JP2020170867A - Semiconductor device, and semiconductor element protection material - Google Patents

Semiconductor device, and semiconductor element protection material Download PDF

Info

Publication number
JP2020170867A
JP2020170867A JP2020115407A JP2020115407A JP2020170867A JP 2020170867 A JP2020170867 A JP 2020170867A JP 2020115407 A JP2020115407 A JP 2020115407A JP 2020115407 A JP2020115407 A JP 2020115407A JP 2020170867 A JP2020170867 A JP 2020170867A
Authority
JP
Japan
Prior art keywords
semiconductor device
semiconductor element
cured product
compound
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020115407A
Other languages
Japanese (ja)
Other versions
JP6905129B2 (en
Inventor
貴史 西村
Takashi Nishimura
貴史 西村
前中 寛
Hiroshi Maenaka
寛 前中
秀 中村
Hide Nakamura
秀 中村
卓司 青山
Takuji Aoyama
卓司 青山
小林 祐輔
Yusuke Kobayashi
祐輔 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Publication of JP2020170867A publication Critical patent/JP2020170867A/en
Application granted granted Critical
Publication of JP6905129B2 publication Critical patent/JP6905129B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3171Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

To provide a semiconductor device in which a cured product has exceptional heat dissipation performance, a reduced number of voids, and exceptional insulation reliability, and in which a semiconductor element can be satisfactorily protected.SOLUTION: A semiconductor device according to the present invention includes a semiconductor element and a cured product disposed on a first surface of the semiconductor element. A semiconductor element protection material for obtaining the cured product contains a heat-curable compound, a curing agent or a curing catalyst, and an inorganic filler having a thermal conductivity of 10 W/m K or higher. The semiconductor element protection material either contains no tri- to decameric cyclic siloxane compounds, or contains 500 ppm or less of tri- to decameric cyclic siloxane compounds. The cured product has an inorganic filler content of 60 wt.% or more and 92 wt.% or less, and an electric conductivity of 50 μS/cm or less.SELECTED DRAWING: Figure 1

Description

本発明は、半導体素子保護用材料を用いた半導体装置に関する。また、本発明は、半導体素子を保護するために、上記半導体素子の表面上に塗布して用いられる半導体素子保護用材料に関する。 The present invention relates to a semiconductor device using a material for protecting a semiconductor element. The present invention also relates to a semiconductor device protection material used by coating on the surface of the semiconductor device in order to protect the semiconductor device.

半導体装置の高性能化が進行している。これに伴って、半導体装置から発せられる熱を放散させる必要が高まっている。また、半導体装置では、半導体素子の電極は、例えば、電極を表面に有する他の接続対象部材における電極と電気的に接続されている。 The performance of semiconductor devices is increasing. Along with this, there is an increasing need to dissipate the heat generated from the semiconductor device. Further, in the semiconductor device, the electrodes of the semiconductor element are electrically connected to, for example, the electrodes in another connecting target member having the electrodes on the surface.

半導体装置では、例えば、半導体素子と他の接続対象部材との間にエポキシ樹脂組成物を配置した後、該エポキシ樹脂組成物を硬化させることにより、半導体素子と他の接続対象部材とが接着及び固定されている。なお、半導体素子と他の接続対象部材との間に配置される上記エポキシ樹脂組成物の硬化物は、半導体素子の表面を保護するための材料とは異なる。 In a semiconductor device, for example, an epoxy resin composition is placed between a semiconductor element and another connection target member, and then the epoxy resin composition is cured to bond the semiconductor element and the other connection target member. It is fixed. The cured product of the epoxy resin composition arranged between the semiconductor element and the other member to be connected is different from the material for protecting the surface of the semiconductor element.

また、半導体装置では、半導体素子を封止するために、エポキシ樹脂組成物が用いられることがある。 Further, in a semiconductor device, an epoxy resin composition may be used to seal a semiconductor element.

上記のようなエポキシ樹脂組成物が、例えば、下記の特許文献1〜5に開示されている。 The epoxy resin composition as described above is disclosed in, for example, Patent Documents 1 to 5 below.

下記の特許文献1には、エポキシ樹脂と、フェノール系硬化剤と、トリス(2,6−ジメトキシフェニル)ホスフィン又はトリス(2,4,6−トリメトキシフェニル)ホスフィンである硬化促進剤と、アルミナとを含むエポキシ樹脂組成物が開示されている。特許文献1の実施例では、粉体であるエポキシ樹脂組成物が記載されている。上記エポキシ樹脂組成物の用途に関して、特許文献1では、IC、LSI、トランジスタ、サイリスタ、ダイオード等の半導体装置の封止用、プリント回路板の製造などに好適に使用されることが記載されている。 The following Patent Document 1 describes an epoxy resin, a phenolic curing agent, a curing accelerator which is tris (2,6-dimethoxyphenyl) phosphine or tris (2,4,6-trimethoxyphenyl) phosphine, and alumina. An epoxy resin composition containing and is disclosed. In the examples of Patent Document 1, an epoxy resin composition which is a powder is described. Regarding the use of the epoxy resin composition, Patent Document 1 describes that it is suitably used for encapsulating semiconductor devices such as ICs, LSIs, transistors, thyristors, and diodes, and for manufacturing printed circuit boards. ..

下記の特許文献2には、エポキシ樹脂と、フェノール樹脂硬化剤と、硬化促進剤と、無機充填剤とを含む封止用エポキシ樹脂組成物が開示されている。特許文献2の実施例では、粉体である封止用エポキシ樹脂組成物が記載されている。上記エポキシ樹脂組成物の用途に関して、特許文献2では、一般成形材料として使用することができることが記載され、更に半導体装置の封止材に用いられ、特に、薄型、多ピン、ロングワイヤ、狭パッドピッチ、または、有機基板もしくは有機フィルム等の実装基板上に半導体チップが配置された、半導体装置の封止材に好適に用いられることが記載されている。 Patent Document 2 below discloses a sealing epoxy resin composition containing an epoxy resin, a phenol resin curing agent, a curing accelerator, and an inorganic filler. In the examples of Patent Document 2, a sealing epoxy resin composition which is a powder is described. Regarding the use of the epoxy resin composition, Patent Document 2 describes that it can be used as a general molding material, and is further used as a sealing material for semiconductor devices, particularly thin, multi-pin, long wire, narrow pad. It is described that the semiconductor chip is preferably used as a sealing material for a semiconductor device in which a semiconductor chip is arranged on a pitch or a mounting substrate such as an organic substrate or an organic film.

下記の特許文献3には、ビスフェノールF型液状エポキシ樹脂と、硬化剤と、無機質充填剤とを含むエポキシ樹脂組成物が開示されている。特許文献3の実施例では、固体であるエポキシ樹脂組成物(溶融粘度が75℃以上)が記載されている。上記エポキシ樹脂組成物の用途に関して、特許文献3には、一般成形材料として使用することもできるが、半導体装置、例えばTQFP、TSOP、QFPなどの多ピン薄型パッケージ、特にマトリックスフレームを使用した半導体装置の封止材として好適に用いられることが記載されている。 Patent Document 3 below discloses an epoxy resin composition containing a bisphenol F type liquid epoxy resin, a curing agent, and an inorganic filler. In the examples of Patent Document 3, a solid epoxy resin composition (melt viscosity is 75 ° C. or higher) is described. Regarding the use of the epoxy resin composition, Patent Document 3 describes that it can be used as a general molding material, but it is a semiconductor device, for example, a multi-pin thin package such as TQFP, TSOP, QFP, and particularly a semiconductor device using a matrix frame. It is described that it is suitably used as a sealing material for the above.

下記の特許文献4には、エポキシ樹脂と、フェノール樹脂硬化剤と、高熱伝導性充填剤と、無機質充填剤とを含む半導体封止用エポキシ樹脂組成物が開示されている。特許文献4の実施例では、粉体である半導体封止用エポキシ樹脂組成物が記載されている。上記半導体封止用エポキシ樹脂組成物の用途に関して、特許文献4では、半導体素子等の電子部品の封止材料として使用されることが記載されている。 Patent Document 4 below discloses an epoxy resin composition for encapsulating a semiconductor, which comprises an epoxy resin, a phenol resin curing agent, a high thermal conductive filler, and an inorganic filler. In the examples of Patent Document 4, an epoxy resin composition for encapsulating a semiconductor, which is a powder, is described. Regarding the use of the epoxy resin composition for semiconductor encapsulation, Patent Document 4 describes that it is used as a encapsulating material for electronic components such as semiconductor elements.

また、下記の特許文献5には、ビスフェノールA型エポキシ樹脂と、骨格内に可撓性を有するエポキシ樹脂とを含む第1剤と、酸無水物化合物と硬化促進剤とを含む第2剤とを有する2液タイプのエポキシ樹脂組成物が開示されている。特許文献5では、2液タイプのエポキシ樹脂組成物の用途に関しては、ケース内充填材として有用であることが記載されている。 Further, Patent Document 5 below describes a first agent containing a bisphenol A type epoxy resin, an epoxy resin having flexibility in the skeleton, and a second agent containing an acid anhydride compound and a curing accelerator. A two-component type epoxy resin composition having the above is disclosed. Patent Document 5 describes that it is useful as a filling material in a case for the use of a two-component type epoxy resin composition.

特開平5−86169号公報Japanese Unexamined Patent Publication No. 5-86169 特開2007−217469号公報Japanese Unexamined Patent Publication No. 2007-217469 特開平10−176100号公報Japanese Unexamined Patent Publication No. 10-176100 特開2005−200533号公報JP-A-2005-2005333 特開2014−40538号公報Japanese Unexamined Patent Publication No. 2014-40538

特許文献1〜4では、具体的には、粉体又は固体であるエポキシ樹脂組成物が開示されている。このような粉体又は固体であるエポキシ樹脂組成物は、塗布性が低く、所定の領域に精度よく配置することが困難である。 Patent Documents 1 to 4 specifically disclose epoxy resin compositions that are powder or solid. Such a powder or solid epoxy resin composition has low coatability, and it is difficult to accurately arrange it in a predetermined region.

また、従来のエポキシ樹脂組成物の硬化物では、放熱性が低いことがある。さらに、従来のエポキシ樹脂組成物の硬化物では、ボイドが生じることがある。ボイドが生じると、硬化物の剥離が生じることがある。 Further, the cured product of the conventional epoxy resin composition may have low heat dissipation. Further, voids may occur in the cured product of the conventional epoxy resin composition. When voids occur, exfoliation of the cured product may occur.

また、特許文献1〜4では、エポキシ樹脂組成物の具体的な用途として、主に、封止用途が記載されている。特許文献5では、エポキシ樹脂組成物の具体的な用途として、主に、ケース内充填材用途が記載されている。一方で、半導体装置においては、半導体素子を封止しなくても、半導体素子を充分に保護することが望ましい。また、特許文献1〜5に記載のエポキシ樹脂組成物は、一般に、半導体素子を保護するために、該半導体素子の表面上に塗布して用いられていない。 Further, Patent Documents 1 to 4 mainly describe sealing applications as specific applications of epoxy resin compositions. Patent Document 5 mainly describes the use of the filler in the case as a specific use of the epoxy resin composition. On the other hand, in a semiconductor device, it is desirable to sufficiently protect the semiconductor element without sealing the semiconductor element. Further, the epoxy resin compositions described in Patent Documents 1 to 5 are generally not used by being applied onto the surface of the semiconductor element in order to protect the semiconductor element.

また、近年、装置の薄さや意匠性の観点からICドライバを減少させることが求められている。ICドライバを少なくすると、半導体素子にかかる負担が増大し、更にかなりの熱を帯びやすくなる。従来の硬化物では、放熱性が低いため、放熱性の高い硬化物が求められている。 Further, in recent years, it has been required to reduce the number of IC drivers from the viewpoint of the thinness and design of the device. If the number of IC drivers is reduced, the load on the semiconductor element is increased, and the semiconductor element is more likely to be heated. Since the conventional cured product has low heat dissipation, a cured product having high heat dissipation is required.

本発明の目的は、硬化物の放熱性に優れ、硬化物のボイドが少なく、硬化物の絶縁信頼性に優れており、半導体素子を良好に保護することができる半導体装置を提供することである。 An object of the present invention is to provide a semiconductor device which is excellent in heat dissipation of a cured product, has few voids in the cured product, is excellent in insulation reliability of the cured product, and can satisfactorily protect a semiconductor element. ..

また、本発明は、半導体装置において、半導体素子を保護するために、該半導体素子の表面上に塗布して、上記半導体素子の表面上に硬化物を形成するために用いられる半導体素子保護用材料を提供することを目的とする。 Further, the present invention is a semiconductor device protection material used for forming a cured product on the surface of the semiconductor device by coating the semiconductor device on the surface of the semiconductor device in order to protect the semiconductor device. The purpose is to provide.

さらに、本発明の目的は、上記の用途において、放熱性に優れ、ボイドが少なく、絶縁信頼性に優れている硬化物を得ることができ、半導体素子を良好に保護することができる半導体素子保護用材料を提供することである。 Further, an object of the present invention is to protect a semiconductor device, which can obtain a cured product having excellent heat dissipation, few voids, and excellent insulation reliability in the above-mentioned applications, and can satisfactorily protect the semiconductor element. To provide materials for use.

本発明の広い局面では、半導体素子と、前記半導体素子の第1の表面上に配置された硬化物とを備え、前記硬化物が、半導体素子保護用材料の硬化物であり、前記半導体素子保護用材料が、熱硬化性化合物と、硬化剤又は硬化触媒と、熱伝導率が10W/m・K以上である無機フィラーとを含み、前記半導体素子保護用材料が、三量体から十量体までの環状シロキサン化合物を含まないか、又は三量体から十量体までの環状シロキサン化合物を500ppm以下で含み、前記硬化物における前記無機フィラーの含有量が60重量%以上、92重量%以下であり、前記硬化物の電気伝導度が50μS/cm以下である、半導体装置が提供される。 In a broad aspect of the present invention, a semiconductor element and a cured product arranged on the first surface of the semiconductor element are provided, and the cured product is a cured product of a material for protecting the semiconductor element, and the semiconductor element is protected. The material for protecting the semiconductor device includes a thermosetting compound, a curing agent or a curing catalyst, and an inorganic filler having a thermal conductivity of 10 W / m · K or more, and the material for protecting the semiconductor device is a trimer to a decamer. The content of the inorganic filler in the cured product is 60% by weight or more and 92% by weight or less, and the cyclic siloxane compound up to is not contained, or the cyclic siloxane compound from trimer to decamer is contained in an amount of 500 ppm or less. Provided is a semiconductor device having an electric conductivity of 50 μS / cm or less of the cured product.

本発明の広い局面では、半導体素子を保護するために、前記半導体素子の表面上に塗布して、前記半導体素子の表面上に硬化物を形成するために用いられる半導体素子保護用材料であり、半導体素子と他の接続対象部材との間に配置されて、前記半導体素子と前記他の接続対象部材とを剥離しないように接着及び固定する硬化物を形成するものとは異なり、熱硬化性化合物と、硬化剤又は硬化触媒と、熱伝導率が10W/m・K以上である無機フィラーとを含み、三量体から十量体までの環状シロキサン化合物を含まないか、又は三量体から十量体までの環状シロキサン化合物を500ppm以下で含み、前記無機フィラーの含有量が60重量%以上、92重量%以下であり、150℃で2時間加熱して硬化物を得たときに、前記硬化物の電気伝導度が50μS/cm以下である、半導体素子保護用材料が提供される。 In a broad aspect of the present invention, it is a semiconductor device protection material used for forming a cured product on the surface of the semiconductor device by coating it on the surface of the semiconductor device in order to protect the semiconductor device. A thermocurable compound, unlike a device that is arranged between a semiconductor device and another member to be connected to form a cured product that adheres and fixes the semiconductor element and the other member to be connected so as not to peel off. And a curing agent or curing catalyst, and an inorganic filler having a thermal conductivity of 10 W / m · K or more, and does not contain a cyclic siloxane compound from a trimer to a decamer, or from a trimer to a decamer. When the cyclic siloxane compound up to the decamer is contained in an amount of 500 ppm or less, the content of the inorganic filler is 60% by weight or more and 92% by weight or less, and a cured product is obtained by heating at 150 ° C. for 2 hours, the curing is performed. A material for protecting a semiconductor device, which has an electric conductivity of 50 μS / cm or less, is provided.

本発明の広い局面では、接続対象部材上に実装された半導体素子を保護するために、前記半導体素子の前記接続対象部材側とは反対の表面上に塗布して、前記半導体素子の前記接続対象部材側とは反対の表面上に硬化物を形成するために用いられる半導体素子保護用材料であり、熱硬化性化合物と、硬化剤又は硬化触媒と、熱伝導率が10W/m・K以上である無機フィラーとを含み、三量体から十量体までの環状シロキサン化合物を含まないか、又は三量体から十量体までの環状シロキサン化合物を500ppm以下で含み、前記無機フィラーの含有量が60重量%以上、92重量%以下であり、150℃で2時間加熱して硬化物を得たときに、前記硬化物の電気伝導度が50μS/cm以下である、半導体素子保護用材料が提供される。 In a broad aspect of the present invention, in order to protect a semiconductor element mounted on a connection target member, the semiconductor element is coated on a surface opposite to the connection target member side of the semiconductor element to be connected to the semiconductor element. A semiconductor device protection material used to form a cured product on the surface opposite to the member side, with a thermosetting compound, a curing agent or a curing catalyst, and a thermal conductivity of 10 W / m · K or more. It contains a certain inorganic filler and does not contain a cyclic siloxane compound from a trimer to a decamer, or contains a cyclic siloxane compound from a trimer to a decamer at 500 ppm or less, and the content of the inorganic filler is Provided is a material for protecting a semiconductor device, which is 60% by weight or more and 92% by weight or less, and has an electric conductivity of 50 μS / cm or less when the cured product is obtained by heating at 150 ° C. for 2 hours. Will be done.

本発明に係る半導体装置及び半導体素子保護用材料のある特定の局面では、前記熱硬化性化合物が、エポキシ化合物又はシリコーン化合物を含む。 In certain aspects of the semiconductor device and semiconductor device protection material according to the present invention, the thermosetting compound includes an epoxy compound or a silicone compound.

本発明に係る半導体装置及び半導体素子保護用材料のある特定の局面では、前記熱硬化性化合物がシリコーン化合物を含む。 In certain aspects of the semiconductor device and semiconductor device protection material according to the present invention, the thermosetting compound comprises a silicone compound.

本発明に係る半導体装置及び半導体素子保護用材料のある特定の局面では、前記硬化剤がアリルフェノールノボラック化合物である。 In certain aspects of the semiconductor device and semiconductor device protection material according to the present invention, the curing agent is an allylphenol novolak compound.

本発明に係る半導体装置及び半導体素子保護用材料のある特定の局面では、前記熱硬化性化合物が、可撓性エポキシ化合物を含む。 In certain aspects of the semiconductor device and semiconductor device protection material according to the present invention, the thermosetting compound comprises a flexible epoxy compound.

本発明に係る半導体装置及び半導体素子保護用材料のある特定の局面では、前記熱硬化性化合物が、前記可撓性エポキシ化合物と、可撓性エポキシ化合物とは異なるエポキシ化合物とを含む。 In certain aspects of the semiconductor device and semiconductor device protection material according to the present invention, the thermosetting compound includes the flexible epoxy compound and an epoxy compound different from the flexible epoxy compound.

本発明に係る半導体装置及び半導体素子保護用材料のある特定の局面では、前記半導体素子保護用材料に含まれる前記可撓性エポキシ化合物が、アルキレングリコール基が9以上繰り返された構造単位を有するポリアルキレングリコールジグリシジルエーテルである。 In a specific aspect of the semiconductor device and the semiconductor device protection material according to the present invention, the flexible epoxy compound contained in the semiconductor device protection material is a poly having a structural unit in which 9 or more alkylene glycol groups are repeated. It is an alkylene glycol diglycidyl ether.

本発明に係る半導体素子保護用材料のある特定の局面では、前記半導体素子保護用材料は、水を含まないか、又は水を1000ppm以下で含む。 In certain aspects of the semiconductor device protecting material according to the present invention, the semiconductor device protecting material does not contain water or contains water at 1000 ppm or less.

本発明に係る半導体装置のある特定の局面では、前記半導体装置は、接続対象部材を備え、前記接続対象部材上に、前記半導体素子が前記第1の表面とは反対の第2の表面側から実装されている。 In a specific aspect of the semiconductor device according to the present invention, the semiconductor device includes a member to be connected, and the semiconductor element is placed on the member to be connected from a second surface side opposite to the first surface. It is implemented.

本発明に係る半導体装置のある特定の局面では、前記半導体装置は、第2の電極を表面に有する接続対象部材を備え、前記半導体素子が、前記第1の表面側とは反対の第2の表面側に第1の電極を有し、前記半導体素子の第1の電極が、第2の電極を表面に有する接続対象部材における前記第2の電極と電気的に接続されている。 In a particular aspect of the semiconductor device according to the present invention, the semiconductor device comprises a connection target member having a second electrode on the surface, and the semiconductor element is a second surface opposite to the first surface side. The first electrode of the semiconductor element having the first electrode on the surface side is electrically connected to the second electrode of the connection target member having the second electrode on the surface.

本発明に係る半導体装置のある特定の局面では、前記硬化物の前記半導体素子側とは反対の表面上に、保護フィルムが配置されているか、又は、前記硬化物の前記半導体素子側とは反対の表面が露出している。 In a specific aspect of the semiconductor device according to the present invention, a protective film is arranged on the surface of the cured product opposite to the semiconductor device side, or opposite to the semiconductor device side of the cured product. The surface of the is exposed.

本発明に係る半導体素子保護用材料は、半導体素子を保護するために、前記半導体素子の表面上に硬化物を形成し、かつ前記硬化物の前記半導体素子側とは反対の表面上に保護フィルムを配置して、半導体装置を得るために用いられるか、又は、半導体素子を保護するために、前記半導体素子の表面上に硬化物を形成し、かつ前記硬化物の前記半導体素子側とは反対の表面が露出している半導体装置を得るために用いられる。 In the semiconductor element protection material according to the present invention, in order to protect the semiconductor element, a cured product is formed on the surface of the semiconductor element, and a protective film is formed on the surface of the cured product opposite to the semiconductor element side. Is used to obtain a semiconductor device, or a cured product is formed on the surface of the semiconductor element in order to protect the semiconductor element, and the cured product is opposite to the semiconductor device side of the cured product. It is used to obtain a semiconductor device whose surface is exposed.

本発明に係る半導体素子装置は、半導体素子と、上記半導体素子の第1の表面上に配置された硬化物とを備え、上記硬化物が、半導体素子保護用材料の硬化物であり、上記半導体素子保護用材料が、熱硬化性化合物と、硬化剤又は硬化触媒と、熱伝導率が10W/m・K以上である無機フィラーとを含み、上記半導体素子保護用材料が、三量体から十量体までの環状シロキサン化合物を含まないか、又は三量体から十量体までの環状シロキサン化合物を500ppm以下で含み、上記硬化物における上記無機フィラーの含有量が60重量%以上、92重量%以下であり、上記硬化物の電気伝導度が50μS/cm以下であるので、硬化物の放熱性に優れ、硬化物のボイドが少なく、硬化物の絶縁信頼性に優れており、半導体素子を良好に保護することができる。 The semiconductor device device according to the present invention includes a semiconductor element and a cured product arranged on the first surface of the semiconductor element, and the cured product is a cured product of a material for protecting the semiconductor element. The device protection material contains a thermosetting compound, a curing agent or a curing catalyst, and an inorganic filler having a thermal conductivity of 10 W / m · K or more, and the semiconductor device protection material is trimeric to ten. The cyclic siloxane compound up to the metric is not contained, or the cyclic siloxane compound from the trimer to the decameric is contained in 500 ppm or less, and the content of the inorganic filler in the cured product is 60% by weight or more and 92% by weight. Since the electric conductivity of the cured product is 50 μS / cm or less, the cured product has excellent heat dissipation, there are few voids in the cured product, the insulation reliability of the cured product is excellent, and the semiconductor element is good. Can be protected.

本発明に係る半導体素子保護用材料は、熱硬化性化合物と、硬化剤又は硬化触媒と、熱伝導率が10W/m・K以上である無機フィラーとを含み、三量体から十量体までの環状シロキサン化合物を含まないか、又は三量体から十量体までの環状シロキサン化合物を500ppm以下で含み、水を含まないか、又は水を1000ppm以下で含み、上記無機フィラーの含有量が60重量%以上、92重量%以下であり、150℃で2時間加熱して硬化物を得たときに、上記硬化物の電気伝導度が50μS/cm以下であるので、放熱性に優れており、ボイドが少なく、絶縁信頼性に優れている硬化物を得ることができる。従って、本発明に係る半導体素子保護用材料を、半導体素子を保護するために、上記半導体素子の表面上に塗布し、硬化させることにより、上記半導体素子を良好に保護することができる。また、本発明に係る半導体素子保護用材料を、接続対象部材上に実装された半導体素子を保護するために、上記半導体素子の上記接続対象部材側とは反対の表面上に塗布して、硬化させることにより、上記半導体素子を良好に保護することができる。 The material for protecting a semiconductor element according to the present invention contains a thermosetting compound, a curing agent or a curing catalyst, and an inorganic filler having a thermal conductivity of 10 W / m · K or more, and is a trimer to a decamer. Cyclic siloxane compound is not contained, or the cyclic siloxane compound from trimeric to decamer is contained in an amount of 500 ppm or less, and water is not contained, or water is contained in an amount of 1000 ppm or less, and the content of the inorganic filler is 60. By weight% or more and 92% by weight or less, when a cured product is obtained by heating at 150 ° C. for 2 hours, the electric conductivity of the cured product is 50 μS / cm or less, so that the heat dissipation is excellent. A cured product having few voids and excellent insulation reliability can be obtained. Therefore, the semiconductor element protecting material according to the present invention can be satisfactorily protected by applying the semiconductor element protecting material on the surface of the semiconductor element and curing the semiconductor element in order to protect the semiconductor element. Further, in order to protect the semiconductor element mounted on the connection target member, the semiconductor element protection material according to the present invention is applied on the surface of the semiconductor element opposite to the connection target member side and cured. By doing so, the semiconductor element can be satisfactorily protected.

図1は、本発明の第1の実施形態に係る半導体素子保護用材料を用いた半導体装置を示す部分切欠正面断面図である。FIG. 1 is a partially cutaway front sectional view showing a semiconductor device using the semiconductor element protection material according to the first embodiment of the present invention. 図2は、本発明の第2の実施形態に係る半導体素子保護用材料を用いた半導体装置を示す部分切欠正面断面図である。FIG. 2 is a partially cutaway front sectional view showing a semiconductor device using the semiconductor element protection material according to the second embodiment of the present invention.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明に係る半導体装置は、半導体素子と、硬化物とを備える。本発明に係る半導体装置では、上記硬化物は、上記半導体素子の第1の表面上に配置されている。本発明に係る半導体装置では、上記硬化物は、半導体素子保護用材料の硬化物である。 The semiconductor device according to the present invention includes a semiconductor element and a cured product. In the semiconductor device according to the present invention, the cured product is arranged on the first surface of the semiconductor element. In the semiconductor device according to the present invention, the cured product is a cured product of a material for protecting semiconductor elements.

本発明に係る半導体素子保護用材料は、ある特定の局面では、半導体素子を保護するために、上記半導体素子の表面上に塗布して、上記半導体素子の表面上に硬化物を形成するために用いられる。本発明に係る半導体素子保護用材料は、半導体素子と他の接続対象部材との間に配置されて、上記半導体素子と上記他の接続対象部材とを剥離しないように接着及び固定する硬化物を形成するもの(材料)とは異なる。 In a specific aspect, the material for protecting a semiconductor element according to the present invention is applied on the surface of the semiconductor element in order to protect the semiconductor element, in order to form a cured product on the surface of the semiconductor element. Used. The semiconductor element protection material according to the present invention is a cured product that is arranged between the semiconductor element and another connection target member and adheres and fixes the semiconductor element and the other connection target member so as not to peel off. It is different from what is formed (material).

また、本発明に係る半導体素子保護用材料は、ある特定の局面では、接続対象部材上に実装された半導体素子を保護するために、上記半導体素子の上記接続対象部材側とは反対の表面上に塗布して、上記半導体素子の表面上に硬化物を形成するために用いられる。 Further, in a specific aspect, the semiconductor element protection material according to the present invention is on the surface of the semiconductor element opposite to the connection target member side in order to protect the semiconductor element mounted on the connection target member. It is used to form a cured product on the surface of the semiconductor element.

本発明に係る半導体装置に用いられる半導体素子保護用材料、及び、本発明に係る半導体素子保護用材料は、(A)熱硬化性化合物と、(B)硬化剤又は硬化触媒((B1)硬化剤又は(B2)硬化触媒)と、(C)熱伝導率が10W/m・K以上である無機フィラーとを含む。本発明に係る半導体装置に用いられる半導体素子保護用材料、及び、本発明に係る半導体素子保護用材料は、例えば、半導体素子の表面上に塗布されるために、23℃で液状であることが好ましく、23℃で固体ではないことが好ましい。なお、液状には、粘稠なペーストも含まれる。 The semiconductor device protection material used in the semiconductor device according to the present invention and the semiconductor device protection material according to the present invention are (A) a thermosetting compound and (B) a curing agent or a curing catalyst ((B1) curing. It contains an agent or (B2) curing catalyst) and (C) an inorganic filler having a thermal conductivity of 10 W / m · K or more. The semiconductor device protection material used in the semiconductor device according to the present invention and the semiconductor device protection material according to the present invention may be liquid at 23 ° C. for being applied on the surface of the semiconductor device, for example. It is preferably not solid at 23 ° C. The liquid also includes a viscous paste.

本発明に係る半導体装置に用いられる半導体素子保護用材料、及び、本発明に係る半導体素子保護用材料は、(X)三量体から十量体までの環状シロキサン化合物を含まないか、又は(X)三量体から十量体までの環状シロキサン化合物を500ppm以下で含む。本発明に係る半導体装置に用いられる半導体素子保護用材料、及び、本発明に係る半導体素子保護用材料における低分子量の(X)シロキサン化合物の含有量は少ない。本発明に係る半導体装置の硬化物100重量%中、(C)熱伝導率が10W/m・K以上である無機フィラーの含有量が60重量%以上、92重量%以下である。本発明に係る半導体装置に用いられる半導体素子保護用材料100重量%中、C)熱伝導率が10W/m・K以上である無機フィラーの含有量は好ましくは60重量%以上、好ましくは92重量%以下である。本発明に係る半導体素子保護用材料100重量%中、(C)熱伝導率が10W/m・K以上である無機フィラーの含有量が60重量%以上、92重量%以下である。 The semiconductor device protection material used in the semiconductor device according to the present invention and the semiconductor device protection material according to the present invention do not contain (X) a cyclic siloxane compound from a trimer to a decamer, or ( X) A cyclic siloxane compound from a trimer to a decamer is contained in an amount of 500 ppm or less. The content of the low molecular weight (X) siloxane compound in the semiconductor device protection material used in the semiconductor device according to the present invention and the semiconductor device protection material according to the present invention is small. The content of the inorganic filler having a thermal conductivity of 10 W / m · K or more is 60% by weight or more and 92% by weight or less in 100% by weight of the cured product of the semiconductor device according to the present invention. The content of the inorganic filler having a thermal conductivity of 10 W / m · K or more in 100% by weight of the semiconductor element protection material used in the semiconductor device according to the present invention is preferably 60% by weight or more, preferably 92% by weight. % Or less. In 100% by weight of the semiconductor device protection material according to the present invention, the content of the inorganic filler having a thermal conductivity of 10 W / m · K or more is 60% by weight or more and 92% by weight or less.

本発明に係る半導体装置の硬化物、及び、本発明に係る半導体素子保護用材料の硬化物の電気伝導度は50μS/cm以下である。 The electric conductivity of the cured product of the semiconductor device according to the present invention and the cured product of the material for protecting the semiconductor element according to the present invention is 50 μS / cm or less.

上記半導体素子保護用材料は、半導体素子の表面上に塗布することができる。例えば、半導体素子の放熱性を高めたい部位の表面上に選択的に、精度よく、上記半導体素子保護用材料を塗布することができる。 The semiconductor element protection material can be applied on the surface of the semiconductor element. For example, the material for protecting a semiconductor element can be selectively and accurately applied on the surface of a portion where heat dissipation of the semiconductor element is desired to be improved.

本発明に係る半導体装置は、上述した構成を備えているので、硬化物の放熱性に優れている。このため、半導体素子の表面から硬化物を経由して、熱を充分に放散させることができる。このため、半導体装置の熱劣化を効果的に抑制することができる。 Since the semiconductor device according to the present invention has the above-described configuration, it is excellent in heat dissipation of the cured product. Therefore, heat can be sufficiently dissipated from the surface of the semiconductor element via the cured product. Therefore, thermal deterioration of the semiconductor device can be effectively suppressed.

また、本発明に係る半導体素子保護用材料は、上述した構成を備えているので、硬化物の放熱性に優れている。このため、半導体素子の表面上に硬化物を配置することによって、半導体素子の表面から硬化物を経由して、熱を充分に放散させることができる。このため、半導体装置の熱劣化を効果的に抑制することができる。 Further, since the semiconductor element protection material according to the present invention has the above-mentioned structure, it is excellent in heat dissipation of the cured product. Therefore, by arranging the cured product on the surface of the semiconductor element, heat can be sufficiently dissipated from the surface of the semiconductor element via the cured product. Therefore, thermal deterioration of the semiconductor device can be effectively suppressed.

さらに、本発明に係る半導体装置、及び、本発明に係る半導体素子保護用材料では、硬化物にボイドを生じ難くすることができ、半導体素子の表面から硬化物を剥離し難くすることができる。 Further, in the semiconductor device according to the present invention and the semiconductor element protection material according to the present invention, it is possible to make it difficult for voids to be generated in the cured product, and it is possible to make it difficult for the cured product to be peeled off from the surface of the semiconductor element.

さらに、本発明に係る半導体装置では、硬化物の絶縁信頼性に優れている。従って、上記半導体素子を良好に保護することができる。 Further, the semiconductor device according to the present invention has excellent insulation reliability of the cured product. Therefore, the semiconductor element can be well protected.

また、本発明に係る半導体素子保護用材料では、絶縁信頼性に優れている硬化物を得ることができる。従って、本発明に係る半導体素子保護用材料を、半導体素子を保護するために、上記半導体素子の表面上に塗布し、硬化させることにより、上記半導体素子を良好に保護することができる。また、本発明に係る半導体素子保護用材料を、接続対象部材上に実装された半導体素子を保護するために、上記半導体素子の上記接続対象部材側とは反対の表面上に塗布して、硬化させることにより、上記半導体素子を良好に保護することができる。 Further, in the semiconductor element protection material according to the present invention, a cured product having excellent insulation reliability can be obtained. Therefore, the semiconductor element protecting material according to the present invention can be satisfactorily protected by applying the semiconductor element protecting material on the surface of the semiconductor element and curing the semiconductor element in order to protect the semiconductor element. Further, in order to protect the semiconductor element mounted on the connection target member, the semiconductor element protection material according to the present invention is applied on the surface of the semiconductor element opposite to the connection target member side and cured. By doing so, the semiconductor element can be satisfactorily protected.

絶縁信頼性を高める観点から、(X)三量体から十量体までの環状シロキサン化合物の含有量は多くても、500ppmである。絶縁信頼性をより一層高める観点からは、(X)三量体から十量体までの環状シロキサン化合物の含有量は好ましくは250ppm以下である。(X)三量体から十量体までの環状シロキサン化合物の含有量は少ないほどよい。 From the viewpoint of enhancing insulation reliability, the content of the cyclic siloxane compound from (X) trimer to decamer is at most 500 ppm. From the viewpoint of further enhancing the insulation reliability, the content of the cyclic siloxane compound from (X) trimer to decamer is preferably 250 ppm or less. (X) The smaller the content of the cyclic siloxane compound from the trimer to the decamer, the better.

三量体から十量体までの環状シロキサン化合物とは、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサン、テトラデカメチルシクロヘプタシロキサン、ヘキサデカメチルシクロオクタシロキサン、オクタデカメチルシクロノナシロキサン、エイコサメチルシクロデカシロキサンを意味する。 Cyclic siloxane compounds from trimeric to decameric are hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, tetradecamethylcycloheptasiloxane, hexadecamethylcyclo. It means octasiloxane, octadecamethylcyclononasiloxane, and eikosamethylcyclodecasiloxane.

ボイドをより一層効果的に抑える観点から、本発明に係る半導体素子保護用材料は、(Y)水を含まないか、又は(Y)水を1000ppm以下で含むことが好ましい。ボイドを更に一層抑える観点からは、(Y)水の含有量は好ましくは800ppm以下である。(Y)水の含有量は少ないほどよい。 From the viewpoint of suppressing voids more effectively, the semiconductor device protection material according to the present invention preferably does not contain (Y) water or contains (Y) water at 1000 ppm or less. From the viewpoint of further suppressing voids, the content of (Y) water is preferably 800 ppm or less. (Y) The lower the water content, the better.

上記水の含有量は、カールフィッシャー水分計(京都電子工業社製「MKV−710B」)を用いて測定される。 The water content is measured using a Karl Fischer titer (“MKV-710B” manufactured by Kyoto Electronics Industry Co., Ltd.).

絶縁信頼性を高める観点から、本発明に係る半導体装置の上記硬化物の電気伝導度は50μS/cm以下である。絶縁信頼性を高める観点から、本発明に係る半導体素子保護用材料を150℃で2時間加熱して硬化物を得たときに、上記硬化物の電気伝導度は50μS/cm以下である。絶縁信頼性をより一層高める観点からは、上記硬化物の電気伝導度は好ましくは30μS/cm以下である。上記硬化物の電気伝導度の下限は特に限定されない。 From the viewpoint of enhancing insulation reliability, the electric conductivity of the cured product of the semiconductor device according to the present invention is 50 μS / cm or less. From the viewpoint of enhancing insulation reliability, when the semiconductor device protection material according to the present invention is heated at 150 ° C. for 2 hours to obtain a cured product, the electric conductivity of the cured product is 50 μS / cm or less. From the viewpoint of further enhancing the insulation reliability, the electric conductivity of the cured product is preferably 30 μS / cm or less. The lower limit of the electric conductivity of the cured product is not particularly limited.

上記電気伝導度は、以下のようにして測定される。本発明に係る半導体装置では、上記半導体装置の硬化物を用意する。本発明に係る半導体装置保護用材料では、上記半導体素子保護用材料を150℃で2時間で硬化させて硬化物を得る。これらの硬化物を5mm角程度に粉砕し、粉砕物2.5gにイオン交換水25mLを加え、PCT(121℃±2℃/湿度100%/2atmの槽)で20Hr置く。その後、室温(25℃)まで冷却して得た抽出液を試験液として得る。この試験液の電気伝導度を伝導度計(東亜電波工業社製の電気伝導率計「CM−30G」、「CM−42X」等)を用いて測定する。 The electrical conductivity is measured as follows. In the semiconductor device according to the present invention, a cured product of the semiconductor device is prepared. In the semiconductor device protection material according to the present invention, the semiconductor device protection material is cured at 150 ° C. for 2 hours to obtain a cured product. These cured products are crushed to about 5 mm square, 25 mL of ion-exchanged water is added to 2.5 g of the pulverized product, and the mixture is placed in a PCT (121 ° C ± 2 ° C / 100% humidity / 2 atm tank) for 20 hours. Then, the extract obtained by cooling to room temperature (25 ° C.) is obtained as a test solution. The electric conductivity of this test solution is measured using a conductivity meter (electric conductivity meter "CM-30G", "CM-42X", etc. manufactured by Toa Denpa Kogyo Co., Ltd.).

塗布性をより一層高める観点からは、上記半導体素子保護用材料の25℃及び10rpmでの粘度は、好ましくは40Pa・s以上、より好ましくは50Pa・s以上であり、好ましくは140Pa・s以下、より好ましくは130Pa・s以下である。 From the viewpoint of further improving the coatability, the viscosity of the semiconductor device protection material at 25 ° C. and 10 rpm is preferably 40 Pa · s or more, more preferably 50 Pa · s or more, and preferably 140 Pa · s or less. More preferably, it is 130 Pa · s or less.

上記粘度は、B型粘度計(東機産業社製「TVB−10型」)を用いて測定される。 The viscosity is measured using a B-type viscometer (“TVB-10 type” manufactured by Toki Sangyo Co., Ltd.).

硬化性をより一層高める観点からは、上記半導体素子保護用材料は、(B1)硬化剤と、(D)硬化促進剤とを含むことが好ましい。 From the viewpoint of further enhancing the curability, the semiconductor device protection material preferably contains (B1) a curing agent and (D) a curing accelerator.

また、半導体素子保護用材料の半導体素子の表面に対する濡れ性を高め、硬化物の柔軟性をより一層高め、更に硬化物の耐湿性をより一層高める観点からは、上記半導体素子保護用材料は、(E)カップリング剤を含むことが好ましい。 Further, from the viewpoint of increasing the wettability of the semiconductor element protection material to the surface of the semiconductor element, further increasing the flexibility of the cured product, and further enhancing the moisture resistance of the cured product, the above-mentioned semiconductor element protecting material is used. (E) It is preferable to include a coupling agent.

硬化物の絶縁信頼性を効果的に高める観点からは、上記半導体素子保護用材料は、(F)イオン捕捉剤を含むことが好ましい。 From the viewpoint of effectively enhancing the insulation reliability of the cured product, the semiconductor device protection material preferably contains (F) an ion scavenger.

以下、上記半導体素子保護用材料に用いることができる各成分の詳細を説明する。 Hereinafter, details of each component that can be used for the semiconductor device protection material will be described.

((A)熱硬化性化合物)
(A)熱硬化性化合物としては、オキセタン化合物、エポキシ化合物、エピスルフィド化合物、(メタ)アクリル化合物、フェノール化合物、アミノ化合物、不飽和ポリエステル化合物、ポリウレタン化合物、シリコーン化合物及びポリイミド化合物等が挙げられる。(A)熱硬化性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
((A) Thermosetting compound)
Examples of the (A) thermosetting compound include oxetane compounds, epoxy compounds, episulfide compounds, (meth) acrylic compounds, phenol compounds, amino compounds, unsaturated polyester compounds, polyurethane compounds, silicone compounds and polyimide compounds. As the thermosetting compound (A), only one type may be used, or two or more types may be used in combination.

本発明の効果を効果的に発揮し、耐熱性をより一層高くし、かつクラックをより一層生じ難くする観点からは、(A)熱硬化性化合物は、(A1)エポキシ化合物又は(A2)シリコーン化合物を含むことが好ましい。(A)熱硬化性化合物は、(A1)エポキシ化合物を含んでいてもよく、(A2)シリコーン化合物を含んでいてもよい。高温下に晒された後の接続対象部材の反りをより一層抑える観点からは、(A2)シリコーン化合物の分子量は、300以上であることが好ましい。高温下に晒された後の接続対象部材の反りをより一層抑える観点からは、(A)熱硬化性化合物が、(A2)シリコーン化合物を含むこと好ましい。 From the viewpoint of effectively exerting the effects of the present invention, further increasing the heat resistance, and making cracks less likely to occur, the (A) thermosetting compound is the (A1) epoxy compound or (A2) silicone. It preferably contains a compound. The (A) thermosetting compound may contain (A1) an epoxy compound or (A2) a silicone compound. From the viewpoint of further suppressing the warp of the member to be connected after being exposed to a high temperature, the molecular weight of the (A2) silicone compound is preferably 300 or more. From the viewpoint of further suppressing the warp of the member to be connected after being exposed to a high temperature, the (A) thermosetting compound preferably contains (A2) a silicone compound.

上記半導体素子保護用材料100重量%中、(A)熱硬化性化合物の含有量は好ましくは1重量%以上、より好ましくは2重量%以上であり、好ましくは20重量%以下、より好ましくは15重量%以下、更に好ましくは10重量%以下、特に好ましくは8重量%以下である。(A)熱硬化性化合物の含有量が上記下限以上及び上記上限以下であると、半導体素子保護用材料の塗布性、硬化物の柔軟性及び耐湿性がより一層良好になり、硬化物の半導体素子に対する接着性がより一層良好になり、保護フィルムに対する貼り付きをより一層抑えることができる。 The content of the (A) thermosetting compound in 100% by weight of the semiconductor device protection material is preferably 1% by weight or more, more preferably 2% by weight or more, preferably 20% by weight or less, more preferably 15. It is 0% by weight or less, more preferably 10% by weight or less, and particularly preferably 8% by weight or less. When the content of the thermosetting compound (A) is equal to or higher than the above lower limit and lower than the above upper limit, the coatability of the semiconductor device protection material, the flexibility of the cured product, and the moisture resistance are further improved, and the semiconductor of the cured product is further improved. The adhesiveness to the element is further improved, and the sticking to the protective film can be further suppressed.

上記半導体素子保護用材料100重量%中、(A1)エポキシ化合物と(A2)シリコーン化合物との合計の含有量は、好ましくは1重量%以上、より好ましくは2重量%以上であり、好ましくは20重量%以下、より好ましくは15重量%以下である。(A1)エポキシ化合物と(A2)シリコーン化合物との合計の含有量が上記下限以上及び上記上限以下であると、半導体素子保護用材料の塗布性、硬化物の柔軟性及び耐湿性がより一層良好になり、硬化物の半導体素子に対する接着性がより一層良好になり、保護フィルムに対する貼り付きをより一層抑えることができる。 The total content of the (A1) epoxy compound and the (A2) silicone compound in 100% by weight of the semiconductor device protection material is preferably 1% by weight or more, more preferably 2% by weight or more, and preferably 20. By weight or less, more preferably 15% by weight or less. When the total content of the (A1) epoxy compound and the (A2) silicone compound is not less than the above lower limit and not more than the above upper limit, the coatability of the semiconductor device protection material, the flexibility of the cured product, and the moisture resistance are further improved. Therefore, the adhesiveness of the cured product to the semiconductor element is further improved, and the sticking to the protective film can be further suppressed.

(A1)エポキシ化合物:
上記半導体素子保護用材料100重量%中、(A1)エポキシ化合物の含有量は、好ましくは1重量%以上、より好ましくは2重量%以上であり、好ましくは10重量%以下、より好ましくは8重量%以下である。(A1)エポキシ化合物の含有量が上記下限以上及び上記上限以下であると、半導体素子保護用材料の塗布性、硬化物の柔軟性及び耐湿性がより一層良好になり、硬化物の半導体素子に対する接着性がより一層良好になり、保護フィルムに対する貼り付きをより一層抑えることができる。
(A1) Epoxy compound:
The content of the (A1) epoxy compound in 100% by weight of the semiconductor device protection material is preferably 1% by weight or more, more preferably 2% by weight or more, preferably 10% by weight or less, more preferably 8% by weight. % Or less. When the content of the epoxy compound (A1) is equal to or higher than the above lower limit and lower than the above upper limit, the coatability of the material for protecting the semiconductor element, the flexibility of the cured product, and the moisture resistance are further improved, and the cured product with respect to the semiconductor element. Adhesiveness becomes even better, and sticking to the protective film can be further suppressed.

(A1)エポキシ化合物としては、(A11)可撓性エポキシ化合物及び(A12)可撓性エポキシ化合物とは異なるエポキシ化合物が挙げられる。本発明の効果を効果的に発揮する観点からは、(A)熱硬化性化合物は、(A11)可撓性エポキシ化合物と、(A12)可撓性エポキシ化合物とは異なるエポキシ化合物とを含むことが好ましい。 Examples of the (A1) epoxy compound include (A11) a flexible epoxy compound and (A12) an epoxy compound different from the flexible epoxy compound. From the viewpoint of effectively exerting the effects of the present invention, the (A) thermosetting compound contains (A11) a flexible epoxy compound and (A12) an epoxy compound different from the flexible epoxy compound. Is preferable.

(A12)可撓性エポキシ化合物とは異なるエポキシ化合物は、可撓性を有さない。(A11)可撓性エポキシ化合物とともに(A12)エポキシ化合物を用いることによって、半導体素子保護用材料の硬化物の耐湿性が高くなり、保護フィルムに対する貼り付き性を低下させることができる。(A12)エポキシ化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。 (A12) An epoxy compound different from the flexible epoxy compound does not have flexibility. By using the (A12) epoxy compound together with the (A11) flexible epoxy compound, the moisture resistance of the cured product of the semiconductor device protection material can be increased, and the adhesiveness to the protective film can be lowered. As the epoxy compound (A12), only one type may be used, or two or more types may be used in combination.

(A)熱硬化性化合物は、(A11)可撓性エポキシ化合物を含むことが好ましい。(A11)可撓性エポキシ化合物を用いることによって、硬化物の柔軟性を高めることができる。(A11)可撓性エポキシ化合物を用いることによって、半導体素子に対する変形応力などによって、半導体素子の損傷が生じ難くなり、更に半導体素子の表面から硬化物を剥離し難くすることができる。(A11)可撓性エポキシ化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The thermosetting compound (A) preferably contains (A11) a flexible epoxy compound. (A11) By using the flexible epoxy compound, the flexibility of the cured product can be increased. (A11) By using the flexible epoxy compound, it is possible to make it difficult for the semiconductor element to be damaged due to deformation stress or the like on the semiconductor element, and further to make it difficult for the cured product to be peeled off from the surface of the semiconductor element. As the flexible epoxy compound (A11), only one kind may be used, or two or more kinds may be used in combination.

(A11)可撓性エポキシ化合物としては、ポリアルキレングリコールジグリシジルエーテル、ポリブタジエンジグリシジルエーテル、サルファイド変性エポキシ樹脂、及びポリアルキレンオキサイド変性ビスフェノールA型エポキシ樹脂等が挙げられる。硬化物の柔軟性をより一層高める観点からは、ポリアルキレングリコールジグリシジルエーテルが好ましい。 Examples of the flexible epoxy compound (A11) include polyalkylene glycol diglycidyl ether, polybutadiene diglycidyl ether, sulfide-modified epoxy resin, and polyalkylene oxide-modified bisphenol A type epoxy resin. From the viewpoint of further increasing the flexibility of the cured product, polyalkylene glycol diglycidyl ether is preferable.

硬化物の柔軟性をより一層高めて接着力を向上させる観点からは、上記ポリアルキレングリコールジグリシジルエーテルは、アルキレングリコール基が9以上繰り返された構造単位を有することが好ましい。アルキレン基の繰り返し数の上限は特に限定されない。アルキレン基の繰り返し数は、30以下であってもよい。上記アルキレン基の炭素数は、好ましくは2以上であり、好ましくは5以下である。 From the viewpoint of further increasing the flexibility of the cured product and improving the adhesive strength, the polyalkylene glycol diglycidyl ether preferably has a structural unit in which 9 or more alkylene glycol groups are repeated. The upper limit of the number of repetitions of the alkylene group is not particularly limited. The number of repetitions of the alkylene group may be 30 or less. The alkylene group has preferably 2 or more carbon atoms, and preferably 5 or less carbon atoms.

上記ポリアルキレングリコールジグリシジルエーテルとしては、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル及びポリテトラメチレングリコールジグリシジルエーテル等が挙げられる。 Examples of the polyalkylene glycol diglycidyl ether include polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, polytetramethylene glycol diglycidyl ether and the like.

上記半導体素子保護用材料100重量%中、(A11)可撓性エポキシ化合物の含有量は好ましくは3重量%以上、より好ましくは5重量%以上であり、好ましくは10重量%以下、より好ましくは8重量%以下である。(A11)可撓性エポキシ化合物の含有量が上記下限以上であると、硬化物の柔軟性がより一層高くなる。(A11)可撓性エポキシ化合物の含有量が上記上限以下であると、半導体素子保護用材料の塗布性がより一層高くなる。 The content of the (A11) flexible epoxy compound in 100% by weight of the semiconductor device protection material is preferably 3% by weight or more, more preferably 5% by weight or more, preferably 10% by weight or less, more preferably. It is 8% by weight or less. (A11) When the content of the flexible epoxy compound is at least the above lower limit, the flexibility of the cured product becomes even higher. When the content of the flexible epoxy compound (A11) is not more than the above upper limit, the coatability of the semiconductor device protection material is further improved.

上記半導体素子保護用材料100重量%中、(A11)可撓性エポキシ化合物と(A12)エポキシ化合物との合計の含有量は好ましくは5重量%以上、より好ましくは8重量%以上であり、好ましくは15重量%以下、より好ましくは12重量%以下である。(A11)可撓性エポキシ化合物と(A12)エポキシ化合物との合計の含有量が上記下限以上及び上記上限以下であると、半導体素子保護用材料の塗布性、硬化物の柔軟性及び耐湿性がより一層良好になり、硬化物の半導体素子に対する接着性がより一層良好になり、保護フィルムに対する貼り付きをより一層抑えることができる。 The total content of the (A11) flexible epoxy compound and the (A12) epoxy compound in 100% by weight of the semiconductor device protection material is preferably 5% by weight or more, more preferably 8% by weight or more, and is preferable. Is 15% by weight or less, more preferably 12% by weight or less. When the total content of the (A11) flexible epoxy compound and the (A12) epoxy compound is equal to or higher than the above lower limit and lower than the above upper limit, the coatability of the semiconductor device protection material, the flexibility of the cured product, and the moisture resistance are improved. It becomes even better, the adhesiveness of the cured product to the semiconductor element becomes even better, and the adhesion to the protective film can be further suppressed.

(A12)エポキシ化合物としては、ビスフェノール骨格を有するエポキシ化合物、ジシクロペンタジエン骨格を有するエポキシ化合物、ナフタレン骨格を有するエポキシ化合物、アダマンタン骨格を有するエポキシ化合物、フルオレン骨格を有するエポキシ化合物、ビフェニル骨格を有するエポキシ化合物、バイ(グリシジルオキシフェニル)メタン骨格を有するエポキシ化合物、キサンテン骨格を有するエポキシ化合物、アントラセン骨格を有するエポキシ化合物、及びピレン骨格を有するエポキシ化合物等が挙げられる。これらの水素添加物又は変性物を用いてもよい。(A12)エポキシ化合物は、ポリアルキレングリコールジグリシジルエーテルではないことが好ましい。 (A12) Examples of the epoxy compound include an epoxy compound having a bisphenol skeleton, an epoxy compound having a dicyclopentadiene skeleton, an epoxy compound having a naphthalene skeleton, an epoxy compound having an adamantan skeleton, an epoxy compound having a fluorene skeleton, and an epoxy having a biphenyl skeleton. Examples thereof include compounds, epoxy compounds having a bi (glycidyloxyphenyl) methane skeleton, epoxy compounds having a xanthene skeleton, epoxy compounds having an anthracene skeleton, and epoxy compounds having a pyrene skeleton. These hydrogenated products or modified products may be used. The epoxy compound (A12) is preferably not a polyalkylene glycol diglycidyl ether.

本発明の効果がより一層優れることから、(A12)エポキシ化合物は、ビスフェノール骨格を有するエポキシ化合物(ビスフェノール型エポキシ化合物)であることが好ましい。 Since the effect of the present invention is further excellent, the epoxy compound (A12) is preferably an epoxy compound having a bisphenol skeleton (bisphenol type epoxy compound).

上記ビスフェノール骨格を有するエポキシ化合物としては、例えば、ビスフェノールA型、ビスフェノールF型又はビスフェノールS型のビスフェノール骨格を有するエポキシモノマー等が挙げられる。 Examples of the epoxy compound having a bisphenol skeleton include an epoxy monomer having a bisphenol A type, a bisphenol F type or a bisphenol S type bisphenol skeleton.

上記ジシクロペンタジエン骨格を有するエポキシ化合物としては、ジシクロペンタジエンジオキシド、及びジシクロペンタジエン骨格を有するフェノールノボラックエポキシモノマー等が挙げられる。 Examples of the epoxy compound having a dicyclopentadiene skeleton include dicyclopentadiene dioxide and a phenol novolac epoxy monomer having a dicyclopentadiene skeleton.

上記ナフタレン骨格を有するエポキシ化合物としては、1−グリシジルナフタレン、2−グリシジルナフタレン、1,2−ジグリシジルナフタレン、1,5−ジグリシジルナフタレン、1,6−ジグリシジルナフタレン、1,7−ジグリシジルナフタレン、2,7−ジグリシジルナフタレン、トリグリシジルナフタレン、及び1,2,5,6−テトラグリシジルナフタレン等が挙げられる。 Examples of the epoxy compound having a naphthalene skeleton include 1-glycidylnaphthalene, 2-glycidylnaphthalene, 1,2-diglycidylnaphthalene, 1,5-diglycidylnaphthalene, 1,6-diglycidylnaphthalene, and 1,7-diglycidyl. Examples thereof include naphthalene, 2,7-diglycidylnaphthalene, triglycidylnaphthalene, and 1,2,5,6-tetraglycidylnaphthalene.

上記アダマンタン骨格を有するエポキシ化合物としては、1,3−ビス(4−グリシジルオキシフェニル)アダマンタン、及び2,2−ビス(4−グリシジルオキシフェニル)アダマンタン等が挙げられる。 Examples of the epoxy compound having an adamantane skeleton include 1,3-bis (4-glycidyloxyphenyl) adamantane and 2,2-bis (4-glycidyloxyphenyl) adamantane.

上記フルオレン骨格を有するエポキシ化合物としては、9,9−ビス(4−グリシジルオキシフェニル)フルオレン、9,9−ビス(4−グリシジルオキシ−3−メチルフェニル)フルオレン、9,9−ビス(4−グリシジルオキシ−3−クロロフェニル)フルオレン、9,9−ビス(4−グリシジルオキシ−3−ブロモフェニル)フルオレン、9,9−ビス(4−グリシジルオキシ−3−フルオロフェニル)フルオレン、9,9−ビス(4−グリシジルオキシ−3−メトキシフェニル)フルオレン、9,9−ビス(4−グリシジルオキシ−3,5−ジメチルフェニル)フルオレン、9,9−ビス(4−グリシジルオキシ−3,5−ジクロロフェニル)フルオレン、及び9,9−ビス(4−グリシジルオキシ−3,5−ジブロモフェニル)フルオレン等が挙げられる。 Examples of the epoxy compound having a fluorene skeleton include 9,9-bis (4-glycidyloxyphenyl) fluorene, 9,9-bis (4-glycidyloxy-3-methylphenyl) fluorene, and 9,9-bis (4-). Glycidyloxy-3-chlorophenyl) fluorene, 9,9-bis (4-glycidyloxy-3-bromophenyl) fluorene, 9,9-bis (4-glycidyloxy-3-fluorophenyl) fluorene, 9,9-bis (4-Glysidyloxy-3-methoxyphenyl) fluorene, 9,9-bis (4-glycidyloxy-3,5-dimethylphenyl) Fluorene, 9,9-bis (4-glycidyloxy-3,5-dichlorophenyl) Fluorene, 9,9-bis (4-glycidyloxy-3,5-dibromophenyl) fluorene and the like can be mentioned.

上記ビフェニル骨格を有するエポキシ化合物としては、4,4’−ジグリシジルビフェニル、及び4,4’−ジグリシジル−3,3’,5,5’−テトラメチルビフェニル等が挙げられる。 Examples of the epoxy compound having a biphenyl skeleton include 4,4'-diglycidyl biphenyl, 4,4'-diglycidyl-3,3', 5,5'-tetramethylbiphenyl and the like.

上記バイ(グリシジルオキシフェニル)メタン骨格を有するエポキシ化合物としては、1,1’−バイ(2,7−グリシジルオキシナフチル)メタン、1,8’−バイ(2,7−グリシジルオキシナフチル)メタン、1,1’−バイ(3,7−グリシジルオキシナフチル)メタン、1,8’−バイ(3,7−グリシジルオキシナフチル)メタン、1,1’−バイ(3,5−グリシジルオキシナフチル)メタン、1,8’−バイ(3,5−グリシジルオキシナフチル)メタン、1,2’−バイ(2,7−グリシジルオキシナフチル)メタン、1,2’−バイ(3,7−グリシジルオキシナフチル)メタン、及び1,2’−バイ(3,5−グリシジルオキシナフチル)メタン等が挙げられる。 Examples of the epoxy compound having a bi (glycidyloxyphenyl) methane skeleton include 1,1'-bi (2,7-glycidyloxynaphthyl) methane and 1,8'-bi (2,7-glycidyloxynaphthyl) methane. 1,1'-by (3,7-glycidyloxynaphthyl) methane, 1,8'-by (3,7-glycidyloxynaphthyl) methane, 1,1'-by (3,5-glycidyloxynaphthyl) methane , 1,8'-by (3,5-glycidyloxynaphthyl) methane, 1,2'-by (2,7-glycidyloxynaphthyl) methane, 1,2'-by (3,7-glycidyloxynaphthyl) Examples thereof include methane and 1,2-bye (3,5-glycidyloxynaphthyl) methane.

上記キサンテン骨格を有するエポキシ化合物としては、1,3,4,5,6,8−ヘキサメチル−2,7−ビス−オキシラニルメトキシ−9−フェニル−9H−キサンテン等が挙げられる。 Examples of the epoxy compound having a xanthene skeleton include 1,3,4,5,6,8-hexamethyl-2,7-bis-oxylanylmethoxy-9-phenyl-9H-xanthene.

(A11)可撓性エポキシ化合物100重量部に対して、(A12)エポキシ化合物の含有量は好ましくは10重量部以上、より好ましくは20重量部以上であり、好ましくは100重量部以下、より好ましくは90重量部以下である。(A12)エポキシ化合物の含有量が上記下限以上であると、半導体素子保護用材料の塗布性がより一層高くなり、硬化物の半導体素子に対する接着性がより一層高くなる。(A12)エポキシ化合物の含有量が上記上限以下であると、硬化物の柔軟性がより一層高くなる。 The content of the (A12) epoxy compound is preferably 10 parts by weight or more, more preferably 20 parts by weight or more, and preferably 100 parts by weight or less, more preferably, with respect to 100 parts by weight of the flexible epoxy compound (A11). Is 90 parts by weight or less. When the content of the epoxy compound (A12) is at least the above lower limit, the coatability of the material for protecting the semiconductor element is further increased, and the adhesiveness of the cured product to the semiconductor element is further increased. When the content of the epoxy compound (A12) is not more than the above upper limit, the flexibility of the cured product is further increased.

(A2)シリコーン化合物は、例えば、珪素原子に結合したアルケニル基を有するシリコーン化合物と、珪素原子に結合した水素原子を有するシリコーン化合物とを含む。珪素原子に結合したアルケニル基を有するシリコーン化合物は、珪素原子に結合した水素原子を有さなくてもよい。 (A2) The silicone compound includes, for example, a silicone compound having an alkenyl group bonded to a silicon atom and a silicone compound having a hydrogen atom bonded to a silicon atom. A silicone compound having an alkenyl group bonded to a silicon atom does not have to have a hydrogen atom bonded to the silicon atom.

上記珪素原子に結合したアルケニル基を有するシリコーン化合物は、下記式(1A)で表されるシリコーン化合物、下記式(2A)で表されるシリコーン化合物、又は下記式(3A)で表されるシリコーン化合物であることが好ましい。 The silicone compound having an alkenyl group bonded to the silicon atom is a silicone compound represented by the following formula (1A), a silicone compound represented by the following formula (2A), or a silicone compound represented by the following formula (3A). Is preferable.

(R1R2R3SiO1/2(R4R5SiO2/2 …(1A) (R1R2R3SiO 1/2 ) a (R4R5SiO 2/2 ) b ... (1A)

上記式(1A)中、a及びbは、0.01≦a≦0.2、0.8≦b≦0.99を満たし、R1〜R5の1mol%以上、20mol%以下はアルケニル基を表し、R1〜R5の80mol%以上、99mol%以下はメチル基及びフェニル基を表し、アルケニル基、メチル基及びフェニル基以外のR1〜R5は、炭素数2〜6のアルキル基を表す。 In the above formula (1A), a and b satisfy 0.01 ≦ a ≦ 0.2 and 0.8 ≦ b ≦ 0.99, and 1 mol% or more and 20 mol% or less of R1 to R5 represent an alkenyl group. , 80 mol% or more and 99 mol% or less of R1 to R5 represent a methyl group and a phenyl group, and R1 to R5 other than the alkenyl group, the methyl group and the phenyl group represent an alkyl group having 2 to 6 carbon atoms.

(R1R2R3SiO1/2(SiO4/2 …(2A) (R1R2R3SiO 1/2 ) a (SiO 4/2 ) b ... (2A)

上記式(2A)中、a及びbは、0.7≦a≦0.9、0.1≦b≦0.3を満たし、R1〜R3の1mol%以上、33mol%以下はアルケニル基を表し、R1〜R3の67mol%以上、99mol%以下はメチル基及びフェニル基を表し、アルケニル基、メチル基及びフェニル基以外のR1〜R3は、炭素数2〜6のアルキル基を表す。R1〜R3の1mol%以上、20mol%以下はアルケニル基を表していてもよく、R1〜R3の80mol%以上、99mol%以下はメチル基及びフェニル基を表していてもよい。 In the above formula (2A), a and b satisfy 0.7 ≦ a ≦ 0.9 and 0.1 ≦ b ≦ 0.3, and 1 mol% or more and 33 mol% or less of R1 to R3 represent an alkenyl group. , 67 mol% or more and 99 mol% or less of R1 to R3 represent a methyl group and a phenyl group, and R1 to R3 other than the alkenyl group, the methyl group and the phenyl group represent an alkyl group having 2 to 6 carbon atoms. 1 mol% or more and 20 mol% or less of R1 to R3 may represent an alkenyl group, and 80 mol% or more and 99 mol% or less of R1 to R3 may represent a methyl group and a phenyl group.

(R1R2R3SiO1/2(R4R5SiO2/2(R6SiO3/2 …(3A) (R1R2R3SiO 1/2 ) a (R4R5SiO 2/2 ) b (R6SiO 3/2 ) c ... (3A)

上記式(3A)中、a、b及びcは、0.05≦a≦0.3、0≦b≦0.8、0.15≦c≦0.85を満たし、R1〜R6の2mol%以上、20mol%以下はアルケニル基を表し、R1〜R6の80mol%以上、95mol%以下はメチル基及びフェニル基を表し、アルケニル基、メチル基及びフェニル基以外のR1〜R6は、炭素数2〜6のアルキル基を表す。 In the above formula (3A), a, b and c satisfy 0.05 ≦ a ≦ 0.3, 0 ≦ b ≦ 0.8 and 0.15 ≦ c ≦ 0.85, and are 2 mol% of R1 to R6. As mentioned above, 20 mol% or less represents an alkenyl group, 80 mol% or more of R1 to R6, 95 mol% or less represents a methyl group and a phenyl group, and R1 to R6 other than the alkenyl group, the methyl group and the phenyl group have 2 to 2 carbon atoms. Represents an alkyl group of 6.

上記珪素原子に結合した水素原子を有するシリコーン化合物は、下記式(1B)で表されるシリコーン化合物であることが好ましい。 The silicone compound having a hydrogen atom bonded to the silicon atom is preferably a silicone compound represented by the following formula (1B).

(R1R2R3SiO1/2(R4R5SiO2/2 …(1B) (R1R2R3SiO 1/2 ) a (R4R5SiO 2/2 ) b ... (1B)

上記式(1B)中、a及びbは、0.1≦a≦0.67、0.33≦b≦0.9を満たし、R1〜R5の1mol%以上、25mol以下%は水素原子を表し、R1〜R5の75mol%以上、99mol%以下はメチル基及びフェニル基を表し、水素原子、メチル基及びフェニル基以外のR1〜R5は、炭素数2〜6のアルキル基を表す。 In the above formula (1B), a and b satisfy 0.1 ≦ a ≦ 0.67 and 0.33 ≦ b ≦ 0.9, and 1 mol% or more and 25 mol or less% of R1 to R5 represent hydrogen atoms. , 75 mol% or more and 99 mol% or less of R1 to R5 represent a methyl group and a phenyl group, and R1 to R5 other than a hydrogen atom, a methyl group and a phenyl group represent an alkyl group having 2 to 6 carbon atoms.

(A2)シリコーン化合物は、上記式(1A)で表されるシリコーン化合物を含むことが好ましい。(A2)シリコーン化合物は、上記式(1A)で表されるシリコーン化合物と、上記式(2A)で表されるシリコーン化合物とを含むか、又は、上記式(1A)で表されるシリコーン化合物と、上記式(3A)で表されるシリコーン化合物とを含むことが好ましい。 The silicone compound (A2) preferably contains the silicone compound represented by the above formula (1A). The silicone compound (A2) contains the silicone compound represented by the above formula (1A) and the silicone compound represented by the above formula (2A), or the silicone compound represented by the above formula (1A). , It is preferable to include a silicone compound represented by the above formula (3A).

硬化物の接着性を効果的に高め、硬化物の剥離を効果的に高める観点からは、(A)熱硬化性化合物が、(A1)シリコーン化合物として、上記式(2A)又は(3A)で表されるシリコーン化合物と、上記式(1B)で表されるシリコーン化合物とを含むこと好ましい。絶縁信頼性を高める観点からは、(A)熱硬化性化合物が、(A1)シリコーン化合物として、上記式(3A)で表されるシリコーン化合物と、上記式(1B)で表されるシリコーン化合物とを含むこと好ましい。接続対象部材の反りをより一層抑える観点からは、(A)熱硬化性化合物が、(A1)シリコーン化合物として、上記式(1A)で表されるシリコーン化合物と、上記式(1B)で表されるシリコーン化合物とを含むこと好ましい。 From the viewpoint of effectively enhancing the adhesiveness of the cured product and effectively enhancing the peeling of the cured product, the (A) thermosetting compound can be used as the (A1) silicone compound according to the above formula (2A) or (3A). It is preferable to include the silicone compound represented by the above formula (1B) and the silicone compound represented by the above formula (1B). From the viewpoint of enhancing insulation reliability, the (A) thermosetting compound is, as the (A1) silicone compound, a silicone compound represented by the above formula (3A) and a silicone compound represented by the above formula (1B). It is preferable to include. From the viewpoint of further suppressing the warp of the member to be connected, the (A) thermosetting compound is represented as the (A1) silicone compound by the silicone compound represented by the above formula (1A) and the above formula (1B). It is preferable to include a silicone compound.

上記半導体素子保護用材料100重量%中、(A2)シリコーン化合物の含有量は、好ましくは5重量%以上、より好ましくは8重量%以上であり、好ましくは20重量%以下、より好ましくは15重量%以下である。(A2)シリコーン化合物の含有量が上記下限以上及び上記上限以下であると、半導体素子保護用材料の塗布性、硬化物の柔軟性及び耐湿性がより一層良好になり、硬化物の半導体素子に対する接着性がより一層良好になり、保護フィルムに対する貼り付きをより一層抑えることができる。 The content of the (A2) silicone compound in 100% by weight of the semiconductor device protection material is preferably 5% by weight or more, more preferably 8% by weight or more, preferably 20% by weight or less, and more preferably 15% by weight. % Or less. When the content of the silicone compound (A2) is equal to or higher than the above lower limit and lower than the above upper limit, the coatability of the material for protecting the semiconductor element, the flexibility of the cured product, and the moisture resistance are further improved, and the cured product with respect to the semiconductor element Adhesiveness becomes even better, and sticking to the protective film can be further suppressed.

上記珪素原子に結合した水素原子を有するシリコーン化合物100重量部に対して、上記珪素原子に結合したアルケニル基を有するシリコーン化合物の含有量は好ましくは10重量部以上であり、好ましくは400重量部以下である。この含有量の関係を満足すると、半導体素子保護用材料の塗布性、硬化物の柔軟性及び耐湿性がより一層良好になり、硬化物の半導体素子に対する接着性がより一層良好になり、保護フィルムに対する貼り付きをより一層抑えることができる。 The content of the silicone compound having an alkenyl group bonded to the silicon atom is preferably 10 parts by weight or more, preferably 400 parts by weight or less, based on 100 parts by weight of the silicone compound having a hydrogen atom bonded to the silicon atom. Is. When this relationship of contents is satisfied, the coatability of the material for protecting the semiconductor element, the flexibility of the cured product and the moisture resistance are further improved, the adhesiveness of the cured product to the semiconductor element is further improved, and the protective film is used. It is possible to further suppress sticking to.

((B)硬化剤又は硬化触媒)
(B)硬化剤又は硬化触媒として、(B1)硬化剤を用いてもよく、(B2)硬化触媒を用いてもよい。(A1)エポキシ化合物を用いる場合には、(B1)硬化剤が好ましい。(A2)シリコーン化合物を用いる場合には、(B2)硬化触媒が好ましい。
((B) Curing agent or curing catalyst)
As the (B) curing agent or curing catalyst, (B1) curing agent may be used, or (B2) curing catalyst may be used. When the (A1) epoxy compound is used, the (B1) curing agent is preferable. When the (A2) silicone compound is used, the (B2) curing catalyst is preferable.

(B1)硬化剤は、23℃で液状であってもよく、固形であってもよい。半導体素子保護用材料の塗布性をより一層高める観点からは、(B1)硬化剤は、23℃で液状である硬化剤であることが好ましい。また、23℃で液状である硬化剤の使用により、半導体素子保護用材料の半導体素子の表面に対する濡れ性が高くなる。(B1)硬化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。(B2)硬化触媒は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The curing agent (B1) may be liquid or solid at 23 ° C. From the viewpoint of further improving the coatability of the semiconductor element protection material, the (B1) curing agent is preferably a curing agent that is liquid at 23 ° C. Further, by using a curing agent that is liquid at 23 ° C., the wettability of the material for protecting the semiconductor element to the surface of the semiconductor element is increased. (B1) As the curing agent, only one kind may be used, or two or more kinds may be used in combination. (B2) As the curing catalyst, only one type may be used, or two or more types may be used in combination.

(B1)硬化剤としては、アミン化合物(アミン硬化剤)、イミダゾール化合物(イミダゾール硬化剤)、フェノール化合物(フェノール硬化剤)及び酸無水物(酸無水物硬化剤)等が挙げられる。(B1)硬化剤はイミダゾール化合物でなくてもよい。 Examples of the (B1) curing agent include an amine compound (amine curing agent), an imidazole compound (imidazole curing agent), a phenol compound (phenol curing agent), and an acid anhydride (acid anhydride curing agent). (B1) The curing agent does not have to be an imidazole compound.

硬化物中でのボイドの発生をより一層抑え、硬化物の耐熱性をより一層高める観点からは、(B1)硬化剤は、フェノール化合物であることが好ましい。 From the viewpoint of further suppressing the generation of voids in the cured product and further enhancing the heat resistance of the cured product, the (B1) curing agent is preferably a phenol compound.

半導体素子保護用材料の塗布性をより一層高め、硬化物中でのボイドの発生をより一層抑え、硬化物の耐熱性をより一層高める観点からは、(B1)硬化剤は、アリル基を有することが好ましく、上記フェノール化合物がアリル基を有することが好ましい。 From the viewpoint of further improving the coatability of the semiconductor device protection material, further suppressing the generation of voids in the cured product, and further enhancing the heat resistance of the cured product, the (B1) curing agent has an allyl group. It is preferable that the phenol compound has an allyl group.

上記フェノール化合物としては、フェノールノボラック、o−クレゾールノボラック、p−クレゾールノボラック、t−ブチルフェノールノボラック、ジシクロペンタジエンクレゾール、ポリパラビニルフェノール、ビスフェノールA型ノボラック、キシリレン変性ノボラック、デカリン変性ノボラック、ポリ(ジ−o−ヒドロキシフェニル)メタン、ポリ(ジ−m−ヒドロキシフェニル)メタン、及びポリ(ジ−p−ヒドロキシフェニル)メタン等が挙げられる。 Examples of the phenol compound include phenol novolac, o-cresol novolak, p-cresol novolak, t-butylphenol novolak, dicyclopentadiencresol, polyparavinylphenol, bisphenol A type novolak, xylylene-modified novolak, decalin-modified novolak, and poly (di). Examples thereof include -o-hydroxyphenyl) methane, poly (di-m-hydroxyphenyl) methane, and poly (di-p-hydroxyphenyl) methane.

(B1)硬化剤を用いる場合に、(A)熱硬化性化合物100重量部に対して、(B1)硬化剤の含有量は、好ましくは50重量部以上、より好ましくは75重量部以上、更に好ましくは100重量部以上であり、好ましくは250重量部以下、より好ましくは225重量部以下、更に好ましくは200重量部以下である。(B1)硬化剤の含有量が上記下限以上であると、半導体素子保護用材料を良好に硬化させることができる。(B1)硬化剤の含有量が上記上限以下であると、硬化物内における硬化に寄与しなかった(B1)硬化剤の残存量が少なくなる。 When the (B1) curing agent is used, the content of the (B1) curing agent is preferably 50 parts by weight or more, more preferably 75 parts by weight or more, and further, with respect to 100 parts by weight of the (A) thermosetting compound. It is preferably 100 parts by weight or more, preferably 250 parts by weight or less, more preferably 225 parts by weight or less, and further preferably 200 parts by weight or less. (B1) When the content of the curing agent is at least the above lower limit, the semiconductor element protection material can be satisfactorily cured. When the content of the (B1) curing agent is not more than the above upper limit, the residual amount of the (B1) curing agent that did not contribute to curing in the cured product is reduced.

(B2)硬化触媒としては、ヒドロシリル化反応用触媒及び縮合触媒などの金属触媒等が挙げられる。 Examples of the (B2) curing catalyst include a hydrosilylation reaction catalyst and a metal catalyst such as a condensation catalyst.

上記硬化触媒としては、例えば、錫系触媒、白金系触媒、ロジウム系触媒及びパラジウム系触媒等が挙げられる。透明性を高くすることができるため、白金系触媒が好ましい。 Examples of the curing catalyst include tin catalysts, platinum catalysts, rhodium catalysts, palladium catalysts and the like. Platinum-based catalysts are preferable because they can increase transparency.

上記ヒドロシリル化反応用触媒は、シリコーン化合物中の珪素原子に結合した水素原子と、シリコーン化合物中のアルケニル基とをヒドロシリル化反応させる触媒である。上記ヒドロシリル化反応用触媒は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The catalyst for hydrosilylation reaction is a catalyst for hydrosilylation reaction of a hydrogen atom bonded to a silicon atom in a silicone compound and an alkenyl group in the silicone compound. Only one kind of the catalyst for hydrosilylation reaction may be used, or two or more kinds may be used in combination.

上記白金系触媒としては、白金粉末、塩化白金酸、白金−アルケニルシロキサン錯体、白金−オレフィン錯体及び白金−カルボニル錯体が挙げられる。特に、白金−アルケニルシロキサン錯体又は白金−オレフィン錯体が好ましい。 Examples of the platinum-based catalyst include platinum powder, platinum chloride acid, platinum-alkenylsiloxane complex, platinum-olefin complex and platinum-carbonyl complex. In particular, a platinum-alkenylsiloxane complex or a platinum-olefin complex is preferable.

上記白金−アルケニルシロキサン錯体におけるアルケニルシロキサンとしては、例えば、1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン、及び1,3,5,7−テトラメチル−1,3,5,7−テトラビニルシクロテトラシロキサン等が挙げられる。上記白金−オレフィン錯体におけるオレフィンとしては、例えば、アリルエーテル及び1,6−ヘプタジエン等が挙げられる。 Examples of the alkenylsiloxane in the platinum-alkenylsiloxane complex include 1,3-divinyl-1,1,3,3-tetramethyldisiloxane and 1,3,5,7-tetramethyl-1,3,5. , 7-Tetravinylcyclotetrasiloxane and the like. Examples of the olefin in the platinum-olefin complex include allyl ether and 1,6-heptadiene.

上記白金−アルケニルシロキサン錯体及び白金−オレフィン錯体の安定性を向上させることができるため、上記白金−アルケニルシロキサン錯体又は白金−オレフィン錯体に、アルケニルシロキサン、オルガノシロキサンオリゴマー、アリルエーテル又はオレフィンを添加することが好ましい。上記アルケニルシロキサンは、好ましくは1,3−ジビニル−1,1,3,3−テトラメチルジシロキサンである。上記オルガノシロキサンオリゴマーは、好ましくはジメチルシロキサンオリゴマーである。上記オレフィンは、好ましくは1,6−ヘプタジエンである。 Since the stability of the platinum-alkenylsiloxane complex and the platinum-olefin complex can be improved, an alkenylsiloxane, an organosiloxane oligomer, an allyl ether or an olefin is added to the platinum-alkenylsiloxane complex or the platinum-olefin complex. Is preferable. The alkenylsiloxane is preferably 1,3-divinyl-1,1,3,3-tetramethyldisiloxane. The organosiloxane oligomer is preferably a dimethylsiloxane oligomer. The olefin is preferably 1,6-heptadiene.

(B2)硬化触媒を用いる場合に、(A)熱硬化性化合物100重量部に対して、(B2)硬化触媒の含有量は、好ましくは0.001重量部以上、より好ましくは0.01重量部以上、更に好ましくは0.05重量部以上であり、好ましくは2重量部以下、より好ましくは1重量部以下、更に好ましくは0.5重量部以下である。(B2)硬化触媒の含有量が上記下限以上であると、半導体素子保護用材料を良好に硬化させることができる。(B2)硬化触媒の含有量が上記上限以下であると、硬化物内における硬化に寄与しなかった(B2)硬化触媒の残存量が少なくなる。 When the (B2) curing catalyst is used, the content of the (B2) curing catalyst is preferably 0.001 part by weight or more, more preferably 0.01 part by weight, based on 100 parts by weight of the (A) thermosetting compound. More than parts, more preferably 0.05 parts by weight or more, preferably 2 parts by weight or less, more preferably 1 part by weight or less, still more preferably 0.5 parts by weight or less. (B2) When the content of the curing catalyst is at least the above lower limit, the semiconductor device protection material can be satisfactorily cured. When the content of the (B2) curing catalyst is not more than the above upper limit, the residual amount of the (B2) curing catalyst that did not contribute to curing in the cured product is reduced.

((C)熱伝導率が10W/m・K以上である無機フィラー)
(C)熱伝導率が10W/m・K以上である無機フィラーを用いることによって、半導体素子保護用材料の塗布性を高く維持しつつ、かつ硬化物の柔軟性を高く維持しつつ、硬化物の放熱性を高めることができる。(C)無機フィラーは、1種のみが用いられてもよく、2種以上が併用されてもよい。
((C) Inorganic filler having a thermal conductivity of 10 W / m · K or more)
(C) By using an inorganic filler having a thermal conductivity of 10 W / m · K or more, the cured product is maintained with high coatability of the semiconductor device protection material and high flexibility of the cured product. It is possible to improve the heat dissipation of. As the inorganic filler (C), only one kind may be used, or two or more kinds may be used in combination.

硬化物の放熱性をより一層高める観点からは、(C)無機フィラーの熱伝導率は、好ましくは10W/m・K以上、より好ましくは15W/m・K以上、更に好ましくは20W/m・K以上である。(C)無機フィラーの熱伝導率の上限は特に限定されない。熱伝導率が300W/m・K程度である無機フィラーは広く知られており、また熱伝導率が200W/m・K程度である無機フィラーは容易に入手できる。 From the viewpoint of further enhancing the heat dissipation of the cured product, the thermal conductivity of the (C) inorganic filler is preferably 10 W / m · K or more, more preferably 15 W / m · K or more, still more preferably 20 W / m · K. It is K or more. (C) The upper limit of the thermal conductivity of the inorganic filler is not particularly limited. Inorganic fillers having a thermal conductivity of about 300 W / m · K are widely known, and inorganic fillers having a thermal conductivity of about 200 W / m · K are easily available.

硬化物の放熱性を効果的に高める観点からは、(C)無機フィラーは、アルミナ、窒化アルミニウム又は炭化ケイ素であることが好ましい。これらの好ましい無機フィラーを用いる場合に、これらの無機フィラーは、1種のみが用いられてもよく、2種以上が併用されてもよい。(C)無機フィラーとして、上記以外の無機フィラーを適宜用いてもよい。 From the viewpoint of effectively enhancing the heat dissipation of the cured product, the inorganic filler (C) is preferably alumina, aluminum nitride or silicon carbide. When these preferable inorganic fillers are used, only one kind of these inorganic fillers may be used, or two or more kinds thereof may be used in combination. (C) As the inorganic filler, an inorganic filler other than the above may be appropriately used.

半導体素子保護用材料の塗布性を効果的に高く維持しつつ、かつ硬化物の柔軟性を効果的に高く維持しつつ、硬化物の放熱性を効果的に高める観点からは、(C)無機フィラーは、熱伝導率が10W/m・K以上であり、かつ球状である無機フィラーであることが好ましい。球状とは、アスペクト比(長径/短径)が1以上、2以下であることをいう。 From the viewpoint of effectively improving the heat dissipation of the cured product while effectively maintaining the coatability of the semiconductor device protection material at a high level and effectively maintaining the flexibility of the cured product at a high level, (C) inorganic The filler is preferably an inorganic filler having a thermal conductivity of 10 W / m · K or more and a spherical shape. Spherical means that the aspect ratio (major axis / minor axis) is 1 or more and 2 or less.

(C)無機フィラーの平均粒子径は、好ましくは0.1μm以上であり、好ましくは150μm以下である。(C)無機フィラーの平均粒子径が上記下限以上であると、(C)無機フィラーを高密度で容易に充填できる。(C)無機フィラーの平均粒子径が上記上限以下であると、半導体素子保護用材料の塗布性がより一層高くなる。 The average particle size of the inorganic filler (C) is preferably 0.1 μm or more, and preferably 150 μm or less. When the average particle size of the (C) inorganic filler is at least the above lower limit, the (C) inorganic filler can be easily filled at a high density. When the average particle size of the inorganic filler (C) is not more than the above upper limit, the coatability of the semiconductor device protection material is further improved.

上記「平均粒子径」とは、レーザー回折式粒度分布測定装置により測定した体積平均での粒度分布測定結果から求められる平均粒子径である。 The above-mentioned "average particle size" is an average particle size obtained from a particle size distribution measurement result by volume average measured by a laser diffraction type particle size distribution measuring device.

上記硬化物100重量%中、及び、上記半導体素子保護用材料100重量%中、(C)無機フィラーの含有量は好ましくは60重量%以上、92重量%以下である。上記半導体素子保護用材料100重量%中、(C)無機フィラーの含有量はより好ましくは70重量%以上、更に好ましくは80重量%以上、特に好ましくは82重量%以上であり、より好ましくは90重量%以下である。(C)無機フィラーの含有量が上記下限以上であると、硬化物の放熱性がより一層高くなる。(C)無機フィラーの含有量が上記上限以下であると、半導体素子保護用材料の塗布性がより一層高くなり、硬化物の性状がより一層良好になる。 The content of the (C) inorganic filler in 100% by weight of the cured product and 100% by weight of the semiconductor device protection material is preferably 60% by weight or more and 92% by weight or less. The content of the (C) inorganic filler in 100% by weight of the semiconductor element protection material is more preferably 70% by weight or more, further preferably 80% by weight or more, particularly preferably 82% by weight or more, and more preferably 90% by weight. It is less than% by weight. When the content of the inorganic filler (C) is at least the above lower limit, the heat dissipation of the cured product becomes even higher. When the content of the inorganic filler (C) is not more than the above upper limit, the coatability of the semiconductor device protecting material is further improved, and the properties of the cured product are further improved.

((D)硬化促進剤)
(D)硬化促進剤の使用によって、硬化速度を速くし、半導体素子保護用材料を効率的に硬化させることができる。(D)硬化促進剤は1種のみが用いられてもよく、2種以上が併用されてもよい。
((D) Curing accelerator)
(D) By using the curing accelerator, the curing rate can be increased and the semiconductor device protection material can be efficiently cured. (D) Only one type of curing accelerator may be used, or two or more types may be used in combination.

(D)硬化促進剤としては、イミダゾール化合物、リン化合物、アミン化合物、及び有機金属化合物等が挙げられる。なかでも、本発明の効果がより一層優れることから、イミダゾール化合物が好ましい。 Examples of the (D) curing accelerator include imidazole compounds, phosphorus compounds, amine compounds, and organometallic compounds. Of these, the imidazole compound is preferable because the effect of the present invention is even more excellent.

上記イミダゾール化合物としては、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1,2−ジメチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾリウムトリメリテイト、1−シアノエチル−2−フェニルイミダゾリウムトリメリテイト、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−ウンデシルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−エチル−4’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジンイソシアヌル酸付加物、2−フェニルイミダゾールイソシアヌル酸付加物、2−メチルイミダゾールイソシアヌル酸付加物、2−フェニル−4,5−ジヒドロキシメチルイミダゾール及び2−フェニル−4−メチル−5−ジヒドロキシメチルイミダゾール、等が挙げられる。また、公知のイミダゾール系潜在性硬化剤を用いることができる。具体例としては、PN23、PN40、PN−H(商品名、いずれも味の素ファインテクノ社製)が挙げられる。また、マイクロカプセル化イミダゾールとも呼ばれる、アミン化合物のエポキシアダクトの水酸基に付加反応させた硬化促進剤が挙げられ、例えばノバキュアHX−3088、ノバキュアHX−3941、HX−3742、HX−3722(商品名、いずれも旭化成イーマテリアルズ社製)等が挙げられる。さらに、包摂イミダゾールを用いることもできる。具体例としては、TIC−188(商品名、日本曹達社製)が挙げられる。 Examples of the imidazole compound include 2-undecyl imidazole, 2-heptadecyl imidazole, 2-methyl imidazole, 2-ethyl-4-methyl imidazole, 2-phenyl imidazole, 2-phenyl-4-methyl imidazole and 1-benzyl-. 2-Methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-un Decylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimerite, 1-cyanoethyl-2-phenylimidazolium trimerite, 2,4-diamino-6- [2' -Methylimidazolyl- (1')]-ethyl-s-triazine, 2,4-diamino-6- [2'-undecylimidazolyl- (1')]-ethyl-s-triazine, 2,4-diamino- 6- [2'-ethyl-4'-methylimidazolyl- (1')]-ethyl-s-triazine, 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s -Triazine isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-methylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-dihydroxymethylimidazole , Etc. can be mentioned. Moreover, a known imidazole-based latent curing agent can be used. Specific examples include PN23, PN40, and PN-H (trade names, all manufactured by Ajinomoto Fine-Techno). Further, a curing accelerator which is also called microencapsulated imidazole and which is adducted to the hydroxyl group of the epoxy adduct of the amine compound can be mentioned. For example, Novacure HX-3088, Novacure HX-3941, HX-3742, HX-3722 (trade name, Both are manufactured by Asahi Kasei E-Materials Co., Ltd.). In addition, subsumed imidazole can also be used. Specific examples include TIC-188 (trade name, manufactured by Nippon Soda Corporation).

上記リン化合物としては、トリフェニルホスフィン等が挙げられる。 Examples of the phosphorus compound include triphenylphosphine and the like.

上記アミン化合物としては、2,4,6−トリス(ジメチルアミノメチル)フェノール、ジエチルアミン、トリエチルアミン、ジエチレンテトラミン、トリエチレンテトラミン及び4,4−ジメチルアミノピリジン等が挙げられる。 Examples of the amine compound include 2,4,6-tris (dimethylaminomethyl) phenol, diethylamine, triethylamine, diethylenetetramine, triethylenetetramine and 4,4-dimethylaminopyridine.

上記有機金属化合物としては、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)及びトリスアセチルアセトナートコバルト(III)等が挙げられる。 Examples of the organometallic compound include zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II) and trisacetylacetonate cobalt (III).

(A)熱硬化性化合物との合計100重量部に対して、(D)硬化促進剤の含有量は、好ましくは0.1重量部以上、より好ましくは0.5重量部以上であり、好ましくは10重量部以下、より好ましくは8重量部以下である。(D)硬化促進剤の含有量が上記下限以上であると、半導体素子保護用材料を良好に硬化させることができる。(D)硬化促進剤の含有量が上記上限以下であると、硬化物内における硬化に寄与しなかった(D)硬化促進剤の残存量が少なくなる。 The content of the (D) curing accelerator is preferably 0.1 part by weight or more, more preferably 0.5 part by weight or more, and is preferable with respect to 100 parts by weight in total with the (A) thermosetting compound. Is 10 parts by weight or less, more preferably 8 parts by weight or less. When the content of the curing accelerator (D) is at least the above lower limit, the semiconductor device protection material can be satisfactorily cured. When the content of the (D) curing accelerator is not more than the above upper limit, the residual amount of the (D) curing accelerator that did not contribute to curing in the cured product is reduced.

((E)カップリング剤)
上記半導体素子保護用材料は、(E)カップリング剤を含むことが好ましい。(E)カップリング剤の使用により、半導体素子保護用材料の硬化物の耐湿性がより一層高くなる。(E)カップリング剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
((E) Coupling agent)
The semiconductor device protection material preferably contains (E) a coupling agent. (E) By using the coupling agent, the moisture resistance of the cured product of the semiconductor element protection material is further increased. (E) As the coupling agent, only one type may be used, or two or more types may be used in combination.

上記硬化物100重量%中、及び、上記半導体素子保護用材料100重量%中、(E)カップリング剤の含有量は好ましくは0.1重量%以上、より好ましくは0.2重量%以上であり、好ましくは2重量%以下、より好ましくは1重量%以下である。(E)カップリング剤の含有量が上記下限以上であると、半導体素子保護用材料の硬化物の耐湿性がより一層高くなる。(E)カップリング剤の含有量が上記上限以下であると、半導体素子保護用材料の塗布性がより一層高くなる。 The content of the (E) coupling agent is preferably 0.1% by weight or more, more preferably 0.2% by weight or more in 100% by weight of the cured product and 100% by weight of the semiconductor element protection material. Yes, preferably 2% by weight or less, more preferably 1% by weight or less. When the content of the coupling agent (E) is at least the above lower limit, the moisture resistance of the cured product of the semiconductor device protection material becomes even higher. When the content of the coupling agent (E) is not more than the above upper limit, the coatability of the semiconductor element protection material becomes even higher.

上記(E)カップリング剤は、100℃での重量減少が10重量%以下であるシランカップリング剤、100℃での重量減少が10重量%以下であるチタネートカップリング剤、又は100℃での重量減少が10重量%以下であるアルミネートカップリング剤を含むことが好ましい。これらの好ましいカップリング剤を用いる場合に、これらのカップリング剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The coupling agent (E) is a silane coupling agent having a weight loss of 10% by weight or less at 100 ° C., a titanate coupling agent having a weight loss of 10% by weight or less at 100 ° C., or a titanate coupling agent at 100 ° C. It is preferable to include an aluminate coupling agent having a weight loss of 10% by weight or less. When these preferred coupling agents are used, only one type of these coupling agents may be used, or two or more types may be used in combination.

100℃における重量減少が10重量%以下であると、硬化中に(E)カップリング剤の揮発が抑制され、半導体素子に対する濡れ性がより一層高くなり、硬化物の放熱性がより一層高くなる。 When the weight loss at 100 ° C. is 10% by weight or less, the volatilization of the (E) coupling agent is suppressed during curing, the wettability to the semiconductor element becomes higher, and the heat dissipation of the cured product becomes higher. ..

なお、100℃における重量減少は、赤外水分計(ケツト科学研究所社製「FD−720」)を用い、50℃/分の昇温速度で100℃まで昇温し、10分後の重量減少を測定することにより求めることができる。 To reduce the weight at 100 ° C., use an infrared moisture meter (“FD-720” manufactured by Ketsuto Scientific Research Institute) to raise the temperature to 100 ° C. at a heating rate of 50 ° C./min, and the weight after 10 minutes. It can be determined by measuring the decrease.

((F)イオン捕捉剤)
硬化物の絶縁信頼性を効果的に高める観点からは、上記半導体素子保護用材料は、(F)イオン捕捉剤を含むことが好ましい。(F)イオン捕捉剤は1種のみが用いられてもよく、2種以上が併用されてもよい。
((F) Ion scavenger)
From the viewpoint of effectively enhancing the insulation reliability of the cured product, the semiconductor device protection material preferably contains (F) an ion scavenger. (F) Only one type of ion scavenger may be used, or two or more types may be used in combination.

(F)イオン捕捉剤は特に限定されない。該(F)イオン捕捉剤として、従来公知のイオン捕捉剤が使用可能である。 (F) The ion scavenger is not particularly limited. As the (F) ion scavenger, a conventionally known ion scavenger can be used.

(F)イオン捕捉剤の具体例としては、銅がイオン化して溶け出すのを防止するため銅害防止剤として知られる化合物が挙げられ、例えば、トリアジンチオール化合物、ビスフェノール系還元剤等を用いることができる。ビスフェノール系還元剤としては、2,2’−メチレン−ビス−(4−メチル−6−第3ブチルフェノール)、及び4,4’−チオ−ビス−(3−メチル−6−第3ブチルフェノール)等が挙げられる。また、(F)イオン捕捉剤の具体例としては、無機陰イオン交換体、無機陽イオン交換体及び無機両イオン交換体等も挙げられ、具体的には、一般式BiO(OH)(NO[ここで、Xは0.9〜1.1、Yは0.6〜0.8、Zは0.2〜0.4の正数である]で表される酸化ビスマス系イオン捕捉剤、酸化アンチモン系イオン捕捉剤、リン酸チタン系イオン捕捉剤、リン酸ジルコニウム系イオン捕捉剤、並びに、一般式MgAl(OH)2X+3Y−2Z(CO・mHO[ここで、X、Y、Zは2X+3Y−2Z≧0を満たす正数、mは正数である]で表されるハイドロタルサイト系イオン捕捉剤等が挙げられる。これらのイオン捕捉剤の市販品としては、例えば、IXE−100(東亞合成社製、リン酸ジルコニウム系イオン捕捉剤)、IXE−300(東亞合成社製、酸化アンチモン系イオン捕捉剤)、IXE−400(東亞合成社製、リン酸チタン系イオン捕捉剤)、IXE−500(東亞合成社製、酸化ビスマス系イオン捕捉剤)、IXE−600(東亞合成社製、酸化アンチモン・酸化ビスマス系イオン捕捉剤)、DHT−4A(ハイドロタルサイト系イオン捕捉剤、協和化学工業社製)、及びキョーワードKW−2000(ハイドロタルサイト系イオン捕捉剤、協和化学工業社製)等が挙げられる。硬化物の電気信頼性をより一層低くする観点からは、(F)イオン捕捉剤は、無機陽イオン交換体又は無機両イオン交換体であることが好ましい。 Specific examples of the (F) ion scavenger include compounds known as copper damage inhibitors for preventing copper from ionizing and leaching out, and for example, triazinethiol compounds, bisphenol-based reducing agents, and the like are used. Can be done. Examples of the bisphenol-based reducing agent include 2,2'-methylene-bis- (4-methyl-6-third butylphenol) and 4,4'-thio-bis- (3-methyl-6-third butylphenol). Can be mentioned. Specific examples of (F) ion scavenger, inorganic anion exchanger, the inorganic cation exchanger and an inorganic amphoteric ion exchangers such as also mentioned, specifically, the general formula BiO X (OH) Y ( NO 3 ) Z [Here, X is 0.9 to 1.1, Y is 0.6 to 0.8, and Z is a positive number of 0.2 to 0.4]. Ion trapping agent, antimony oxide ion trapping agent, titanium phosphate ion trapping agent, zirconium phosphate ion trapping agent, and general formula Mg X Al Y (OH) 2X + 3Y-2Z (CO 3 ) Z · mH 2 O Examples thereof include hydrotalite-based ion trapping agents represented by [where X, Y and Z are positive numbers satisfying 2X + 3Y-2Z ≧ 0 and m is a positive number]. Examples of commercially available products of these ion scavengers include IXE-100 (manufactured by Toa Synthetic Co., Ltd., zirconium phosphate scavenger), IXE-300 (manufactured by Toa Synthetic Co., Ltd., antimony oxide ion scavenger), and IXE- 400 (Toa Synthetic Co., Ltd., titanium phosphate scavenger), IXE-500 (Toa Synthetic Co., Ltd., bismuth oxide ion scavenger), IXE-600 (Toa Synthetic Co., Ltd., antimony oxide / bismuth oxide ion scavenger) Agent), DHT-4A (hydrotalcite-based ion scavenger, manufactured by Kyowa Chemical Industry Co., Ltd.), Kyoward KW-2000 (hydrotalcite-based ion scavenger, manufactured by Kyowa Chemical Industry Co., Ltd.) and the like. From the viewpoint of further lowering the electrical reliability of the cured product, the (F) ion scavenger is preferably an inorganic cation exchanger or an inorganic amphoteric exchanger.

マイグレーションをより一層抑制し、絶縁信頼性をより一層高める観点からは、上記陽イオン交換体は、Zr系陽イオン交換体又はSb系陽イオン交換体であることが好ましく、Zr系陽イオン交換体であることがより好ましく、また上記陽イオン交換体は、ジルコニウム原子を含むことが好ましい。 From the viewpoint of further suppressing migration and further enhancing insulation reliability, the cation exchanger is preferably a Zr-based cation exchanger or an Sb-based cation exchanger, and is preferably a Zr-based cation exchanger. It is more preferable that the cation exchanger contains a zirconium atom.

マイグレーションをより一層抑制し、絶縁信頼性をより一層高める観点からは、上記陰イオン交換体は、Bi系陰イオン交換体、Mg−Al系陰イオン交換体又はZr系陰イオン交換体であることが好ましく、Mg−Al系陰イオン交換体であることがより好ましく、また上記陰イオン交換体は、マグネシウム原子とアルミニウム原子とを含むことが好ましい。 From the viewpoint of further suppressing migration and further enhancing insulation reliability, the anion exchanger is a Bi-based anion exchanger, an Mg-Al-based anion exchanger, or a Zr-based anion exchanger. It is preferable that the Mg-Al-based anion exchanger is preferable, and the anion exchanger preferably contains a magnesium atom and an aluminum atom.

マイグレーションをより一層抑制し、絶縁信頼性をより一層高める観点からは、上記陽イオン交換体の中性交換容量は、好ましくは1meq/g以上、より好ましくは2meq/g以上であり、好ましくは10meq/g以下、より好ましくは4meq/g以下である。 From the viewpoint of further suppressing migration and further enhancing insulation reliability, the neutral exchange capacity of the cation exchanger is preferably 1 meq / g or more, more preferably 2 meq / g or more, and preferably 10 meq or more. It is / g or less, more preferably 4 meq / g or less.

マイグレーションをより一層抑制し、絶縁信頼性をより一層高める観点からは、上記陰イオン交換体の中性交換容量は、好ましくは0.1meq/g以上、より好ましくは1meq/g以上であり、好ましくは10meq/g以下、より好ましくは5meq/g以下である。 From the viewpoint of further suppressing migration and further enhancing insulation reliability, the neutral exchange capacity of the anion exchanger is preferably 0.1 meq / g or more, more preferably 1 meq / g or more, and is preferable. Is 10 meq / g or less, more preferably 5 meq / g or less.

マイグレーションをより一層抑制し、絶縁信頼性をより一層高める観点からは、上記陽イオン交換体のメディアン径は、好ましくは0.1μm以上、より好ましくは0.5μm以上であり、好ましくは10μm以下、より好ましくは3μm以下である。 From the viewpoint of further suppressing migration and further enhancing insulation reliability, the median diameter of the cation exchanger is preferably 0.1 μm or more, more preferably 0.5 μm or more, preferably 10 μm or less. More preferably, it is 3 μm or less.

マイグレーションをより一層抑制し、絶縁信頼性をより一層高める観点からは、上記陰イオン交換体のメディアン径は、好ましくは0.1μm以上、より好ましくは0.5μm以上であり、好ましくは10μm以下、より好ましくは3μm以下である。 From the viewpoint of further suppressing migration and further enhancing insulation reliability, the median diameter of the anion exchanger is preferably 0.1 μm or more, more preferably 0.5 μm or more, preferably 10 μm or less. More preferably, it is 3 μm or less.

マイグレーションをより一層抑制し、絶縁信頼性をより一層高める観点からは、上記硬化物100重量%中、及び、上記半導体素子保護用材料100重量%中、(F)イオン捕捉剤の含有量は、好ましくは0.1量%以上、より好ましくは0.3重量%以上であり、好ましくは3重量%以下、より好ましくは2重量%以下である。 From the viewpoint of further suppressing migration and further enhancing insulation reliability, the content of the (F) ion trapping agent in 100% by weight of the cured product and 100% by weight of the semiconductor device protection material is It is preferably 0.1% by weight or more, more preferably 0.3% by weight or more, preferably 3% by weight or less, and more preferably 2% by weight or less.

(他の成分)
上記半導体素子保護用材料は、必要に応じて、カルナバワックス等の天然ワックス、ポリエチレンワックス等の合成ワックス、ステアリン酸やステアリン酸亜鉛等の高級脂肪酸及びその金属塩類若しくはパラフィン等の離型剤;カーボンブラック、ベンガラ等の着色剤;臭素化エポキシ樹脂、三酸化アンチモン、水酸化アルミニウム、水酸化マグネシウム、硼酸亜鉛、モリブデン酸亜鉛、フォスファゼン等の難燃剤;酸化ビスマス水和物等の無機イオン交換体;シリコーンオイル、シリコーンゴム等の低応力化成分;酸化防止剤等の各種添加剤を含んでいてもよい。
(Other ingredients)
The material for protecting the semiconductor element is, if necessary, a natural wax such as carnauba wax, a synthetic wax such as polyethylene wax, a higher fatty acid such as stearic acid or zinc stearate, and a release agent such as metal salts thereof or paraffin; carbon. Colorants such as black and red iron oxide; flame retardants such as brominated epoxy resin, antimony trioxide, aluminum hydroxide, magnesium hydroxide, zinc borate, zinc molybdate, and phosphazene; inorganic ion exchangers such as bismuth oxide hydrate; Low stress components such as silicone oil and silicone rubber; various additives such as antioxidants may be contained.

上記半導体素子保護用材料は、分散剤を含むことが好ましい。分散剤の具体例としては、ポリカルボン酸塩、アルキルアンモニウム塩、アルキロールアンモニウム塩、リン酸エステル塩、アクリル系ブロック共重合物、及びポリマー塩等が挙げられる。 The semiconductor device protection material preferably contains a dispersant. Specific examples of the dispersant include polycarboxylic acid salts, alkylammonium salts, alkylolammonium salts, phosphoric acid ester salts, acrylic block copolymers, polymer salts and the like.

上記硬化物100重量%中、及び、上記半導体素子保護用材料100重量%中、分散剤の含有量は、好ましくは0.1重量%以上、より好ましくは0.2重量%以上であり、好ましくは2重量%以下、より好ましくは1重量%以下である。 The content of the dispersant in 100% by weight of the cured product and 100% by weight of the material for protecting the semiconductor element is preferably 0.1% by weight or more, more preferably 0.2% by weight or more, and is preferable. Is 2% by weight or less, more preferably 1% by weight or less.

(半導体素子保護用材料の他の詳細及び半導体装置)
上記半導体素子保護用材料は、半導体素子を保護するために、上記半導体素子の表面上に塗布して用いられる。上記半導体素子保護用材料は、半導体素子と他の接続対象部材との間に配置されて、上記半導体素子と上記他の接続対象部材とを剥離しないように接着及び固定する硬化物を形成するものとは異なる。上記半導体素子保護用材料は、半導体素子の表面を被覆する被覆材料であることが好ましい。上記半導体素子保護用材料は、半導体素子の側面上に塗布されないことが好ましい。上記半導体素子保護用材料は、上記半導体素子を封止するための材料とは異なることが好ましく、上記半導体素子を封止するための封止剤ではないことが好ましい。上記半導体素子保護用材料は、アンダーフィル材ではないことが好ましい。上記半導体素子が、第2の表面側に第1の電極を有し、上記半導体素子保護用材料は、上記半導体素子の上記第2の表面側とは反対の第1の表面上に塗布されて用いられることが好ましい。上記半導体素子保護用材料は、半導体装置において、半導体素子を保護するために、上記半導体素子の表面上に硬化物を形成するために好適に用いられる。上記半導体素子保護用材料は、半導体素子を保護するために、上記半導体素子の表面上に硬化物を形成するために好適に用いられ、かつ上記硬化物の上記半導体素子側とは反対の表面上に保護フィルムを配置して、半導体装置を得るために好適に用いられる。上記半導体装置において、上記硬化物の電気伝導度は50μS/cm以下であることが好ましい。
(Other details of semiconductor device protection materials and semiconductor devices)
The semiconductor element protection material is used by coating it on the surface of the semiconductor element in order to protect the semiconductor element. The semiconductor element protection material is arranged between the semiconductor element and another connection target member, and forms a cured product that adheres and fixes the semiconductor element and the other connection target member so as not to peel off. Is different. The semiconductor device protection material is preferably a coating material that covers the surface of the semiconductor device. It is preferable that the semiconductor element protection material is not applied on the side surface of the semiconductor element. The material for protecting the semiconductor element is preferably different from the material for sealing the semiconductor element, and is preferably not a sealing agent for sealing the semiconductor element. It is preferable that the semiconductor element protection material is not an underfill material. The semiconductor element has a first electrode on the second surface side, and the semiconductor element protection material is applied onto a first surface of the semiconductor element opposite to the second surface side. It is preferable to be used. The semiconductor element protection material is preferably used in a semiconductor device to form a cured product on the surface of the semiconductor element in order to protect the semiconductor element. The semiconductor element protection material is suitably used for forming a cured product on the surface of the semiconductor element in order to protect the semiconductor element, and is on the surface of the cured product opposite to the semiconductor element side. A protective film is placed in the semiconductor device, which is preferably used to obtain a semiconductor device. In the semiconductor device, the electric conductivity of the cured product is preferably 50 μS / cm or less.

上記半導体素子保護用材料を塗布する方法としては、ディスペンサーによる塗布方法、スクリーン印刷による塗布方法、及びインクジェット装置による塗布方法等が挙げられる。上記半導体素子保護用材料は、ディスペンサー、スクリーン印刷、真空スクリーン印刷又はインクジェット装置による塗布方法により塗布されて用いられることが好ましい。塗布が容易であり、かつ硬化物中にボイドをより一層生じ難くする観点からは、上記半導体素子保護用材料は、ディスペンサーにより塗布されて用いられることが好ましい。 Examples of the method for applying the semiconductor element protection material include a coating method using a dispenser, a coating method using screen printing, and a coating method using an inkjet device. The semiconductor element protection material is preferably applied and used by a dispenser, screen printing, vacuum screen printing or a coating method using an inkjet device. From the viewpoint of easy coating and making it more difficult for voids to be generated in the cured product, the semiconductor device protection material is preferably applied and used by a dispenser.

本発明に係る半導体装置は、半導体素子と、上記半導体素子の第1の表面上に配置された硬化物とを備える。本発明に係る半導体装置では、上記硬化物が、上述した半導体素子保護用材料を硬化させることにより形成されている。 The semiconductor device according to the present invention includes a semiconductor element and a cured product arranged on the first surface of the semiconductor element. In the semiconductor device according to the present invention, the cured product is formed by curing the semiconductor element protecting material described above.

上記半導体素子保護用材料は、半導体素子を保護するために、上記半導体素子の表面上に硬化物を形成し、かつ上記硬化物の上記半導体素子側とは反対の表面上に保護フィルムを配置して、半導体装置を得るために用いられるか、又は、半導体素子を保護するために、上記半導体素子の表面上に硬化物を形成し、かつ上記硬化物の上記半導体素子側とは反対の表面が露出している半導体装置を得るために用いられることが好ましい。本発明の効果がより一層有効に発揮されることから、上記半導体素子保護用材料は、ドライバICチップの保護用材料であることが好ましい。 In the semiconductor element protection material, in order to protect the semiconductor element, a cured product is formed on the surface of the semiconductor element, and a protective film is arranged on the surface of the cured product opposite to the semiconductor element side. Therefore, in order to obtain a semiconductor device or to protect the semiconductor element, a cured product is formed on the surface of the semiconductor element, and the surface of the cured product opposite to the semiconductor element side is formed. It is preferably used to obtain exposed semiconductor devices. Since the effects of the present invention are more effectively exhibited, the semiconductor element protection material is preferably a protection material for the driver IC chip.

図1は、本発明の第1の実施形態に係る半導体素子保護用材料を用いた半導体装置を示す部分切欠正面断面図である。 FIG. 1 is a partially cutaway front sectional view showing a semiconductor device using the semiconductor element protection material according to the first embodiment of the present invention.

図1に示す半導体装置1は、半導体素子2と、半導体素子2の第1の表面2a上に配置された硬化物3とを備える。硬化物3は、上述した半導体素子保護用材料を硬化させることにより形成されている。硬化物3は、半導体素子2の第1の表面2a上の一部の領域に配置されている。 The semiconductor device 1 shown in FIG. 1 includes a semiconductor element 2 and a cured product 3 arranged on the first surface 2a of the semiconductor element 2. The cured product 3 is formed by curing the above-mentioned semiconductor element protection material. The cured product 3 is arranged in a part of the region on the first surface 2a of the semiconductor element 2.

半導体素子2は、第1の表面2a側とは反対の第2の表面2b側に、第1の電極2Aを有する。半導体装置1は、接続対象部材4をさらに備える。接続対象部材4は、表面4aに第2の電極4Aを有する。半導体素子2と接続対象部材4とは、他の硬化物5(接続部)を介して接着及び固定されている。半導体素子2は、接続対象部材4上に実装されている。半導体素子2の第1の電極2Aと、接続対象部材4の第2の電極4Aとが対向しており、導電性粒子6により電気的に接続されている。第1の電極2Aと第2の電極4Aとが接触することで、電気的に接続されていてもよい。硬化物3は、半導体素子2の第1の電極2Aが配置されている側と反対の第1の表面2a上に配置されている。硬化物3は、半導体素子2の接続対象部材4側と反対の第1の表面2a上に配置されている。 The semiconductor element 2 has a first electrode 2A on the second surface 2b side opposite to the first surface 2a side. The semiconductor device 1 further includes a member 4 to be connected. The connection target member 4 has a second electrode 4A on the surface 4a. The semiconductor element 2 and the connection target member 4 are adhered and fixed via another cured product 5 (connecting portion). The semiconductor element 2 is mounted on the connection target member 4. The first electrode 2A of the semiconductor element 2 and the second electrode 4A of the member 4 to be connected face each other and are electrically connected by the conductive particles 6. The first electrode 2A and the second electrode 4A may be electrically connected by contact with each other. The cured product 3 is arranged on the first surface 2a opposite to the side on which the first electrode 2A of the semiconductor element 2 is arranged. The cured product 3 is arranged on the first surface 2a opposite to the connection target member 4 side of the semiconductor element 2.

硬化物3の半導体素子2側とは反対の表面上に、保護フィルム7が配置されている。それによって、硬化物3によって放熱性及び半導体素子の保護性を高めるだけでなく、保護フィルム7によっても、半導体素子の保護性をより一層高めることができる。硬化物3は、上述した組成を有して得られているため、硬化物3の保護フィルム7に対する貼り付きを抑えることができる。 The protective film 7 is arranged on the surface of the cured product 3 opposite to the semiconductor element 2 side. As a result, not only the heat dissipation property and the protection property of the semiconductor element can be enhanced by the cured product 3, but also the protection property of the semiconductor element can be further enhanced by the protective film 7. Since the cured product 3 has the above-mentioned composition, it is possible to suppress the adhesion of the cured product 3 to the protective film 7.

上記接続対象部材としては、ガラス基板、ガラスエポキシ基板及びフレキシブルプリント基板等が挙げられる。上記フレキシブルプリント基板としては、ポリイミド基板等の樹脂基板等が挙げられる。本発明の効果がより一層有効に発揮されることから、上記接続対象部材は、基板であることが好ましく、フレキシブルプリント基板であることが好ましく、樹脂基板であることが好ましく、ポリイミド基板であることがより好ましい。 Examples of the connection target member include a glass substrate, a glass epoxy substrate, a flexible printed circuit board, and the like. Examples of the flexible printed circuit board include a resin substrate such as a polyimide substrate. Since the effect of the present invention is more effectively exhibited, the connection target member is preferably a substrate, preferably a flexible printed circuit board, preferably a resin substrate, and is a polyimide substrate. Is more preferable.

半導体素子の表面上において、半導体素子保護用材料の硬化物の厚みは、好ましくは400μm以上、より好ましくは500μm以上であり、好ましくは2000μm以下、より好ましくは1900μm以下である。半導体素子保護用材料の硬化物の厚みは、半導体素子の厚みよりも薄くてもよい。 On the surface of the semiconductor device, the thickness of the cured product of the semiconductor device protection material is preferably 400 μm or more, more preferably 500 μm or more, preferably 2000 μm or less, and more preferably 1900 μm or less. The thickness of the cured product of the material for protecting the semiconductor element may be thinner than the thickness of the semiconductor element.

図2は、本発明の第2の実施形態に係る半導体素子保護用材料を用いた半導体装置を示す部分切欠正面断面図である。 FIG. 2 is a partially cutaway front sectional view showing a semiconductor device using the semiconductor element protection material according to the second embodiment of the present invention.

図2に示す半導体装置1Xは、半導体素子2と、半導体素子2の第1の表面2a上に配置された硬化物3Xとを備える。硬化物3Xは、上述した半導体素子保護用材料を硬化させることにより形成されている。硬化物3Xは、半導体素子2の第1の表面2a上の全体の領域に配置されている。硬化物3Xの半導体素子2側とは反対の表面上に、保護フィルムは配置されていない。硬化物3Xの半導体素子2側とは反対の表面は露出している。 The semiconductor device 1X shown in FIG. 2 includes a semiconductor element 2 and a cured product 3X arranged on the first surface 2a of the semiconductor element 2. The cured product 3X is formed by curing the above-mentioned semiconductor element protection material. The cured product 3X is arranged in the entire region on the first surface 2a of the semiconductor element 2. The protective film is not arranged on the surface of the cured product 3X opposite to the semiconductor element 2 side. The surface of the cured product 3X opposite to the semiconductor element 2 side is exposed.

上記半導体装置では、上記硬化物の上記半導体素子側とは反対の表面上に、保護フィルムが配置されているか、又は、上記硬化物の上記半導体素子側とは反対の表面が露出していることが好ましい。 In the semiconductor device, a protective film is arranged on the surface of the cured product opposite to the semiconductor element side, or the surface of the cured product opposite to the semiconductor element side is exposed. Is preferable.

なお、図1,2に示す構造は、半導体装置の一例にすぎず、半導体素子保護用材料の硬化物の配置構造等には適宜変形され得る。 The structures shown in FIGS. 1 and 2 are merely examples of the semiconductor device, and can be appropriately deformed into the arrangement structure of the cured product of the semiconductor element protection material.

半導体素子保護用材料の硬化物の熱伝導率は特に限定されないが、1.1W/m・Kを超えることが好ましく、1.5W/m・K以上であることがより好ましく、1.8W/m・K以上であることが更に好ましい。 The thermal conductivity of the cured product of the semiconductor device protection material is not particularly limited, but is preferably more than 1.1 W / m · K, more preferably 1.5 W / m · K or more, and 1.8 W / m · K or more. It is more preferably m · K or more.

以下、本発明の具体的な実施例及び比較例を挙げることにより、本発明を明らかにする。なお、本発明は以下の実施例に限定されない。 Hereinafter, the present invention will be clarified by giving specific examples and comparative examples of the present invention. The present invention is not limited to the following examples.

以下の材料を用いた。 The following materials were used.

(A1)エポキシ化合物
EX−821(n=4)((A11)可撓性エポキシ化合物、ナガセケムテックス社製、ポリエチレングリコールジグリシジルエーテル、エポキシ当量:185)
EX−830(n=9)((A11)可撓性エポキシ化合物、ナガセケムテックス社製、ポリエチレングリコールジグリシジルエーテル、エポキシ当量:268)
EX−931(n=11)((A11)可撓性エポキシ化合物、ナガセケムテックス社製、ポリプロピレングリコールジグリシジルエーテル、エポキシ当量:471)
EX−861(n=22)((A11)可撓性エポキシ化合物、ナガセケムテックス社製、ポリエチレングリコールジグリシジルエーテル、エポキシ当量:551)
PB3600(ダイセル社製、ポリプダジエン変性エポキシ樹脂、エポキシ当量:200)
jER828((A12)エポキシ化合物、三菱化学社製、ビスフェノールA型エポキシ樹脂、エポキシ当量:188)
jER834((A12)エポキシ化合物、三菱化学社製、ビスフェノールA型エポキシ樹脂、軟化点:30℃、エポキシ当量:255)
(A1) Epoxy compound EX-821 (n = 4) ((A11) Flexible epoxy compound, manufactured by Nagase ChemteX Corporation, polyethylene glycol diglycidyl ether, epoxy equivalent: 185)
EX-830 (n = 9) ((A11) flexible epoxy compound, manufactured by Nagase ChemteX, polyethylene glycol diglycidyl ether, epoxy equivalent: 268)
EX-931 (n = 11) ((A11) flexible epoxy compound, manufactured by Nagase ChemteX, polypropylene glycol diglycidyl ether, epoxy equivalent: 471)
EX-861 (n = 22) ((A11) flexible epoxy compound, manufactured by Nagase ChemteX, polyethylene glycol diglycidyl ether, epoxy equivalent: 551)
PB3600 (manufactured by Daicel, polypdadien modified epoxy resin, epoxy equivalent: 200)
jER828 ((A12) epoxy compound, manufactured by Mitsubishi Chemical Corporation, bisphenol A type epoxy resin, epoxy equivalent: 188)
jER834 ((A12) epoxy compound, manufactured by Mitsubishi Chemical Corporation, bisphenol A type epoxy resin, softening point: 30 ° C., epoxy equivalent: 255)

(A2)シリコーン化合物
[シリコーン化合物であるポリマーAの合成]
温度計、滴下装置及び攪拌機を備えた1000mLのセパラブルフラスコに、ジメチルジメトキシシラン164.1g、メチルフェニルジメトキシシラン20.1g及び1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン4.7gを入れ、50℃で攪拌した。その中に、水酸化カリウム2.2gを水35.1gに溶かした溶液をゆっくりと滴下し、滴下後に50℃で6時間攪拌し、反応させて、反応液を得た。次に、減圧して揮発成分を除去し、反応液に酢酸2.4gを加え、減圧下で加熱した。その後、酢酸カリウムをろ過により除去して、ポリマーAを得た。
(A2) Silicone compound [Synthesis of polymer A, which is a silicone compound]
164.1 g of dimethyldimethoxysilane, 20.1 g of methylphenyldimethoxysilane and 1,3-divinyl-1,1,3,3-tetramethyldisiloxane in a 1000 mL separable flask equipped with a thermometer, dropping device and stirrer. 4.7 g was added and stirred at 50 ° C. A solution prepared by dissolving 2.2 g of potassium hydroxide in 35.1 g of water was slowly added dropwise thereto, and after the addition, the mixture was stirred at 50 ° C. for 6 hours and reacted to obtain a reaction solution. Next, the pressure was reduced to remove volatile components, 2.4 g of acetic acid was added to the reaction solution, and the mixture was heated under reduced pressure. Then, potassium acetate was removed by filtration to obtain Polymer A.

得られたポリマーAの数平均分子量は15000であった。29Si−NMRより化学構造を同定した結果、ポリマーAは、下記の平均組成式を有していた。 The number average molecular weight of the obtained polymer A was 15,000. 29 As a result of identifying the chemical structure by Si-NMR, the polymer A had the following average composition formula.

(MeSiO2/20.85(PhMeSiO2/20.10(ViMeSiO1/20.05 (Me 2 SiO 2/2 ) 0.85 (PhMeSiO 2/2 ) 0.10 (ViMe 2 SiO 1/2 ) 0.05

上記式中、Meはメチル基、Viはビニル基、Phはフェニル基を示す。得られたポリマーAのフェニル基及びメチル基の含有比率は97.6モル%、ビニル基の含有比率は2.4モル%であった。 In the above formula, Me represents a methyl group, Vi represents a vinyl group, and Ph represents a phenyl group. The content ratio of the phenyl group and the methyl group of the obtained polymer A was 97.6 mol%, and the content ratio of the vinyl group was 2.4 mol%.

なお、各ポリマーの分子量は、10mgにテトラヒドロフラン1mLを加え、溶解するまで攪拌し、GPC測定により測定した。GPC測定では、Waters社製の測定装置(カラム:昭和電工社製 Shodex GPC LF−804(長さ300mm)×2本、測定温度:40℃、流速:1mL/min、溶媒:テトラヒドロフラン、標準物質:ポリスチレン)を用いた。 The molecular weight of each polymer was measured by adding 1 mL of tetrahydrofuran to 10 mg, stirring until dissolved, and measuring by GPC. For GPC measurement, a measuring device manufactured by Waters (column: Shodex GPC LF-804 (length 300 mm) x 2 manufactured by Showa Denko Co., Ltd., measurement temperature: 40 ° C., flow velocity: 1 mL / min, solvent: tetrahydrofuran, standard substance: Polystyrene) was used.

[シリコーン化合物であるポリマーB〜Dの合成]
合成に用いる有機珪素化合物の種類及び配合量をかえたこと以外はポリマーAの合成と同様にして、ポリマーB〜Dを得た。
[Synthesis of polymers B to D, which are silicone compounds]
Polymers B to D were obtained in the same manner as in the synthesis of polymer A except that the types and amounts of the organic silicon compounds used in the synthesis were changed.

ポリマーB:
(SiO4/20.20(ViMeSiO1/20.40(MeSiO1/20.40
数平均分子量 2000
フェニル基及びメチル基の含有比率は83.3モル%、ビニル基の含有比率は16.7モル%
Polymer B:
(SiO 4/2 ) 0.20 (ViMe 2 SiO 1/2 ) 0.40 (Me 3 SiO 1/2 ) 0.40
Number average molecular weight 2000
The content ratio of phenyl group and methyl group is 83.3 mol%, and the content ratio of vinyl group is 16.7 mol%.

ポリマーC:
(MeSiO3/20.20(PhMeSiO2/20.70(ViMeSiO1/20.10
数平均分子量 4000
フェニル基及びメチル基の含有比率は94.7モル%、ビニル基の含有比率は5.3モル%
Polymer C:
(MeSiO 3/2) 0.20 (PhMeSiO 2/2 ) 0.70 (ViMe 2 SiO 1/2) 0.10
Number average molecular weight 4000
The content ratio of phenyl group and methyl group is 94.7 mol%, and the content ratio of vinyl group is 5.3 mol%.

ポリマーD:
(PhSiO3/20.80(ViMeSiO1/20.20
数平均分子量 1700
フェニル基及びメチル基の含有比率は85.7モル%、ビニル基の含有比率は14.3モル%
Polymer D:
(PhSiO 3/2 ) 0.80 (ViMe 2 SiO 1/2 ) 0.20
Number average molecular weight 1700
The content ratio of phenyl group and methyl group is 85.7 mol%, and the content ratio of vinyl group is 14.3 mol%.

[シリコーン化合物であるポリマーEの合成]
温度計、滴下装置及び攪拌機を備えた1000mLのセパラブルフラスコに、ジフェニルジメトキシシラン80.6g、及び1,1,3,3−テトラメチルジシロキサン45gを入れ、50℃で攪拌した。その中に、酢酸100gと水27gの溶液をゆっくりと滴下し、滴下後に50℃で6時間攪拌し、反応させて、反応液を得た。次に、減圧して揮発成分を除去してポリマーを得た。得られたポリマーにヘキサン150gと酢酸エチル150gとを添加し、イオン交換水300gで10回洗浄を行い、減圧して揮発成分を除去してポリマーEを得た。
[Synthesis of polymer E, which is a silicone compound]
80.6 g of diphenyldimethoxysilane and 45 g of 1,1,3,3-tetramethyldisiloxane were placed in a 1000 mL separable flask equipped with a thermometer, a dropping device and a stirrer, and the mixture was stirred at 50 ° C. A solution of 100 g of acetic acid and 27 g of water was slowly added dropwise thereto, and after the addition, the mixture was stirred at 50 ° C. for 6 hours and reacted to obtain a reaction solution. Next, the pressure was reduced to remove the volatile components to obtain a polymer. 150 g of hexane and 150 g of ethyl acetate were added to the obtained polymer, and the mixture was washed 10 times with 300 g of ion-exchanged water, and the pressure was reduced to remove volatile components to obtain polymer E.

得られたポリマーEの数平均分子量は850であった。29Si−NMRより化学構造を同定した結果、ポリマーEは、下記の平均組成式を有していた。 The number average molecular weight of the obtained polymer E was 850. 29 As a result of identifying the chemical structure by Si-NMR, the polymer E had the following average composition formula.

(PhSiO2/20.67(HMeSiO1/20.33 (Ph 2 SiO 2/2 ) 0.67 (HMe 2 SiO 1/2 ) 0.33

上記式中、Meはメチル基、Phはフェニル基を示す。得られたポリマーEのフェニル基及びメチル基の含有比率は74.9モル%、珪素原子に結合した水素原子の含有比率は25.1%であった。 In the above formula, Me represents a methyl group and Ph represents a phenyl group. The content ratio of the phenyl group and the methyl group of the obtained polymer E was 74.9 mol%, and the content ratio of the hydrogen atom bonded to the silicon atom was 25.1%.

[シリコーン化合物であるポリマーFの合成]
ポリマーEの合成において、イオン交換水での洗浄を1回に変更したこと以外は同様にして、ポリマーFを得た。
[Synthesis of polymer F, which is a silicone compound]
In the synthesis of the polymer E, the polymer F was obtained in the same manner except that the washing with ion-exchanged water was changed to one time.

[シリコーン化合物であるポリマーGの合成]
温度計、滴下装置及び攪拌機を備えた1000mLのセパラブルフラスコに、ジメチルジメトキシシラン80.6g、及び1,1,3,3−テトラメチルジシロキサン45gを入れ、50℃で攪拌した。その中に、酢酸100gと水27gの溶液をゆっくりと滴下し、滴下後に50℃で6時間攪拌し、反応させて、反応液を得た。次に、得られた反応液にヘキサン150gと酢酸エチル150gとを添加し、イオン交換水300gで10回洗浄を行い、分液にて溶剤成分を除去してポリマーGを得た。
[Synthesis of polymer G, which is a silicone compound]
80.6 g of dimethyldimethoxysilane and 45 g of 1,1,3,3-tetramethyldisiloxane were placed in a 1000 mL separable flask equipped with a thermometer, a dropping device and a stirrer, and the mixture was stirred at 50 ° C. A solution of 100 g of acetic acid and 27 g of water was slowly added dropwise thereto, and after the addition, the mixture was stirred at 50 ° C. for 6 hours and reacted to obtain a reaction solution. Next, 150 g of hexane and 150 g of ethyl acetate were added to the obtained reaction solution, washed 10 times with 300 g of ion-exchanged water, and the solvent component was removed by separation to obtain polymer G.

得られたポリマーGの数平均分子量は350であった。29Si−NMRより化学構造を同定した結果、ポリマーGは、下記の平均組成式を有していた。 The number average molecular weight of the obtained polymer G was 350. 29 As a result of identifying the chemical structure by Si-NMR, the polymer G had the following average composition formula.

(MeSiO2/20.50(HMeSiO1/20.50 (Me 2 SiO 2/2 ) 0.50 (HMe 2 SiO 1/2 ) 0.50

上記式中、Meはメチル基を示す。得られたポリマーGのフェニル基及びメチル基の含有比率は80モル%、珪素原子に結合した水素原子の含有比率は20%であった。 In the above formula, Me represents a methyl group. The content ratio of the phenyl group and the methyl group of the obtained polymer G was 80 mol%, and the content ratio of the hydrogen atom bonded to the silicon atom was 20%.

(B)硬化剤又は硬化触媒
フジキュアー7000(富士化成社製、23℃で液状、アミン化合物)
MEH−8005(明和化成社製、23℃で液状、アリルフェノールノボラック化合物)
TD−2131(DIC社製、23℃で固体状、フェノールノボラック化合物)
白金の1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体
(B) Curing agent or curing catalyst Fujicure 7000 (manufactured by Fuji Kasei Co., Ltd., liquid at 23 ° C, amine compound)
MEH-8005 (manufactured by Meiwa Kasei Co., Ltd., liquid at 23 ° C, allylphenol novolac compound)
TD-2131 (manufactured by DIC, solid at 23 ° C, phenol novolac compound)
Platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex

(D)硬化促進剤
SA−102(サンアプロ社製、DBUオクチル酸塩)
(D) Curing accelerator SA-102 (DBU octylate manufactured by San-Apro)

(C)熱伝導率が10W/m・K以上である無機フィラー
FAN−f05(古河電子社製、窒化アルミニウム、熱伝導率:100W/m・K、球状、平均粒子径:6μm)
FAN−f50(古河電子社製、窒化アルミニウム、熱伝導率:100W/m・K、球状、平均粒子径:30μm)
CB−P05(昭和電工社製、酸化アルミニウム、熱伝導率:20W/m・K、球状、平均粒子径:4μm)
CB−P40(昭和電工社製、酸化アルミニウム、熱伝導率:20W/m・K、球状、平均粒子径:44μm)
SSC−A15(信濃電気精錬社製、炭化ケイ素、熱伝導率:100W/m・K、球状、平均粒子径:19μm)
SSC−A30(信濃電気精錬社製、炭化ケイ素、熱伝導率:100W/m・K、球状、平均粒子径:34μm)
(C) Inorganic filler FAN-f05 having a thermal conductivity of 10 W / m · K or more (manufactured by Furukawa Denshi, aluminum nitride, thermal conductivity: 100 W / m · K, spherical, average particle diameter: 6 μm)
FAN-f50 (manufactured by Furukawa Denshi, aluminum nitride, thermal conductivity: 100 W / m · K, spherical, average particle size: 30 μm)
CB-P05 (manufactured by Showa Denko, aluminum oxide, thermal conductivity: 20 W / mK, spherical, average particle size: 4 μm)
CB-P40 (manufactured by Showa Denko, aluminum oxide, thermal conductivity: 20 W / mK, spherical, average particle size: 44 μm)
SSC-A15 (manufactured by Shinano Electric Smelting Co., Ltd., silicon carbide, thermal conductivity: 100 W / m · K, spherical, average particle size: 19 μm)
SSC-A30 (manufactured by Shinano Electric Smelting Co., Ltd., silicon carbide, thermal conductivity: 100 W / m · K, spherical, average particle size: 34 μm)

(C’)その他の無機フィラー
HS−306(マイクロン社製、酸化ケイ素、熱伝導率:2W/m・K、球状、平均粒子径:2.5μm)
HS−304(マイクロン社製、酸化ケイ素、熱伝導率:2W/m・K、球状、平均粒子径:25μm)
(C') Other Inorganic Filler HS-306 (Micron, Silicon Oxide, Thermal Conductivity: 2 W / m · K, Spherical, Average Particle Diameter: 2.5 μm)
HS-304 (Micron, silicon oxide, thermal conductivity: 2 W / m · K, spherical, average particle size: 25 μm)

(E)カップリング剤
KBM−403(信越化学工業社製、3−グリシドキシプロピルトリメトキシシラン、100℃における重量減少:10重量%を超える)
A−LINK599(momentive社製、3−オクタノイルチオ−1−プロピルトリエトキシシラン、100℃における重量減少:10重量%以下)
TOG(IPAカット)(日本曹達社製、チタニウム−i−プロポキシオクチレングリコレート、100℃における重量減少:10重量%以下)
AL−M(味の素ファインテクノ社製、アセトアルコキシアルミニウムジイソプロピレート、100℃における重量減少:10重量%以下)
(E) Coupling agent KBM-403 (manufactured by Shin-Etsu Chemical Co., Ltd., 3-glycidoxypropyltrimethoxysilane, weight loss at 100 ° C.: more than 10% by weight)
A-LINK599 (manufactured by Momentive, 3-octanoylthio-1-propyltriethoxysilane, weight loss at 100 ° C.: 10% by weight or less)
TOG (IPA cut) (manufactured by Nippon Soda, titanium-i-propoxyoctylene glycolate, weight loss at 100 ° C.: 10% by weight or less)
AL-M (Ajinomoto Fine Techno Co., Ltd., acetalkoxyaluminum diisopropilate, weight loss at 100 ° C: 10% by weight or less)

(他の成分)
BYK−9076(BYK社製、分散剤)
(Other ingredients)
BYK-9076 (byK, dispersant)

(F)イオン捕捉剤
IXE−300(東亞合成社製、酸化アンチモン系イオン捕捉剤)
IXE−600(東亞合成社製、酸化アンチモン・酸化ビスマス系イオン捕捉剤)
DHT−4A(協和化学工業社製、ハイドロタルサイト系イオン捕捉剤)
(F) Ion scavenger IXE-300 (Toagosei Co., Ltd., antimony oxide ion scavenger)
IXE-600 (manufactured by Toagosei Co., Ltd., antimony oxide / bismuth oxide ion scavenger)
DHT-4A (Kyowa Chemical Industry Co., Ltd., hydrotalcite-based ion scavenger)

(実施例1)
EX−821(n=4)を6.5重量部、jER828を2.5重量部、フジキュアー7000を5重量部、SA−102を0.5重量部、CB−P05を42.5重量部、CB−P40を42.5重量部、及びBYK−9076を0.5重量部混合し、脱泡を行い、半導体素子保護用材料を得た。
(Example 1)
EX-821 (n = 4) is 6.5 parts by weight, jER828 is 2.5 parts by weight, FujiCure 7000 is 5 parts by weight, SA-102 is 0.5 parts by weight, CB-P05 is 42.5 parts by weight, 42.5 parts by weight of CB-P40 and 0.5 parts by weight of BYK-9076 were mixed and defoamed to obtain a material for protecting a semiconductor element.

(実施例2〜22及び比較例1,2)
配合成分の種類及び配合量を下記の表1〜4に示すように変更したこと以外は実施例1と同様にして、半導体素子保護用材料を得た。
(Examples 2 to 22 and Comparative Examples 1 and 2)
A semiconductor device protection material was obtained in the same manner as in Example 1 except that the types and amounts of the compounding components were changed as shown in Tables 1 to 4 below.

(評価)
(1)25℃における粘度の測定
B型粘度計(東機産業社製「TVB−10型」)を用いて半導体素子保護用材料の25℃における10rpmでの粘度(Pa・s)を測定した。
(Evaluation)
(1) Measurement of Viscosity at 25 ° C. Using a B-type viscometer (“TVB-10 type” manufactured by Toki Sangyo Co., Ltd.), the viscosity (Pa · s) of the semiconductor device protection material at 25 ° C. at 10 rpm was measured. ..

(2)(X)三量体から十量体までの環状シロキサン化合物の含有量
得られた半導体素子保護用材料において、ガスクロマトグラフ質量分析装置(GC−MS)(島津製作所社製「QP2010SE」)を用いて、(X)三量体から十量体までの環状シロキサン化合物の含有量を評価した。
(2) (X) Content of cyclic siloxane compound from trimer to decamer In the obtained material for protecting semiconductor elements, a gas chromatograph mass spectrometer (GC-MS) (“QP2010SE” manufactured by Shimadzu Corporation). The content of the cyclic siloxane compound from (X) trimer to decamer was evaluated using.

(3)(Y)水の含有量
得られた半導体素子保護用材料において、JIS K7215に準拠して、カールフィッシャー水分計(京都電子工業社製「MKV−710B」)を用いて(Y)水の含有量を評価した。
(3) (Y) Water content In the obtained semiconductor device protection material, (Y) water was used using a Karl Fischer titer (“MKV-710B” manufactured by Kyoto Denshi Kogyo Co., Ltd.) in accordance with JIS K7215. Content was evaluated.

(4)電気伝導度
半導体素子保護用材料を150℃で2時間硬化させて硬化物を得た。得られた硬化物を5mm角程度に粉砕し、粉砕物2.5gにイオン交換水25mLを加え、PCT(121℃±2℃/湿度100%/2atmの槽)で20Hr置いた。その後、室温まで冷却して得た抽出液を試験液として得た。この試験液の電気伝導度を伝導度計(東亜電波工業社製の電気伝導率計「CM−42X」)を用いて測定した。
(4) Electrical Conductivity The semiconductor device protection material was cured at 150 ° C. for 2 hours to obtain a cured product. The obtained cured product was pulverized to about 5 mm square, 25 mL of ion-exchanged water was added to 2.5 g of the pulverized product, and the mixture was placed in a PCT (121 ° C. ± 2 ° C./100% humidity / 2 atm tank) for 20 hours. Then, the extract obtained by cooling to room temperature was obtained as a test solution. The electrical conductivity of this test solution was measured using a conductivity meter (electrical conductivity meter "CM-42X" manufactured by Toa Denpa Kogyo Co., Ltd.).

(5)熱伝導率
得られた半導体素子保護用材料を150℃で2時間加熱し、硬化させ、100mm×100mm×厚さ50μmの硬化物を得た。この硬化物を評価サンプルとした。
(5) Thermal Conductivity The obtained semiconductor device protection material was heated at 150 ° C. for 2 hours and cured to obtain a cured product having a thickness of 100 mm × 100 mm × thickness of 50 μm. This cured product was used as an evaluation sample.

得られた評価サンプルの熱伝導率を、京都電子工業社製熱伝導率計「迅速熱伝導率計QTM−500」を用いて測定した。なお、熱伝導率が1.1W/m・K以下である場合に、熱伝導率を「×」と判定した。 The thermal conductivity of the obtained evaluation sample was measured using a thermal conductivity meter "Rapid Thermal Conductivity Meter QTM-500" manufactured by Kyoto Electronics Industry Co., Ltd. When the thermal conductivity was 1.1 W / m · K or less, the thermal conductivity was determined to be “x”.

(6)塗布性
得られた半導体素子保護用材料をディスペンサー装置(武蔵エンジニアリング社製「SHOTMASTER−300」)から、ポリイミドフィルムに直径5mm、高さ2mmになるように直接吐出した後、半導体素子保護用材料を150℃で2時間加熱して硬化させた。硬化後の半導体素子保護用材料の形状から塗布性を下記の基準で判定した。
(6) Coating property The obtained material for protecting the semiconductor element is directly discharged from the dispenser device (“SHOTMASTER-300” manufactured by Musashi Engineering Co., Ltd.) onto the polyimide film so as to have a diameter of 5 mm and a height of 2 mm, and then the semiconductor element is protected. The material was heated at 150 ° C. for 2 hours to cure. The coatability was judged from the shape of the material for protecting the semiconductor element after curing according to the following criteria.

[塗布性の判定基準]
○:直径5.3mm以上、高さ1.8mm未満(流動性あり)
△:直径5mmを超え、5.3mm未満、高さ1.8mmを超え、2mm未満(流動性少しあり)
×:直径5mm、高さ2mmのまま(流動性なし)
[Criteria for applicability]
◯: Diameter 5.3 mm or more, height less than 1.8 mm (with fluidity)
Δ: Diameter more than 5 mm, less than 5.3 mm, height more than 1.8 mm, less than 2 mm (with a little fluidity)
X: The diameter remains 5 mm and the height remains 2 mm (no fluidity).

(7)ボイドの有無
ポリイミドフィルムにアンダーフィル剤(ナミックス社製、U8437−2)を幅3mm、長さ18mmになるように塗布し、幅3mm、長さ18mm、厚み0.3mmのSiチップを載せて、150℃で1時間硬化させた試験片を準備した。準備した試験片に、得られた半導体素子保護用材料をディスペンサー装置(武蔵エンジニアリング社製「SHOTMASTER−300」)から、Siチップを全て覆うように、幅5mm、長さ21mm、厚み0.9mmになるように直接吐出した後、半導体素子保護用材料を150℃で2時間加熱して硬化させた。硬化後の半導体素子保護用材料におけるボイドの有無を顕微鏡で観察し評価した。
(7) Presence or absence of voids An underfill agent (manufactured by Namics, U8437-2) is applied to a polyimide film so as to have a width of 3 mm and a length of 18 mm, and a Si chip having a width of 3 mm, a length of 18 mm and a thickness of 0.3 mm is applied. A test piece which was placed and cured at 150 ° C. for 1 hour was prepared. On the prepared test piece, the obtained semiconductor element protection material is applied from a dispenser device (“SHOTMASTER-300” manufactured by Musashi Engineering Co., Ltd.) to a width of 5 mm, a length of 21 mm, and a thickness of 0.9 mm so as to cover all the Si chips. After direct ejection so as to be, the semiconductor element protection material was heated at 150 ° C. for 2 hours to be cured. The presence or absence of voids in the material for protecting the semiconductor element after curing was observed and evaluated with a microscope.

[ボイドの有無の判定基準]
○:ボイドなし
△:直径100μm未満の目視不能なボイドがある
△△:直径100μm以上、150μm未満の目視可能なボイドがある
×:直径150μm以上の目視可能なボイドがある
[Criteria for the presence or absence of voids]
◯: No void Δ: There is an invisible void with a diameter of less than 100 μm Δ △: There is a visible void with a diameter of 100 μm or more and less than 150 μm ×: There is a visible void with a diameter of 150 μm or more

(8)耐湿性
得られた半導体素子保護用材料を150℃で2時間加熱し、硬化させ、100mm×100mm×厚さ50μmの硬化物を得た。この硬化物を評価サンプルとした。
(8) Moisture resistance The obtained semiconductor device protection material was heated at 150 ° C. for 2 hours and cured to obtain a cured product having a thickness of 100 mm × 100 mm × thickness of 50 μm. This cured product was used as an evaluation sample.

得られた評価サンプルをDSM−8104(日置電機社製、ディジタル超絶縁/微少電流計)、平板試料用電極 SME−8310(日置電機社製)を用いて体積抵抗率を測定した。 The volume resistivity of the obtained evaluation sample was measured using DSM-8104 (manufactured by Hioki Electric Co., Ltd., digital super-insulation / micro ammeter) and electrode SME-8310 (manufactured by Hioki Electric Co., Ltd.).

次に、プレッシャークッカー試験を高度加速寿命試験装置EHS−211(エスペック社製)で行った。121℃、湿度100%RH及び2atmの条件で24時間放置し、次に23℃及び湿度50%RHの環境で24時間放置した後、体積抵抗率を測定した。プレッシャークッカー試験前後の体積抵抗率の低下率を計算し、耐湿性を下記の基準で判定した。 Next, the pressure cooker test was performed with the highly accelerated life test device EHS-111 (manufactured by ESPEC). The volume resistivity was measured after being left for 24 hours under the conditions of 121 ° C., 100% RH and 2 atm, and then left for 24 hours in an environment of 23 ° C. and 50% humidity. The rate of decrease in volume resistivity before and after the pressure cooker test was calculated, and the moisture resistance was judged according to the following criteria.

[耐湿性の判定基準]
○:試験前後の体積抵抗率の低下率が10%以下
△:試験前後の体積抵抗率の低下率が10%を超え、20%以下
×:試験前後の体積抵抗率の低下率が20%を超える
[Criteria for moisture resistance]
◯: Volume resistivity reduction rate before and after the test is 10% or less Δ: Volume resistivity reduction rate before and after the test exceeds 10% and 20% or less ×: Volume resistivity reduction rate before and after the test is 20% Exceed

(9)接着力(ダイシェア強度)
ポリイミド基板上に、接着面積が3mm×3mmになるように半導体素子保護用材料を塗布し、3mm角のSiチップを載せて、テストサンプルを得た。
(9) Adhesive strength (die shear strength)
A semiconductor element protection material was applied onto the polyimide substrate so that the adhesive area was 3 mm × 3 mm, and a 3 mm square Si chip was placed on the polyimide substrate to obtain a test sample.

得られたテストサンプルを150℃で2時間加熱し、半導体素子保護用材料を硬化させた。次に、ダイシェアテスター(アークテック社製「DAGE 4000」)を用いて、300μm/秒の速度で、25℃でのダイシェア強度を評価した。 The obtained test sample was heated at 150 ° C. for 2 hours to cure the semiconductor device protection material. Next, using a die share tester (“DAGE 4000” manufactured by Arctech), the die share strength at 25 ° C. was evaluated at a speed of 300 μm / sec.

[ダイシェア強度の判定基準]
○:ダイシェア強度が10N以上
△:ダイシェア強度が6N以上、10N未満
△△:ダイシェア強度が5N以上、6N未満
×:ダイシェア強度が5N未満
[Die share strength criteria]
◯: Die-share strength is 10N or more and Δ: Die-share strength is 6N or more and less than 10N △△: Die-share strength is 5N or more and less than 6N

(10)タック性(保護フィルムの貼り付き性)
得られた半導体素子保護用材料を150℃で2時間加熱し、硬化させ、100mm×100mm×厚さ50μmの硬化物を得た。この硬化物を評価サンプルとした。
(10) Tackability (stickiness of protective film)
The obtained semiconductor device protection material was heated at 150 ° C. for 2 hours and cured to obtain a cured product having a thickness of 100 mm × 100 mm × thickness of 50 μm. This cured product was used as an evaluation sample.

得られた評価サンプルを23℃及び湿度50%RHの雰囲気下で24時間放置した。24時間放置後直ちに、評価サンプルの表面の粘着性を、タックテスターTA−500(UBM社製)を用いタックを測定した。 The obtained evaluation sample was left for 24 hours in an atmosphere of 23 ° C. and 50% humidity RH. Immediately after leaving for 24 hours, the tackiness of the surface of the evaluation sample was measured using a tack tester TA-500 (manufactured by UBM).

[タック性の判定基準]
○:応力が50gf/cm未満
△:応力が50gf/cm以上、100gf/cm未満
×:応力が100gf/cm以上
[Criteria for tackiness]
◯: Stress is less than 50 gf / cm 2 Δ: Stress is 50 gf / cm 2 or more, less than 100 gf / cm 2 ×: Stress is 100 gf / cm 2 or more

(11)フィルム反り
得られた半導体素子保護用材料をディスペンサー装置(武蔵エンジニアリング社製「SHOTMASTER―300」)から、ポリイミドフィルムに縦20mm、横100mm、高さ10mmになるように直接吐出した後、半導体素子保護用材料を150℃で2時間加熱して硬化させた。硬化後にポリイミドフィルムの反りを目視で確認し、フィルム反りを下記の基準で判定した。
(11) Film Warp The obtained semiconductor element protection material is directly discharged from a dispenser device (“SHOTMASTER-300” manufactured by Musashi Engineering Co., Ltd.) onto a polyimide film so as to have a length of 20 mm, a width of 100 mm, and a height of 10 mm. The semiconductor device protection material was cured by heating at 150 ° C. for 2 hours. After curing, the warp of the polyimide film was visually confirmed, and the warp of the film was judged according to the following criteria.

[フィルム反りの判定基準]
○:ポリイミドフィルムの反りなし
△:ポリイミドフィルムの反りがわずかに発生(使用上問題なし)
×:ポリイミドフィルムの反り発生(使用上問題あり)
[Criteria for film warpage]
◯: No warp of polyimide film △: Slight warp of polyimide film occurs (no problem in use)
×: Warpage of polyimide film (problem in use)

(12)耐熱性
得られた半導体素子保護用材料を150℃で2時間加熱し、硬化させ、100mm×100mm×厚さ50μmの硬化物を得た。この硬化物を評価サンプルとした。
(12) Heat resistance The obtained semiconductor device protection material was heated at 150 ° C. for 2 hours and cured to obtain a cured product having a thickness of 100 mm × 100 mm × thickness of 50 μm. This cured product was used as an evaluation sample.

得られた評価サンプルをDSM−8104(日置電機社製、ディジタル超絶縁/微少電流計)、平板試料用電極 SME−8310(日置電機社製)を用いて体積抵抗率の測定を測定した。 The volume resistivity of the obtained evaluation sample was measured using DSM-8104 (manufactured by Hioki Electric Co., Ltd., digital super-insulation / micro ammeter) and electrode SME-8310 (manufactured by Hioki Electric Co., Ltd.) for flat plate samples.

次に、180℃で100時間放置し、次に23℃及び湿度50%RHの環境で24時間放置した後、体積抵抗率を測定した。耐熱試験前後の体積抵抗率の低下率を計算し、耐熱性を下記の基準で判定した。 Next, it was left at 180 ° C. for 100 hours, then left for 24 hours in an environment of 23 ° C. and 50% humidity, and then the volume resistivity was measured. The rate of decrease in volume resistivity before and after the heat resistance test was calculated, and the heat resistance was judged according to the following criteria.

[耐熱性の判定基準]
○○:試験前後の体積抵抗率の低下率が5%以下
○:試験前後の体積抵抗率の低下率が5%を超え、10%以下
△:試験前後の体積抵抗率の低下率が10%を超え、20%以下
×:試験前後の体積抵抗率の低下率が20%を超える
[Criteria for heat resistance]
○○: Volume resistivity reduction rate before and after the test is 5% or less ○: Volume resistivity reduction rate before and after the test exceeds 5% and 10% or less Δ: Volume resistivity reduction rate before and after the test is 10% Exceeds and 20% or less ×: The rate of decrease in volume resistivity before and after the test exceeds 20%

(13)絶縁信頼性
基板(ポリイミドフィルム)上に形成された櫛歯型電極(材質:銅の上にスズめっき、パターンピッチ:50μm、L/S=25μm/25μm)の上に、熱硬化ソルダーレジスト(日本ポリテック社製「NPR−3300」)を10μmの膜厚で塗布して150℃で1時間加熱硬化させて、テストパターンを準備した。上記テストパターンに半導体素子保護用材料を塗布し、150℃で2時間加熱硬化させて、試験片を得た。加熱後の試験片を85℃及び湿度85%の槽(エスペック社製「SH641」)へ入れ、マイグレーションテスター(IMV社製「MIG−8600B」)を用いて電極間に40Vの直流電圧を印加して、電極間の抵抗を測定した。絶縁信頼性を以下の基準で判定した。○、△又は△△の判定基準の場合に、絶縁信頼性は合格と判断され、実使用に支障が無い絶縁性保持性があり、絶縁信頼性に優れている。
(13) Insulation reliability A thermosetting solder on a comb-toothed electrode (material: tin plating on copper, pattern pitch: 50 μm, L / S = 25 μm / 25 μm) formed on a substrate (polyimide film). A test pattern was prepared by applying a resist (“NPR-3300” manufactured by Nippon Polytec Co., Ltd.) to a film thickness of 10 μm and heat-curing at 150 ° C. for 1 hour. A semiconductor device protection material was applied to the above test pattern and heat-cured at 150 ° C. for 2 hours to obtain a test piece. The heated test piece is placed in a tank ("SH641" manufactured by ESPEC) at 85 ° C. and 85% humidity, and a DC voltage of 40 V is applied between the electrodes using a migration tester ("MIG-8600B" manufactured by IMV). The resistance between the electrodes was measured. The insulation reliability was judged according to the following criteria. In the case of the judgment criteria of ◯, Δ or Δ△, the insulation reliability is judged to be acceptable, the insulation retention is not hindered in actual use, and the insulation reliability is excellent.

[絶縁信頼性の判定基準]
○:抵抗が1×10Ω以上で100時間以上持続し、絶縁性が非常に良好
△:抵抗が1×10Ω以上、1×10Ω未満で100時間以上持続し、絶縁性が良好
△△:100時間未満で抵抗が1×10Ω未満に低下するが、1×10Ω以上の抵抗を50時間以上、100時間未満持続し、絶縁性がやや良好
×:50時間未満で抵抗が1×10Ω未満に低下し、絶縁不良とみなされる
[Criteria for insulation reliability]
◯: Resistance is 1 × 10 9 Ω or more and lasts for 100 hours or more, and insulation is very good Δ: Resistance is 1 × 10 8 Ω or more and less than 1 × 10 9 Ω for 100 hours or more, and insulation is very good. good △△: the resistance is less than 100 hours is reduced to less than 1 × 10 8 Ω, 1 × 10 8 Ω or more resistors 50 hours or more, lasting less than 100 hours, the insulating somewhat good ×: less than 50 hours are in resistance is reduced to less than 1 × 10 8 Ω, considered poor insulation

(14)耐熱試験後のフィルム反り
上記(11)フィルム反りの評価後に、半導体素子保護用材料の硬化物とポリイミドフィルムとの積層体を、180℃で100時間放置した。放置後に、ポリイミドフィルムの反りを目視で確認し、耐熱試験後のフィルム反りを下記の基準で判定した。
(14) Film Warpage after Heat Resistant Test After the evaluation of the above (11) Film Warpage, a laminate of a cured product of a semiconductor element protection material and a polyimide film was left at 180 ° C. for 100 hours. After being left to stand, the warp of the polyimide film was visually confirmed, and the warp of the film after the heat resistance test was judged according to the following criteria.

[耐熱試験後のフィルム反りの判定基準]
○:耐熱試験前のフィルムの反り量に対して、耐熱試験後のフィルムの反り量が1.1倍未満
△:耐熱試験前のフィルムの反り量に対して、耐熱試験後のフィルムの反り量が1.1倍以上、1.2倍未満
×:耐熱試験前のフィルムの反り量に対して、耐熱試験後のフィルムの反り量が1.2倍以上
[Criteria for film warpage after heat resistance test]
◯: The amount of warpage of the film after the heat resistance test is less than 1.1 times the amount of warpage of the film before the heat resistance test Δ: The amount of warpage of the film after the heat resistance test with respect to the amount of warpage of the film before the heat resistance test Is 1.1 times or more and less than 1.2 times ×: The amount of warpage of the film after the heat resistance test is 1.2 times or more of the amount of warpage of the film before the heat resistance test.

配合成分の詳細、組成及び結果を下記の表1〜4に示す。 The details, composition and results of the ingredients are shown in Tables 1 to 4 below.

Figure 2020170867
Figure 2020170867

Figure 2020170867
Figure 2020170867

Figure 2020170867
Figure 2020170867

Figure 2020170867
Figure 2020170867

(実施例23)
半導体素子保護用材料の調製において、IXE−300(東亞合成社製、酸化アンチモン系イオン捕捉剤)0.5重量部を更に添加したこと以外は実施例1と同様にして、半導体素子保護用材料を得た。
(Example 23)
In the preparation of the semiconductor device protection material, the semiconductor device protection material is the same as in Example 1 except that 0.5 part by weight of IXE-300 (manufactured by Toagosei Co., Ltd., antimony oxide ion scavenger) is further added. Got

(実施例24)
半導体素子保護用材料の調製において、IXE−600(東亞合成社製、酸化アンチモン・酸化ビスマス系イオン捕捉剤)0.5重量部を更に添加したこと以外は実施例1と同様にして、半導体素子保護用材料を得た。
(Example 24)
In the preparation of the material for protecting the semiconductor device, the semiconductor device is the same as in Example 1 except that 0.5 part by weight of IXE-600 (antimony oxide / bismuth oxide ion scavenger manufactured by Toagosei Co., Ltd.) is further added. Obtained protective material.

(実施例25)
半導体素子保護用材料の調製において、DHT−4A(協和化学工業社製、ハイドロタルサイト系イオン捕捉剤)0.5重量部を更に添加したこと以外は実施例1と同様にして、半導体素子保護用材料を得た。
(Example 25)
Semiconductor device protection in the same manner as in Example 1 except that 0.5 part by weight of DHT-4A (hydrotalcite ion scavenger manufactured by Kyowa Chemical Industry Co., Ltd.) was further added in the preparation of the semiconductor device protection material. Obtained materials for use.

(実施例26)
半導体素子保護用材料の調製において、IXE−300(東亞合成社製、酸化アンチモン系イオン捕捉剤)0.5重量部を更に添加したこと以外は実施例18と同様にして、半導体素子保護用材料を得た。
(Example 26)
In the preparation of the semiconductor device protection material, the semiconductor device protection material is the same as in Example 18 except that 0.5 part by weight of IXE-300 (manufactured by Toagosei Co., Ltd., antimony oxide ion scavenger) is further added. Got

(実施例27)
半導体素子保護用材料の調製において、IXE−600(東亞合成社製、酸化アンチモン・酸化ビスマス系イオン捕捉剤)0.5重量部を更に添加したこと以外は実施18と同様にして、半導体素子保護用材料を得た。
(Example 27)
Semiconductor device protection in the same manner as in Implementation 18 except that 0.5 part by weight of IXE-600 (antimony oxide / bismuth oxide ion scavenger manufactured by Toagosei Co., Ltd.) was further added in the preparation of the semiconductor device protection material. Obtained materials for use.

(実施例28)
半導体素子保護用材料の調製において、DHT−4A(協和化学工業社製、ハイドロタルサイト系イオン捕捉剤)0.5重量部を更に添加したこと以外は実施例18と同様にして、半導体素子保護用材料を得た。
(Example 28)
Semiconductor device protection in the same manner as in Example 18 except that 0.5 part by weight of DHT-4A (hydrotalcite ion scavenger manufactured by Kyowa Chemical Industry Co., Ltd.) was further added in the preparation of the semiconductor device protection material. Obtained materials for use.

(実施例29)
半導体素子保護用材料の調製において、IXE−600(東亞合成社製、酸化アンチモン・酸化ビスマス系イオン捕捉剤)0.5重量部を更に添加したこと以外は実施例19と同様にして、半導体素子保護用材料を得た。
(Example 29)
In the preparation of the material for protecting the semiconductor device, the semiconductor device is the same as in Example 19 except that 0.5 part by weight of IXE-600 (antimony oxide / bismuth oxide ion scavenger manufactured by Toagosei Co., Ltd.) is further added. Obtained protective material.

(実施例30)
半導体素子保護用材料の調製において、IXE−600(東亞合成社製、酸化アンチモン・酸化ビスマス系イオン捕捉剤)0.5重量部を更に添加したこと以外は実施例20と同様にして、半導体素子保護用材料を得た。
(Example 30)
In the preparation of the material for protecting the semiconductor device, the semiconductor device is the same as in Example 20 except that 0.5 part by weight of IXE-600 (antimony oxide / bismuth oxide ion scavenger manufactured by Toagosei Co., Ltd.) is further added. Obtained protective material.

(実施例31)
半導体素子保護用材料の調製において、IXE−600(東亞合成社製、酸化アンチモン・酸化ビスマス系イオン捕捉剤)0.5重量部を更に添加したこと以外は実施例21と同様にして、半導体素子保護用材料を得た。
(Example 31)
In the preparation of the material for protecting the semiconductor device, the semiconductor device is the same as in Example 21 except that 0.5 part by weight of IXE-600 (antimony oxide / bismuth oxide ion scavenger manufactured by Toagosei Co., Ltd.) is further added. Obtained protective material.

(評価)
実施例23〜31について、上記(13)絶縁信頼性の評価を実施した。
(Evaluation)
The above (13) insulation reliability was evaluated for Examples 23 to 31.

この結果、実施例23〜31の絶縁信頼性の結果はいずれも、「○」であった。 As a result, the results of the insulation reliability of Examples 23 to 31 were all "◯".

また、実施例1及び実施例23〜25の絶縁信頼性の結果は「○」であるが、100時間後の電圧の印加時の抵抗は、実施例23〜25の方が実施例1よりも高く、実施例23〜25の方が実施例1よりも絶縁信頼性に優れていた。また、実施例20及び実施例30の絶縁信頼性の結果は「○」であるが、100時間後の電圧の印加時の抵抗は、実施例30の方が実施例20よりも高く、実施例30の方が実施例20よりも絶縁信頼性に優れていた。また、実施例21及び実施例31の絶縁信頼性の結果は「○」であるが、100時間後の電圧の印加時の抵抗は、実施例31の方が実施例21よりも高く、実施例31の方が実施例21よりも絶縁信頼性に優れていた。 Further, the result of the insulation reliability of Examples 1 and 23 to 25 is "○", but the resistance at the time of applying the voltage after 100 hours is higher in Examples 23 to 25 than in Example 1. It was higher, and Examples 23 to 25 were superior in insulation reliability to Example 1. Further, the result of the insulation reliability of Example 20 and Example 30 is "○", but the resistance at the time of applying the voltage after 100 hours is higher in Example 30 than in Example 20. 30 was superior in insulation reliability to Example 20. Further, the result of the insulation reliability of Example 21 and Example 31 is "○", but the resistance at the time of applying the voltage after 100 hours is higher in Example 31 than in Example 21. 31 was superior in insulation reliability to Example 21.

なお、実施例23〜31については、実施例1〜22及び比較例1,2で行った他の評価項目についても、良好な結果が得られた。また、(A2)シリコーン化合物を用いた実施例19〜21の耐熱試験後のフィルム反りの結果における反り量の増加割合は、(A1)エポキシ化合物を用いた実施例1〜17の耐熱試験後のフィルム反りの結果における反り量の増加割合よりも小さかった。 Regarding Examples 23 to 31, good results were also obtained for the other evaluation items performed in Examples 1 to 22 and Comparative Examples 1 and 2. The rate of increase in the amount of warpage in the results of film warpage after the heat resistance test of Examples 19 to 21 using the (A2) silicone compound is the rate of increase after the heat resistance test of Examples 1 to 17 using the (A1) epoxy compound. It was smaller than the rate of increase in the amount of warpage in the result of film warpage.

1,1X…半導体装置
2…半導体素子
2a…第1の表面
2b…第2の表面
2A…第1の電極
3,3X…硬化物
4…接続対象部材
4a…表面
4A…第2の電極
5…他の硬化物
6…導電性粒子
7…保護フィルム
1,1X ... Semiconductor device 2 ... Semiconductor element 2a ... First surface 2b ... Second surface 2A ... First electrode 3,3X ... Hardened material 4 ... Connection target member 4a ... Surface 4A ... Second electrode 5 ... Other cured products 6 ... Conductive particles 7 ... Protective film

(実施例2〜21及び比較例1〜3
配合成分の種類及び配合量を下記の表1〜4に示すように変更したこと以外は実施例1と同様にして、半導体素子保護用材料を得た。
(Examples 2 to 21 and Comparative Examples 1 to 3 )
A semiconductor device protection material was obtained in the same manner as in Example 1 except that the types and amounts of the compounding components were changed as shown in Tables 1 to 4 below.

Figure 2020170867
Figure 2020170867

(実施例27)
半導体素子保護用材料の調製において、IXE−600(東亞合成社製、酸化アンチモン・酸化ビスマス系イオン捕捉剤)0.5重量部を更に添加したこと以外は実施18と同様にして、半導体素子保護用材料を得た。
(Example 27)
In the preparation of the material for protecting the semiconductor device, the semiconductor device is the same as in Example 18 except that 0.5 part by weight of IXE-600 (antimony oxide / bismuth oxide ion scavenger manufactured by Toagosei Co., Ltd.) is further added. Obtained protective material.

なお、実施例23〜31については、実施例1〜21及び比較例1〜3で行った他の評価項目についても、良好な結果が得られた。また、(A2)シリコーン化合物を用いた実施例19〜21の耐熱試験後のフィルム反りの結果における反り量の増加割合は、(A1)エポキシ化合物を用いた実施例1〜17の耐熱試験後のフィルム反りの結果における反り量の増加割合よりも小さかった。
Regarding Examples 23 to 31, good results were also obtained for the other evaluation items performed in Examples 1 to 21 and Comparative Examples 1 to 3 . The rate of increase in the amount of warpage in the result of film warpage after the heat resistance test of Examples 19 to 21 using the (A2) silicone compound is the rate of increase after the heat resistance test of Examples 1 to 17 using the (A1) epoxy compound. It was smaller than the rate of increase in the amount of warpage in the result of film warpage.

Claims (20)

半導体素子と、
前記半導体素子の第1の表面上に配置された硬化物とを備え、
前記硬化物が、半導体素子保護用材料の硬化物であり、
前記半導体素子保護用材料が、熱硬化性化合物と、硬化剤又は硬化触媒と、熱伝導率が10W/m・K以上である無機フィラーとを含み、
前記半導体素子保護用材料が、三量体から十量体までの環状シロキサン化合物を含まないか、又は三量体から十量体までの環状シロキサン化合物を500ppm以下で含み、
前記硬化物における前記無機フィラーの含有量が60重量%以上、92重量%以下であり、
前記硬化物の電気伝導度が50μS/cm以下である、半導体装置。
With semiconductor elements
A cured product disposed on the first surface of the semiconductor element is provided.
The cured product is a cured product of a material for protecting semiconductor elements.
The semiconductor device protection material contains a thermosetting compound, a curing agent or a curing catalyst, and an inorganic filler having a thermal conductivity of 10 W / m · K or more.
The semiconductor device protection material does not contain a cyclic siloxane compound from a trimer to a decamer, or contains a cyclic siloxane compound from a trimer to a decamer at 500 ppm or less.
The content of the inorganic filler in the cured product is 60% by weight or more and 92% by weight or less.
A semiconductor device having an electric conductivity of 50 μS / cm or less of the cured product.
前記熱硬化性化合物が、エポキシ化合物又はシリコーン化合物を含む、請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein the thermosetting compound contains an epoxy compound or a silicone compound. 前記熱硬化性化合物がシリコーン化合物を含む、請求項2に記載の半導体装置。 The semiconductor device according to claim 2, wherein the thermosetting compound contains a silicone compound. 前記硬化剤がアリルフェノールノボラック化合物である、請求項1〜3のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 3, wherein the curing agent is an allylphenol novolak compound. 前記熱硬化性化合物が、可撓性エポキシ化合物を含む、請求項1〜4のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 4, wherein the thermosetting compound contains a flexible epoxy compound. 前記熱硬化性化合物が、前記可撓性エポキシ化合物と、可撓性エポキシ化合物とは異なるエポキシ化合物とを含む、請求項5に記載の半導体装置。 The semiconductor device according to claim 5, wherein the thermosetting compound contains the flexible epoxy compound and an epoxy compound different from the flexible epoxy compound. 前記半導体素子保護用材料に含まれる前記可撓性エポキシ化合物が、アルキレングリコール基が9以上繰り返された構造単位を有するポリアルキレングリコールジグリシジルエーテルである、請求項5又は6に記載の半導体装置。 The semiconductor device according to claim 5 or 6, wherein the flexible epoxy compound contained in the semiconductor device protection material is a polyalkylene glycol diglycidyl ether having a structural unit in which 9 or more alkylene glycol groups are repeated. 接続対象部材を備え、
前記接続対象部材上に、前記半導体素子が前記第1の表面とは反対の第2の表面側から実装されている、請求項1〜7のいずれか1項に記載の半導体装置。
Equipped with members to be connected
The semiconductor device according to any one of claims 1 to 7, wherein the semiconductor element is mounted on the connection target member from a second surface side opposite to the first surface.
第2の電極を表面に有する接続対象部材を備え、
前記半導体素子が、前記第1の表面側とは反対の第2の表面側に第1の電極を有し、前記半導体素子の第1の電極が、前記第2の電極を表面に有する前記接続対象部材における前記第2の電極と電気的に接続されている、請求項1〜8のいずれか1項に記載の半導体装置。
A member to be connected having a second electrode on the surface is provided.
The connection in which the semiconductor element has a first electrode on a second surface side opposite to the first surface side, and the first electrode of the semiconductor element has the second electrode on the surface. The semiconductor device according to any one of claims 1 to 8, which is electrically connected to the second electrode of the target member.
前記硬化物の前記半導体素子側とは反対の表面上に、保護フィルムが配置されているか、又は、前記硬化物の前記半導体素子側とは反対の表面が露出している、請求項1〜9のいずれか1項に記載の半導体装置。 Claims 1 to 9 wherein a protective film is arranged on the surface of the cured product opposite to the semiconductor element side, or the surface of the cured product opposite to the semiconductor element side is exposed. The semiconductor device according to any one of the above. 半導体素子を保護するために、前記半導体素子の表面上に塗布して、前記半導体素子の表面上に硬化物を形成するために用いられる半導体素子保護用材料であり、
半導体素子と他の接続対象部材との間に配置されて、前記半導体素子と前記他の接続対象部材とを剥離しないように接着及び固定する硬化物を形成するものとは異なり、
熱硬化性化合物と、硬化剤又は硬化触媒と、熱伝導率が10W/m・K以上である無機フィラーとを含み、
三量体から十量体までの環状シロキサン化合物を含まないか、又は三量体から十量体までの環状シロキサン化合物を500ppm以下で含み、
前記無機フィラーの含有量が60重量%以上、92重量%以下であり、
150℃で2時間加熱して硬化物を得たときに、前記硬化物の電気伝導度が50μS/cm以下である、半導体素子保護用材料。
A material for protecting a semiconductor element, which is applied on the surface of the semiconductor element to protect the semiconductor element and is used to form a cured product on the surface of the semiconductor element.
Unlike the one that is arranged between the semiconductor element and the other connection target member to form a cured product that adheres and fixes the semiconductor element and the other connection target member so as not to peel off.
It contains a thermosetting compound, a curing agent or a curing catalyst, and an inorganic filler having a thermal conductivity of 10 W / m · K or more.
Does not contain a cyclic siloxane compound from trimer to decamer, or contains a cyclic siloxane compound from trimer to decamer at 500 ppm or less.
The content of the inorganic filler is 60% by weight or more and 92% by weight or less.
A semiconductor device protection material having an electrical conductivity of 50 μS / cm or less when a cured product is obtained by heating at 150 ° C. for 2 hours.
接続対象部材上に実装された半導体素子を保護するために、前記半導体素子の前記接続対象部材側とは反対の表面上に塗布して、前記半導体素子の前記接続対象部材側とは反対の表面上に硬化物を形成するために用いられる半導体素子保護用材料であり、
熱硬化性化合物と、硬化剤又は硬化触媒と、熱伝導率が10W/m・K以上である無機フィラーとを含み、
三量体から十量体までの環状シロキサン化合物を含まないか、又は三量体から十量体までの環状シロキサン化合物を500ppm以下で含み、
前記無機フィラーの含有量が60重量%以上、92重量%以下であり、
150℃で2時間加熱して硬化物を得たときに、前記硬化物の電気伝導度が50μS/cm以下である、半導体素子保護用材料。
In order to protect the semiconductor element mounted on the connection target member, it is applied on the surface of the semiconductor element opposite to the connection target member side, and the surface of the semiconductor element opposite to the connection target member side. A material for protecting semiconductor devices used to form a cured product on top of it.
It contains a thermosetting compound, a curing agent or a curing catalyst, and an inorganic filler having a thermal conductivity of 10 W / m · K or more.
Does not contain a cyclic siloxane compound from trimer to decamer, or contains a cyclic siloxane compound from trimer to decamer at 500 ppm or less.
The content of the inorganic filler is 60% by weight or more and 92% by weight or less.
A semiconductor device protection material having an electrical conductivity of 50 μS / cm or less when a cured product is obtained by heating at 150 ° C. for 2 hours.
前記熱硬化性化合物が、エポキシ化合物又はシリコーン化合物を含む、請求項11又は12に記載の半導体素子保護用材料。 The material for protecting a semiconductor device according to claim 11 or 12, wherein the thermosetting compound contains an epoxy compound or a silicone compound. 前記熱硬化性化合物がシリコーン化合物を含む、請求項13に記載の半導体素子保護用材料。 The semiconductor device protection material according to claim 13, wherein the thermosetting compound contains a silicone compound. 前記硬化剤がアリルフェノールノボラック化合物である、請求項11〜14のいずれか1項に記載の半導体素子保護用材料。 The material for protecting a semiconductor device according to any one of claims 11 to 14, wherein the curing agent is an allylphenol novolak compound. 前記熱硬化性化合物が、可撓性エポキシ化合物を含む、請求項11〜15のいずれか1項に記載の半導体素子保護用材料。 The material for protecting a semiconductor device according to any one of claims 11 to 15, wherein the thermosetting compound contains a flexible epoxy compound. 前記熱硬化性化合物が、前記可撓性エポキシ化合物と、可撓性エポキシ化合物とは異なるエポキシ化合物とを含む、請求項16に記載の半導体素子保護用材料。 The material for protecting a semiconductor device according to claim 16, wherein the thermosetting compound contains the flexible epoxy compound and an epoxy compound different from the flexible epoxy compound. 半導体素子保護用材料に含まれる前記可撓性エポキシ化合物が、アルキレングリコール基が9以上繰り返された構造単位を有するポリアルキレングリコールジグリシジルエーテルである、請求項16又は17に記載の半導体素子保護用材料。 The semiconductor device protection according to claim 16 or 17, wherein the flexible epoxy compound contained in the semiconductor device protection material is a polyalkylene glycol diglycidyl ether having a structural unit in which 9 or more alkylene glycol groups are repeated. material. 水を含まないか、又は水を1000ppm以下で含む、請求項11〜18のいずれか1項に記載の半導体素子保護用材料。 The semiconductor device protection material according to any one of claims 11 to 18, which does not contain water or contains water in an amount of 1000 ppm or less. 半導体素子を保護するために、前記半導体素子の表面上に硬化物を形成し、かつ前記硬化物の前記半導体素子側とは反対の表面上に保護フィルムを配置して、半導体装置を得るために用いられるか、又は、半導体素子を保護するために、前記半導体素子の表面上に硬化物を形成し、かつ前記硬化物の前記半導体素子側とは反対の表面が露出している半導体装置を得るために用いられる、請求項11〜19のいずれか1項に記載の半導体素子保護用材料。 In order to protect a semiconductor element, a cured product is formed on the surface of the semiconductor element, and a protective film is placed on the surface of the cured product opposite to the semiconductor element side to obtain a semiconductor device. A semiconductor device that is used or has a cured product formed on the surface of the semiconductor element and the surface of the cured product opposite to the semiconductor element side is exposed in order to protect the semiconductor element. The semiconductor device protection material according to any one of claims 11 to 19, which is used for this purpose.
JP2020115407A 2015-08-17 2020-07-03 Materials for semiconductor devices and semiconductor device protection Active JP6905129B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015160674 2015-08-17
JP2015160674 2015-08-17
JP2017249182A JP6731906B2 (en) 2015-08-17 2017-12-26 Materials for semiconductor device and semiconductor element protection

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017249182A Division JP6731906B2 (en) 2015-08-17 2017-12-26 Materials for semiconductor device and semiconductor element protection

Publications (2)

Publication Number Publication Date
JP2020170867A true JP2020170867A (en) 2020-10-15
JP6905129B2 JP6905129B2 (en) 2021-07-21

Family

ID=58052215

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2016553906A Active JP6275863B2 (en) 2015-08-17 2016-08-16 Semiconductor device and semiconductor element protection material
JP2017249182A Active JP6731906B2 (en) 2015-08-17 2017-12-26 Materials for semiconductor device and semiconductor element protection
JP2020115407A Active JP6905129B2 (en) 2015-08-17 2020-07-03 Materials for semiconductor devices and semiconductor device protection

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2016553906A Active JP6275863B2 (en) 2015-08-17 2016-08-16 Semiconductor device and semiconductor element protection material
JP2017249182A Active JP6731906B2 (en) 2015-08-17 2017-12-26 Materials for semiconductor device and semiconductor element protection

Country Status (5)

Country Link
JP (3) JP6275863B2 (en)
KR (5) KR102460328B1 (en)
CN (2) CN107735859B (en)
TW (1) TWI630230B (en)
WO (1) WO2017030126A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102455665B1 (en) * 2016-09-29 2022-10-19 다우 도레이 캄파니 리미티드 Curable silicone composition, cured product thereof, and optical semiconductor device
CN110352219A (en) * 2017-03-30 2019-10-18 味之素株式会社 Paste resin composition
TW201936876A (en) * 2018-01-23 2019-09-16 日商長瀬化成股份有限公司 Resin composition for sealing
JP6981914B2 (en) * 2018-04-09 2021-12-17 信越化学工業株式会社 Thermally conductive silicone composition and its cured product
WO2019216388A1 (en) * 2018-05-10 2019-11-14 積水化学工業株式会社 Curable composition, material for protecting semiconductor element, and semiconductor device
TWI833776B (en) 2018-11-14 2024-03-01 日商長瀨化成股份有限公司 Curable resin composition and curable sheet
JP7247003B2 (en) * 2019-04-12 2023-03-28 本田技研工業株式会社 Heat-dissipating paint composition and method for producing heat-dissipating coating
CN114641551A (en) * 2019-12-24 2022-06-17 富士胶片株式会社 Adhesive for endoscope, cured product thereof, endoscope, and method for producing endoscope
JP7328184B2 (en) * 2020-08-06 2023-08-16 信越化学工業株式会社 Thermally conductive two-liquid addition-curable silicone composition and its production method
WO2024005037A1 (en) * 2022-07-01 2024-01-04 三井化学株式会社 Display device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064360A (en) * 1999-08-26 2001-03-13 Sumitomo Bakelite Co Ltd Liquid sealing resin composition and semiconductor device using the same
JP2001288333A (en) * 2000-04-05 2001-10-16 Hitachi Ltd Epoxy resin composite material and device using the same
JP2007502020A (en) * 2003-08-08 2007-02-01 ダウ・コーニング・コーポレイション Manufacturing method of electronic parts using liquid injection molding
JP2007266650A (en) * 2007-07-20 2007-10-11 Texas Instr Japan Ltd Semiconductor device
JP2012199544A (en) * 2011-03-09 2012-10-18 Sekisui Chem Co Ltd Anisotropic conductive paste, connection structure and manufacturing method of connection structure
JP2014040538A (en) * 2012-08-23 2014-03-06 Hitachi Chemical Co Ltd Epoxy resin composition of double-liquid type
JP2015074712A (en) * 2013-10-08 2015-04-20 ナミックス株式会社 Resin composition for film, insulating film and semiconductor device

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2817474B2 (en) 1991-09-25 1998-10-30 信越化学工業株式会社 Epoxy resin composition and cured product
JP3821173B2 (en) 1996-12-19 2006-09-13 信越化学工業株式会社 Epoxy resin composition
JP4190080B2 (en) * 1999-03-16 2008-12-03 日東電工株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP2005200533A (en) 2004-01-15 2005-07-28 Kyocera Chemical Corp Epoxy resin composition for sealing semiconductor and resin-sealed semiconductor device
JP4531578B2 (en) * 2005-01-27 2010-08-25 ローム株式会社 Semiconductor device
JP2006232950A (en) * 2005-02-23 2006-09-07 Matsushita Electric Works Ltd Sealing liquid epoxy resin composition, semiconductor device, and method for producing the same
JP2007217469A (en) 2006-02-14 2007-08-30 Kyocera Chemical Corp Sealing epoxy resin composition and semiconductor device sealed therewith
CN101796106B (en) * 2007-09-05 2012-10-10 积水化学工业株式会社 Insulating sheet and multilayer structure
JP2009263601A (en) * 2008-04-30 2009-11-12 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic part device
JP5721416B2 (en) * 2010-12-13 2015-05-20 積水化学工業株式会社 Thermally conductive adhesive
JP6134089B2 (en) * 2011-02-22 2017-05-24 積水化学工業株式会社 Insulating material and laminated structure
JP2013001861A (en) * 2011-06-20 2013-01-07 Kyocera Chemical Corp Resin composition for semiconductor sealing, production method thereof, and semiconductor apparatus
JP5790253B2 (en) * 2011-07-29 2015-10-07 住友ベークライト株式会社 Liquid resin composition and semiconductor device
JP2013067673A (en) * 2011-09-20 2013-04-18 Hitachi Chemical Co Ltd Resin paste composition and semiconductor device
JP5913884B2 (en) * 2011-09-27 2016-04-27 積水化学工業株式会社 Insulating material and laminated structure
JP5444315B2 (en) * 2011-12-07 2014-03-19 積水化学工業株式会社 Die bond material for optical semiconductor device and optical semiconductor device using the same
WO2015076457A1 (en) * 2013-11-21 2015-05-28 주식회사 동부하이텍 Cof-type semiconductor package and method of manufacturing same
KR101808472B1 (en) * 2014-07-18 2017-12-12 세키스이가가쿠 고교가부시키가이샤 Material for semiconductor element protection and semiconductor device
JP5766867B1 (en) * 2014-11-25 2015-08-19 積水化学工業株式会社 Semiconductor element protecting material and semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064360A (en) * 1999-08-26 2001-03-13 Sumitomo Bakelite Co Ltd Liquid sealing resin composition and semiconductor device using the same
JP2001288333A (en) * 2000-04-05 2001-10-16 Hitachi Ltd Epoxy resin composite material and device using the same
JP2007502020A (en) * 2003-08-08 2007-02-01 ダウ・コーニング・コーポレイション Manufacturing method of electronic parts using liquid injection molding
JP2007266650A (en) * 2007-07-20 2007-10-11 Texas Instr Japan Ltd Semiconductor device
JP2012199544A (en) * 2011-03-09 2012-10-18 Sekisui Chem Co Ltd Anisotropic conductive paste, connection structure and manufacturing method of connection structure
JP2014040538A (en) * 2012-08-23 2014-03-06 Hitachi Chemical Co Ltd Epoxy resin composition of double-liquid type
JP2015074712A (en) * 2013-10-08 2015-04-20 ナミックス株式会社 Resin composition for film, insulating film and semiconductor device

Also Published As

Publication number Publication date
KR102224210B1 (en) 2021-03-08
KR20180061405A (en) 2018-06-07
KR20180013842A (en) 2018-02-07
KR101864096B1 (en) 2018-06-01
KR102460328B1 (en) 2022-10-28
JPWO2017030126A1 (en) 2017-08-17
TW201723071A (en) 2017-07-01
KR20210027521A (en) 2021-03-10
CN111900137A (en) 2020-11-06
KR102097004B1 (en) 2020-04-03
JP6905129B2 (en) 2021-07-21
JP6275863B2 (en) 2018-02-07
KR20200037437A (en) 2020-04-08
TWI630230B (en) 2018-07-21
JP2018056595A (en) 2018-04-05
CN107735859A (en) 2018-02-23
JP6731906B2 (en) 2020-07-29
WO2017030126A1 (en) 2017-02-23
KR20210107160A (en) 2021-08-31
CN107735859B (en) 2020-08-14
KR102294307B1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
JP6905129B2 (en) Materials for semiconductor devices and semiconductor device protection
JP6093880B2 (en) Curable composition, method for producing curable composition, and semiconductor device
JP6539150B2 (en) Semiconductor element protecting material and semiconductor device
TWI598401B (en) Semiconductor element protection material and semiconductor device
JP2017041633A (en) Semiconductor device and semiconductor element protective material
JP5766867B1 (en) Semiconductor element protecting material and semiconductor device
JP2016023219A (en) Two-liquid mixing type first and second liquids for protecting semiconductor element, and semiconductor device
JP6475593B2 (en) Semiconductor element protecting material and semiconductor device
JP2017039799A (en) Material for protecting semiconductor element and semiconductor device
JP2017039801A (en) Material for protecting semiconductor element and semiconductor device
JP2017039800A (en) Material for protecting semiconductor element and semiconductor device
JP2019123774A (en) Material for protecting semiconductor element, and semiconductor device
JP2017039804A (en) Cured body and semiconductor device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200703

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210624

R151 Written notification of patent or utility model registration

Ref document number: 6905129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250