WO2019216388A1 - Curable composition, material for protecting semiconductor element, and semiconductor device - Google Patents

Curable composition, material for protecting semiconductor element, and semiconductor device Download PDF

Info

Publication number
WO2019216388A1
WO2019216388A1 PCT/JP2019/018624 JP2019018624W WO2019216388A1 WO 2019216388 A1 WO2019216388 A1 WO 2019216388A1 JP 2019018624 W JP2019018624 W JP 2019018624W WO 2019216388 A1 WO2019216388 A1 WO 2019216388A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable composition
semiconductor element
epoxy compound
mass
exchanger
Prior art date
Application number
PCT/JP2019/018624
Other languages
French (fr)
Japanese (ja)
Inventor
貴史 西村
秀 中村
小林 祐輔
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Publication of WO2019216388A1 publication Critical patent/WO2019216388A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present invention relates to a curable composition, a semiconductor element protecting material comprising the curable composition, and a semiconductor device using the semiconductor element protecting material.
  • Patent Document 1 a flexible epoxy compound, an epoxy compound different from the flexible epoxy compound, a curing agent that is liquid at 23 ° C., a curing accelerator, and a thermal conductivity of 10 W / m ⁇ K or more.
  • a material for protecting a semiconductor element containing a spherical inorganic filler is disclosed, and it is shown that heat dissipation is good.
  • Patent Document 2 discloses a semiconductor element protecting material containing an ion trapping agent made of an ion exchanger, which shows that the insulation reliability is improved.
  • an object of the present invention is to provide a curable composition excellent in heat dissipation, insulation reliability, and coatability, a semiconductor element protecting material comprising the curable composition, and a semiconductor device using the semiconductor element protecting material. It is to provide.
  • the present inventors have found that a specific inorganic filler (C) having a thermal conductivity of a certain level or more in addition to the epoxy compound (A) and its curing agent (B). ) And the curable composition containing the specific ion exchanger (X), the present inventors have found that the above problems can be solved, and completed the present invention. That is, the present invention relates to the following [1] to [8].
  • the epoxy compound (A) is a flexible epoxy compound (a1).
  • the semiconductor element has a first electrode on a second surface side opposite to the first surface side, and the first electrode of the semiconductor element has a second electrode on the surface.
  • the semiconductor device according to [7] which is electrically connected to the second electrode in the connection target member.
  • coating property, the semiconductor element protection material which consists of this curable composition, and the semiconductor device using this semiconductor element protection material are provided. be able to.
  • FIG. 1 is a schematic cross-sectional view of a semiconductor device using a semiconductor element protecting material according to a first embodiment of the present invention.
  • the curable composition of the present invention comprises an epoxy compound (A), a curing agent (B) that is liquid at 23 ° C., and an inorganic filler (C) that has a thermal conductivity of 10 W / m ⁇ K or more and is spherical. And an ion exchanger (X), and the ion exchanger (X) is composed of a zirconium-based cation exchanger and a bismuth-based anion exchanger.
  • the curable composition of the present invention contains an ion exchanger (X) composed of a zirconium-based cation exchanger and a bismuth-based anion exchanger.
  • an ion exchanger (X) composed of a zirconium-based cation exchanger and a bismuth-based anion exchanger.
  • the insulation reliability of the curable composition can be improved.
  • the reason why the insulation reliability is increased by using the ion exchanger (X) is not clear, it is a cause of causing migration of wiring of an organic acid or the like considered to be contained in the epoxy compound (A) or the like. It is presumed that this substance can be effectively captured.
  • the median diameter of the ion exchanger (X) is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more, and preferably 10 ⁇ m or less. More preferably, it is 3 ⁇ m or less, and further preferably 1 ⁇ m or less.
  • the median diameter is the particle diameter (cumulative average diameter) at which the cumulative curve becomes 50% when the cumulative curve is obtained with the total volume of one group of particles as 100%.
  • the median diameter can be measured using a laser diffraction scattering method.
  • the average primary particle size of the ion exchanger (X) is preferably 0.1 to 2 ⁇ m, more preferably 0.2 to 1 ⁇ m, from the viewpoint of improving the insulation reliability of the curable composition. It is preferably 0.2 to 0.7 ⁇ m.
  • the average primary particle diameter is obtained by observing 20 inorganic fillers arbitrarily selected with an electron microscope, a laser microscope, or an optical microscope, measuring the particle diameter of each inorganic filler, and calculating the average value. .
  • the particle size of the inorganic filler was determined by observing the cross section of the curable composition or the cured product of the curable composition with an electron microscope, a laser microscope, or an optical microscope, and 20 inorganic fillers arbitrarily selected. It can also be determined by measuring the particle diameter of the slag and calculating the average value.
  • the ion exchanger (X) is preferably refined.
  • the miniaturization can be performed by a known means such as a pulverizer. By miniaturization, it becomes easier to capture a substance that causes migration, and it is considered that the insulation reliability of the curable composition is increased.
  • the neutral exchange capacity of the ion exchanger (X) is preferably 1 meq / g or more, more preferably 2 meq / g or more.
  • the ion exchanger (X) is composed of a zirconium-based cation exchanger and a bismuth-based anion exchanger.
  • the ion exchanger (X) may preferably be composed of a zirconium-based cation exchanger and a bismuth-based anion exchanger, which are separate compounds, or a zirconium-based cation exchange in one compound. It may have a part that functions as a body and a part that functions as a bismuth anion exchanger.
  • the curable composition of this invention can obtain the outstanding insulation reliability by including the ion exchanger (X) which consists of a zirconium-type cation exchanger and a bismuth-type anion exchanger.
  • the zirconium-based cation exchanger is, for example, a compound containing zirconium and a compound having an acid group such as a sulfonic acid group, a carboxy group, or a phosphoric acid group.
  • the zirconium cation exchanger is preferably a zirconium phosphate cation exchanger.
  • compounds represented by ZrH a (PO 4 ) b ⁇ nH 2 0 (formula 1) are preferable.
  • the bismuth anion exchanger is an anion exchanger containing bismuth, and from the viewpoint of improving the insulation reliability of the curable composition, bismuth hydrous oxide and bismuth hydroxide nitrate are preferred. Bismuth is more preferred.
  • the hydrated oxide of bismuth is represented by, for example, Bi 2 O 3 .nH 2 O (0 ⁇ n ⁇ 4), and the bismuth hydroxide nitrate is, for example, Bi (OH) x (NO 3 ) y ⁇ nH 2. O (Expression 2).
  • x is a positive number not less than 2.5 and less than 3
  • n is 0 or a positive number.
  • the amount of the ion exchanger (X) in the curable composition is preferably 0.08% by mass or more, more preferably 0.1% by mass or more, in 100% by mass of the curable composition. More preferably, it is 0.3% by mass or more, and preferably 3% by mass or less, and more preferably 2% by mass or less.
  • the blending ratio of the zirconium-based cation exchanger and the bismuth-based anion exchanger (zirconium-based) is preferably 99: 1 to 1:99 on a mass basis.
  • the blending ratio is more preferably 10:90 to 80:20, and still more preferably 20:80 to 60:40.
  • the method for blending the zirconium-based cation exchanger and the bismuth-based anion exchanger is as follows. It is as follows. That is, when preparing the curable composition, the zirconium-based cation exchanger and the bismuth-based anion exchanger may be blended separately, or both of them are mixed in advance, and the zirconium-based cation exchanger and the bismuth-based composition are mixed.
  • An ion exchanger (X) made of a mixture of anion exchangers may be prepared and mixed with an epoxy compound (A), a curing agent (B), an inorganic filler (C), and the like. From the viewpoint of improving the insulation reliability of the curable composition, an ion exchanger (X) comprising a mixture of a zirconium-based cation exchanger and a bismuth-based anion exchanger is prepared in advance, and this is converted into an epoxy compound (A).
  • curing agent (B), an inorganic filler (C), etc., and produces a curable composition is preferable.
  • an ion exchanger (X) composed of a mixture of a zirconium-based cation exchanger and a bismuth-based anion exchanger is prepared. It is more preferable to prepare a curable composition after miniaturization.
  • the curable composition of this invention may contain ion exchangers other than the said ion exchanger (X) in the range which does not inhibit the effect of this invention.
  • the curable composition of this invention contains an epoxy compound (A). By containing the epoxy compound (A), thermosetting can be imparted to the curable composition.
  • the epoxy compound (A) preferably contains a flexible epoxy compound (a1).
  • a flexible epoxy compound (a1) when the curable composition of the present invention is used as a material for protecting a semiconductor element, the semiconductor element is hardly damaged due to deformation stress on the semiconductor element, and the like.
  • the material for protecting a semiconductor element can be made difficult to peel from the surface of the semiconductor element.
  • an index of flexibility in a flexible epoxy compound it is defined as an epoxy resin having a durometer ShoreD measurement of 30 or less when cured with a stoichiometric amount of diethylenetriamine (“DETA”).
  • DETA diethylenetriamine
  • the flexible epoxy compound (a1) does not have an aromatic skeleton and an alicyclic skeleton.
  • Examples of the flexible epoxy compound (a1) include polyalkylene glycol diglycidyl ether, polybutadiene diglycidyl ether, and sulfide-modified epoxy resin. From the viewpoint of further improving the coating property, polyalkylene glycol diglycidyl ether is preferable.
  • the polyalkylene glycol diglycidyl ether preferably has a structural unit in which 9 or more alkylene glycol groups are repeated.
  • the upper limit of the number of repeating alkylene glycol groups is not particularly limited.
  • the number of repeating alkylene glycol groups may be 30 or less.
  • the alkylene glycol group preferably has 2 or more carbon atoms, preferably 5 or less.
  • polyalkylene glycol diglycidyl ether examples include polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, and polytetramethylene glycol diglycidyl ether. Only 1 type may be used for a flexible epoxy compound (a1), and it may use 2 or more types together.
  • the content of the flexible epoxy compound (a1) is preferably 3% by mass or more, more preferably 5% by mass or more, preferably 10% by mass or less, more preferably 8%. It is below mass%.
  • cured material of a curable composition becomes it still higher that content of a flexible epoxy compound (a1) is more than the said minimum.
  • the content of the flexible epoxy compound (a1) is not more than the above upper limit, the applicability of the curable composition is further enhanced.
  • epoxy compound (a2) As an epoxy compound (A), other epoxy compounds (a2) other than the said flexible epoxy compound (a1) may be contained.
  • an epoxy compound (a2) an epoxy compound having an aromatic skeleton or an alicyclic skeleton is preferable.
  • an epoxy compound having an aromatic skeleton an epoxy compound having a bisphenol skeleton, an epoxy compound having a naphthalene skeleton, an epoxy compound having a fluorene skeleton, an epoxy compound having a biphenyl skeleton, an epoxy compound having a bi (glycidyloxyphenyl) methane skeleton , An epoxy compound having a xanthene skeleton, an epoxy compound having an anthracene skeleton, an epoxy compound having a pyrene skeleton, and the like.
  • the epoxy compound having an alicyclic skeleton include an epoxy compound having a dicyclopentadiene skeleton and an epoxy compound having an adamantane skeleton.
  • hydrogenated products or modified products of the above-exemplified epoxy compounds can also be used as other epoxy compounds (a2).
  • the other epoxy compound (a2) is preferably an epoxy compound having a bisphenol skeleton (bisphenol type epoxy compound).
  • Examples of the epoxy compound having a bisphenol skeleton include an epoxy compound having a bisphenol A type, bisphenol F type, or bisphenol S type bisphenol skeleton.
  • Examples of the epoxy compound having a naphthalene skeleton include 1-glycidylnaphthalene, 2-glycidylnaphthalene, 1,2-diglycidylnaphthalene, 1,5-diglycidylnaphthalene, 1,6-diglycidylnaphthalene, 1,7-diglycidyl.
  • Examples include naphthalene, 2,7-diglycidylnaphthalene, triglycidylnaphthalene, and 1,2,5,6-tetraglycidylnaphthalene.
  • Examples of the epoxy compound having a fluorene skeleton include 9,9-bis (4-glycidyloxyphenyl) fluorene, 9,9-bis (4-glycidyloxy-3-methylphenyl) fluorene, and 9,9-bis (4- Glycidyloxy-3-chlorophenyl) fluorene, 9,9-bis (4-glycidyloxy-3-bromophenyl) fluorene, 9,9-bis (4-glycidyloxy-3-fluorophenyl) fluorene, 9,9-bis (4-Glycidyloxy-3-methoxyphenyl) fluorene, 9,9-bis (4-glycidyloxy-3,5-dimethylphenyl) fluorene, 9,9-bis (4-glycidyloxy-3,5-dichlorophenyl) Fluorene and 9,9-bis (4-glycidyloxy-3,5-dibromophenyl) Fluorene, and
  • Examples of the epoxy compound having a biphenyl skeleton include 4,4'-diglycidylbiphenyl and 4,4'-diglycidyl-3,3 ', 5,5'-tetramethylbiphenyl.
  • Examples of the epoxy compound having a bi (glycidyloxyphenyl) methane skeleton include 1,1′-bi (2,7-glycidyloxynaphthyl) methane, 1,8′-bi (2,7-glycidyloxynaphthyl) methane, 1,1′-bi (3,7-glycidyloxynaphthyl) methane, 1,8′-bi (3,7-glycidyloxynaphthyl) methane, 1,1′-bi (3,5-glycidyloxynaphthyl) methane 1,8'-bi (3,5-glycidyloxynaphthyl) methane, 1,2'-bi (2,7-glycidyloxynaphthyl) methane, 1,2'-bi (3,7-glycidyloxynaphthyl) And methane and 1,2′
  • Examples of the epoxy compound having a xanthene skeleton include 1,3,4,5,6,8-hexamethyl-2,7-bis-oxiranylmethoxy-9-phenyl-9H-xanthene.
  • Examples of the epoxy compound having a dicyclopentadiene skeleton include dicyclopentadiene dioxide and a phenol novolac epoxy compound having a dicyclopentadiene skeleton.
  • Examples of the epoxy compound having an adamantane skeleton include 1,3-bis (4-glycidyloxyphenyl) adamantane and 2,2-bis (4-glycidyloxyphenyl) adamantane.
  • the content of the other epoxy compound (a2) is preferably 1% by mass or more, more preferably 2% by mass or more, preferably 10% by mass or less, more preferably 8% by mass. % Or less.
  • the content of the other epoxy compound (a2) is not less than the above lower limit and not more than the above upper limit, the applicability of the curable composition, the flexibility of the cured product, and the moisture resistance are further improved. Adhesiveness to is further improved, and sticking to the protective film can be further suppressed.
  • the total content of the flexible epoxy compound (a1) and the other epoxy compound (a2) is preferably 5% by mass or more, more preferably 8% by mass or more, preferably Is 15% by mass or less, more preferably 12% by mass or less.
  • the total content of the flexible epoxy compound (a1) and the other epoxy compound (a2) is not less than the above lower limit and not more than the above upper limit, applicability of the curable composition, flexibility of the cured product, and moisture resistance Becomes even better, and the adhesion of the cured product of the curable composition to the semiconductor element becomes even better.
  • cured material of a curable composition sticking with respect to a protective film can be suppressed.
  • the content of the other epoxy compound (a2) is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, preferably 100 parts by mass or less, relative to 100 parts by mass of the flexible epoxy compound (a1). More preferably, it is 90 mass parts or less.
  • the content of the epoxy compound (a2) is not less than the above lower limit, the applicability of the curable composition is further enhanced, and the adhesiveness of the cured product to the semiconductor element is further enhanced.
  • the content of the other epoxy compound (a2) is not more than the above upper limit, the flexibility of the cured product is further increased.
  • the curable composition of this invention contains the hardening
  • curing agent (B) an epoxy compound (A) can be hardened and the applicability
  • the curing agent (B) include an amine compound (amine curing agent), an imidazole compound (imidazole curing agent), a phenol compound (phenol curing agent), and an acid anhydride (acid anhydride curing agent). Among these, it is preferable to use a phenol compound.
  • phenol compound examples include phenol novolak compounds, o-cresol novolak compounds, p-cresol novolak compounds, t-butylphenol novolak compounds, allylphenol novolak compounds, dicyclopentadiene cresol compounds, polyparavinylphenol compounds, and bisphenol A type novolak compounds.
  • the content of the curing agent (B) with respect to 100 parts by mass of the epoxy compound (A) is preferably 20 parts by mass or more, more preferably 30 parts by mass or more, still more preferably 40 parts by mass or more, preferably 100 It is at most 80 parts by mass, more preferably at most 60 parts by mass.
  • the content of the curing agent (B) is not less than the above lower limit, the curable composition can be cured well.
  • the content of the curing agent (B) is not more than the above upper limit, the residual amount of the curing agent (B) that has not contributed to curing in the cured product is reduced.
  • the curable composition of the present invention contains an inorganic filler (C) having a thermal conductivity of 10 W / m ⁇ K or more and a spherical shape.
  • an inorganic filler (C) having a thermal conductivity of 10 W / m ⁇ K or more and a spherical shape.
  • the shape of the inorganic filler (C) is spherical.
  • the spherical shape means that the aspect ratio (major axis / minor axis) is 1 or more and 2 or less.
  • the thermal conductivity of the inorganic filler (C) is preferably 12 W / m ⁇ K or more, more preferably 15 W / m ⁇ K or more, and even more preferably 20 W / m ⁇ . K or more.
  • the upper limit of the thermal conductivity of the inorganic filler (C) is not particularly limited. Inorganic fillers having a thermal conductivity of about 300 W / m ⁇ K are widely known, and inorganic fillers having a thermal conductivity of about 200 W / m ⁇ K are easily available.
  • the thermal conductivity can be measured by, for example, a periodic heating thermoreflectance method using a thermal microscope manufactured by Bethel Co., Ltd. with respect to a filler cross-section cut by a cross section polisher.
  • the inorganic filler (C) is preferably at least one selected from the group consisting of alumina, aluminum nitride, and silicon carbide.
  • the inorganic filler (C) inorganic fillers other than those described above may be used as appropriate. When using an inorganic filler (C), only 1 type may be used and 2 or more types may be used together.
  • the average particle diameter of the inorganic filler (C) is preferably 0.1 ⁇ m or more, and preferably 150 ⁇ m or less.
  • the average particle diameter of the inorganic filler (C) is not less than the above lower limit, the inorganic filler (C) can be easily filled at a high density.
  • paintability of a curable composition becomes it favorable that the average particle diameter of an inorganic filler (C) is below the said upper limit.
  • the average particle diameter of the inorganic filler (C) is an average particle diameter obtained from a particle size distribution measurement result with a volume average measured by a laser diffraction particle size distribution measuring apparatus.
  • the content of the inorganic filler (C) in 100% by mass of the curable composition is preferably 60% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, and particularly preferably 82% by mass or more. Yes, and preferably 92% by mass or less, more preferably 90% by mass or less.
  • the content of the inorganic filler (C) is at least the above lower limit, the heat dissipation of the cured product is further enhanced.
  • the content of the inorganic filler (C) is not more than the above upper limit, the applicability of the curable composition is further enhanced, and the properties of the cured product are further improved.
  • the curable composition of the present invention may contain a curing accelerator (D).
  • a curing accelerator (D) By using the curing accelerator (D), the curing rate can be increased and the curable composition can be efficiently cured.
  • a hardening accelerator (D) only 1 type may be used and 2 or more types may be used together.
  • the curing accelerator (D) include imidazole compounds, phosphorus compounds, amine compounds, and organometallic compounds.
  • other examples include 1,8-diazabicyclo (5,4,0) -7-undecenes. Of these, imidazole compounds and 1,8-diazabicyclo (5,4,0) -7-undecenes are preferred because the effects of the present invention are further improved.
  • imidazole compound examples include 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl- 2-methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-un Decylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [2 ' -Mechi Imidazolyl- (1 ′)]-
  • known imidazole-based latent curing agents can be used.
  • specific examples include PN23, PN40, and PN-H (trade names, all manufactured by Ajinomoto Fine Techno Co., Ltd.).
  • curing accelerators which are referred to as microencapsulated imidazoles and subjected to addition reaction with the hydroxyl group of the epoxy adduct of the amine compound can be mentioned, for example, NovaCure HX-3088, NovaCure HX-3941, HX-3742, HX-3722 (trade name, Asahi Kasei E-Materials Co., Ltd.).
  • inclusion imidazole can also be used.
  • a specific example is TIC-188 (trade name, manufactured by Nippon Soda Co., Ltd.).
  • Examples of the phosphorus compound include triphenylphosphine.
  • Examples of the amine compound include 2,4,6-tris (dimethylaminomethyl) phenol, diethylamine, triethylamine, diethylenetetramine, triethylenetetramine, and 4,4-dimethylaminopyridine.
  • organometallic compound examples include zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), and trisacetylacetonate cobalt (III).
  • Examples of the above 1,8-diazabicyclo (5,4,0) -7-undecenes include octyl salts of 1,8-diazabicyclo (5,4,0) -7-undecene.
  • Is SA-102 (trade name, manufactured by San Apro).
  • the content of the curing accelerator (D) with respect to 100 parts by mass of the epoxy compound (A) is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, and preferably 10 parts by mass or less. More preferably, it is 8 parts by mass or less.
  • the content of the curing accelerator (D) is not less than the above lower limit, the curable composition can be cured well.
  • the content of the curing accelerator (D) is not more than the above upper limit, the residual amount of the curing accelerator that has not contributed to curing in the cured product is reduced.
  • the curable composition of the present invention preferably contains a coupling agent (E).
  • the use of the coupling agent (E) further increases the moisture resistance of the cured product of the curable composition.
  • a coupling agent (E) only 1 type may be used and 2 or more types may be used together.
  • the content of the coupling agent (E) is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, preferably 2% by mass or less, more preferably 1% by mass or less.
  • the content of the coupling agent (E) is at least the above lower limit, the moisture resistance of the cured product of the curable composition is further enhanced.
  • the content of the coupling agent (E) is not more than the above upper limit, the applicability of the curable composition is further enhanced.
  • the curable composition of the present invention if necessary, a natural wax such as carnauba wax, a synthetic wax such as polyethylene wax, a higher fatty acid such as stearic acid or zinc stearate and a release agent such as a metal salt thereof or paraffin, Various additives such as a colorant such as carbon black and bengara may be included.
  • curable compositions include inorganic brominated epoxy resins, antimony trioxide, aluminum hydroxide, magnesium hydroxide, zinc borate, zinc molybdate, phosphazene and other flame retardants, and bismuth oxide hydrates.
  • Various additives such as an ion exchanger, a low stress component such as silicone oil and silicone rubber, a dispersant, and an antioxidant may be included.
  • the curable composition of the present invention preferably contains a dispersant.
  • the dispersant include polycarboxylic acid salts, alkyl ammonium salts, alkylol ammonium salts, phosphate ester salts, acrylic blocks. Examples thereof include copolymers and polymer salts.
  • the content of the dispersant is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, preferably 2% by mass or less, more preferably 1% by mass. It is as follows.
  • the curable composition of the present invention may be diluted with a solvent selected from the group consisting of glycols, alcohols, ethers, esters, carboxylic acids, organic sulfur solvents, and mixtures thereof as necessary.
  • a solvent selected from the group consisting of glycols, alcohols, ethers, esters, carboxylic acids, organic sulfur solvents, and mixtures thereof as necessary.
  • the solvent include dipropylene glycol methyl ether, ethylene glycol monobutyl ether acetate, methyl isobutyl ketone, 2-butoxyethanol, diethylene glycol monobutyl ether acetate, 4-methyl-1,3-dioxolan-2-one, dimethyl sulfoxide, N -Methyl-2-pyrrolidone, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, diethylene glycol ethyl ether acetate, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, phenol
  • the curable composition of the present invention is preferably used as a semiconductor element protecting material.
  • the semiconductor element protecting material is preferably used as a sealing material for sealing a semiconductor element mounted on a circuit board.
  • the circuit board include a circuit board in which a wiring pattern such as copper is formed on a flexible board such as a polyimide board, a glass board, a glass epoxy board or the like.
  • semiconductor elements include LEDs and photodiodes.
  • the curable composition of the present invention is particularly excellent in heat dissipation, can effectively dissipate heat generated from the semiconductor element, and can suppress deterioration of the semiconductor element. Furthermore, the curable composition of the present invention can suppress migration of a circuit board, particularly a copper circuit board, and has high insulation reliability.
  • the curable composition of the present invention can also be used on a sealing material for protecting a semiconductor chip from temperature, humidity, dust and the like. Examples of the sealing material include an epoxy molding compound and a silicone molding compound.
  • the semiconductor element protecting material is preferably used by being applied by a dispenser, spray coating, screen printing, vacuum screen printing, or a coating method using an inkjet apparatus.
  • a dispenser spray coating, screen printing, vacuum screen printing, or a coating method using an inkjet apparatus.
  • the material for protecting a semiconductor element is used by being applied by a dispenser from the viewpoint of easy application and further prevention of formation of voids in the cured product.
  • it contains a solvent it is preferably applied by spray coating.
  • the semiconductor device according to the present invention includes a semiconductor element and a cured product disposed on the first surface of the semiconductor element.
  • the cured product is formed by curing the semiconductor element protecting material. Since the said hardened
  • FIG. 1 is a schematic cross-sectional view of a semiconductor device using a semiconductor element protecting material according to the first embodiment of the present invention.
  • a semiconductor device 11 illustrated in FIG. 1 includes a semiconductor element 12 and a cured product 13 disposed on the first surface 12 a of the semiconductor element 12.
  • the cured product 13 is formed by curing the above-described semiconductor element protecting material.
  • the cured product 13 is disposed in a partial region on the first surface 12 a of the semiconductor element 12.
  • the semiconductor element 12 has a first electrode 12A on the second surface 12b side opposite to the first surface 12a side.
  • the semiconductor device 11 further includes a connection target member 14.
  • the connection target member 14 has a second electrode 14A on the surface 14a.
  • the semiconductor element 12 and the connection target member 14 are bonded and fixed via another cured product 15 (connection portion).
  • the first electrode 12 ⁇ / b> A of the semiconductor element 12 and the second electrode 14 ⁇ / b> A of the connection target member 14 face each other and are electrically connected by the conductive particles 16.
  • the first electrode 12 ⁇ / b> A and the second electrode 14 ⁇ / b> A may be electrically connected by being in contact with each other.
  • cured material 13 is arrange
  • a protective film 17 is disposed on the surface of the cured product 13 opposite to the semiconductor element 12 side. Thereby, not only the heat dissipation and the protection of the semiconductor element are enhanced by the cured product 13, but also the protection of the semiconductor element can be further enhanced by the protective film 17.
  • the cured product 13 can suppress sticking of the cured product 13 to the protective film 17.
  • connection target member examples include a glass substrate, a glass epoxy substrate, a flexible printed substrate, and a polyimide substrate.
  • the structure shown in FIG. 1 is only an example of a semiconductor device, and the semiconductor device of the present invention is not limited to this.
  • the arrangement structure of the cured product of the semiconductor element protecting material can be appropriately changed.
  • Inorganic filler FAN-f05 having a thermal conductivity of 10 W / m ⁇ K or more (Furukawa Electronics, aluminum nitride, thermal conductivity: 100 W / m ⁇ K, spherical, average particle size: 6 ⁇ m)
  • FAN-f50 Fluukawa Electronics, aluminum nitride, thermal conductivity: 100 W / m ⁇ K, spherical, average particle size: 30 ⁇ m
  • CB-P05 made by Showa Denko KK, aluminum oxide, thermal conductivity: 20 W / m ⁇ K, spherical, average particle size: 4 ⁇ m
  • CB-P40 made by Showa Denko, aluminum oxide, thermal conductivity: 20 W / m ⁇ K, spherical, average particle size: 44 ⁇ m
  • SSC-A15 manufactured by Shinano Denki Co., Ltd., silicon carbide, thermal conductivity: 100 W / m ⁇
  • IXIon exchanger (1) Combined use of IXE-100 and IXE-550 (mass ratio 4: 6) IXE-100 (manufactured by Toagosei Co., Ltd., Zr-based cation exchanger) Median diameter 1.0 ⁇ m IXE-550 (Toagosei Co., Ltd., Bi-based anion exchanger) Median diameter 1.5 ⁇ m In addition, these were mix
  • IXEPLAS-B1 (manufactured by Toagosei Co., Ltd., Zr, Bi ion exchanger) IXEPLAS-B1 is an ion exchanger pulverized mixture obtained by pulverizing an ion exchanger mixture in which a Zr-based cation exchanger and a Bi-based anion exchanger are mixed at a mass ratio of 4: 6. Average primary particle size 400nm
  • BYK-9076 manufactured by BYK, dispersant
  • the ion exchanger IXE-100 and IXE-550 were used in combination (mass ratio 4: 6).
  • Example 2 to 17 and Comparative Examples 1 to 4 A curable composition was obtained in the same manner as in Example 1 except that the types and amounts of the ingredients were changed as shown in Table 1 below. The composition and the results of the following evaluation are shown in Table 1.
  • the thermal conductivity of the obtained evaluation sample was measured using a thermal conductivity meter “Rapid thermal conductivity meter QTM-500” manufactured by Kyoto Electronics Industry Co., Ltd.
  • Adhesive strength die shear strength
  • a curable composition was applied on a polyimide substrate so that the adhesion area was 3 mm ⁇ 3 mm, and a 3 mm square Si chip was placed thereon to obtain a test sample.
  • test sample was heated at 150 ° C. for 2 hours to cure the curable composition.
  • die shear strength at 25 ° C. was evaluated at a speed of 300 ⁇ m / second using a die shear tester “DAGE 4000” (manufactured by Arctech).
  • Die shear strength criteria A: Die shear strength is 10N or more B: Die shear strength is 6N or more and less than 10N B ': Die shear strength is 5N or more and less than 6N C: Die shear strength is less than 5N
  • the sample was allowed to stand at 180 ° C. for 100 hours, and then left at 23 ° C. and a humidity of 50% RH for 24 hours, and then the volume resistivity was measured.
  • the decrease rate of the volume resistivity before and after the heat test was calculated, and the heat resistance was judged according to the following criteria.
  • a resist (“NPR-3300” manufactured by Nippon Polytech Co., Ltd.) was applied to a film thickness of 10 ⁇ m and cured by heating at 150 ° C. for 1 hour to prepare a test pattern.
  • a curable composition was applied to the test pattern and cured by heating at 150 ° C. for 2 hours to obtain a test piece.
  • the test piece after heating is put in a bath (“PC-304R9” manufactured by Hirayama Seisakusho Co., Ltd.) having a temperature of 130 ° C. and a humidity of 85%, and a DC voltage of 40 V is applied between the electrodes using a migration tester (“MIG-8600B” manufactured by IMV) Was applied to measure the resistance between the electrodes.
  • Insulation reliability was judged according to the following criteria. In the case of the determination criteria of S, A, or B, the insulation reliability is determined to be acceptable, and there is insulation retention that does not hinder actual use, and the insulation reliability is excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

The present invention is a curable composition including an epoxy compound (A), a curing agent (B) which is liquid at 23°C, an inorganic filler (C) which has a thermal conductivity of 10 W/m∙K or greater and is spherical, and an ion exchanger (X), the ion exchanger (X) comprising a zirconium-based cation exchanger and a bismuth-based anion exchanger. Through the present invention, it is possible to provide a curable composition having excellent heat dissipation properties, insulating reliability, and application properties.

Description

硬化性組成物、半導体素子保護用材料、及び半導体装置Curable composition, semiconductor element protecting material, and semiconductor device
 本発明は、硬化性組成物、該硬化性組成物からなる半導体素子保護用材料、及び該半導体素子保護用材料を用いた半導体装置に関する。 The present invention relates to a curable composition, a semiconductor element protecting material comprising the curable composition, and a semiconductor device using the semiconductor element protecting material.
 近年、半導体装置の高性能化が進行しており、これに伴って、半導体装置を構成する半導体素子から発せられる熱を放散させる必要が高まっている。
 例えば、特許文献1では、可撓性エポキシ化合物と、可撓性エポキシ化合物とは異なるエポキシ化合物と、23℃で液状である硬化剤と、硬化促進剤と、熱伝導率10W/m・K以上であり、かつ球状である無機フィラーを含む半導体素子保護用材料が開示されており、放熱性が良好であることが示されている。
 一方、このような半導体素子保護用材料は、半導体素子を搭載する回路基板上に用いると、放熱性は良好であるものの、電圧印加時に回路基板上の配線を構成する金属のマイグレーション(金属の移動)に起因した短絡を生じさせる場合があり、絶縁信頼性を向上させる必要があった。
 このような観点から、特許文献2では、イオン交換体からなるイオン捕捉剤を含む半導体素子保護用材料が開示されており、絶縁信頼性が向上することが示されている。
In recent years, the performance of semiconductor devices has been improved, and accordingly, it is necessary to dissipate heat generated from semiconductor elements that constitute the semiconductor devices.
For example, in Patent Document 1, a flexible epoxy compound, an epoxy compound different from the flexible epoxy compound, a curing agent that is liquid at 23 ° C., a curing accelerator, and a thermal conductivity of 10 W / m · K or more. In addition, a material for protecting a semiconductor element containing a spherical inorganic filler is disclosed, and it is shown that heat dissipation is good.
On the other hand, when such a material for protecting a semiconductor element is used on a circuit board on which the semiconductor element is mounted, the heat dissipation is good, but the metal migration (metal movement) constituting the wiring on the circuit board when a voltage is applied. ) May cause a short circuit, and it is necessary to improve insulation reliability.
From this point of view, Patent Document 2 discloses a semiconductor element protecting material containing an ion trapping agent made of an ion exchanger, which shows that the insulation reliability is improved.
特許第5766867号公報Japanese Patent No. 5766867 特開2017-41633号公報JP 2017-41633 A
 しかしながら、特許文献2の半導体素子保護用材料を用いた場合、一定の絶縁信頼性は確保されるものの、回路基板の配線の間隔をより狭くする要求もあり、より優れた絶縁信頼性が求められている。特に、銅回路基板において、マイグレーションに起因した短絡の問題が生じやすく、このような問題が生じ難い材料が求められている。
 そこで、本発明の目的は、放熱性、絶縁信頼性及び塗布性に優れる硬化性組成物、該硬化性組成物からなる半導体素子保護用材料、及び該半導体素子保護用材料を用いた半導体装置を提供することにある。
However, when the semiconductor element protecting material of Patent Document 2 is used, although certain insulation reliability is ensured, there is also a demand for narrower intervals between circuit board wiring, and thus better insulation reliability is required. ing. In particular, in a copper circuit board, a short circuit problem due to migration is likely to occur, and a material that does not easily cause such a problem is demanded.
Accordingly, an object of the present invention is to provide a curable composition excellent in heat dissipation, insulation reliability, and coatability, a semiconductor element protecting material comprising the curable composition, and a semiconductor device using the semiconductor element protecting material. It is to provide.
 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、エポキシ化合物(A)と、その硬化剤(B)に加えて、熱伝導率が一定以上の特定の無機フィラー(C)と、特定のイオン交換体(X)を含有させた硬化性組成物により、上記課題が解決できることを見出し、本発明を完成させた。
 すなわち、本発明は、下記[1]~[8]に関する。
[1]エポキシ化合物(A)と、23℃で液状である硬化剤(B)と、熱伝導率10W/m・K以上であり、かつ球状である無機フィラー(C)と、イオン交換体(X)とを含み、前記イオン交換体(X)が、ジルコニウム系陽イオン交換体及びビスマス系陰イオン交換体とからなる、硬化性組成物。
[2]前記エポキシ化合物(A)が可撓性エポキシ化合物(a1)である、上記[1]に記載の硬化性組成物。
[3]前記可撓性エポキシ化合物(a1)が、アルキレングリコール基が9以上繰り返された構造単位を有するポリアルキレングリコールジグリシジルエーテルである、上記[2]に記載の硬化性組成物。
[4]前記硬化剤(B)がアリルフェノールノボラック化合物である、上記[1]~[3]のいずれかに記載の硬化性組成物。
[5]前記無機フィラー(C)が、アルミナ、窒化アルミニウム、及び炭化ケイ素からなる群から選択される少なくとも1種である、上記[1]~[4]のいずれかに記載の硬化性組成物。
[6]上記[1]~[5]のいずれかに記載の硬化性組成物からなる半導体素子保護用材料。
[7]半導体素子と、前記半導体素子の第1の表面上に配置された硬化物とを備え、前記硬化物が、上記[6]に記載の半導体素子保護用材料を硬化させることにより形成されている、半導体装置。
[8]前記半導体素子が、前記第1の表面側とは反対の第2の表面側に第1の電極を有し、前記半導体素子の第1の電極が、第2の電極を表面に有する接続対象部材における前記第2の電極と電気的に接続されている、上記[7]に記載の半導体装置。
As a result of intensive studies to achieve the above object, the present inventors have found that a specific inorganic filler (C) having a thermal conductivity of a certain level or more in addition to the epoxy compound (A) and its curing agent (B). ) And the curable composition containing the specific ion exchanger (X), the present inventors have found that the above problems can be solved, and completed the present invention.
That is, the present invention relates to the following [1] to [8].
[1] An epoxy compound (A), a curing agent (B) that is liquid at 23 ° C., a spherical inorganic filler (C) having a thermal conductivity of 10 W / m · K or more, an ion exchanger ( X), and the ion exchanger (X) is composed of a zirconium-based cation exchanger and a bismuth-based anion exchanger.
[2] The curable composition according to the above [1], wherein the epoxy compound (A) is a flexible epoxy compound (a1).
[3] The curable composition according to the above [2], wherein the flexible epoxy compound (a1) is a polyalkylene glycol diglycidyl ether having a structural unit in which 9 or more alkylene glycol groups are repeated.
[4] The curable composition according to any one of [1] to [3], wherein the curing agent (B) is an allylphenol novolak compound.
[5] The curable composition according to any one of [1] to [4], wherein the inorganic filler (C) is at least one selected from the group consisting of alumina, aluminum nitride, and silicon carbide. .
[6] A semiconductor element protecting material comprising the curable composition according to any one of [1] to [5].
[7] A semiconductor element, and a cured product disposed on the first surface of the semiconductor element, wherein the cured product is formed by curing the semiconductor element protecting material according to [6]. A semiconductor device.
[8] The semiconductor element has a first electrode on a second surface side opposite to the first surface side, and the first electrode of the semiconductor element has a second electrode on the surface. The semiconductor device according to [7], which is electrically connected to the second electrode in the connection target member.
 本発明によれば、放熱性、絶縁信頼性及び塗布性に優れる硬化性組成物、該硬化性組成物からなる半導体素子保護用材料、及び該半導体素子保護用材料を用いた半導体装置を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the curable composition excellent in heat dissipation, insulation reliability, and application | coating property, the semiconductor element protection material which consists of this curable composition, and the semiconductor device using this semiconductor element protection material are provided. be able to.
本発明の第1の実施形態に係る半導体素子保護用材料を用いた半導体装置の模式断面図である。1 is a schematic cross-sectional view of a semiconductor device using a semiconductor element protecting material according to a first embodiment of the present invention.
 本発明の硬化性組成物は、エポキシ化合物(A)と、23℃で液状である硬化剤(B)と、熱伝導率10W/m・K以上であり、かつ球状である無機フィラー(C)と、イオン交換体(X)とを含み、該イオン交換体(X)はジルコニウム系陽イオン交換体及びビスマス系陰イオン交換体とからなる。 The curable composition of the present invention comprises an epoxy compound (A), a curing agent (B) that is liquid at 23 ° C., and an inorganic filler (C) that has a thermal conductivity of 10 W / m · K or more and is spherical. And an ion exchanger (X), and the ion exchanger (X) is composed of a zirconium-based cation exchanger and a bismuth-based anion exchanger.
[イオン交換体(X)]
 本発明の硬化性組成物は、ジルコニウム系陽イオン交換体及びビスマス系陰イオン交換体とからなるイオン交換体(X)を含有する。該イオン交換体(X)を含有することにより、硬化性組成物の絶縁信頼性を向上させることができる。
 イオン交換体(X)を用いることで、絶縁信頼性が高まる理由は定かではないが、エポキシ化合物(A)などに含有されていると考えられる有機酸などの配線のマイグレーションレーションを生じさせる原因となる物質を、有効に捕捉できるからではないかと推定される。
[Ion exchanger (X)]
The curable composition of the present invention contains an ion exchanger (X) composed of a zirconium-based cation exchanger and a bismuth-based anion exchanger. By containing the ion exchanger (X), the insulation reliability of the curable composition can be improved.
Although the reason why the insulation reliability is increased by using the ion exchanger (X) is not clear, it is a cause of causing migration of wiring of an organic acid or the like considered to be contained in the epoxy compound (A) or the like. It is presumed that this substance can be effectively captured.
 イオン交換体(X)のメジアン径は、硬化性組成物の絶縁信頼性を向上させる観点から、好ましくは0.1μm以上、より好ましくは0.3μm以上であり、そして、好ましくは10μm以下であり、より好ましくは3μm以下であり、更に好ましくは1μm以下である。メジアン径とは、粒子体の一つの集団の全体積を100%として累積曲線を求めたとき、累積曲線が50%となる点の粒子径(累積平均径)である。当該メジアン径は、レーザー回折散乱法を用いて測定することができる。 From the viewpoint of improving the insulation reliability of the curable composition, the median diameter of the ion exchanger (X) is preferably 0.1 μm or more, more preferably 0.3 μm or more, and preferably 10 μm or less. More preferably, it is 3 μm or less, and further preferably 1 μm or less. The median diameter is the particle diameter (cumulative average diameter) at which the cumulative curve becomes 50% when the cumulative curve is obtained with the total volume of one group of particles as 100%. The median diameter can be measured using a laser diffraction scattering method.
 イオン交換体(X)の平均一次粒子径は、硬化性組成物の絶縁信頼性を向上させる観点から、0.1~2μmであることが好ましく、0.2~1μmであることがより好ましく、0.2~0.7μmであることが好ましい。
 平均一次粒子径は、任意に選択された20個の無機フィラーを電子顕微鏡、レーザー顕微鏡、又は光学顕微鏡にて観察し、各無機フィラーの粒子径を測定し、平均値を算出することにより求められる。また、無機フィラーの粒径は、硬化性組成物、又は硬化性組成物の硬化物の断面を、電子顕微鏡、レーザー顕微鏡、又は光学顕微鏡にて観察し、任意に選択された20個の無機フィラーの粒子径を測定し、平均値を算出することにより求めることもできる。
The average primary particle size of the ion exchanger (X) is preferably 0.1 to 2 μm, more preferably 0.2 to 1 μm, from the viewpoint of improving the insulation reliability of the curable composition. It is preferably 0.2 to 0.7 μm.
The average primary particle diameter is obtained by observing 20 inorganic fillers arbitrarily selected with an electron microscope, a laser microscope, or an optical microscope, measuring the particle diameter of each inorganic filler, and calculating the average value. . The particle size of the inorganic filler was determined by observing the cross section of the curable composition or the cured product of the curable composition with an electron microscope, a laser microscope, or an optical microscope, and 20 inorganic fillers arbitrarily selected. It can also be determined by measuring the particle diameter of the slag and calculating the average value.
 上記した平均一次粒子径範囲とする観点から、イオン交換体(X)は微細化されたものであることが好ましい。微細化は、粉砕機など公知の手段で行うことができる。微細化することで、マイグレーションの原因となる物質を捕捉しやすくなり、硬化性組成物の絶縁信頼性が高まると考えられる。 From the viewpoint of obtaining the above average primary particle size range, the ion exchanger (X) is preferably refined. The miniaturization can be performed by a known means such as a pulverizer. By miniaturization, it becomes easier to capture a substance that causes migration, and it is considered that the insulation reliability of the curable composition is increased.
 イオン交換体(X)の中性交換容量は、好ましくは1meq/g以上、より好ましくは2meq/g以上である。 The neutral exchange capacity of the ion exchanger (X) is preferably 1 meq / g or more, more preferably 2 meq / g or more.
 イオン交換体(X)は、ジルコニウム系陽イオン交換体及びビスマス系陰イオン交換体とからなるものである。イオン交換体(X)は、好ましくは別々の化合物であるジルコニウム系陽イオン交換体とビスマス系陰イオン交換体とからなるものであってもよいし、一つの化合物の中にジルコニウム系陽イオン交換体として機能する部位とビスマス系陰イオン交換体として機能する部位とを有するものであってもよい。
 本発明の硬化性組成物は、ジルコニウム系陽イオン交換体及びビスマス系陰イオン交換体からなるイオン交換体(X)を含むことにより、優れた絶縁信頼性を得ることができる。
The ion exchanger (X) is composed of a zirconium-based cation exchanger and a bismuth-based anion exchanger. The ion exchanger (X) may preferably be composed of a zirconium-based cation exchanger and a bismuth-based anion exchanger, which are separate compounds, or a zirconium-based cation exchange in one compound. It may have a part that functions as a body and a part that functions as a bismuth anion exchanger.
The curable composition of this invention can obtain the outstanding insulation reliability by including the ion exchanger (X) which consists of a zirconium-type cation exchanger and a bismuth-type anion exchanger.
 ジルコニウム系陽イオン交換体は、例えば、ジルコニウムを含有する化合物であり、かつスルホン酸基、カルボキシ基、リン酸基などの酸基を有する化合物が挙げられる。硬化性組成物の絶縁信頼性を向上させる観点から、ジルコニウム系陽イオン交換体としては、リン酸ジルコニウム系陽イオン交換体が好ましい。
 リン酸ジルコニウム系陽イオン交換体の中でも、ZrH(PO・nH0(式1)で表される化合物が好ましい。ここで、式1中、aおよびbは3b-a=4を満たす正数であり、bは2<b≦2.1であり、nは0≦n≦2である。
The zirconium-based cation exchanger is, for example, a compound containing zirconium and a compound having an acid group such as a sulfonic acid group, a carboxy group, or a phosphoric acid group. From the viewpoint of improving the insulation reliability of the curable composition, the zirconium cation exchanger is preferably a zirconium phosphate cation exchanger.
Among the zirconium phosphate-based cation exchangers, compounds represented by ZrH a (PO 4 ) b · nH 2 0 (formula 1) are preferable. Here, in Formula 1, a and b are positive numbers satisfying 3b−a = 4, b is 2 <b ≦ 2.1, and n is 0 ≦ n ≦ 2.
 ビスマス系陰イオン交換体としては、ビスマスを含有する陰イオン交換体であり、硬化性組成物の絶縁信頼性を向上させる観点から、ビスマスの含水酸化物、水酸化硝酸ビスマスが好ましく、水酸化硝酸ビスマスがより好ましい。上記ビスマスの含水酸化物は、例えばBi・nHO(0<n≦4)で表され、上記水酸化硝酸ビスマスは、例えば、Bi(OH)(NO・nHO(式2)で表される。式2において、xは2.5以上3未満の正数であり、yは0.5以下の正数であり、x+y=3の値を満たすものであり、nは0または正数である。 The bismuth anion exchanger is an anion exchanger containing bismuth, and from the viewpoint of improving the insulation reliability of the curable composition, bismuth hydrous oxide and bismuth hydroxide nitrate are preferred. Bismuth is more preferred. The hydrated oxide of bismuth is represented by, for example, Bi 2 O 3 .nH 2 O (0 <n ≦ 4), and the bismuth hydroxide nitrate is, for example, Bi (OH) x (NO 3 ) y · nH 2. O (Expression 2). In Expression 2, x is a positive number not less than 2.5 and less than 3, y is a positive number not more than 0.5, satisfies the value of x + y = 3, and n is 0 or a positive number.
 硬化性組成物中のイオン交換体(X)の配合量は、硬化性組成物100質量%中において、好ましくは0.08質量%以上であり、より好ましくは0.1質量%以上であり、さらに好ましくは0.3質量%以上であり、そして、好ましくは3質量%以下であり、より好ましくは2質量%以下である。 The amount of the ion exchanger (X) in the curable composition is preferably 0.08% by mass or more, more preferably 0.1% by mass or more, in 100% by mass of the curable composition. More preferably, it is 0.3% by mass or more, and preferably 3% by mass or less, and more preferably 2% by mass or less.
 イオン交換体(X)が別々の化合物であるジルコニウム系陽イオン交換体とビスマス系陰イオン交換体とからなる場合、ジルコニウム系陽イオン交換体及びビスマス系陰イオン交換体の配合量比(ジルコニウム系陽イオン交換体:ビスマス系陰イオン交換体)は、質量基準で、99:1~1:99であることが好ましい。上記配合量比は、より好ましくは10:90~80:20であり、更に好ましくは20:80~60:40である。 When the ion exchanger (X) is composed of a zirconium-based cation exchanger and a bismuth-based anion exchanger, which are separate compounds, the blending ratio of the zirconium-based cation exchanger and the bismuth-based anion exchanger (zirconium-based) (Cation exchanger: bismuth-based anion exchanger) is preferably 99: 1 to 1:99 on a mass basis. The blending ratio is more preferably 10:90 to 80:20, and still more preferably 20:80 to 60:40.
 イオン交換体(X)が別々の化合物であるジルコニウム系陽イオン交換体とビスマス系陰イオン交換体とからなる場合において、ジルコニウム系陽イオン交換体及びビスマス系陰イオン交換体の配合の方法は次のとおりである。即ち、硬化性組成物を作製する際に、ジルコニウム系陽イオン交換体及びビスマス系陰イオン交換体を別々に配合してもよいし、両者を予め混合し、ジルコニウム系陽イオン交換体及びビスマス系陰イオン交換体の混合物からなるイオン交換体(X)を作製し、これをエポキシ化合物(A)、硬化剤(B)及び無機フィラー(C)等と混合してもよい。
 硬化性組成物の絶縁信頼性を向上させる観点から、予めジルコニウム系陽イオン交換体及びビスマス系陰イオン交換体の混合物からなるイオン交換体(X)を作製し、これを、エポキシ化合物(A)、硬化剤(B)、及び無機フィラー(C)等と混合し、硬化性組成物を作製する態様が好ましい。また、上記したとおり、イオン交換体(X)は微細化したものであることが好ましいため、ジルコニウム系陽イオン交換体及びビスマス系陰イオン交換体の混合物からなるイオン交換体(X)を作製し、微細化した後、硬化性組成物を作製することがより好ましい。
In the case where the ion exchanger (X) comprises a zirconium-based cation exchanger and a bismuth-based anion exchanger, which are separate compounds, the method for blending the zirconium-based cation exchanger and the bismuth-based anion exchanger is as follows. It is as follows. That is, when preparing the curable composition, the zirconium-based cation exchanger and the bismuth-based anion exchanger may be blended separately, or both of them are mixed in advance, and the zirconium-based cation exchanger and the bismuth-based composition are mixed. An ion exchanger (X) made of a mixture of anion exchangers may be prepared and mixed with an epoxy compound (A), a curing agent (B), an inorganic filler (C), and the like.
From the viewpoint of improving the insulation reliability of the curable composition, an ion exchanger (X) comprising a mixture of a zirconium-based cation exchanger and a bismuth-based anion exchanger is prepared in advance, and this is converted into an epoxy compound (A). The aspect which mixes with a hardening | curing agent (B), an inorganic filler (C), etc., and produces a curable composition is preferable. As described above, since the ion exchanger (X) is preferably refined, an ion exchanger (X) composed of a mixture of a zirconium-based cation exchanger and a bismuth-based anion exchanger is prepared. It is more preferable to prepare a curable composition after miniaturization.
 なお、本発明の硬化性組成物は、本発明の効果を阻害しない範囲で、上記イオン交換体(X)以外のイオン交換体を含有してもよい。 In addition, the curable composition of this invention may contain ion exchangers other than the said ion exchanger (X) in the range which does not inhibit the effect of this invention.
[エポキシ化合物(A)]
 本発明の硬化性組成物は、エポキシ化合物(A)を含有する。エポキシ化合物(A)を含有することで、硬化性組成物に熱硬化性を付与することができる。
[Epoxy compound (A)]
The curable composition of this invention contains an epoxy compound (A). By containing the epoxy compound (A), thermosetting can be imparted to the curable composition.
(可撓性エポキシ化合物(a1))
 エポキシ化合物(A)としては、可撓性エポキシ化合物(a1)を含有することが好ましい。可撓性エポキシ化合物(a1)を用いることによって、本発明の硬化性組成物を半導体素子保護用材料として用いた場合に、半導体素子に対する変形応力などによって、半導体素子の損傷が生じ難くなり、更に半導体素子の表面から半導体素子保護用材料を剥離し難くすることができる。なお、可撓性エポキシ化合物における可撓性の指標として、化学量論量のジエチレントリアミン(「DETA」)で硬化されたときに、デュロメーターShoreDの測定が30以下であるエポキシ樹脂であると定義される。
 可撓性エポキシ化合物(a1)は、芳香族骨格及び脂環式骨格を有さないことが好ましい。
 可撓性エポキシ化合物(a1)としては、ポリアルキレングリコールジグリシジルエーテル、ポリブタジエンジグリシジルエーテル、及びサルファイド変性エポキシ樹脂等が挙げられる。塗布性をより一層高める観点からは、ポリアルキレングリコールジグリシジルエーテルが好ましい。
(Flexible epoxy compound (a1))
The epoxy compound (A) preferably contains a flexible epoxy compound (a1). By using the flexible epoxy compound (a1), when the curable composition of the present invention is used as a material for protecting a semiconductor element, the semiconductor element is hardly damaged due to deformation stress on the semiconductor element, and the like. The material for protecting a semiconductor element can be made difficult to peel from the surface of the semiconductor element. As an index of flexibility in a flexible epoxy compound, it is defined as an epoxy resin having a durometer ShoreD measurement of 30 or less when cured with a stoichiometric amount of diethylenetriamine (“DETA”). .
It is preferable that the flexible epoxy compound (a1) does not have an aromatic skeleton and an alicyclic skeleton.
Examples of the flexible epoxy compound (a1) include polyalkylene glycol diglycidyl ether, polybutadiene diglycidyl ether, and sulfide-modified epoxy resin. From the viewpoint of further improving the coating property, polyalkylene glycol diglycidyl ether is preferable.
 硬化性組成物の硬化物の柔軟性をより一層高めて接着力を向上させる観点からは、上記ポリアルキレングリコールジグリシジルエーテルは、アルキレングリコール基が9以上繰り返された構造単位を有することが好ましい。アルキレングリコール基の繰り返し数の上限は特に限定されない。アルキレングリコール基の繰り返し数は、30以下であってもよい。上記アルキレングリコール基の炭素数は、好ましくは2以上であり、好ましくは5以下である。 From the viewpoint of further increasing the flexibility of the cured product of the curable composition and improving the adhesive force, the polyalkylene glycol diglycidyl ether preferably has a structural unit in which 9 or more alkylene glycol groups are repeated. The upper limit of the number of repeating alkylene glycol groups is not particularly limited. The number of repeating alkylene glycol groups may be 30 or less. The alkylene glycol group preferably has 2 or more carbon atoms, preferably 5 or less.
 上記ポリアルキレングリコールジグリシジルエーテルとしては、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル及びポリテトラメチレングリコールジグリシジルエーテル等が挙げられる。
 可撓性エポキシ化合物(a1)は、1種のみを用いてもよいし、2種以上を併用してもよい。
Examples of the polyalkylene glycol diglycidyl ether include polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, and polytetramethylene glycol diglycidyl ether.
Only 1 type may be used for a flexible epoxy compound (a1), and it may use 2 or more types together.
 上記硬化性組成物100質量%中、可撓性エポキシ化合物(a1)の含有量は好ましくは3質量%以上、より好ましくは5質量%以上であり、好ましくは10質量%以下、より好ましくは8質量%以下である。可撓性エポキシ化合物(a1)の含有量が上記下限以上であると、硬化性組成物の硬化物の柔軟性がより一層高くなる。可撓性エポキシ化合物(a1)の含有量が上記上限以下であると、硬化性組成物の塗布性がより一層高くなる。 In 100% by mass of the curable composition, the content of the flexible epoxy compound (a1) is preferably 3% by mass or more, more preferably 5% by mass or more, preferably 10% by mass or less, more preferably 8%. It is below mass%. The softness | flexibility of the hardened | cured material of a curable composition becomes it still higher that content of a flexible epoxy compound (a1) is more than the said minimum. When the content of the flexible epoxy compound (a1) is not more than the above upper limit, the applicability of the curable composition is further enhanced.
(他のエポキシ化合物(a2))
 エポキシ化合物(A)としては、上記可撓性エポキシ化合物(a1)以外の他のエポキシ化合物(a2)が含まれていてもよい。
 他のエポキシ化合物(a2)としては、芳香族骨格又は脂環式骨格を有するエポキシ化合物が好ましい。
(Other epoxy compounds (a2))
As an epoxy compound (A), other epoxy compounds (a2) other than the said flexible epoxy compound (a1) may be contained.
As another epoxy compound (a2), an epoxy compound having an aromatic skeleton or an alicyclic skeleton is preferable.
 芳香族骨格を有するエポキシ化合物としては、ビスフェノール骨格を有するエポキシ化合物、ナフタレン骨格を有するエポキシ化合物、フルオレン骨格を有するエポキシ化合物、ビフェニル骨格を有するエポキシ化合物、バイ(グリシジルオキシフェニル)メタン骨格を有するエポキシ化合物、キサンテン骨格を有するエポキシ化合物、アントラセン骨格を有するエポキシ化合物、ピレン骨格を有するエポキシ化合物等が挙げられる。
 脂環式骨格を有するエポキシ化合物としては、ジシクロペンタジエン骨格を有するエポキシ化合物、アダマンタン骨格を有するエポキシ化合物等が挙げられる。
 また、上記例示した各エポキシ化合物の水素添加物又は変性物も他のエポキシ化合物(a2)として使用することができる。
 中でも、他のエポキシ化合物(a2)としては、ビスフェノール骨格を有するエポキシ化合物(ビスフェノール型エポキシ化合物)であることが好ましい。
As an epoxy compound having an aromatic skeleton, an epoxy compound having a bisphenol skeleton, an epoxy compound having a naphthalene skeleton, an epoxy compound having a fluorene skeleton, an epoxy compound having a biphenyl skeleton, an epoxy compound having a bi (glycidyloxyphenyl) methane skeleton , An epoxy compound having a xanthene skeleton, an epoxy compound having an anthracene skeleton, an epoxy compound having a pyrene skeleton, and the like.
Examples of the epoxy compound having an alicyclic skeleton include an epoxy compound having a dicyclopentadiene skeleton and an epoxy compound having an adamantane skeleton.
In addition, hydrogenated products or modified products of the above-exemplified epoxy compounds can also be used as other epoxy compounds (a2).
Among these, the other epoxy compound (a2) is preferably an epoxy compound having a bisphenol skeleton (bisphenol type epoxy compound).
 上記ビスフェノール骨格を有するエポキシ化合物としては、例えば、ビスフェノールA型、ビスフェノールF型又はビスフェノールS型のビスフェノール骨格を有するエポキシ化合物が挙げられる。 Examples of the epoxy compound having a bisphenol skeleton include an epoxy compound having a bisphenol A type, bisphenol F type, or bisphenol S type bisphenol skeleton.
 上記ナフタレン骨格を有するエポキシ化合物としては、1-グリシジルナフタレン、2-グリシジルナフタレン、1,2-ジグリシジルナフタレン、1,5-ジグリシジルナフタレン、1,6-ジグリシジルナフタレン、1,7-ジグリシジルナフタレン、2,7-ジグリシジルナフタレン、トリグリシジルナフタレン、及び1,2,5,6-テトラグリシジルナフタレン等が挙げられる。 Examples of the epoxy compound having a naphthalene skeleton include 1-glycidylnaphthalene, 2-glycidylnaphthalene, 1,2-diglycidylnaphthalene, 1,5-diglycidylnaphthalene, 1,6-diglycidylnaphthalene, 1,7-diglycidyl. Examples include naphthalene, 2,7-diglycidylnaphthalene, triglycidylnaphthalene, and 1,2,5,6-tetraglycidylnaphthalene.
 上記フルオレン骨格を有するエポキシ化合物としては、9,9-ビス(4-グリシジルオキシフェニル)フルオレン、9,9-ビス(4-グリシジルオキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-グリシジルオキシ-3-クロロフェニル)フルオレン、9,9-ビス(4-グリシジルオキシ-3-ブロモフェニル)フルオレン、9,9-ビス(4-グリシジルオキシ-3-フルオロフェニル)フルオレン、9,9-ビス(4-グリシジルオキシ-3-メトキシフェニル)フルオレン、9,9-ビス(4-グリシジルオキシ-3,5-ジメチルフェニル)フルオレン、9,9-ビス(4-グリシジルオキシ-3,5-ジクロロフェニル)フルオレン、及び9,9-ビス(4-グリシジルオキシ-3,5-ジブロモフェニル)フルオレン等が挙げられる。 Examples of the epoxy compound having a fluorene skeleton include 9,9-bis (4-glycidyloxyphenyl) fluorene, 9,9-bis (4-glycidyloxy-3-methylphenyl) fluorene, and 9,9-bis (4- Glycidyloxy-3-chlorophenyl) fluorene, 9,9-bis (4-glycidyloxy-3-bromophenyl) fluorene, 9,9-bis (4-glycidyloxy-3-fluorophenyl) fluorene, 9,9-bis (4-Glycidyloxy-3-methoxyphenyl) fluorene, 9,9-bis (4-glycidyloxy-3,5-dimethylphenyl) fluorene, 9,9-bis (4-glycidyloxy-3,5-dichlorophenyl) Fluorene and 9,9-bis (4-glycidyloxy-3,5-dibromophenyl) Fluorene, and the like.
 上記ビフェニル骨格を有するエポキシ化合物としては、4,4’-ジグリシジルビフェニル、及び4,4’-ジグリシジル-3,3’,5,5’-テトラメチルビフェニル等が挙げられる。 Examples of the epoxy compound having a biphenyl skeleton include 4,4'-diglycidylbiphenyl and 4,4'-diglycidyl-3,3 ', 5,5'-tetramethylbiphenyl.
 上記バイ(グリシジルオキシフェニル)メタン骨格を有するエポキシ化合物としては、1,1’-バイ(2,7-グリシジルオキシナフチル)メタン、1,8’-バイ(2,7-グリシジルオキシナフチル)メタン、1,1’-バイ(3,7-グリシジルオキシナフチル)メタン、1,8’-バイ(3,7-グリシジルオキシナフチル)メタン、1,1’-バイ(3,5-グリシジルオキシナフチル)メタン、1,8’-バイ(3,5-グリシジルオキシナフチル)メタン、1,2’-バイ(2,7-グリシジルオキシナフチル)メタン、1,2’-バイ(3,7-グリシジルオキシナフチル)メタン、及び1,2’-バイ(3,5-グリシジルオキシナフチル)メタン等が挙げられる。 Examples of the epoxy compound having a bi (glycidyloxyphenyl) methane skeleton include 1,1′-bi (2,7-glycidyloxynaphthyl) methane, 1,8′-bi (2,7-glycidyloxynaphthyl) methane, 1,1′-bi (3,7-glycidyloxynaphthyl) methane, 1,8′-bi (3,7-glycidyloxynaphthyl) methane, 1,1′-bi (3,5-glycidyloxynaphthyl) methane 1,8'-bi (3,5-glycidyloxynaphthyl) methane, 1,2'-bi (2,7-glycidyloxynaphthyl) methane, 1,2'-bi (3,7-glycidyloxynaphthyl) And methane and 1,2′-bi (3,5-glycidyloxynaphthyl) methane.
 上記キサンテン骨格を有するエポキシ化合物としては、1,3,4,5,6,8-ヘキサメチル-2,7-ビス-オキシラニルメトキシ-9-フェニル-9H-キサンテン等が挙げられる。 Examples of the epoxy compound having a xanthene skeleton include 1,3,4,5,6,8-hexamethyl-2,7-bis-oxiranylmethoxy-9-phenyl-9H-xanthene.
 上記ジシクロペンタジエン骨格を有するエポキシ化合物としては、ジシクロペンタジエンジオキシド、及びジシクロペンタジエン骨格を有するフェノールノボラックエポキシ化合物が挙げられる。 Examples of the epoxy compound having a dicyclopentadiene skeleton include dicyclopentadiene dioxide and a phenol novolac epoxy compound having a dicyclopentadiene skeleton.
 上記アダマンタン骨格を有するエポキシ化合物としては、1,3-ビス(4-グリシジルオキシフェニル)アダマンタン、及び2,2-ビス(4-グリシジルオキシフェニル)アダマンタン等が挙げられる。 Examples of the epoxy compound having an adamantane skeleton include 1,3-bis (4-glycidyloxyphenyl) adamantane and 2,2-bis (4-glycidyloxyphenyl) adamantane.
 上記硬化性組成物100質量%中、他のエポキシ化合物(a2)の含有量は好ましくは1質量%以上、より好ましくは2質量%以上であり、好ましくは10質量%以下、より好ましくは8質量%以下である。他のエポキシ化合物(a2)の含有量が上記下限以上及び上記上限以下であると、硬化性組成物の塗布性、硬化物の柔軟性及び耐湿性がより一層良好になり、硬化物の半導体素子に対する接着性がより一層良好になり、保護フィルムに対する貼り付きをより一層抑えることができる。 In 100% by mass of the curable composition, the content of the other epoxy compound (a2) is preferably 1% by mass or more, more preferably 2% by mass or more, preferably 10% by mass or less, more preferably 8% by mass. % Or less. When the content of the other epoxy compound (a2) is not less than the above lower limit and not more than the above upper limit, the applicability of the curable composition, the flexibility of the cured product, and the moisture resistance are further improved. Adhesiveness to is further improved, and sticking to the protective film can be further suppressed.
 エポキシ化合物(A)としては、可撓性エポキシ化合物(a1)と他のエポキシ化合物(a2)の両方を含有することが好ましい。
 硬化性組成物100質量%中、可撓性エポキシ化合物(a1)と他のエポキシ化合物(a2)との合計の含有量は好ましくは5質量%以上、より好ましくは8質量%以上であり、好ましくは15質量%以下、より好ましくは12質量%以下である。可撓性エポキシ化合物(a1)と他のエポキシ化合物(a2)との合計の含有量が上記下限以上及び上記上限以下であると、硬化性組成物の塗布性、硬化物の柔軟性及び耐湿性がより一層良好になり、硬化性組成物の硬化物の半導体素子に対する接着性がより一層良好になる。また、硬化性組成物の硬化物に保護フィルムを貼付する場合において、保護フィルムに対する貼り付きを抑えることができる。
As an epoxy compound (A), it is preferable to contain both a flexible epoxy compound (a1) and another epoxy compound (a2).
In 100% by mass of the curable composition, the total content of the flexible epoxy compound (a1) and the other epoxy compound (a2) is preferably 5% by mass or more, more preferably 8% by mass or more, preferably Is 15% by mass or less, more preferably 12% by mass or less. When the total content of the flexible epoxy compound (a1) and the other epoxy compound (a2) is not less than the above lower limit and not more than the above upper limit, applicability of the curable composition, flexibility of the cured product, and moisture resistance Becomes even better, and the adhesion of the cured product of the curable composition to the semiconductor element becomes even better. Moreover, when sticking a protective film on the hardened | cured material of a curable composition, sticking with respect to a protective film can be suppressed.
 可撓性エポキシ化合物(a1)100質量部に対して、他のエポキシ化合物(a2)の含有量は好ましくは10質量部以上、より好ましくは20質量部以上であり、好ましくは100質量部以下、より好ましくは90質量部以下である。エポキシ化合物(a2)の含有量が上記下限以上であると、硬化性組成物の塗布性がより一層高くなり、硬化物の半導体素子に対する接着性がより一層高くなる。他のエポキシ化合物(a2)の含有量が上記上限以下であると、硬化物の柔軟性がより一層高くなる。 The content of the other epoxy compound (a2) is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, preferably 100 parts by mass or less, relative to 100 parts by mass of the flexible epoxy compound (a1). More preferably, it is 90 mass parts or less. When the content of the epoxy compound (a2) is not less than the above lower limit, the applicability of the curable composition is further enhanced, and the adhesiveness of the cured product to the semiconductor element is further enhanced. When the content of the other epoxy compound (a2) is not more than the above upper limit, the flexibility of the cured product is further increased.
[硬化剤(B)]
 本発明の硬化性組成物は、23℃で液状である硬化剤(B)を含有する。硬化剤(B)を用いることによりエポキシ化合物(A)を硬化させることができ、硬化性組成物の塗布性を向上させることができる。
 硬化剤(B)としては、アミン化合物(アミン硬化剤)、イミダゾール化合物(イミダゾール硬化剤)、フェノール化合物(フェノール硬化剤)及び酸無水物(酸無水物硬化剤)等が挙げられる。これらの中でもフェノール化合物を用いることが好ましい。
[Curing agent (B)]
The curable composition of this invention contains the hardening | curing agent (B) which is a liquid at 23 degreeC. By using a hardening | curing agent (B), an epoxy compound (A) can be hardened and the applicability | paintability of a curable composition can be improved.
Examples of the curing agent (B) include an amine compound (amine curing agent), an imidazole compound (imidazole curing agent), a phenol compound (phenol curing agent), and an acid anhydride (acid anhydride curing agent). Among these, it is preferable to use a phenol compound.
 上記フェノール化合物としては、フェノールノボラック化合物、o-クレゾールノボラック化合物、p-クレゾールノボラック化合物、t-ブチルフェノールノボラック化合物、アリルフェノールノボラック化合物、ジシクロペンタジエンクレゾール化合物、ポリパラビニルフェノール化合物、ビスフェノールA型ノボラック化合物、キシリレン変性ノボラック化合物、デカリン変性ノボラック化合物、ポリ(ジ-o-ヒドロキシフェニル)メタン化合物、ポリ(ジ-m-ヒドロキシフェニル)メタン、及びポリ(ジ-p-ヒドロキシフェニル)メタン等が挙げられる。
 これらの中でも、硬化性組成物の塗布性を高め、硬化物中でのボイドの発生を抑え、硬化物の耐熱性を高める観点からは、アリルフェノールノボラック化合物を用いることが好ましい。
Examples of the phenol compound include phenol novolak compounds, o-cresol novolak compounds, p-cresol novolak compounds, t-butylphenol novolak compounds, allylphenol novolak compounds, dicyclopentadiene cresol compounds, polyparavinylphenol compounds, and bisphenol A type novolak compounds. And xylylene-modified novolak compounds, decalin-modified novolak compounds, poly (di-o-hydroxyphenyl) methane compounds, poly (di-m-hydroxyphenyl) methane, and poly (di-p-hydroxyphenyl) methane.
Among these, it is preferable to use an allylphenol novolak compound from the viewpoint of improving the coating property of the curable composition, suppressing the generation of voids in the cured product, and increasing the heat resistance of the cured product.
 エポキシ化合物(A)100質量部に対して、硬化剤(B)の含有量は、好ましくは20質量部以上、より好ましくは30質量部以上、更に好ましくは40質量部以上であり、好ましくは100質量部以下、より好ましくは80質量部以下、更に好ましくは60質量部以下である。硬化剤(B)の含有量が上記下限以上であると、硬化性組成物を良好に硬化させることができる。硬化剤(B)の含有量が上記上限以下であると、硬化物内における硬化に寄与しなかった硬化剤(B)の残存量が少なくなる。 The content of the curing agent (B) with respect to 100 parts by mass of the epoxy compound (A) is preferably 20 parts by mass or more, more preferably 30 parts by mass or more, still more preferably 40 parts by mass or more, preferably 100 It is at most 80 parts by mass, more preferably at most 60 parts by mass. When the content of the curing agent (B) is not less than the above lower limit, the curable composition can be cured well. When the content of the curing agent (B) is not more than the above upper limit, the residual amount of the curing agent (B) that has not contributed to curing in the cured product is reduced.
[無機フィラー(C)]
 本発明の硬化性組成物は、熱伝導率10W/m・K以上であり、かつ球状である無機フィラー(C)を含有する。該無機フィラー(C)を含有することによって、硬化性組成物の塗布性及びその硬化物の柔軟性を高く維持しつつ、硬化物の放熱性を高めることができる。無機フィラー(C)の形状は球状である。ここで球状とは、アスペクト比(長径/短径)が1以上、2以下であることをいう。
 硬化物の放熱性をより一層高める観点からは、無機フィラー(C)の熱伝導率は、好ましくは12W/m・K以上、より好ましくは15W/m・K以上、更に好ましくは20W/m・K以上である。無機フィラー(C)の熱伝導率の上限は特に限定されない。熱伝導率が300W/m・K程度である無機フィラーは広く知られており、また熱伝導率が200W/m・K程度である無機フィラーは容易に入手できる。
 熱伝導率は、例えば、クロスセクションポリッシャーにて切削加工したフィラー断面に対して、株式会社ベテル製サーマルマイクロスコープを用いて、周期加熱サーモリフレクタンス法により測定することができる。
[Inorganic filler (C)]
The curable composition of the present invention contains an inorganic filler (C) having a thermal conductivity of 10 W / m · K or more and a spherical shape. By containing this inorganic filler (C), the heat dissipation of hardened | cured material can be improved, maintaining the applicability | paintability of a curable composition, and the softness | flexibility of the hardened | cured material highly. The shape of the inorganic filler (C) is spherical. Here, the spherical shape means that the aspect ratio (major axis / minor axis) is 1 or more and 2 or less.
From the viewpoint of further improving the heat dissipation of the cured product, the thermal conductivity of the inorganic filler (C) is preferably 12 W / m · K or more, more preferably 15 W / m · K or more, and even more preferably 20 W / m ·. K or more. The upper limit of the thermal conductivity of the inorganic filler (C) is not particularly limited. Inorganic fillers having a thermal conductivity of about 300 W / m · K are widely known, and inorganic fillers having a thermal conductivity of about 200 W / m · K are easily available.
The thermal conductivity can be measured by, for example, a periodic heating thermoreflectance method using a thermal microscope manufactured by Bethel Co., Ltd. with respect to a filler cross-section cut by a cross section polisher.
 硬化物の放熱性を効果的に高める観点からは、無機フィラー(C)は、アルミナ、窒化アルミニウム及び炭化ケイ素からなる群から選択される少なくとも1種であることが好ましい。無機フィラー(C)として、上記以外の無機フィラーを適宜用いてもよい。無機フィラー(C)を用いる場合に、1種のみが用いられてもよく、2種以上が併用されてもよい。 From the viewpoint of effectively increasing the heat dissipation of the cured product, the inorganic filler (C) is preferably at least one selected from the group consisting of alumina, aluminum nitride, and silicon carbide. As the inorganic filler (C), inorganic fillers other than those described above may be used as appropriate. When using an inorganic filler (C), only 1 type may be used and 2 or more types may be used together.
 無機フィラー(C)の平均粒子径は、好ましくは0.1μm以上であり、そして、好ましくは150μm以下である。無機フィラー(C)の平均粒子径が上記下限以上であると、無機フィラー(C)を高密度で容易に充填できる。無機フィラー(C)の平均粒子径が上記上限以下であると、硬化性組成物の塗布性が良好になる。
 無機フィラー(C)の平均粒子径は、レーザー回折式粒度分布測定装置により測定した体積平均での粒度分布測定結果から求められる平均粒子径である。
The average particle diameter of the inorganic filler (C) is preferably 0.1 μm or more, and preferably 150 μm or less. When the average particle diameter of the inorganic filler (C) is not less than the above lower limit, the inorganic filler (C) can be easily filled at a high density. The applicability | paintability of a curable composition becomes it favorable that the average particle diameter of an inorganic filler (C) is below the said upper limit.
The average particle diameter of the inorganic filler (C) is an average particle diameter obtained from a particle size distribution measurement result with a volume average measured by a laser diffraction particle size distribution measuring apparatus.
 硬化性組成物100質量%中の無機フィラー(C)の含有量は、好ましくは60質量%以上、より好ましくは70質量%以上、更に好ましくは80質量%以上、特に好ましくは82質量%以上であり、そして、好ましくは92質量%以下、より好ましくは90質量%以下である。無機フィラー(C)の含有量が上記下限以上であると、硬化物の放熱性がより一層高くなる。無機フィラー(C)の含有量が上記上限以下であると、硬化性組成物の塗布性がより一層高くなり、硬化物の性状硬化物の性状がより一層良好になる。 The content of the inorganic filler (C) in 100% by mass of the curable composition is preferably 60% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, and particularly preferably 82% by mass or more. Yes, and preferably 92% by mass or less, more preferably 90% by mass or less. When the content of the inorganic filler (C) is at least the above lower limit, the heat dissipation of the cured product is further enhanced. When the content of the inorganic filler (C) is not more than the above upper limit, the applicability of the curable composition is further enhanced, and the properties of the cured product are further improved.
[硬化促進剤(D)]
 本発明の硬化性組成物は、硬化促進剤(D)を含有してもよい。硬化促進剤(D)の使用によって、硬化速度を速くし、硬化性組成物を効率的に硬化させることができる。硬化促進剤(D)は1種のみが用いられてもよく、2種以上が併用されてもよい。
 硬化促進剤(D)としては、イミダゾール化合物、リン化合物、アミン化合物、及び有機金属化合物等が挙げられる。また、これ以外にも、1,8-ジアザビシクロ(5,4,0)-7-ウンデセン類が挙げられる。なかでも、本発明の効果がより一層優れることから、イミダゾール化合物、1,8-ジアザビシクロ(5,4,0)-7-ウンデセン類が好ましい。
[Curing accelerator (D)]
The curable composition of the present invention may contain a curing accelerator (D). By using the curing accelerator (D), the curing rate can be increased and the curable composition can be efficiently cured. As for a hardening accelerator (D), only 1 type may be used and 2 or more types may be used together.
Examples of the curing accelerator (D) include imidazole compounds, phosphorus compounds, amine compounds, and organometallic compounds. In addition, other examples include 1,8-diazabicyclo (5,4,0) -7-undecenes. Of these, imidazole compounds and 1,8-diazabicyclo (5,4,0) -7-undecenes are preferred because the effects of the present invention are further improved.
 上記イミダゾール化合物としては、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1,2-ジメチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール及び2-フェニル-4-メチル-5-ジヒドロキシメチルイミダゾール、等が挙げられる。 Examples of the imidazole compound include 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl- 2-methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-un Decylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [2 ' -Mechi Imidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-undecylimidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-Ethyl-4′-methylimidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine Isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-methylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-dihydroxymethylimidazole, etc. Is mentioned.
 また、公知のイミダゾール系潜在性硬化剤を用いることができる。具体例としては、PN23、PN40、PN-H(商品名、いずれも味の素ファインテクノ社製)が挙げられる。また、マイクロカプセル化イミダゾールとも呼ばれる、アミン化合物のエポキシアダクトの水酸基に付加反応させた硬化促進剤が挙げられ、例えばノバキュアHX-3088、ノバキュアHX-3941、HX-3742、HX-3722(商品名、いずれも旭化成イーマテリアルズ社製)等が挙げられる。さらに、包摂イミダゾールを用いることもできる。具体例としては、TIC-188(商品名、日本曹達社製)が挙げられる。 Also, known imidazole-based latent curing agents can be used. Specific examples include PN23, PN40, and PN-H (trade names, all manufactured by Ajinomoto Fine Techno Co., Ltd.). In addition, curing accelerators which are referred to as microencapsulated imidazoles and subjected to addition reaction with the hydroxyl group of the epoxy adduct of the amine compound can be mentioned, for example, NovaCure HX-3088, NovaCure HX-3941, HX-3742, HX-3722 (trade name, Asahi Kasei E-Materials Co., Ltd.). Furthermore, inclusion imidazole can also be used. A specific example is TIC-188 (trade name, manufactured by Nippon Soda Co., Ltd.).
 上記リン化合物としては、トリフェニルホスフィン等が挙げられる。 Examples of the phosphorus compound include triphenylphosphine.
 上記アミン化合物としては、2,4,6-トリス(ジメチルアミノメチル)フェノール、ジエチルアミン、トリエチルアミン、ジエチレンテトラミン、トリエチレンテトラミン及び4,4-ジメチルアミノピリジン等が挙げられる。 Examples of the amine compound include 2,4,6-tris (dimethylaminomethyl) phenol, diethylamine, triethylamine, diethylenetetramine, triethylenetetramine, and 4,4-dimethylaminopyridine.
 上記有機金属化合物としては、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)及びトリスアセチルアセトナートコバルト(III)等が挙げられる。 Examples of the organometallic compound include zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), and trisacetylacetonate cobalt (III).
 上記した1,8-ジアザビシクロ(5,4,0)-7-ウンデセン類としては、例えば、1,8-ジアザビシクロ(5,4,0)-7-ウンデセンのオクチル塩が挙げられ、市販品としては、SA-102(商品名、サンアプロ社製)が挙げられる。 Examples of the above 1,8-diazabicyclo (5,4,0) -7-undecenes include octyl salts of 1,8-diazabicyclo (5,4,0) -7-undecene. Is SA-102 (trade name, manufactured by San Apro).
 エポキシ化合物(A)100質量部に対して、硬化促進剤(D)の含有量は、好ましくは0.1質量部以上、より好ましくは0.5質量部以上であり、好ましくは10質量部以下、より好ましくは8質量部以下である。硬化促進剤(D)の含有量が上記下限以上であると、硬化性組成物を良好に硬化させることができる。硬化促進剤(D)の含有量が上記上限以下であると、硬化物内における硬化に寄与しなかった硬化促進剤の残存量が少なくなる。 The content of the curing accelerator (D) with respect to 100 parts by mass of the epoxy compound (A) is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, and preferably 10 parts by mass or less. More preferably, it is 8 parts by mass or less. When the content of the curing accelerator (D) is not less than the above lower limit, the curable composition can be cured well. When the content of the curing accelerator (D) is not more than the above upper limit, the residual amount of the curing accelerator that has not contributed to curing in the cured product is reduced.
[カップリング剤(E)]
 本発明の硬化性組成物は、カップリング剤(E)を含むことが好ましい。カップリング剤(E)の使用により、硬化性組成物の硬化物の耐湿性がより一層高くなる。カップリング剤(E)は、1種のみが用いられてもよく、2種以上が併用されてもよい。 
[Coupling agent (E)]
The curable composition of the present invention preferably contains a coupling agent (E). The use of the coupling agent (E) further increases the moisture resistance of the cured product of the curable composition. As for a coupling agent (E), only 1 type may be used and 2 or more types may be used together.
 硬化性組成物100質量%中、カップリング剤(E)の含有量は好ましくは0.1質量%以上、より好ましくは0.2質量%以上であり、好ましくは2質量%以下、より好ましくは1質量%以下である。カップリング剤(E)の含有量が上記下限以上であると、硬化性組成物の硬化物の耐湿性がより一層高くなる。カップリング剤(E)の含有量が上記上限以下であると、硬化性組成物の塗布性がより一層高くなる。 In 100% by mass of the curable composition, the content of the coupling agent (E) is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, preferably 2% by mass or less, more preferably 1% by mass or less. When the content of the coupling agent (E) is at least the above lower limit, the moisture resistance of the cured product of the curable composition is further enhanced. When the content of the coupling agent (E) is not more than the above upper limit, the applicability of the curable composition is further enhanced.
 (他の成分)
 本発明の硬化性組成物は、必要に応じて、カルナバワックス等の天然ワックス、ポリエチレンワックス等の合成ワックス、ステアリン酸やステアリン酸亜鉛等の高級脂肪酸及びその金属塩類若しくはパラフィン等の離型剤、カーボンブラック、ベンガラ等の着色剤等の各種添加剤を含んでもよい。また、これら以外にも硬化性組成物は、臭素化エポキシ樹脂、三酸化アンチモン、水酸化アルミニウム、水酸化マグネシウム、硼酸亜鉛、モリブデン酸亜鉛、フォスファゼン等の難燃剤、酸化ビスマス水和物等の無機イオン交換体、シリコーンオイル、シリコーンゴム等の低応力化成分、分散剤、酸化防止剤等の各種添加剤を含んでいてもよい。
(Other ingredients)
The curable composition of the present invention, if necessary, a natural wax such as carnauba wax, a synthetic wax such as polyethylene wax, a higher fatty acid such as stearic acid or zinc stearate and a release agent such as a metal salt thereof or paraffin, Various additives such as a colorant such as carbon black and bengara may be included. In addition to these, curable compositions include inorganic brominated epoxy resins, antimony trioxide, aluminum hydroxide, magnesium hydroxide, zinc borate, zinc molybdate, phosphazene and other flame retardants, and bismuth oxide hydrates. Various additives such as an ion exchanger, a low stress component such as silicone oil and silicone rubber, a dispersant, and an antioxidant may be included.
 この中でも、本発明の硬化性組成物は、分散剤を含むことが好ましく、分散剤の具体例としては、ポリカルボン酸塩、アルキルアンモニウム塩、アルキロールアンモニウム塩、リン酸エステル塩、アクリル系ブロック共重合物、及びポリマー塩等が挙げられる。 Among these, the curable composition of the present invention preferably contains a dispersant. Specific examples of the dispersant include polycarboxylic acid salts, alkyl ammonium salts, alkylol ammonium salts, phosphate ester salts, acrylic blocks. Examples thereof include copolymers and polymer salts.
 硬化性組成物100質量%中、分散剤の含有量は、好ましくは0.1質量%以上、より好ましくは0.2質量%以上であり、好ましくは2質量%以下、より好ましくは1質量%以下である。 In 100% by mass of the curable composition, the content of the dispersant is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, preferably 2% by mass or less, more preferably 1% by mass. It is as follows.
 本発明の硬化性組成物は、必要に応じて、グリコール、アルコール、エーテル、エステル、カルボン酸、有機硫黄溶媒ならびにその混合物からなる群から選択される溶剤で希釈しても良い。
 溶剤の具体例としてはジプロピレングリコールメチルエーテル、エチレングリコールモノブチルエーテルアセテート、メチルイソブチルケトン、2-ブトキシエタノール、ジエチレングリコールモノブチルエーテルアセテート、4-メチル-1,3-ジオキソラン-2-オン、ジメチルスルホキシド、N-メチル-2-ピロリドン、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、ジエチレングリコールエチルエーテルアセテート、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、フェノール、テルピネオール、γ-ブチロラクトン、コハク酸メチルおよびグルタル酸メチルおよびアジピン酸ジメチルを含むエステル混合物、ブチルグリコールアセテートならびにその混合物などが挙げられるが、これらに限定されるものではない。
The curable composition of the present invention may be diluted with a solvent selected from the group consisting of glycols, alcohols, ethers, esters, carboxylic acids, organic sulfur solvents, and mixtures thereof as necessary.
Specific examples of the solvent include dipropylene glycol methyl ether, ethylene glycol monobutyl ether acetate, methyl isobutyl ketone, 2-butoxyethanol, diethylene glycol monobutyl ether acetate, 4-methyl-1,3-dioxolan-2-one, dimethyl sulfoxide, N -Methyl-2-pyrrolidone, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, diethylene glycol ethyl ether acetate, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, phenol, terpineol, γ-butyrolactone, methyl succinate and methyl glutarate and dimethyl adipate Ester mixture containing butyl glycol acetate To the mixtures, and the like, but is not limited thereto.
 本発明の硬化性組成物は、半導体素子保護用材料として用いることが好ましい。該半導体素子保護用材料は、回路基板上に搭載された半導体素子を封止する封止材として使用することが好ましい。上記回路基板としては、例えば、ポリイミド基板等のフレキシブル基板、ガラス基板、ガラスエポキシ基板等の基板上に銅などの配線パターンが形成された回路基板が挙げられる。半導体素子としては、LED、フォトダイオードなどが挙げられる。
本発明の硬化性組成物は、特に放熱性に優れ、半導体素子から発生する熱を効果的に放熱でき、半導体素子の劣化を抑制することができる。さらに、本発明の硬化性組成物は、回路基板、特に銅回路基板のマイグレーションを抑制することができ、絶縁信頼性が高い。
 本発明の硬化性組成物は、半導体チップを温度、湿度、ほこりなどから保護するための封止材料の上にも用いることが可能である。
 上記封止材料としては、エポキシモールディングコンパウンドやシリコーンモールディンコンパウンドが挙げられる。
The curable composition of the present invention is preferably used as a semiconductor element protecting material. The semiconductor element protecting material is preferably used as a sealing material for sealing a semiconductor element mounted on a circuit board. Examples of the circuit board include a circuit board in which a wiring pattern such as copper is formed on a flexible board such as a polyimide board, a glass board, a glass epoxy board or the like. Examples of semiconductor elements include LEDs and photodiodes.
The curable composition of the present invention is particularly excellent in heat dissipation, can effectively dissipate heat generated from the semiconductor element, and can suppress deterioration of the semiconductor element. Furthermore, the curable composition of the present invention can suppress migration of a circuit board, particularly a copper circuit board, and has high insulation reliability.
The curable composition of the present invention can also be used on a sealing material for protecting a semiconductor chip from temperature, humidity, dust and the like.
Examples of the sealing material include an epoxy molding compound and a silicone molding compound.
 上記半導体素子保護用材料は、ディスペンサー、スプレーコーティング、スクリーン印刷、真空スクリーン印刷又はインクジェット装置による塗布方法により塗布されて用いられることが好ましい。溶剤を含まない場合は、塗布が容易であり、かつ硬化物中にボイドをより一層生じ難くする観点からは、上記半導体素子保護用材料は、ディスペンサーにより塗布されて用いられることが好ましい。溶剤を含む場合はスプレーコーティングにより塗布されて用いられることが好ましい。 The semiconductor element protecting material is preferably used by being applied by a dispenser, spray coating, screen printing, vacuum screen printing, or a coating method using an inkjet apparatus. When the solvent is not included, it is preferable that the material for protecting a semiconductor element is used by being applied by a dispenser from the viewpoint of easy application and further prevention of formation of voids in the cured product. When it contains a solvent, it is preferably applied by spray coating.
 本発明に係る半導体装置は、半導体素子と、前記半導体素子の第1の表面上に配置された硬化物とを備える。本発明に係る半導体装置では、上記硬化物が、上記した半導体素子保護用材料を硬化させることにより形成されている。上記硬化物は、半導体素子を保護し、かつ放熱性に優れるため、半導体素子から発生する熱を効果的に放熱でき、半導体素子の劣化を抑制することができる。 The semiconductor device according to the present invention includes a semiconductor element and a cured product disposed on the first surface of the semiconductor element. In the semiconductor device according to the present invention, the cured product is formed by curing the semiconductor element protecting material. Since the said hardened | cured material protects a semiconductor element and is excellent in heat dissipation, it can thermally radiate the heat which generate | occur | produces from a semiconductor element, and can suppress degradation of a semiconductor element.
 図1は、本発明の第1の実施形態に係る半導体素子保護用材料を用いた半導体装置の模式断面図である。
 図1に示す半導体装置11は、半導体素子12と、半導体素子12の第1の表面12a上に配置された硬化物13とを備える。硬化物13は、上述した半導体素子保護用材料を硬化させることにより形成されている。硬化物13は、半導体素子12の第1の表面12a上の一部の領域に配置されている。
FIG. 1 is a schematic cross-sectional view of a semiconductor device using a semiconductor element protecting material according to the first embodiment of the present invention.
A semiconductor device 11 illustrated in FIG. 1 includes a semiconductor element 12 and a cured product 13 disposed on the first surface 12 a of the semiconductor element 12. The cured product 13 is formed by curing the above-described semiconductor element protecting material. The cured product 13 is disposed in a partial region on the first surface 12 a of the semiconductor element 12.
 半導体素子12は、第1の表面12a側とは反対の第2の表面12b側に、第1の電極12Aを有する。半導体装置11は、接続対象部材14をさらに備える。接続対象部材14は、表面14aに第2の電極14Aを有する。半導体素子12と接続対象部材14とは、他の硬化物15(接続部)を介して接着及び固定されている。半導体素子12の第1の電極12Aと、接続対象部材14の第2の電極14Aとが対向しており、導電性粒子16により電気的に接続されている。第1の電極12Aと第2の電極14Aとが接触することで、電気的に接続されていてもよい。硬化物13は、半導体素子12の第1の電極12Aが配置されている側と反対側の第1の表面12a上に配置されている。 The semiconductor element 12 has a first electrode 12A on the second surface 12b side opposite to the first surface 12a side. The semiconductor device 11 further includes a connection target member 14. The connection target member 14 has a second electrode 14A on the surface 14a. The semiconductor element 12 and the connection target member 14 are bonded and fixed via another cured product 15 (connection portion). The first electrode 12 </ b> A of the semiconductor element 12 and the second electrode 14 </ b> A of the connection target member 14 face each other and are electrically connected by the conductive particles 16. The first electrode 12 </ b> A and the second electrode 14 </ b> A may be electrically connected by being in contact with each other. The hardened | cured material 13 is arrange | positioned on the 1st surface 12a on the opposite side to the side by which the 1st electrode 12A of the semiconductor element 12 is arrange | positioned.
 硬化物13の半導体素子12側とは反対の表面上に、保護フィルム17が配置されている。それによって、硬化物13によって放熱性及び半導体素子の保護性を高めるだけでなく、保護フィルム17によっても、半導体素子の保護性をより一層高めることができる。硬化物13は、硬化物13の保護フィルム17に対する貼り付きを抑えることができる。 A protective film 17 is disposed on the surface of the cured product 13 opposite to the semiconductor element 12 side. Thereby, not only the heat dissipation and the protection of the semiconductor element are enhanced by the cured product 13, but also the protection of the semiconductor element can be further enhanced by the protective film 17. The cured product 13 can suppress sticking of the cured product 13 to the protective film 17.
 上記接続対象部材としては、ガラス基板、ガラスエポキシ基板、フレキシブルプリント基板、及びポリイミド基板等が挙げられる。
 なお、図1に示す構造は、半導体装置の一例にすぎず、本発明の半導体装置はこれに限定されない。例えば、半導体素子保護用材料の硬化物の配置構造などを適宜変更することができる。
Examples of the connection target member include a glass substrate, a glass epoxy substrate, a flexible printed substrate, and a polyimide substrate.
Note that the structure shown in FIG. 1 is only an example of a semiconductor device, and the semiconductor device of the present invention is not limited to this. For example, the arrangement structure of the cured product of the semiconductor element protecting material can be appropriately changed.
 以下、本発明の具体的な実施例及び比較例を挙げることにより、本発明を明らかにする。なお、本発明は以下の実施例に限定されない。 Hereinafter, the present invention will be clarified by giving specific examples and comparative examples of the present invention. The present invention is not limited to the following examples.
 以下の材料を用いた。 The following materials were used.
 (a1)可撓性エポキシ化合物
 EX-821(繰り返し数4(n=4))(ナガセケムテックス社製、ポリエチレングリコールジグリシジルエーテル、エポキシ当量:185)
 EX-830(繰り返し数9(n=9))(ナガセケムテックス社製、ポリエチレングリコールジグリシジルエーテル、エポキシ当量:268)
 EX-931(繰り返し数11(n=11))(ナガセケムテックス社製、ポリプロピレングリコールジグリシジルエーテル、エポキシ当量:471)
 EX-861(繰り返し数22(n=22))(ナガセケムテックス社製、ポリエチレングリコールジグリシジルエーテル、エポキシ当量:551)
 PB3600(ダイセル社製、ポリプダジエン変性エポキシ樹脂、エポキシ当量:200)
(A1) Flexible epoxy compound EX-821 (repetition number 4 (n = 4)) (manufactured by Nagase ChemteX Corporation, polyethylene glycol diglycidyl ether, epoxy equivalent: 185)
EX-830 (repetition number 9 (n = 9)) (manufactured by Nagase ChemteX Corporation, polyethylene glycol diglycidyl ether, epoxy equivalent: 268)
EX-931 (repetition number 11 (n = 11)) (manufactured by Nagase ChemteX, polypropylene glycol diglycidyl ether, epoxy equivalent: 471)
EX-861 (repetition number 22 (n = 22)) (manufactured by Nagase ChemteX Corporation, polyethylene glycol diglycidyl ether, epoxy equivalent: 551)
PB3600 (manufactured by Daicel, polypudadiene-modified epoxy resin, epoxy equivalent: 200)
 (a2)その他のエポキシ化合物
 (芳香族骨格又は脂環式骨格を有するエポキシ化合物)
 jER828(三菱化学社製、ビスフェノールA型エポキシ樹脂、エポキシ当量:188)
 jER834(三菱化学社製、ビスフェノールA型エポキシ樹脂、軟化点:30℃、エポキシ当量:255)
(A2) Other epoxy compounds (epoxy compounds having an aromatic skeleton or an alicyclic skeleton)
jER828 (Mitsubishi Chemical Corporation, bisphenol A type epoxy resin, epoxy equivalent: 188)
jER834 (Mitsubishi Chemical Corporation, bisphenol A type epoxy resin, softening point: 30 ° C., epoxy equivalent: 255)
 (a2)その他のエポキシ化合物
 (芳香族骨格及び脂環式骨格を有さないエポキシ化合物)
 YH-434L(新日鉄住金化学社製、ポリグリシジルアミン変性エポキシ樹脂、エポキシ当量:120)
(A2) Other epoxy compounds (epoxy compounds having no aromatic skeleton and alicyclic skeleton)
YH-434L (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., polyglycidylamine-modified epoxy resin, epoxy equivalent: 120)
 (B)硬化剤
 フジキュアー7000(富士化成社製、23℃で液状、アミン化合物)
 MEH-8005(明和化成社製、23℃で液状、アリルフェノールノボラック化合物)
 TD-2131(DIC社製、23℃で固体状、フェノールノボラック化合物)
(B) Curing agent Fuji Cure 7000 (Fuji Kasei Co., Ltd., liquid at 23 ° C., amine compound)
MEH-8005 (Maywa Kasei Co., Ltd., liquid at 23 ° C, allylphenol novolak compound)
TD-2131 (manufactured by DIC, solid at 23 ° C., phenol novolac compound)
 (C)熱伝導率が10W/m・K以上である無機フィラー
 FAN-f05(古河電子社製、窒化アルミニウム、熱伝導率:100W/m・K、球状、平均粒子径:6μm)
 FAN-f50(古河電子社製、窒化アルミニウム、熱伝導率:100W/m・K、球状、平均粒子径:30μm)
 CB-P05(昭和電工社製、酸化アルミニウム、熱伝導率:20W/m・K、球状、平均粒子径:4μm)
 CB-P40(昭和電工社製、酸化アルミニウム、熱伝導率:20W/m・K、球状、平均粒子径:44μm)
 SSC-A15(信濃電気精錬社製、炭化ケイ素、熱伝導率:100W/m・K、球状、平均粒子径:19μm)
 SSC-A30(信濃電気精錬社製、炭化ケイ素、熱伝導率:100W/m・K、球状、平均粒子径:34μm)
(C) Inorganic filler FAN-f05 having a thermal conductivity of 10 W / m · K or more (Furukawa Electronics, aluminum nitride, thermal conductivity: 100 W / m · K, spherical, average particle size: 6 μm)
FAN-f50 (Furukawa Electronics, aluminum nitride, thermal conductivity: 100 W / m · K, spherical, average particle size: 30 μm)
CB-P05 (made by Showa Denko KK, aluminum oxide, thermal conductivity: 20 W / m · K, spherical, average particle size: 4 μm)
CB-P40 (made by Showa Denko, aluminum oxide, thermal conductivity: 20 W / m · K, spherical, average particle size: 44 μm)
SSC-A15 (manufactured by Shinano Denki Co., Ltd., silicon carbide, thermal conductivity: 100 W / m · K, spherical, average particle size: 19 μm)
SSC-A30 (manufactured by Shinano Denki Co., Ltd., silicon carbide, thermal conductivity: 100 W / m · K, spherical, average particle size: 34 μm)
 (C’)その他の無機フィラー
 HS-306(マイクロン社製、酸化ケイ素、熱伝導率:2W/m・K、球状、平均粒子径:2.5μm)
 HS-304(マイクロン社製、酸化ケイ素、熱伝導率:2W/m・K、球状、平均粒子径:25μm)
(C ′) Other inorganic filler HS-306 (manufactured by Micron, silicon oxide, thermal conductivity: 2 W / m · K, spherical, average particle diameter: 2.5 μm)
HS-304 (Micron, silicon oxide, thermal conductivity: 2 W / m · K, spherical, average particle size: 25 μm)
 (D)硬化促進剤
 SA-102(サンアプロ社製、DBUオクチル酸塩)
(D) Curing accelerator SA-102 (manufactured by San Apro, DBU octylate)
 (X)イオン交換体
 (1)IXE-100とIXE-550の併用(質量比4:6)
 IXE-100(東亞合成社製、Zr系陽イオン交換体) メジアン径1.0μm
 IXE-550(東亞合成社製、Bi系陰イオン交換体) メジアン径1.5μm
 なお、これらは、予め混合せずに、硬化性組成物を作製する際に、個別に配合した。
 (2)IXEPLAS-B1(東亞合成社製、Zr、Bi系イオン交換体)
 IXEPLAS-B1は、Zr系陽イオン交換体とBi系陰イオン交換体とを質量比4:6で混合したイオン交換体混合物を粉砕したイオン交換体粉砕混合物である。 平均一次粒子径400nm
(X) Ion exchanger (1) Combined use of IXE-100 and IXE-550 (mass ratio 4: 6)
IXE-100 (manufactured by Toagosei Co., Ltd., Zr-based cation exchanger) Median diameter 1.0 μm
IXE-550 (Toagosei Co., Ltd., Bi-based anion exchanger) Median diameter 1.5μm
In addition, these were mix | blended separately, when preparing a curable composition, without mixing previously.
(2) IXEPLAS-B1 (manufactured by Toagosei Co., Ltd., Zr, Bi ion exchanger)
IXEPLAS-B1 is an ion exchanger pulverized mixture obtained by pulverizing an ion exchanger mixture in which a Zr-based cation exchanger and a Bi-based anion exchanger are mixed at a mass ratio of 4: 6. Average primary particle size 400nm
 (他の成分)
 BYK-9076(BYK社製、分散剤)
(Other ingredients)
BYK-9076 (manufactured by BYK, dispersant)
 (実施例1)
 EX-821(n=4)を6.5質量部、jER828を2.5質量部、フジキュアー7000を5質量部、SA-102を0.5質量部、CB-P05を42.5質量部、CB-P40を42.5質量部、イオン交換体を合計で0.1質量部、及びBYK-9076を0.5質量部混合し、脱泡を行い、硬化性組成物を得た。上記イオン交換体としてはIXE-100とIXE-550とを併用(質量比4:6)した。
(Example 1)
6.5 parts by mass of EX-821 (n = 4), 2.5 parts by mass of jER828, 5 parts by mass of Fujicure 7000, 0.5 parts by mass of SA-102, 42.5 parts by mass of CB-P05, 42.5 parts by mass of CB-P40, 0.1 parts by mass of the ion exchanger in total, and 0.5 parts by mass of BYK-9076 were mixed and defoamed to obtain a curable composition. As the ion exchanger, IXE-100 and IXE-550 were used in combination (mass ratio 4: 6).
 (実施例2~17及び比較例1~4)
 配合成分の種類及び配合量を下記の表1に示すように変更したこと以外は実施例1と同様にして、硬化性組成物を得た。組成及び下記評価の結果を表1に示す。
(Examples 2 to 17 and Comparative Examples 1 to 4)
A curable composition was obtained in the same manner as in Example 1 except that the types and amounts of the ingredients were changed as shown in Table 1 below. The composition and the results of the following evaluation are shown in Table 1.
 (評価)
 (1)25℃における粘度の測定
 B型粘度計(東機産業社製「TVB-10型」)を用いて硬化性組成物の25℃における10rpmでの粘度(Pa・s)を測定した。
(Evaluation)
(1) Measurement of viscosity at 25 ° C. The viscosity (Pa · s) at 10 rpm at 25 ° C. of the curable composition was measured using a B-type viscometer (“TVB-10 type” manufactured by Toki Sangyo Co., Ltd.).
 (2)熱伝導率
 得られた硬化性組成物を150℃で2時間加熱し、硬化させ、100mm×100mm×厚さ50μmの硬化物を得た。この硬化物を評価サンプルとした。
(2) Thermal conductivity The obtained curable composition was heated at 150 ° C. for 2 hours to be cured to obtain a cured product of 100 mm × 100 mm × thickness 50 μm. This cured product was used as an evaluation sample.
 得られた評価サンプルの熱伝導率を、京都電子工業社製熱伝導率計「迅速熱伝導率計QTM-500」を用いて測定した。 The thermal conductivity of the obtained evaluation sample was measured using a thermal conductivity meter “Rapid thermal conductivity meter QTM-500” manufactured by Kyoto Electronics Industry Co., Ltd.
 (3)塗布性
 得られた硬化性組成物をディスペンサー装置(武蔵エンジニアリング社製「SHOTMASTER―300」)から、ポリイミドフィルムに直径5mm、高さ2mmになるように直接吐出した後、硬化性組成物を150℃で2時間加熱して硬化させた。硬化後の硬化性組成物の形状から塗布性を下記の基準で判定した。
(3) Coating property After the obtained curable composition was directly discharged from a dispenser device ("SHOTMASTER-300" manufactured by Musashi Engineering Co., Ltd.) onto a polyimide film so as to have a diameter of 5 mm and a height of 2 mm, the curable composition Was cured by heating at 150 ° C. for 2 hours. The applicability was determined from the shape of the curable composition after curing according to the following criteria.
 [塗布性の判定基準]
 A:直径5.3mm以上、高さ1.8mm未満(流動性あり)
 B:直径5mmを超え、5.3mm未満、高さ1.8mmを超え、2mm未満(流動性少しあり)
 C:直径5mm、高さ2mmのまま(流動性なし)
[Criteria for applicability]
A: Diameter 5.3 mm or more, height less than 1.8 mm (with fluidity)
B: More than 5 mm in diameter, less than 5.3 mm, more than 1.8 mm in height and less than 2 mm (with little fluidity)
C: 5 mm in diameter and 2 mm in height (no fluidity)
 (4)接着力(ダイシェア強度)
 ポリイミド基板上に、接着面積が3mm×3mmになるように硬化性組成物を塗布し、3mm角のSiチップを載せて、テストサンプルを得た。
(4) Adhesive strength (die shear strength)
A curable composition was applied on a polyimide substrate so that the adhesion area was 3 mm × 3 mm, and a 3 mm square Si chip was placed thereon to obtain a test sample.
 得られたテストサンプルを150℃で2時間加熱し、硬化性組成物を硬化させた。次に、ダイシェアテスター「DAGE 4000」(アークテック社製)を用いて、300μm/秒の速度で、25℃でのダイシェア強度を評価した。 The obtained test sample was heated at 150 ° C. for 2 hours to cure the curable composition. Next, the die shear strength at 25 ° C. was evaluated at a speed of 300 μm / second using a die shear tester “DAGE 4000” (manufactured by Arctech).
 [ダイシェア強度の判定基準]
 A:ダイシェア強度が10N以上
 B:ダイシェア強度が6N以上、10N未満
 B’:ダイシェア強度が5N以上、6N未満
 C:ダイシェア強度が5N未満
[Die shear strength criteria]
A: Die shear strength is 10N or more B: Die shear strength is 6N or more and less than 10N B ': Die shear strength is 5N or more and less than 6N C: Die shear strength is less than 5N
 (5)フィルム反り
 得られた硬化性組成物をディスペンサー装置(武蔵エンジニアリング社製「SHOTMASTER―300」)から、ポリイミドフィルムに縦20mm、横100mm、高さ10mmになるように直接吐出した後、硬化性組成物を150℃で2時間加熱して硬化させた。硬化後にポリイミドフィルムの反りを目視で確認し、フィルム反りを下記の基準で判定した。
(5) Film warpage The obtained curable composition was directly discharged from a dispenser device ("SHOTMASTER-300" manufactured by Musashi Engineering Co., Ltd.) onto a polyimide film so as to be 20 mm long, 100 mm wide, and 10 mm high, and then cured. The composition was cured by heating at 150 ° C. for 2 hours. After curing, the warpage of the polyimide film was visually confirmed, and the film warpage was determined according to the following criteria.
 [フィルム反りの判定基準]
 A:ポリイミドフィルムの反りなし
 B:ポリイミドフィルムの反りがわずかに発生(使用上問題なし)
 C:ポリイミドフィルムの反り発生(使用上問題あり)
[Criteria for film warpage]
A: No warpage of polyimide film B: Slight warpage of polyimide film (no problem in use)
C: Warpage of polyimide film (problems in use)
 (6)耐熱性
 得られた硬化性組成物を150℃で2時間加熱し、硬化させ、100mm×100mm×厚さ50μmの硬化物を得た。この硬化物を評価サンプルとした。
(6) Heat resistance The obtained curable composition was heated at 150 ° C. for 2 hours to be cured to obtain a cured product having a size of 100 mm × 100 mm × thickness 50 μm. This cured product was used as an evaluation sample.
 得られた評価サンプルをディジタル超絶縁/微少電流計「DSM-8104」(日置電機社製)、平板試料用電極「SME-8310」(日置電機社製)を用いて体積抵抗率の測定を測定した。 Measurement of volume resistivity of the obtained evaluation sample using a digital super insulation / microammeter “DSM-8104” (manufactured by Hioki Electric Co., Ltd.) and a plate sample electrode “SME-8310” (manufactured by Hioki Electric Co., Ltd.) did.
 次に、180℃で100時間放置し、次に23℃及び湿度50%RHの環境で24時間放置した後、体積抵抗率を測定した。耐熱試験前後の体積抵抗率の低下率を計算し、耐熱性を下記の基準で判定した。 Next, the sample was allowed to stand at 180 ° C. for 100 hours, and then left at 23 ° C. and a humidity of 50% RH for 24 hours, and then the volume resistivity was measured. The decrease rate of the volume resistivity before and after the heat test was calculated, and the heat resistance was judged according to the following criteria.
 [耐熱性の判定基準]
 S:試験前後の体積抵抗率の低下率が5%以下
 A:試験前後の体積抵抗率の低下率が5%を超え、10%以下
 B:試験前後の体積抵抗率の低下率が10%を超え、20%以下
 C:試験前後の体積抵抗率の低下率が20%を超える
[Criteria for heat resistance]
S: The decrease rate of the volume resistivity before and after the test is 5% or less A: The decrease rate of the volume resistivity before and after the test exceeds 5% and 10% or less B: The decrease rate of the volume resistivity before and after the test is 10% Exceeding 20% or less C: Decreasing rate of volume resistivity before and after the test exceeds 20%
 (7)絶縁信頼性
 基板(ポリイミドフィルム)上に形成された櫛歯型電極(材質:銅の上にスズめっき、パターンピッチ:50μm、L/S=25μm/25μm)の上に、熱硬化ソルダーレジスト(日本ポリテック社製「NPR-3300」)を10μmの膜厚で塗布して150℃で1時間加熱硬化させて、テストパターンを準備した。上記テストパターンに硬化性組成物を塗布し、150℃で2時間加熱硬化させて、試験片を得た。加熱後の試験片を130℃及び湿度85%の槽(平山製作所社製「PC-304R9」)へ入れ、マイグレーションテスター(IMV社製「MIG-8600B」)を用いて電極間に40Vの直流電圧を印加して、電極間の抵抗を測定した。絶縁信頼性を以下の基準で判定した。S、A又はBの判定基準の場合に、絶縁信頼性は合格と判断され、実使用に支障が無い絶縁性保持性があり、絶縁信頼性に優れている。
(7) Insulation reliability Thermosetting solder on a comb-shaped electrode (material: tin plating on copper, pattern pitch: 50 μm, L / S = 25 μm / 25 μm) formed on a substrate (polyimide film) A resist (“NPR-3300” manufactured by Nippon Polytech Co., Ltd.) was applied to a film thickness of 10 μm and cured by heating at 150 ° C. for 1 hour to prepare a test pattern. A curable composition was applied to the test pattern and cured by heating at 150 ° C. for 2 hours to obtain a test piece. The test piece after heating is put in a bath (“PC-304R9” manufactured by Hirayama Seisakusho Co., Ltd.) having a temperature of 130 ° C. and a humidity of 85%, and a DC voltage of 40 V is applied between the electrodes using a migration tester (“MIG-8600B” manufactured by IMV) Was applied to measure the resistance between the electrodes. Insulation reliability was judged according to the following criteria. In the case of the determination criteria of S, A, or B, the insulation reliability is determined to be acceptable, and there is insulation retention that does not hinder actual use, and the insulation reliability is excellent.
 [絶縁信頼性の判定基準]
 S:抵抗が1×10Ω以上で144時間以上持続し、絶縁性が非常に良好
 A:抵抗が1×10Ω以上で96時間以上、144時間未満持続し、絶縁性が非常に良好
 B:抵抗が1×10Ω以上で48時間以上、96時間未満持続し、絶縁性が非常に良好
 C:48時間未満で抵抗が1×10Ω未満に低下し、絶縁不良とみなされる
[Criteria for insulation reliability]
S: Resistance is 1 × 10 8 Ω or more and lasts for 144 hours or more, and insulation is very good A: Resistance is 1 × 10 8 Ω or more and lasts for 96 hours or more and less than 144 hours, and insulation is very good B: Resistance is 1 × 10 8 Ω or more and lasts for 48 hours or more and less than 96 hours, insulation is very good C: Resistance is reduced to less than 1 × 10 8 Ω in less than 48 hours, and is regarded as insulation failure
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~17の結果より、本発明の硬化性組成物は、放熱性、絶縁信頼性、及び塗布性のいずれも良好であることが分かった。一方、比較例3~4の結果から、イオン交換体(X)を用いない硬化性組成物は、絶縁信頼性に劣っていた。また、特定の無機フィラー(C)を用いない比較例1の硬化性組成物は放熱性に劣っており、特定の硬化剤(B)を用いない比較例2の硬化性組成物は塗布性に劣っていた。 From the results of Examples 1 to 17, it was found that the curable composition of the present invention had good heat dissipation, insulation reliability, and coating properties. On the other hand, from the results of Comparative Examples 3 to 4, the curable composition not using the ion exchanger (X) was inferior in insulation reliability. Moreover, the curable composition of Comparative Example 1 that does not use the specific inorganic filler (C) is inferior in heat dissipation, and the curable composition of Comparative Example 2 that does not use the specific curing agent (B) is in coatability. It was inferior.
 11 半導体装置
 12 半導体素子
 12a 第1の表面
 12b 第2の表面
 12A 第1の電極
 13 硬化物
 14 接続対象部材
 14a 表面
 14A 第2の電極
 15 他の硬化物
 16 導電性粒子
 17 保護フィルム
 
 
DESCRIPTION OF SYMBOLS 11 Semiconductor device 12 Semiconductor element 12a 1st surface 12b 2nd surface 12A 1st electrode 13 Hardened | cured material 14 Connection object member 14a Surface 14A 2nd electrode 15 Other hardened | cured material 16 Conductive particle 17 Protective film

Claims (8)

  1.  エポキシ化合物(A)と、
     23℃で液状である硬化剤(B)と、
     熱伝導率10W/m・K以上であり、かつ球状である無機フィラー(C)と、
     イオン交換体(X)とを含み、
     前記イオン交換体(X)が、ジルコニウム系陽イオン交換体及びビスマス系陰イオン交換体とからなる、硬化性組成物。
    An epoxy compound (A),
    A curing agent (B) which is liquid at 23 ° C .;
    An inorganic filler (C) having a thermal conductivity of 10 W / m · K or more and a spherical shape;
    An ion exchanger (X),
    The curable composition in which the ion exchanger (X) is composed of a zirconium-based cation exchanger and a bismuth-based anion exchanger.
  2.  前記エポキシ化合物(A)が可撓性エポキシ化合物(a1)である、請求項1に記載の硬化性組成物。 The curable composition according to claim 1, wherein the epoxy compound (A) is a flexible epoxy compound (a1).
  3.  前記可撓性エポキシ化合物(a1)が、アルキレングリコール基が9以上繰り返された構造単位を有するポリアルキレングリコールジグリシジルエーテルである、請求項2に記載の硬化性組成物。 The curable composition according to claim 2, wherein the flexible epoxy compound (a1) is a polyalkylene glycol diglycidyl ether having a structural unit in which 9 or more alkylene glycol groups are repeated.
  4.  前記硬化剤(B)がアリルフェノールノボラック化合物である、請求項1~3のいずれかに記載の硬化性組成物。 The curable composition according to any one of claims 1 to 3, wherein the curing agent (B) is an allylphenol novolak compound.
  5.  前記無機フィラー(C)が、アルミナ、窒化アルミニウム、及び炭化ケイ素からなる群から選択される少なくとも1種である、請求項1~4のいずれかに記載の硬化性組成物。 The curable composition according to any one of claims 1 to 4, wherein the inorganic filler (C) is at least one selected from the group consisting of alumina, aluminum nitride, and silicon carbide.
  6.  請求項1~5のいずれかに記載の硬化性組成物からなる半導体素子保護用材料。 A semiconductor element protecting material comprising the curable composition according to any one of claims 1 to 5.
  7.  半導体素子と、前記半導体素子の第1の表面上に配置された硬化物とを備え、前記硬化物が、請求項6に記載の半導体素子保護用材料を硬化させることにより形成されている、半導体装置。 A semiconductor device comprising: a semiconductor element; and a cured product disposed on a first surface of the semiconductor element, wherein the cured product is formed by curing the semiconductor element protecting material according to claim 6. apparatus.
  8.  前記半導体素子が、前記第1の表面側とは反対の第2の表面側に第1の電極を有し、前記半導体素子の第1の電極が、第2の電極を表面に有する接続対象部材における前記第2の電極と電気的に接続されている、請求項7に記載の半導体装置。
     
    The semiconductor element has a first electrode on a second surface side opposite to the first surface side, and the first electrode of the semiconductor element has a second electrode on the surface thereof The semiconductor device according to claim 7, wherein the semiconductor device is electrically connected to the second electrode.
PCT/JP2019/018624 2018-05-10 2019-05-09 Curable composition, material for protecting semiconductor element, and semiconductor device WO2019216388A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018091610 2018-05-10
JP2018-091610 2018-05-10

Publications (1)

Publication Number Publication Date
WO2019216388A1 true WO2019216388A1 (en) 2019-11-14

Family

ID=68468186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018624 WO2019216388A1 (en) 2018-05-10 2019-05-09 Curable composition, material for protecting semiconductor element, and semiconductor device

Country Status (2)

Country Link
TW (1) TW202003680A (en)
WO (1) WO2019216388A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05140419A (en) * 1991-11-26 1993-06-08 Matsushita Electric Works Ltd Epoxy resin composition for printed circuit board
JPH09188866A (en) * 1995-12-29 1997-07-22 Toagosei Co Ltd Adhesive composition for surface mounting
JPH09314758A (en) * 1996-05-28 1997-12-09 Matsushita Electric Works Ltd Prepreg and laminated sheet
JP2002179883A (en) * 2000-12-08 2002-06-26 Toshiba Chem Corp Epoxy resin composition and electrical and electronic part device
JP2009091510A (en) * 2007-10-11 2009-04-30 Hitachi Chem Co Ltd Liquid epoxy resin composition and semiconductor device using the composition
WO2013191075A1 (en) * 2012-06-21 2013-12-27 東亞合成株式会社 Amorphous inorganic anion exchanger, resin composition for sealing electronic component, and method for producing amorphous bismuth compound
JP2017041633A (en) * 2015-08-17 2017-02-23 積水化学工業株式会社 Semiconductor device and semiconductor element protective material
WO2017158994A1 (en) * 2016-03-15 2017-09-21 古河電気工業株式会社 Film-like adhesive composition, film-like adhesive, film-like adhesive production method, semiconductor package using film-like adhesive, and production method therefor
JP2017214546A (en) * 2016-05-27 2017-12-07 オリンパス株式会社 Adhesive composition, ultrasonic transducer, endoscope device, and ultrasonic endoscope device
JP2018056595A (en) * 2015-08-17 2018-04-05 積水化学工業株式会社 Semiconductor device, and semiconductor element protection material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05140419A (en) * 1991-11-26 1993-06-08 Matsushita Electric Works Ltd Epoxy resin composition for printed circuit board
JPH09188866A (en) * 1995-12-29 1997-07-22 Toagosei Co Ltd Adhesive composition for surface mounting
JPH09314758A (en) * 1996-05-28 1997-12-09 Matsushita Electric Works Ltd Prepreg and laminated sheet
JP2002179883A (en) * 2000-12-08 2002-06-26 Toshiba Chem Corp Epoxy resin composition and electrical and electronic part device
JP2009091510A (en) * 2007-10-11 2009-04-30 Hitachi Chem Co Ltd Liquid epoxy resin composition and semiconductor device using the composition
WO2013191075A1 (en) * 2012-06-21 2013-12-27 東亞合成株式会社 Amorphous inorganic anion exchanger, resin composition for sealing electronic component, and method for producing amorphous bismuth compound
JP2017041633A (en) * 2015-08-17 2017-02-23 積水化学工業株式会社 Semiconductor device and semiconductor element protective material
JP2018056595A (en) * 2015-08-17 2018-04-05 積水化学工業株式会社 Semiconductor device, and semiconductor element protection material
WO2017158994A1 (en) * 2016-03-15 2017-09-21 古河電気工業株式会社 Film-like adhesive composition, film-like adhesive, film-like adhesive production method, semiconductor package using film-like adhesive, and production method therefor
JP2017214546A (en) * 2016-05-27 2017-12-07 オリンパス株式会社 Adhesive composition, ultrasonic transducer, endoscope device, and ultrasonic endoscope device

Also Published As

Publication number Publication date
TW202003680A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP6093880B2 (en) Curable composition, method for producing curable composition, and semiconductor device
JP6731906B2 (en) Materials for semiconductor device and semiconductor element protection
JP2017041633A (en) Semiconductor device and semiconductor element protective material
KR102313846B1 (en) Material for semiconductor element protection and semiconductor device
JP2009007467A (en) Flame-retardant sidefill material for mounting and semiconductor device
JP2017039802A (en) Material for protecting semiconductor element and semiconductor device
JP5766867B1 (en) Semiconductor element protecting material and semiconductor device
JP2012116146A (en) Insulating sheet and multilayer structure
JP2016023219A (en) Two-liquid mixing type first and second liquids for protecting semiconductor element, and semiconductor device
WO2019216388A1 (en) Curable composition, material for protecting semiconductor element, and semiconductor device
JP2018188628A (en) Thermosetting material
TW202132396A (en) Heat-dissipating resin composition for chip resistor protective film, chip resistor protective film, and electronic component
JP6475593B2 (en) Semiconductor element protecting material and semiconductor device
JP2019123774A (en) Material for protecting semiconductor element, and semiconductor device
JP2023122244A (en) Resin composition and semiconductor device
JP2017039801A (en) Material for protecting semiconductor element and semiconductor device
JP2017039799A (en) Material for protecting semiconductor element and semiconductor device
JP2017039800A (en) Material for protecting semiconductor element and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19800034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP