stearate, and their metal salts or paraffin wax. Agent; colorants such as carbon black and iron dan; brominated epoxy resin, antimony trioxide, aluminum hydroxide, magnesium hydroxide, zinc borate, zinc molybdate, phosphazene and other flame retardants; inorganic ions such as bismuth oxide hydrate Exchanger; low-stress components such as silicone oil and silicone rubber; and various additives such as antioxidants. The above-mentioned semiconductor element protection material preferably contains a dispersant. Specific examples of the dispersant include polycarboxylates, alkylammonium salts, hydroxyalkylammonium salts, phosphate ester salts, acrylic block copolymers, and polymer salts. The content of the dispersant is preferably 0.1% by weight or more, more preferably 0.2% by weight or more, and preferably 2% by weight or less in 100% by weight of the hardened product and 100% by weight of the material for semiconductor device protection. It is preferably 1% by weight or less. (Other details of the semiconductor element protection material and the semiconductor device) The semiconductor element protection material is applied on the surface of the semiconductor element to protect the semiconductor element. The above-mentioned semiconductor element protection material is different from the one disposed between the semiconductor element and the other connection object member, and forming a hardened product that adheres and fixes the semiconductor element and the other connection object member without peeling. The above-mentioned semiconductor element protection material is preferably a coating material covering the surface of the semiconductor element. The above-mentioned semiconductor element protection material is preferably not coated on the side surface of the semiconductor element. The material for protecting the semiconductor element is preferably different from the material for sealing the semiconductor element, and is preferably not a sealant for sealing the semiconductor element. The above-mentioned semiconductor element protection material is preferably not an underfill material. The semiconductor element has a first electrode on the second surface side, and the semiconductor element protection material is preferably applied on the first surface of the semiconductor element opposite to the second surface side. The above-mentioned semiconductor element protection material is preferably used in a semiconductor device to form a hardened material on the surface of the semiconductor element in order to protect the semiconductor element. The above-mentioned semiconductor element protection material can be preferably used to form a hardened material on the surface of the semiconductor element in order to protect the semiconductor element, and can be preferably used to arrange a protective film on the hardened material opposite to the semiconductor element side The semiconductor device is obtained on the surface. In the semiconductor device, the conductivity of the hardened product is preferably 50 μS / cm or less. Examples of the method of coating the above-mentioned semiconductor element protection material include a coating method using a dispenser, a coating method using screen printing, and a coating method using an inkjet device. The above-mentioned semiconductor element protection material is preferably used after being coated by a coating method using a dispenser, screen printing, vacuum screen printing, or an inkjet device. From the viewpoint of easy coating and less likely to cause voids in the hardened material, the above-mentioned semiconductor device protection material is preferably used after being coated with a dispenser. The semiconductor device of the present invention includes a semiconductor element and a cured product disposed on the first surface of the semiconductor element. In the semiconductor device of the present invention, the hardened material is formed by hardening the semiconductor element protection material. The material for protecting a semiconductor element is preferably used to form a hardened material on the surface of the semiconductor element in order to protect the semiconductor element, and a protective film is arranged on the surface of the hardened material opposite to the semiconductor element side to obtain a semiconductor device, Or for obtaining a semiconductor device in which a hardened material is formed on the surface of the semiconductor element in order to protect the semiconductor element, and the surface of the hardened material opposite to the semiconductor element side is exposed. In terms of more effectively exerting the effects of the present invention, the above-mentioned semiconductor element protection material is preferably a driver IC chip protection material. FIG. 1 is a partially cut-away front cross-sectional view of a semiconductor device using the semiconductor device protection material according to the first embodiment of the present invention. The semiconductor device 1 shown in FIG. 1 includes a semiconductor element 2 and a cured product 3 disposed on the first surface 2 a of the semiconductor element 2. The hardened material 3 is formed by hardening the above-mentioned semiconductor element protection material. The hardened product 3 is arranged in a partial region on the first surface 2a of the semiconductor element 2. The semiconductor element 2 has a first electrode 2A on the second surface 2b side opposite to the first surface 2a side. The semiconductor device 1 further includes a connection target member 4. The connection object member 4 has the second electrode 4A on the surface 4a. The semiconductor element 2 and the connection target member 4 are adhered and fixed via other hardened objects 5 (connection parts). The semiconductor element 2 is packaged on the connection target member 4. The first electrode 2A of the semiconductor element 2 faces the second electrode 4A of the connection object member 4 and is electrically connected by the conductive particles 6. The first electrode 2A and the second electrode 4A may be electrically connected by contact. The hardened material 3 is disposed on the first surface 2a of the semiconductor element 2 opposite to the side where the first electrode 2A is disposed. The hardened product 3 is disposed on the first surface 2a of the semiconductor element 2 opposite to the side of the connection target member 4. A protective film 7 is arranged on the surface of the cured product 3 opposite to the semiconductor element 2 side. Thereby, not only the heat dissipation property and the protection property of the semiconductor element can be improved by the cured product 3, but also the protection property of the semiconductor element can be further improved by the protective film 7. Since the cured product 3 has the above composition, the adhesion of the cured product 3 to the protective film 7 can be suppressed. Examples of the connection target member include glass substrates, glass epoxy substrates, and flexible printed boards. Examples of the flexible printed substrate include resin substrates such as polyimide substrates. In terms of more effectively exerting the effects of the present invention, the connection object member is preferably a substrate, preferably a flexible printed substrate, preferably a resin substrate, and more preferably a polyimide substrate. On the surface of the semiconductor element, the thickness of the hardened material of the semiconductor element protection material is preferably 400 μm or more, more preferably 500 μm or more, and preferably 2000 μm or less, more preferably 1900 μm or less. The thickness of the hardened material of the semiconductor element protection material may also be thinner than the thickness of the semiconductor element. FIG. 2 is a partially cut-away front cross-sectional view of a semiconductor device using a semiconductor device protection material according to a second embodiment of the present invention. The semiconductor device 1X shown in FIG. 2 includes a semiconductor element 2 and a cured product 3X disposed on the first surface 2 a of the semiconductor element 2. The hardened product 3X is formed by hardening the above-mentioned semiconductor element protection material. The hardened material 3X is arranged in the entire area on the first surface 2a of the semiconductor element 2. The protective film is not arranged on the surface of the cured product 3X opposite to the semiconductor element 2 side. The surface of the cured product 3X opposite to the semiconductor element 2 side is exposed. In the above semiconductor device, it is preferable that a protective film is disposed on the surface of the hardened object opposite to the semiconductor element side, or the surface of the hardened object opposite to the semiconductor element side is exposed. In addition, the structure shown in FIGS. 1 and 2 is only an example of a semiconductor device, and the arrangement structure of the hardened material of the semiconductor element protection material can be appropriately changed. The thermal conductivity of the hardened material of the semiconductor element protection material is not particularly limited, and preferably exceeds 1.1 W / m · K, more preferably 1.5 W / m · K or more, and further preferably 1.8 W / m · K or more. Hereinafter, the present invention will be clarified by listing specific examples and comparative examples of the present invention. Furthermore, the present invention is not limited to the following embodiments. Use the following materials. (A1) Epoxy compound EX-821 (n = 4) ((A11) Flexible epoxy compound, manufactured by Nagase ChemteX, polyethylene glycol diglycidyl ether, epoxy equivalent: 185) EX-830 (n = 9) ((A11) Flexible epoxy compound, manufactured by Nagase ChemteX, polyethylene glycol diglycidyl ether, epoxy equivalent: 268) EX-931 (n = 11) ((A11) Flexible ring Oxygen compound, manufactured by Nagase ChemteX, polypropylene glycol diglycidyl ether, epoxy equivalent: 471) EX-861 (n = 22) ((A11) Flexible epoxy compound, manufactured by Nagase chemteX, polyethylene glycol di Glycidyl ether, epoxy equivalent: 551) PB3600 (manufactured by Daicel, polybutadiene modified epoxy resin, epoxy equivalent: 200) jER828 ((A12) epoxy compound, manufactured by Mitsubishi Chemical Corporation, bisphenol A Type epoxy resin, epoxy equivalent: 188) jER834 ((A12) epoxy compound, manufactured by Mitsubishi Chemical Corporation, bisphenol A type epoxy resin, softening point: 30 ℃, epoxy equivalent: 255) (A2) polysilicon Oxygen compound [synthesis of polymer A as polysiloxane compound] To a 1000 mL separable flask equipped with a thermometer, a dropping device and a stirrer, add 164.1 g of dimethyldimethoxysilane, 20.1 g of methylphenyldimethoxysilane and 4.7 g of 1,3-divinyl-1,1,3,3-tetramethyldisilazane, and Stir at 50 ° C. A solution prepared by dissolving 2.2 g of potassium hydroxide in 35.1 g of water was slowly added dropwise, and after dropping, the solution was stirred at 50 ° C. for 6 hours to react to obtain a reaction solution. Then, the pressure was reduced to remove the volatile components, 2.4 g of acetic acid was added to the reaction solution, and the mixture was heated under reduced pressure. Thereafter, potassium acetate was removed by filtration to obtain polymer A. The number average molecular weight of the obtained polymer A was 15,000. By29 Si-NMR (Nuclear Magnetic Resonance) identified the chemical structure. As a result, polymer A had the following average composition formula. (Me2 SiO2/2 )0.85 (PhMeSiO2/2 )0.10 (ViMe2 SiO1/2 )0.05 In the above formula, Me represents a methyl group, Vi represents a vinyl group, and Ph represents a phenyl group. The content ratio of the phenyl group and the methyl group of the obtained polymer A was 97.6 mol%, and the content ratio of the vinyl group was 2.4 mol%. Furthermore, the molecular weight of each polymer was added to 10 mg of tetrahydrofuran 1 mL, stirred until dissolved, and measured by GPC (Gel Permeation Chromatograph, gel permeation chromatography). For GPC measurement, a measuring device (column: Shodex GPC LF-804 (length 300 mm) manufactured by Showa Denko Co., Ltd. × 2 pieces, measuring temperature: 40 ° C., flow rate: 1 mL / min, solvent: tetrahydrofuran was used , Standard material: polystyrene). [Synthesis of Polymers B to D as Polysilicone Compounds] Except for changing the type and blending amount of organic silicon compounds used for synthesis, polymers B to D are obtained in the same manner as the synthesis of polymer A. Polymer B: (SiO4/2 )0.20 (ViMe2 SiO1/2 )0.40 (Me3 SiO1/2 )0.40 Number average molecular weight 2000 The content ratio of phenyl and methyl is 83.3 mol%, and the content ratio of vinyl is 16.7 mol%. Polymer C: (MeSiO3/2 )0.20 (PhMeSiO2/2 )0.70 (ViMe2 SiO1/2 )0.10 Number average molecular weight 4000 The content ratio of phenyl and methyl is 94.7 mol%, and the content ratio of vinyl is 5.3 mol%. Polymer D: (PhSiO3/2 )0.80 (ViMe2 SiO1/2 )0.20 Number-average molecular weight 1700 The content ratio of phenyl and methyl groups is 85.7 mol%, and the content ratio of vinyl groups is 14.3 mol% [Synthesis of Polymer E as Polysiloxane Compound] To be equipped with a thermometer, a dripping device and a stirrer In a 1000 mL separable flask, 80.6 g of diphenyldimethoxysilane and 45 g of 1,1,3,3-tetramethyldisilazane were added and stirred at 50 ° C. A solution of 100 g of acetic acid and 27 g of water was slowly added dropwise thereto, and after the dropwise addition, the solution was stirred at 50 ° C. for 6 hours to react to obtain a reaction solution. Then, decompression was performed to remove volatile components to obtain a polymer. To the obtained polymer, 150 g of hexane and 150 g of ethyl acetate were added, washed with 300 g of ion-exchanged water 10 times, and volatile components were removed under reduced pressure to obtain polymer E. The number average molecular weight of the obtained polymer E was 850. By29 Si-NMR identified the chemical structure, and as a result, polymer E had the following average composition formula. (Ph2 SiO2/2 )0.67 (HMe2 SiO1/2 )0.33 In the above formula, Me represents a methyl group and Ph represents a phenyl group. The content ratio of the phenyl group and methyl group of the obtained polymer E was 74.9 mol%, and the content ratio of hydrogen atoms bonded to silicon atoms was 25.1%. [Synthesis of polymer F as polysiloxane compound] In the synthesis of polymer E, except that the washing with ion-exchanged water was changed to one, the polymer F was obtained in the same manner. [Synthesis of Polymer G as a polysiloxane compound] To a 1000 mL separable flask equipped with a thermometer, a dripping device and a stirrer, 80.6 g of dimethyldimethoxysilane and 1,1,3 were added , 3-tetramethyldisilaxane 45 g, and stirred at 50 ℃. A solution of 100 g of acetic acid and 27 g of water was slowly added dropwise thereto, and after the dropwise addition, the solution was stirred at 50 ° C. for 6 hours to react to obtain a reaction solution. Then, 150 g of hexane and 150 g of ethyl acetate were added to the obtained reaction liquid, and washed with 300 g of ion-exchanged water 10 times, and the solvent component was removed by liquid separation to obtain polymer G. The number average molecular weight of the obtained polymer G was 350. By29 Si-NMR identified the chemical structure, and as a result, polymer G had the following average composition formula. (Me2 SiO2/2 )0.50 (HMe2 SiO1/2 )0.50 In the above formula, Me represents a methyl group. The content ratio of the phenyl and methyl groups of the obtained polymer G was 80 mol%, and the content ratio of hydrogen atoms bonded to silicon atoms was 20%. (B) Hardener or curing catalyst Fujicure 7000 (manufactured by Fuji Chemical Co., Ltd., liquid at 23 ° C, amine compound) MEH-8005 (manufactured by Minghe Chemical Co., Ltd., liquid at 23 ° C, allylphenol novolak compound ) TD-2131 (manufactured by DIC, solid at 23 ° C, phenol novolak compound) 1,3-divinyl-1,1,3,3-tetramethyldisilazane complex of platinum ( D) Hardening accelerator SA-102 (manufactured by SAN-APRO, DBU caprylate) (C) Inorganic filler FAN-f05 (manufactured by Furukawa Electronics Co., Ltd., aluminum nitride, thermal conductivity) with a thermal conductivity of 10 W / m · K or more : 100 W / m · K, spherical, average particle size: 6 μm) FAN-f50 (made by Furukawa Electronics Co., Ltd., aluminum nitride, thermal conductivity: 100 W / m · K, spherical, average particle size: 30 μm ) CB-P05 (manufactured by Showa Denko, alumina, thermal conductivity: 20 W / m · K, spherical, average particle size: 4 μm) CB-P40 (manufactured by Showa Denko, alumina, thermal conductivity: 20 W / m ・ K, spherical, average particle size: 44 μm) SSC-A15 (manufactured by Shinano Electric Refining Company, silicon carbide, thermal conductivity: 100 W / m · K, spherical, average particle size: 19 μm) SSC- A30 (Shinano Electric Refining Manufactured by the company, silicon carbide, thermal conductivity: 100 W / m · K, spherical, average particle size: 34 μm) (C ') Other inorganic filler HS-306 (manufactured by Micron, silicon oxide, thermal conductivity: 2 W / m · K, spherical, average particle size: 2.5 μm) HS-304 (Micron Corporation, silicon oxide, thermal conductivity: 2 W / m · K, spherical, average particle size: 25 μm) (E) Coupling agent KBM-403 (manufactured by Shin-Etsu Chemical Co., Ltd., 3-glycidoxypropyltrimethoxysilane, weight reduction at 100 ° C: more than 10% by weight) A-LINK599 (manufactured by Momentive, 3-octylthio-1 -Propyl triethoxysilane, weight reduction at 100 ° C: 10% by weight or less) TOG (IPA cut-off) (manufactured by Soda Corporation, Japan, titanium isopropoxyoctanediol, weight reduction at 100 ° C: 10 weight % Or less) AL-M (manufactured by Ajinomoto Fine-Techno Co., Ltd., acetyl aluminum alkoxide diisopropyl ester, weight reduction at 100 ° C: less than 10% by weight) (other components) BYK-9076 (manufactured by BYK company, dispersed Agent) (F) Ion trapping agent IXE-300 (manufactured by East Asia Synthesizer, antimony oxide-based ion trapping agent) IXE-600 (manufactured by East Asia Synthetic Company, antimony oxide / bismuth oxide-based (Trapping agent) DHT-4A (produced by Kyowa Chemical Industry Co., Ltd., aluminum magnesium carbonate-based ion trapping agent) (Example 1) EX-821 (n = 4) 6.5 parts by weight, jER828 2.5 parts by weight, Fujicure 7000 5 parts by weight, 0.5 parts by weight of SA-102, 42.5 parts by weight of CB-P05, 42.5 parts by weight of CB-P40, and 0.5 parts by weight of BYK-9076 were mixed and defoamed to obtain a material for semiconductor device protection. (Examples 2 to 22 and Comparative Examples 1,2) The materials for semiconductor element protection were obtained in the same manner as in Example 1 except that the types and amounts of formulation components were changed as shown in Tables 1 to 4 below. (Evaluation) (1) Measurement of Viscosity at 25 ° C Use a B-type viscometer ("TVB-10" manufactured by Toki Industries Co., Ltd.) to measure the viscosity (Pa・ S). (2) (X) The content of cyclic siloxane compound from terpolymer to decamer is used in the obtained material for protecting semiconductor devices, using gas chromatography mass spectrometry (GC-MS) (Shimadzu Corporation) The manufactured "QP2010SE") evaluates the content of (X) cyclic siloxane compounds from terpolymer to decamer. (3) (Y) Water content In the obtained material for semiconductor device protection, the content of (Y) water is evaluated using a Kjeldahl moisture meter ("MKV-710B" manufactured by Kyoto Electronics Industry Co., Ltd.) according to JIS K7215 . (4) Electrical conductivity The material for semiconductor element protection was cured at 150 ° C for 2 hours to obtain a cured product. The obtained hardened material was crushed to about 5 mm square, 25 mL of ion-exchanged water was added to 2.5 g of the crushed material, and 20 Hr was placed in PCT (121 ° C ± 2 ° C / humidity 100% / 2 atm tank). Thereafter, an extract obtained by cooling to room temperature was obtained as a test liquid. The conductivity of the test solution was measured using a conductivity meter (conductivity meter "CM-42X" manufactured by Toa Denko Industrial Co., Ltd.). (5) Thermal conductivity The obtained semiconductor element protection material was heated at 150 ° C for 2 hours to harden it to obtain a hardened product of 100 mm × 100 mm × thickness 50 μm. This hardened product was used as an evaluation sample. The thermal conductivity of the obtained evaluation sample was measured using a thermal conductivity meter "Quick Thermal Conductivity Meter QTM-500" manufactured by Kyoto Electronics Industries. In addition, when the thermal conductivity is 1.1 W / m · K or less, the thermal conductivity is judged to be “×”. (6) Coating property: The obtained semiconductor device protection material is directly ejected from the dispenser device ("SHOTMASTER-300" manufactured by Musashi Hi-Tech Co., Ltd.) to a diameter of 5 mm and a height of 2 mm to Polyamide After being deposited on the amine film, the material for semiconductor element protection is heated at 150 ° C. for 2 hours to harden it. Based on the shape of the hardened semiconductor element protection material, the applicability was judged according to the following criteria. [Determination criteria for coating properties] ○: Diameter 5.3 mm or more, height less than 1.8 mm (with fluidity) △: Diameter more than 5 mm and less than 5.3 mm, height more than 1.8 mm and less than 2 mm (slight flow Properties) ×: Maintain a diameter of 5 mm and a height of 2 mm (no fluidity) (7) With or without pores, apply an underfill (made by NAMICS, U8437-2) to the polymer with a width of 3 mm and a length of 18 mm. On the amide imine film, a Si wafer having a width of 3 mm, a length of 18 mm, and a thickness of 0.3 mm was placed and cured at 150 ° C for 1 hour to prepare a test piece. The obtained semiconductor element protection material is directly ejected from the dispenser device ("SHOTMASTER-300" manufactured by Musashi Hi-Tech Co., Ltd.) so as to cover the entire Si wafer and have a width of 5 mm, a length of 21 mm, and a thickness of 0.9 mm. After the prepared test piece is applied, the semiconductor element protection material is heated at 150 ° C. for 2 hours to harden it. Observe the presence or absence of voids in the material for semiconductor device protection after hardening with a microscope and evaluate. [Judgment criteria for the presence or absence of pores] ○: No pores △: Pore with a diameter of less than 100 μm that cannot be visually observed △△: Pore with a diameter of 100 μm or more and less than 150 μm ×: With a diameter of 150 μm or more Visually Observable Porosity (8) Moisture Resistance The obtained semiconductor element protection material was heated at 150 ° C for 2 hours to harden it to obtain a hardened product of 100 mm × 100 mm × 50 μm in thickness. This hardened product was used as an evaluation sample. The volume resistivity of the obtained evaluation sample was measured using DSM-8104 (manufactured by Hitachi Electric Co., Ltd., digital super-insulation / micrometer) and electrode SME-8310 for flat sample (manufactured by Hitachi Electric Co.). Then, a high-accelerated life test device EHS-211 (manufactured by ESPEC) was used for the autoclave test. After placing it at 121 ° C, humidity 100% RH and 2 atm for 24 hours, and then at 23 ° C and humidity 50% RH for 24 hours, the volume resistivity was measured. Calculate the rate of decrease in volume resistivity before and after the pressure cooker test, and determine the moisture resistance according to the following criteria. [Judgment Criteria for Moisture Resistance] ○: The rate of decrease in volume resistivity before and after the test is 10% or less △: The rate of decrease in volume resistivity before and after the test exceeds 10% and is 20% or less ×: The volume resistivity before and after the test The reduction rate exceeds 20% (9) Adhesive force (wafer shear strength) The semiconductor element protection material is coated on the polyimide substrate in such a way that the bonding area becomes 3 mm × 3 mm, and the 3 mm square is placed Test samples were obtained from the Si wafer. The obtained test sample was heated at 150 ° C for 2 hours to harden the material for semiconductor element protection. Then, the wafer shear strength tester ("DAGE 4000" manufactured by ARCTEC) was used to evaluate the wafer shear strength at 25 ° C at a rate of 300 μm / sec. [Judgment Criteria for Wafer Shear Strength] ○: Wafer shear strength is 10 N or more △: Wafer shear strength is 6 N or more and less than 10 N △△: Wafer shear strength is 5 N or more and less than 6 N ×: Wafer shear strength less than 5 N (10) Tackiness (adhesiveness of protective film) The obtained material for semiconductor device protection was heated at 150 ° C. for 2 hours to harden it to obtain 100 mm × 100 mm × Hardened product with a thickness of 50 μm. This hardened product was used as an evaluation sample. The obtained evaluation sample was placed in an environment of 23 ° C and a humidity of 50% RH for 24 hours. Immediately after leaving for 24 hours, the viscosity of the surface of the evaluation sample was measured using a viscosity tester TA-500 (manufactured by UBM). [Judgment criteria for viscosity] ○: Stress less than 50 gf / cm2 △: Stress is 50 gf / cm2 Above and below 100 gf / cm2 ×: Stress is 100 gf / cm2 The above (11) film warping directly obtained the material for semiconductor device protection from the dispenser device ("SHOTMASTER-300" manufactured by Musashi Hi-Tech Co., Ltd.) so as to be 20 mm long, 100 mm wide, and 10 mm high. After spraying onto the polyimide film, the semiconductor element protection material was heated at 150 ° C for 2 hours to harden it. After curing, the warpage of the polyimide film was visually confirmed, and the warpage of the film was determined according to the following criteria. [Judgment criteria for film warpage] ○: No warpage of polyimide film is present △: Warpage of polyimide film is slightly generated (no problem in use) ×: Warpage of polyimide film is generated ( There are problems in use) (12) Heat resistance The obtained semiconductor element protection material is heated at 150 ° C for 2 hours to harden it to obtain a hardened product of 100 mm × 100 mm × 50 μm in thickness. This hardened product was used as an evaluation sample. The volume resistivity of the obtained evaluation samples was measured using DSM-8104 (manufactured by Hitachi Electric Co., Ltd., digital super-insulation / micrometer) and electrode SME-8310 for flat sample (manufactured by Hitachi Electric Co.). Then, after leaving it at 180 ° C for 100 hours, and then leaving it at 23 ° C and 50% RH for 24 hours, the volume resistivity was measured. Calculate the rate of decrease in volume resistivity before and after the heat resistance test, and determine the heat resistance according to the following criteria. [Judgment criteria for heat resistance] ○ ○: The rate of decrease in volume resistivity before and after the test is 5% or less ○: The rate of decrease in volume resistivity before and after the test exceeds 5% and is 10% or less △: The volume resistivity before and after the test The reduction rate exceeds 10% and is less than 20% ×: The reduction rate of volume resistivity before and after the test exceeds 20% (13) Insulation reliability will be thermally hardened solder resist ("NPR-3300" manufactured by Japan Poly-tech) A comb-shaped electrode formed on a substrate (polyimide film) with a film thickness of 10 μm (material: tin plated on copper, pattern pitch: 50 μm, L / S = 25 μm / 25 μm) Above, and heated at 150 ℃ for 1 hour to harden, prepare a test pattern. The material for semiconductor element protection was coated on the above test pattern, and heated at 150 ° C. for 2 hours to harden it to obtain a test piece. Put the heated test piece into a tank at 85 ° C and 85% humidity ("SH641" manufactured by ESPEC), and use a migration tester ("MIG-8600B" manufactured by IMV) to apply 40 V between the electrodes. DC voltage, measure the resistance between the electrodes. Determine the insulation reliability according to the following criteria. In the case of the criterion of ○, △ or △△, the insulation reliability is judged to be satisfactory, and the insulation retention does not hinder actual use, and the insulation reliability is excellent. [Judgment Criteria for Insulation Reliability] ○: Resistance is 1 × 10 for more than 100 hours9 Ω or more, the insulation is very good △: 1 × 10 when the resistance lasts for more than 100 hours8 Ω or more and less than 1 × 109 Ω, good insulation △△: resistance decreases to less than 1 × 10 in less than 100 hours8 Ω, but 1 × 10 lasting more than 50 hours and less than 100 hours8 Resistance above Ω, the insulation is slightly better ×: The resistance decreases to less than 1 × 10 in less than 50 hours8 Ω, regarded as poor insulation (14) Film warpage after heat resistance test After the evaluation of (11) film warpage above, the laminate of the cured product of the semiconductor element protection material and the polyimide film is at 180 ° C Leave it for 100 hours. After leaving, the warpage of the polyimide film was visually confirmed, and the warpage of the film after the heat resistance test was determined according to the following criteria. [Judgment criteria for film warpage after heat resistance test] ○: The warpage amount of the film after the heat resistance test is less than 1.1 times relative to the warpage amount of the film before the heat resistance test △: The warpage relative to the film before the heat resistance test Curvature, the warpage of the film after the heat resistance test is more than 1.1 times and less than 1.2 times ×: relative to the warpage of the film before the heat resistance test, the warpage of the film after the heat resistance test is 1.2 times or more The details, composition and results of the ingredients are shown in Tables 1 to 4 below. [Table 1] [Table 2] [table 3] [Table 4] (Example 23) In the preparation of a material for semiconductor element protection, 0.5 parts by weight of IXE-300 (manufactured by Toa Synthetic, antimony oxide-based ion scavenger) was further added in the same manner as in Example 1. Materials for semiconductor element protection. (Example 24) In the preparation of the material for semiconductor device protection, 0.5 parts by weight of IXE-600 (manufactured by Toa Synthesis Co., antimony oxide / bismuth oxide ion trapping agent) was added, except that it was the same as Example 1. To obtain materials for semiconductor element protection. (Example 25) In the preparation of the material for semiconductor device protection, 0.5 parts by weight of DHT-4A (manufactured by Kyowa Chemical Industry Co., Ltd., aluminum magnesium carbonate ion trapping agent) was added, except that the same as Example 1 was used. To obtain materials for semiconductor element protection. (Example 26) In the preparation of a material for semiconductor device protection, 0.5 parts by weight of IXE-300 (manufactured by Toa Synthesis Co., Ltd., antimony oxide-based ion scavenger) was further added in the same manner as in Example 18 Materials for semiconductor element protection. (Example 27) In the preparation of the semiconductor element protection material, 0.5 parts by weight of IXE-600 (manufactured by Toa Synthesis Co., antimony oxide / bismuth oxide ion trapping agent) was added, except that it was the same as Example 18 To obtain materials for semiconductor element protection. (Example 28) In the preparation of the material for protecting semiconductor elements, 0.5 parts by weight of DHT-4A (manufactured by Kyowa Chemical Industry Co., Ltd., aluminum magnesium carbonate-based ion scavenger) was added, except that the same as Example 18 was used. To obtain materials for semiconductor element protection. (Example 29) In the preparation of the material for semiconductor element protection, 0.5 parts by weight of IXE-600 (manufactured by Toa Synthesizer, antimony oxide / bismuth oxide ion trapping agent) was added, except that it was the same as Example 19 To obtain materials for semiconductor element protection. (Example 30) In the preparation of the material for semiconductor device protection, 0.5 parts by weight of IXE-600 (manufactured by Toa Synthesis Co., antimony oxide / bismuth oxide ion trapping agent) was added, except that it was the same as Example 20. To obtain materials for semiconductor element protection. (Example 31) In the preparation of a material for semiconductor device protection, 0.5 parts by weight of IXE-600 (manufactured by Toa Synthetic, antimony oxide / bismuth oxide ion trapping agent) was added, except that it was the same as Example 21 To obtain materials for semiconductor element protection. (Evaluation) Regarding Examples 23 to 31, the above (13) insulation reliability evaluation was carried out. As a result, the results of the insulation reliability of Examples 23 to 31 are all "○". In addition, the results of the insulation reliability of Example 1 and Examples 23 to 25 are "○", but regarding the resistance at the time of voltage application after 100 hours, Examples 23 to 25 are higher than those of Example 1 and Examples 23 to 25. The insulation reliability is superior to Example 1. In addition, the results of the insulation reliability of Example 20 and Example 30 are "○", but regarding the resistance at the time of voltage application after 100 hours, Example 30 is higher than Example 20, and the insulation reliability of Example 30 is better than the implementation Example 20 is excellent. In addition, the results of the insulation reliability of Example 21 and Example 31 are "○", but regarding the resistance when the voltage is applied after 100 hours, Example 31 is higher than Example 21, and the insulation reliability of Example 31 is better than that of the implementation Example 21 is excellent. In addition, regarding Examples 23 to 31, other evaluation items performed in Examples 1 to 22 and Comparative Examples 1 and 2 also obtained good results. Moreover, the increase rate of the amount of warpage in the film warpage results after the heat resistance test of Examples 19 to 21 using (A2) polysiloxane compound is smaller than the heat resistance of Examples 1 to 17 using (A1) epoxy compound The rate of increase in the amount of warpage in the results of film warpage after the test.

1、1X‧‧‧半導體裝置1. 1X‧‧‧Semiconductor device

2‧‧‧半導體元件2‧‧‧Semiconductor components

2a‧‧‧第1表面2a‧‧‧1st surface

2b‧‧‧第2表面2b‧‧‧2nd surface

2A‧‧‧第1電極2A‧‧‧First electrode

3、3X‧‧‧硬化物3. 3X‧‧‧hardened

4‧‧‧連接對象構件4‧‧‧Connected components

4a‧‧‧表面4a‧‧‧surface

4A‧‧‧第2電極4A‧‧‧Second electrode

5‧‧‧其他硬化物5‧‧‧Other hardened objects

6‧‧‧導電性粒子6‧‧‧ conductive particles

7‧‧‧保護膜7‧‧‧Protection film

圖1係表示使用本發明之第1實施形態之半導體元件保護用材料之半導體裝置的局部缺口前視剖面圖。 圖2係表示使用本發明之第2實施形態之半導體元件保護用材料之半導體裝置的局部缺口前視剖面圖。FIG. 1 is a partially cut-away front cross-sectional view of a semiconductor device using the semiconductor device protection material according to the first embodiment of the present invention. FIG. 2 is a partially cut-away front cross-sectional view of a semiconductor device using a semiconductor device protection material according to a second embodiment of the present invention.

Claims (18)

一種半導體裝置,其具備:半導體元件;及硬化物,其係配置於上述半導體元件之第1表面上;且上述硬化物係半導體元件保護用材料之硬化物,上述半導體元件保護用材料包含熱硬化性化合物、硬化劑或硬化觸媒、及導熱率為10W/m‧K以上之無機填料,上述半導體元件保護用材料不含三聚物至十聚物之環狀矽氧烷化合物,或包含500ppm以下之三聚物至十聚物之環狀矽氧烷化合物,上述熱硬化性化合物包含可撓性環氧化合物或聚矽氧化合物,上述硬化物中之上述無機填料之含量為60重量%以上、92重量%以下,上述硬化物之導電率為30μS/cm以下。A semiconductor device comprising: a semiconductor element; and a cured product disposed on the first surface of the semiconductor device; and the cured product is a cured product of a semiconductor device protection material, the semiconductor device protection material including thermal curing Compounds, hardeners or catalysts, and inorganic fillers with a thermal conductivity of 10 W / m‧K or more. The above materials for semiconductor device protection do not contain terpolymer to decamer cyclic siloxane compounds, or contain 500 ppm The following terpolymer to decamer cyclic siloxane compound, the thermosetting compound includes a flexible epoxy compound or a polysiloxane compound, and the content of the inorganic filler in the cured product is 60% by weight or more , 92% by weight or less, the conductivity of the hardened material is 30 μS / cm or less. 如請求項1之半導體裝置,其中上述熱硬化性化合物包含聚矽氧化合物。The semiconductor device according to claim 1, wherein the thermosetting compound includes a polysiloxane compound. 如請求項1或2之半導體裝置,其中上述硬化劑為烯丙基苯酚酚醛清漆化合物。The semiconductor device according to claim 1 or 2, wherein the hardener is an allylphenol novolak compound. 如請求項1或2之半導體裝置,其中上述熱硬化性化合物包含可撓性環氧化合物。The semiconductor device according to claim 1 or 2, wherein the thermosetting compound includes a flexible epoxy compound. 如請求項4之半導體裝置,其中上述熱硬化性化合物包含上述可撓性環氧化合物、及與可撓性環氧化合物不同之環氧化合物。The semiconductor device according to claim 4, wherein the thermosetting compound includes the flexible epoxy compound and an epoxy compound different from the flexible epoxy compound. 如請求項4之半導體裝置,其中上述半導體元件保護用材料所包含之上述可撓性環氧化合物係具有將伸烷基二醇基重複9個以上而成之結構單元之聚伸烷基二醇二縮水甘油醚。The semiconductor device according to claim 4, wherein the flexible epoxy compound contained in the material for protecting a semiconductor element is a polyalkylene glycol having a structural unit formed by repeating alkylene glycol groups of 9 or more Diglycidyl ether. 如請求項1或2之半導體裝置,其具備連接對象構件,且將上述半導體元件自與上述第1表面相反之第2表面側而封裝於上述連接對象構件上。The semiconductor device according to claim 1 or 2 includes a connection target member, and the semiconductor element is packaged on the connection target member from a second surface side opposite to the first surface. 如請求項1或2之半導體裝置,其具備表面具有第2電極之連接對象構件,且上述半導體元件於與上述第1表面側相反之第2表面側具有第1電極,上述半導體元件之第1電極與表面具有上述第2電極之上述連接對象構件中之上述第2電極電性連接。The semiconductor device according to claim 1 or 2, comprising a connection object member having a second electrode on the surface, and the semiconductor element has a first electrode on the second surface side opposite to the first surface side, and the first of the semiconductor element The electrode is electrically connected to the second electrode in the connection object member having the second electrode on the surface. 如請求項1或2之半導體裝置,其中於上述硬化物之與上述半導體元件側相反之表面上配置有保護膜,或上述硬化物之與上述半導體元件側相反之表面露出。The semiconductor device according to claim 1 or 2, wherein a protective film is disposed on a surface of the hardened object opposite to the semiconductor element side, or a surface of the hardened object opposite to the semiconductor element side is exposed. 一種半導體元件保護用材料,其係用於為了保護半導體元件而塗佈於上述半導體元件之表面上,於上述半導體元件之表面上形成硬化物者,且其與配置於半導體元件與其他連接對象構件之間、形成將上述半導體元件與上述其他連接對象構件以不剝離之方式接著及固定之硬化物者不同,包含熱硬化性化合物、硬化劑或硬化觸媒、及導熱率為10W/m‧K以上之無機填料,不含三聚物至十聚物之環狀矽氧烷化合物,或包含500ppm以下之三聚物至十聚物之環狀矽氧烷化合物,且上述熱硬化性化合物包含可撓性環氧化合物或聚矽氧化合物,上述無機填料之含量為60重量%以上、92重量%以下,於在150℃下加熱2小時而獲得硬化物時,上述硬化物之導電率為30μS/cm以下。A material for protecting a semiconductor element, which is applied to the surface of the semiconductor element for the purpose of protecting the semiconductor element, a hardened substance is formed on the surface of the semiconductor element, and it is arranged on the semiconductor element and other connection object members The formation of a hardened product that adheres and fixes the above-mentioned semiconductor element and the other connection object member without peeling off is different, including a thermosetting compound, a hardener or a curing catalyst, and a thermal conductivity of 10 W / m‧K The above inorganic fillers do not contain cyclic siloxane compounds from trimer to decamer, or cyclic siloxane compounds containing trimer to demer from 500 ppm or less, and the above thermosetting compounds include Flexible epoxy compound or polysiloxane compound, the content of the above inorganic filler is 60% by weight or more and 92% by weight or less. When heated at 150 ° C for 2 hours to obtain a cured product, the conductivity of the cured product is 30 μS / cm below. 一種半導體元件保護用材料,其係用於為了保護封裝於連接對象構件上之半導體元件而塗佈於上述半導體元件之與上述連接對象構件側相反之表面上,於上述半導體元件之與上述連接對象構件側相反之表面上形成硬化物者,且包含熱硬化性化合物、硬化劑或硬化觸媒、及導熱率為10W/m‧K以上之無機填料,不含三聚物至十聚物之環狀矽氧烷化合物,或包含500ppm以下之三聚物至十聚物之環狀矽氧烷化合物,且上述熱硬化性化合物包含可撓性環氧化合物或聚矽氧化合物,上述無機填料之含量為60重量%以上、92重量%以下,於在150℃下加熱2小時而獲得硬化物時,上述硬化物之導電率為30μS/cm以下。A material for protecting a semiconductor element, which is applied to the surface of the semiconductor element opposite to the side of the connection object to protect the semiconductor element encapsulated on the connection object member, on the surface of the semiconductor element and the connection object A hardened product is formed on the opposite surface of the component side, and it contains a thermosetting compound, a hardening agent or a hardening catalyst, and an inorganic filler with a thermal conductivity of 10 W / m‧K or more. Siloxane compounds, or cyclic siloxane compounds containing terpolymers up to 500 ppm, and the above thermosetting compounds include flexible epoxy compounds or polysiloxane compounds, and the content of the above inorganic fillers It is 60% by weight or more and 92% by weight or less, and when heated at 150 ° C. for 2 hours to obtain a cured product, the conductivity of the cured product is 30 μS / cm or less. 如請求項10或11之半導體元件保護用材料,其中上述熱硬化性化合物包含聚矽氧化合物。The material for semiconductor device protection according to claim 10 or 11, wherein the thermosetting compound includes a polysiloxane compound. 如請求項10或11之半導體元件保護用材料,其中上述硬化劑為烯丙基苯酚酚醛清漆化合物。The material for semiconductor device protection according to claim 10 or 11, wherein the hardener is an allylphenol novolak compound. 如請求項10或11之半導體元件保護用材料,其中上述熱硬化性化合物包含可撓性環氧化合物。The material for semiconductor device protection according to claim 10 or 11, wherein the thermosetting compound includes a flexible epoxy compound. 如請求項14之半導體元件保護用材料,其中上述熱硬化性化合物包含上述可撓性環氧化合物、及與可撓性環氧化合物不同之環氧化合物。The material for semiconductor device protection according to claim 14, wherein the thermosetting compound includes the flexible epoxy compound and an epoxy compound different from the flexible epoxy compound. 如請求項14之半導體元件保護用材料,其中半導體元件保護用材料所包含之上述可撓性環氧化合物係具有將伸烷基二醇基重複9個以上而成之結構單元之聚伸烷基二醇二縮水甘油醚。The material for semiconductor device protection according to claim 14, wherein the flexible epoxy compound contained in the material for semiconductor device protection is a polyalkylene group having a structural unit formed by repeating alkylene glycol groups of 9 or more Glycol diglycidyl ether. 如請求項10或11之半導體元件保護用材料,其不含水或包含1000ppm以下之水。The material for semiconductor device protection according to claim 10 or 11 does not contain water or contains water below 1000 ppm. 如請求項10或11之半導體元件保護用材料,其係用於為了保護半導體元件而於上述半導體元件之表面上形成硬化物,且於上述硬化物之與上述半導體元件側相反之表面上配置保護膜而獲得半導體裝置,或者用於獲得為了保護半導體元件而於上述半導體元件之表面上形成硬化物、且上述硬化物之與上述半導體元件側相反之表面露出之半導體裝置。The semiconductor element protection material according to claim 10 or 11, which is used to form a hardened object on the surface of the semiconductor element for the purpose of protecting the semiconductor element, and to protect the surface of the hardened object opposite to the semiconductor element side A semiconductor device is obtained by forming a film, or a semiconductor device in which a hardened material is formed on the surface of the semiconductor element for the protection of the semiconductor element, and a surface of the hardened material opposite to the semiconductor element side is exposed.
TW105126219A 2015-08-17 2016-08-17 Materials for semiconductor device and semiconductor element protection TWI630230B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015160674 2015-08-17
JP2015-160674 2015-08-17

Publications (2)

Publication Number Publication Date
TW201723071A TW201723071A (en) 2017-07-01
TWI630230B true TWI630230B (en) 2018-07-21

Family

ID=58052215

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105126219A TWI630230B (en) 2015-08-17 2016-08-17 Materials for semiconductor device and semiconductor element protection

Country Status (5)

Country Link
JP (3) JP6275863B2 (en)
KR (5) KR102294307B1 (en)
CN (2) CN107735859B (en)
TW (1) TWI630230B (en)
WO (1) WO2017030126A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6915954B2 (en) * 2016-09-29 2021-08-11 ダウ・東レ株式会社 Curable silicone compositions, cured products thereof, and opto-semiconductor devices
TWI828621B (en) * 2017-03-30 2024-01-11 日商味之素股份有限公司 Paste resin composition
US11760870B2 (en) * 2018-01-23 2023-09-19 Nagase Chemtex Corporation Resin composition for encapsulation
JP6981914B2 (en) * 2018-04-09 2021-12-17 信越化学工業株式会社 Thermally conductive silicone composition and its cured product
WO2019216388A1 (en) * 2018-05-10 2019-11-14 積水化学工業株式会社 Curable composition, material for protecting semiconductor element, and semiconductor device
US11718770B2 (en) 2018-11-14 2023-08-08 Nagase Chemtex Corporation Curable resin composition and curable sheet
JP7247003B2 (en) * 2019-04-12 2023-03-28 本田技研工業株式会社 Heat-dissipating paint composition and method for producing heat-dissipating coating
WO2021131523A1 (en) * 2019-12-24 2021-07-01 富士フイルム株式会社 Adhesive agent for endoscope, cured product thereof, endoscope, and manufacturing method therefor
JP7328184B2 (en) * 2020-08-06 2023-08-16 信越化学工業株式会社 Thermally conductive two-liquid addition-curable silicone composition and its production method
WO2024005037A1 (en) * 2022-07-01 2024-01-04 三井化学株式会社 Display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210612A (en) * 2005-01-27 2006-08-10 Rohm Co Ltd Semiconductor device
JP2013001861A (en) * 2011-06-20 2013-01-07 Kyocera Chemical Corp Resin composition for semiconductor sealing, production method thereof, and semiconductor apparatus
JP2013030637A (en) * 2011-07-29 2013-02-07 Sumitomo Bakelite Co Ltd Liquid resin composition and semiconductor device
TW201516088A (en) * 2013-10-08 2015-05-01 Namics Corp Film forming resin composition, insulating film and semiconductor device

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2817474B2 (en) 1991-09-25 1998-10-30 信越化学工業株式会社 Epoxy resin composition and cured product
JP3821173B2 (en) 1996-12-19 2006-09-13 信越化学工業株式会社 Epoxy resin composition
JP4190080B2 (en) * 1999-03-16 2008-12-03 日東電工株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP3847032B2 (en) * 1999-08-26 2006-11-15 住友ベークライト株式会社 Liquid encapsulating resin composition and semiconductor device using the same
JP3921630B2 (en) * 2000-04-05 2007-05-30 株式会社日立製作所 Epoxy resin composite material and apparatus using the same
US8017449B2 (en) * 2003-08-08 2011-09-13 Dow Corning Corporation Process for fabricating electronic components using liquid injection molding
JP2005200533A (en) 2004-01-15 2005-07-28 Kyocera Chemical Corp Epoxy resin composition for sealing semiconductor and resin-sealed semiconductor device
JP2006232950A (en) * 2005-02-23 2006-09-07 Matsushita Electric Works Ltd Sealing liquid epoxy resin composition, semiconductor device, and method for producing the same
JP2007217469A (en) 2006-02-14 2007-08-30 Kyocera Chemical Corp Sealing epoxy resin composition and semiconductor device sealed therewith
JP4823161B2 (en) * 2007-07-20 2011-11-24 日本テキサス・インスツルメンツ株式会社 Semiconductor device
KR101174971B1 (en) * 2007-09-05 2012-08-17 세키스이가가쿠 고교가부시키가이샤 Insulating sheet and multilayer structure
JP2009263601A (en) * 2008-04-30 2009-11-12 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic part device
JP5721416B2 (en) * 2010-12-13 2015-05-20 積水化学工業株式会社 Thermally conductive adhesive
JP6134089B2 (en) * 2011-02-22 2017-05-24 積水化学工業株式会社 Insulating material and laminated structure
JP2012199544A (en) * 2011-03-09 2012-10-18 Sekisui Chem Co Ltd Anisotropic conductive paste, connection structure and manufacturing method of connection structure
JP2013067673A (en) * 2011-09-20 2013-04-18 Hitachi Chemical Co Ltd Resin paste composition and semiconductor device
JP5913884B2 (en) * 2011-09-27 2016-04-27 積水化学工業株式会社 Insulating material and laminated structure
JP5444315B2 (en) * 2011-12-07 2014-03-19 積水化学工業株式会社 Die bond material for optical semiconductor device and optical semiconductor device using the same
JP2014040538A (en) 2012-08-23 2014-03-06 Hitachi Chemical Co Ltd Epoxy resin composition of double-liquid type
CN104823276A (en) * 2013-11-21 2015-08-05 东部Hitek株式会社 Cof-type semiconductor package and method of manufacturing same
JPWO2016010067A1 (en) * 2014-07-18 2017-04-27 積水化学工業株式会社 Semiconductor element protecting material and semiconductor device
JP5766867B1 (en) * 2014-11-25 2015-08-19 積水化学工業株式会社 Semiconductor element protecting material and semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210612A (en) * 2005-01-27 2006-08-10 Rohm Co Ltd Semiconductor device
JP2013001861A (en) * 2011-06-20 2013-01-07 Kyocera Chemical Corp Resin composition for semiconductor sealing, production method thereof, and semiconductor apparatus
JP2013030637A (en) * 2011-07-29 2013-02-07 Sumitomo Bakelite Co Ltd Liquid resin composition and semiconductor device
TW201516088A (en) * 2013-10-08 2015-05-01 Namics Corp Film forming resin composition, insulating film and semiconductor device

Also Published As

Publication number Publication date
JP6731906B2 (en) 2020-07-29
KR20200037437A (en) 2020-04-08
JP6905129B2 (en) 2021-07-21
WO2017030126A1 (en) 2017-02-23
JP2020170867A (en) 2020-10-15
JP2018056595A (en) 2018-04-05
KR20180013842A (en) 2018-02-07
KR102294307B1 (en) 2021-08-26
TW201723071A (en) 2017-07-01
JP6275863B2 (en) 2018-02-07
CN111900137A (en) 2020-11-06
KR102224210B1 (en) 2021-03-08
CN107735859B (en) 2020-08-14
CN107735859A (en) 2018-02-23
KR101864096B1 (en) 2018-06-01
KR20210027521A (en) 2021-03-10
KR102097004B1 (en) 2020-04-03
KR102460328B1 (en) 2022-10-28
KR20210107160A (en) 2021-08-31
KR20180061405A (en) 2018-06-07
JPWO2017030126A1 (en) 2017-08-17

Similar Documents

Publication Publication Date Title
TWI630230B (en) Materials for semiconductor device and semiconductor element protection
TWI682958B (en) Curable composition, method for producing curable composition, and semiconductor device
TWI598401B (en) Semiconductor element protection material and semiconductor device
JP6539150B2 (en) Semiconductor element protecting material and semiconductor device
JP2017041633A (en) Semiconductor device and semiconductor element protective material
JP5766867B1 (en) Semiconductor element protecting material and semiconductor device
JP2016023219A (en) Two-liquid mixing type first and second liquids for protecting semiconductor element, and semiconductor device
JP2017039803A (en) Material for protecting semiconductor element and semiconductor device
JP2017039801A (en) Material for protecting semiconductor element and semiconductor device
JP2017039799A (en) Material for protecting semiconductor element and semiconductor device
JP2017039800A (en) Material for protecting semiconductor element and semiconductor device
JP2017039804A (en) Cured body and semiconductor device