TWI628671B - Bonding wire for semiconductor device - Google Patents

Bonding wire for semiconductor device Download PDF

Info

Publication number
TWI628671B
TWI628671B TW105121817A TW105121817A TWI628671B TW I628671 B TWI628671 B TW I628671B TW 105121817 A TW105121817 A TW 105121817A TW 105121817 A TW105121817 A TW 105121817A TW I628671 B TWI628671 B TW I628671B
Authority
TW
Taiwan
Prior art keywords
bonding wire
bonding
wire
mass
concentration
Prior art date
Application number
TW105121817A
Other languages
English (en)
Other versions
TW201642282A (zh
Inventor
山田隆
小田大造
榛原照男
宇野智裕
Original Assignee
日鐵住金新材料股份有限公司
新日鐵住金高新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鐵住金新材料股份有限公司, 新日鐵住金高新材料股份有限公司 filed Critical 日鐵住金新材料股份有限公司
Priority to TW105121817A priority Critical patent/TWI628671B/zh
Publication of TW201642282A publication Critical patent/TW201642282A/zh
Application granted granted Critical
Publication of TWI628671B publication Critical patent/TWI628671B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45565Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/4557Plural coating layers
    • H01L2224/45572Two-layer stack coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

本發明係提供一種對表面具有Pd被覆層之Cu接合導線改善高溫高濕環境下之球接合部之接合可靠性而適於車載裝置的接合導線。於具有Cu合金芯材與形成於其表面之Pd被覆層的半導體裝置用接合導線中,接合導線含有合計0.1~100質量ppm之As、Te、Sn、Sb、Bi、Se中之1種以上之元素。藉此,可延長高溫高濕環境下之球接合部之接合壽命,改善接合可靠性。若Cu合金芯材進而含有分別為0.011~1.2質量%之Ni、Zn、Rh、In、Ir、Pt、Ga、Ge中之1種以上,則可提高170℃以上之高溫環境下之球接合部可靠性。又,若於Pd被覆層之表面進而形成包含Au與Pd之合金表皮層,則楔形接合性改善。

Description

半導體裝置用接合導線
本發明係關於一種用於將半導體元件上之電極與外部引線等電路配線基板之配線加以連接的半導體裝置用接合導線。
目前,作為將半導體元件上之電極與外部引線之間加以接合之半導體裝置用接合導線(以下稱為「接合導線」),主要使用線徑15~50μm左右之細線。接合導線之接合方法一般為超音波併用熱壓接方式,可使用通用接合裝置、使接合導線通過其內部而用於連接之毛細治具等。接合導線之接合製程係藉由如下方式完成,即,藉由電弧熱輸入將導線前端進行加熱熔融,藉由表面張力而形成球(FAB:Free Air Ball(無空氣球))後,將該球部壓接接合(以下稱為「球接合」)於在150~300℃之範圍內經加熱之半導體元件之電極上,繼而形成迴路後,對外部引線側之電極壓接接合(以下稱為「楔形接合」)導線部。關於作為接合導線之接合對象的半導體元件上之電極,一直採用使以Al為主體之合金於Si基板上成膜所得之電極構造、對外部引線側之電極實施鍍Ag或鍍Pd處理所得之電極構造等。
迄今為止,接合導線之材料係Au為主流,但以LSI(Large Scale Integration,大規模積體電路)用途為中心而逐漸用Cu代替Au。另一方面,近年來於電動汽車或油電混合車普及之背景下,於車載裝置用途中以Cu代替Au之需求亦提高。
關於Cu接合導線,已提出有使用高純度Cu(純度:99.99質量%以 上)者(例如專利文獻1)。Cu與Au相比有易被氧化之缺點,存在接合可靠性、球形成性、楔形接合性等較差之課題。作為防止Cu接合導線之表面氧化之方法,已提出有以Au、Ag、Pt、Pd、Ni、Co、Cr、Ti等金屬將Cu芯材表面被覆之構造(專利文獻2)。又,已提出有於Cu芯材表面上被覆Pd、並由Au、Ag、Cu或該等之合金將該表面被覆之構造(專利文獻3)。
[先前技術文獻] [專利文獻]
[專利文獻1]日本專利特開昭61-48543號公報
[專利文獻2]日本專利特開2005-167020號公報
[專利文獻3]日本專利特開2012-36490號公報
車載裝置與通常之電子機器相比,要求嚴酷之高溫高濕環境下之接合可靠性。尤其將導線之球部接合於電極上而形成之球接合部之接合壽命成為最大問題。關於對高溫高濕環境下之接合可靠性加以評價之方法,提出有若干方法,作為具代表性之評價法,有HAST(Highly Accelerated Temperature and Humidity Stress Test)(高溫高濕環境暴露試驗)。於藉由HAST對球接合部之接合可靠性進行評價之情形時,將評價用之球接合部暴露於溫度130℃、相對濕度85%之高溫高濕環境下,測定接合部之電阻值之經時變化,或測定球接合部之剪切強度之經時變化,藉此評價球接合部之接合壽命。近來,於此種條件下之HAST中逐漸要求100小時以上之接合壽命。
使用先前之具有Pd被覆層之Cu接合導線與純Al電極進行接合,第一接合設為球接合、第二接合設為楔形接合,以模塑樹脂加以密封後,進行上述HAST條件下之評價,結果存在球接合部之接合壽命未 達100小時之情況,得知車載裝置所要求之接合可靠性不充分。
本發明之目的在於提供一種對表面具有Pd被覆層之Cu接合導線改善高溫高濕環境下之球接合部之接合可靠性而適於車載裝置的接合導線。
即,本發明之要旨如下所述。
(1)一種半導體裝置用接合導線,其係具有Cu合金芯材、與形成於上述Cu合金芯材之表面上之Pd被覆層者,其特徵在於:上述接合導線包含選自As、Te、Sn、Sb、Bi、Se中之至少1種以上之元素,上述元素相對於導線整體之濃度合計為0.1~100質量ppm,Sn≦10質量ppm,Sb≦10質量ppm,Bi≦1質量ppm。
(2)如上述(1)記載之半導體裝置用接合導線,其特徵在於:選自As、Te、Sn、Sb、Bi、Se中之至少1種以上之元素相對於導線整體之濃度合計為1~100質量ppm。
(3)如上述(1)或(2)記載之半導體裝置用接合導線,其特徵在於:上述Pd被覆層之厚度為0.015~0.150μm。
(4)如上述(1)至(3)中任一項記載之半導體裝置用接合導線,其特徵在於:於上述Pd被覆層上進而具有包含Au與Pd之合金表皮層。
(5)如上述(4)記載之半導體裝置用接合導線,其特徵在於:上述包含Au與Pd之合金表皮層之厚度為0.0005~0.050μm。
(6)如上述(1)至(5)中任一項記載之半導體裝置用接合導線,其特徵在於:上述接合導線進而包含選自Ni、Zn、Rh、In、Ir、Pt、Ga、Ge中之至少1種以上之元素,上述元素相對於導線整體之濃度分別為0.011~1.2質量%。
(7)如上述(1)至(6)中任一項記載之半導體裝置用接合導線,其特徵在於:上述Cu合金芯材包含Pd,上述Cu合金芯材所含之Pd之濃度 為0.05~1.2質量%。
(8)如上述(1)至(7)中任一項記載之半導體裝置用接合導線,其特徵在於:上述接合導線進而包含選自B、P、Mg、Ca、La中之至少1種以上之元素,上述元素相對於導線整體之濃度分別為1~100質量ppm。
(9)如上述(1)至(8)中任一項記載之半導體裝置用接合導線,其特徵在於:於測定上述接合導線表面之結晶方位時之測定結果中,相對於上述接合導線長度方向而角度差為15度以下之結晶方位<111>之存在比率以面積率計為30~100%。
(10)如上述(1)至(9)中任一項記載之半導體裝置用接合導線,其特徵在於:於上述接合導線之最表面存在Cu。
根據本發明,於具有Cu合金芯材、與形成於Cu合金芯材之表面上之Pd被覆層的半導體裝置用接合導線中,接合導線含有合計0.1~100質量ppm之選自As、Te、Sn、Sb、Bi、Se中之至少1種以上之元素,藉此可延長高溫高濕環境下之球接合部之接合壽命,改善接合可靠性。
本發明之接合導線為具有Cu合金芯材、與形成於上述Cu合金芯材之表面上之Pd被覆層的半導體裝置用接合導線,其中,接合導線含有合計0.1~100質量ppm之選自As、Te、Sn、Sb、Bi、Se中之至少1種以上之元素。具有該特定構成之本發明之接合導線可改善車載裝置所要求之高溫高濕環境下之球接合部之接合可靠性。
詳細內容將於下文中進行說明,若使用本發明之接合導線藉由 電弧放電而形成球,則於接合導線熔融而凝固之過程中,於球表面形成Pd濃度高於球內部之合金層。若使用該球與Al電極進行接合並實施高溫高濕試驗,則接合界面上成為Pd濃化狀態。該Pd濃化而形成之濃化層可抑制高溫高濕試驗中之接合界面上之Cu、Al之擴散,降低易腐蝕性化合物之成長速度,顯著提高高溫高濕環境下之球接合部之接合可靠性。
又,形成於球表面之Pd濃度較高之合金層由於耐氧化性優異,故而可減少於球形成時球之形成位置相對於接合導線之中心而發生偏移等不良。
就延長溫度130℃、相對濕度85%之高溫高濕環境下之球接合部之接合壽命,改善接合可靠性之觀點而言,選自As、Te、Sn、Sb、Bi、Se中之至少1種以上之元素相對於接合導線整體之濃度合計為0.1質量ppm以上,較佳為0.5質量ppm以上,更佳為1質量ppm以上,進而較佳為1.5質量ppm以上、2質量ppm以上、2.5質量ppm以上、或3質量ppm以上。
作為半導體裝置之封裝材料之模塑樹脂(環氧樹脂)於其分子骨架中包含氯(Cl)。於作為HAST評價條件之130℃、相對濕度85%之高溫高濕環境下,分子骨架中之Cl發生水解而以氯化物離子(Cl-)之形式溶出。於將不具有被覆層之Cu接合導線接合於Al電極之情形時,若將Cu/Al接合界面置於高溫下,則Cu與Al相互擴散,最終形成作為金屬間化合物之Cu9Al4。Cu9Al4易受到鹵素之腐蝕,由自模塑樹脂中溶出之氯化物致使腐蝕進行,導致接合可靠性下降。於Cu導線具有Pd被覆層之情形時,Pd被覆Cu導線與Al電極之接合界面成為Cu/Pd濃化層/Al之構造,因此與不具有被覆層之Cu導線相比抑制Cu9Al4金屬間化合物之生成,但車載裝置所要求之高溫高濕環境下之接合可靠性並不充分。
相對於此,可認為若如本發明般Pd被覆Cu接合導線含有特定量之選自As、Te、Sn、Sb、Bi、Se中之至少1種以上之元素,則存在進一步抑制接合部中生成Cu9Al4金屬間化合物之傾向。推測若含有特定量之該等元素,則於形成球時,芯材之Cu與被覆層之Pd的界面張力降低,界面之潤濕性變良好,故球接合界面之Pd濃化更顯著地顯現。因此,利用Pd濃化層之Cu與Al之相互擴散抑制效果進一步增強,結果容易因C1之作用而腐蝕之Cu9Al4之生成量變少,球接合部之高溫高濕環境下之接合可靠性顯著提高。
於具有Cu合金芯材與形成於Cu合金芯材之表面上之Pd被覆層、進而視需要於其表面上具有包含Au與Pd之表皮合金層的本發明中,若如後所述般進行擴散熱處理或退火熱處理,則芯材之Cu可藉由晶界擴散等而於被覆層或表皮合金層中擴散,使Cu到達至導線最表面而使Cu存在於最表面。因此,本發明中有於接合導線之最表面存在Cu之情況。
於如本發明般Pd被覆Cu接合導線含有特定量之As、Te、Sn、Sb、Bi、Se之情形時,若進而於接合導線之最表面存在Cu,則存在進一步抑制接合部中生成Cu9Al4金屬間化合物之傾向。推測於Pd被覆Cu接合導線含有特定量之As、Te、Sn、Sb、Bi、Se之情形時,若進而於接合導線之最表面存在Cu,則藉由接合導線所含之As、Te、Sn、Sb、Bi、Se與Cu之相互作用,於FAB形成時FAB表面之Pd濃化受到促進,球接合界面之Pd濃化更顯著地顯現。藉此,利用Pd濃化層之Cu與Al之相互擴散抑制效果進一步增強,容易因Cl之作用而腐蝕之Cu9Al4之生成量變少,球接合部之高溫高濕環境下之接合可靠性進一步提高。
於藉由歐傑電子分光裝置對接合導線之表面進行測定時,若於表面檢測到Cu,則可謂於最表面存在Cu,可發揮上述效果。進而, 若相對於構成接合導線最表面之金屬元素的Cu濃度成為1原子%以上,則上述高溫高濕環境下之球接合部之接合可靠性之提高效果確實顯現,因而較佳。就進一步提高高溫高濕環境下之球接合部之接合可靠性之觀點而言,相對於構成接合導線最表面之金屬元素的Cu濃度更佳為1.5原子%以上,進而較佳為2原子%以上、2.5原子%以上、或3原子%以上。又,就抑制導線表面之耐氧化性或耐硫化性之降低、抑制接合導線之使用壽命縮短之觀點而言,相對於構成接合導線最表面之金屬元素的Cu濃度較佳為50原子%以下,更佳為45原子%以下,進而較佳為40原子%以下、35原子%以下、或30原子%以下。
進而,由表面上存在Cu所得之上述效果於芯材之Cu之純度較低之情形(例如3N以下)時顯現,尤其於Cu之純度為2N以下之情形時存在更顯著地顯現之傾向。
藉由接合導線之最表面上存在Cu所得的球接合部之高溫高濕環境下之接合可靠性提高效果為含有特定量之As、Te、Sn、Sb、Bi、Se之本發明之接合導線所特有。若為不含該等元素之普通之Pd被覆Cu接合導線,則球接合部之高溫高濕環境下之接合可靠性無法獲得如本發明般之提高效果。不僅如此,而且對於不含該等元素之普通之Pd被覆Cu接合導線而言,於接合導線之最表面上存在Cu會導致導線表面之耐氧化性或耐硫化性下降,接合導線之使用壽命縮短。又,FAB之偏芯多發,球形狀易劣化。又,可見楔形接合性劣化傾向。
藉由接合導線之最表面上存在Cu所得之上述效果於在本發明之接合導線中Pd被覆層為最表面之情形、及包含Au與Pd之合金表皮層為最表面之情形時均同樣地顯現。
此處,所謂最表面係指於未實施濺鍍等之狀態下藉由歐傑電子分光裝置測定接合導線之表面所得之區域。
另一方面,就獲得良好之FAB形狀、進而良好之球接合性之觀點 而言,導線中之上述元素之濃度合計為100質量ppm以下,較佳為95質量ppm以下、90質量ppm以下、85質量ppm以下、或80質量ppm以下。又,於Sn、Sb濃度超過10質量ppm之情形,或Bi濃度超過1質量ppm之情形時,FAB形狀變得不良,因此藉由設為Sn≦10質量ppm、Sb≦10質量ppm、Bi≦1質量ppm,可進一步改善FAB形狀,因而較佳。進而,藉由將Se濃度設為4.9質量ppm以下,可進一步改善FAB形狀、楔形接合性,因而更佳。
於使接合導線中含有As、Te、Sn、Sb、Bi、Se時,採用使該等元素含有於Cu芯材中之方法、被覆於Cu芯材或導線表面而含有之方法均可發揮上述本發明之效果。該等成分之添加量為極微量,因此添加方法多變,無論以何種方法進行添加,只要包含指定濃度範圍之成分,則效果顯現。
本發明之接合導線中,關於Pd被覆層之厚度,就進一步改善車載裝置所要求之高溫高濕環境下之球接合部之接合可靠性之觀點而言,較佳為0.015μm以上,更佳為0.02μm以上,進而較佳為0.025μm以上、0.03μm以上、0.035μm以上、0.04μm以上、0.045μm以上、或0.05μm以上。另一方面,就獲得良好之FAB形狀之觀點而言,Pd被覆層之厚度較佳為0.150μm以下,更佳為0.140μm以下、0.130μm以下、0.120μm以下、0.110μm以下、或0.100μm以下。
對上述接合導線之Cu合金芯材、Pd被覆層之定義進行說明。Cu合金芯材與Pd被覆層之邊界係以Pd濃度為基準加以判定。以Pd濃度為50原子%之位置作為邊界,將Pd濃度為50原子%以上之區域判定為Pd被覆層,將Pd濃度未達50原子%之區域判定為Cu合金芯材。其根據在於:若Pd被覆層中Pd濃度為50原子%以上,則可由Pd被覆層之構造獲得特性之改善效果。Pd被覆層亦可包含Pd單層之區域、Pd與Cu於導線之深度方向上具有濃度梯度之區域。於Pd被覆層中形成有該具有 濃度梯度之區域之原因在於:存在因製造步驟中之熱處理等而Pd與Cu之原子擴散之情況。本發明中,所謂濃度梯度,係指深度方向上之濃度變化程度係每0.1μm為10mol%以上。進而,Pd被覆層亦可包含不可避免之雜質。
本發明之接合導線亦可於Pd被覆層之表面上進而具有包含Au與Pd之合金表皮層。藉此,本發明之接合導線可進一步提高接合可靠性,並且可改善楔形接合性。
對上述接合導線之包含Au與Pd之合金表皮層之定義進行說明。包含Au與Pd之合金表皮層和Pd被覆層之邊界係以Au濃度為基準加以判定。以Au濃度為10原子%之位置作為邊界,將Au濃度為10原子%以上之區域判定為包含Au與Pd之合金表皮層,將未達10原子%之區域判定為Pd被覆層。又,即便是Pd濃度為50原子%以上之區域,若存在10原子%以上之Au,則判定為包含Au與Pd之合金表皮層。該等之根據在於:若Au濃度為上述濃度範圍,則可由Au表皮層之構造而期待特性之改善效果。包含Au與Pd之合金表皮層係Au-Pd合金,包括包含Au與Pd於導線之深度方向上具有濃度梯度之區域、及不含該具有濃度梯度之區域兩種情況。包含Au與Pd之合金表皮層較佳為包含該具有濃度梯度之區域。於包含Au與Pd之合金表皮層中形成有該具有濃度梯度之區域之原因在於:因製造步驟中之熱處理等而Au與Pd之原子擴散。進而,包含Au與Pd之合金表皮層亦可包含不可避免之雜質與Cu。
本發明之接合導線中,包含Au與Pd之合金表皮層可與Pd被覆層反應,提高包含Au與Pd之合金表皮層、Pd被覆層、Cu合金芯材間之密接強度,抑制楔形接合時之Pd被覆層或包含Au與Pd之合金表皮層的剝離。藉此,本發明之接合導線可改善楔形接合性。就獲得良好之楔形接合性之觀點而言,包含Au與Pd之合金表皮層之厚度較佳為 0.0005μm以上,更佳為0.001μm以上、0.002μm以上、或0.003μm以上。就抑制偏芯、獲得良好之FAB形狀之觀點而言,包含Au與Pd之合金表皮層之厚度較佳為0.050μm以下,更佳為0.045μm以下、0.040μm以下、0.035μm以下、或0.030μm以下。再者,包含Au與Pd之合金表皮層可藉由與Pd被覆層相同之方法而形成。
作為半導體裝置之封裝材料之模塑樹脂(環氧樹脂)中包含矽烷偶合劑。矽烷偶合劑具有提高有機物(樹脂)與無機物(矽或金屬)之密接性之作用,因此可提高與矽基板或金屬之密接性。進而,於要求更高溫下之可靠性之面向汽車之半導體等要求高密接性之情形時,添加「含硫矽烷偶合劑」。模塑樹脂所含之硫於HAST中之溫度條件即130℃左右之條件下不游離,但若於175℃以上(例如175℃~200℃)之條件下使用則游離。並且,若於175℃以上之高溫下游離之硫與Cu接觸,則加劇Cu之腐蝕,生成硫化物(Cu2S)或氧化物(CuO)。若於使用Cu接合導線之半導體裝置中發生Cu之腐蝕,則尤其球接合部之接合可靠性下降。
作為對170℃以上之高溫環境下之球接合部可靠性進行評價之方法,採用HTS(High Temperature Storage Test)(高溫放置試驗)。對於暴露於高溫環境下之評價用樣品,測定球接合部之電阻值之經時變化,或測定球接合部之剪切強度之經時變化,藉此評價球接合部之接合壽命。近年來,對於汽車用半導體裝置,要求於175℃~200℃之HTS中之球接合部之可靠性提高。
本發明之接合導線較佳為進而包含選自Ni、Zn、Rh、In、Ir、Pt、Ga、Ge中之至少1種以上之元素,上述元素相對於導線整體之濃度分別為0.011~1.2質量%。藉由本發明之接合導線進而含有該等元素,球接合部之高溫環境下之接合可靠性中,175℃以上之HTS中之成績改善。就改善球接合部之高溫環境下之接合可靠性(尤其是175℃ 以上之HTS中之成績)之觀點而言,上述元素相對於導線整體之濃度分別較佳為0.011質量%以上,更佳為0.020質量%以上,進而較佳為0.030質量%以上、0.050質量%以上、0.070質量%以上、0.090質量%以上、0.10質量%以上、0.15質量%以上、或0.20質量%以上。就獲得良好之FAB形狀之觀點、抑制接合導線之硬質化而抑制楔形接合性之降低之觀點而言,上述元素相對於導線整體之濃度分別較佳為1.2質量%以下,更佳為1.1質量%以下。於本發明之接合導線包含選自Ni、Zn、Rh、In、Ir、Pt、Ga、Ge中之複數種元素之情形時,該等元素相對於導線整體之濃度合計較佳為0.011~2.2質量%。就改善球接合部之高溫環境下之接合可靠性(尤其是175℃以上之HTS中之成績)之觀點而言,上述元素相對於導線整體之濃度合計較佳為0.011質量%以上,更佳為0.020質量%以上,進而較佳為0.030質量%以上、0.050質量%以上、0.070質量%以上、0.090質量%以上、0.10質量%以上、0.15質量%以上、或0.20質量%以上。就獲得良好之FAB形狀之觀點、抑制接合導線之硬質化而抑制楔形接合性之降低之觀點而言,上述元素相對於導線整體之濃度合計較佳為2.0質量%以下、1.8質量%以下、或1.6質量%以下。
又,本發明之接合導線中,若Cu合金芯材包含Pd且Cu合金芯材所含之Pd之濃度為0.05~1.2質量%則較佳。藉此,可獲得與上述包含Ni、Zn、Rh、In、Ir、Pt、Ga、Ge之情形相同之效果。本發明之接合導線中,關於Cu合金芯材所含之Pd之濃度,就改善球接合部之高溫環境下之接合可靠性(尤其是175℃以上之HTS中之成績)之觀點而言,較佳為0.05質量%以上,更佳為0.1質量%以上、0.2質量%以上、0.3質量%以上、0.4質量%以上、或0.5質量%以上。又,就獲得良好之FAB形狀之觀點、抑制接合導線之硬質化而抑制楔形接合性之降低之觀點而言,Cu合金芯材所含之Pd之濃度較佳為1.2質量%以下,更佳為1.1 質量%以下。本發明之接合導線藉由以上述含量範圍含有Ni、Zn、Rh、In、Ir、Pt、Ga、Ge、Pd,可提高迴路形成性,即,可減少於高密度安裝中成問題之偏斜。其原因在於:藉由接合導線包含該等元素,接合導線之降伏強度提高,可抑制接合導線之變形。再者,作為由接合導線製品求出Cu合金芯材所含之Pd之濃度的方法,例如可列舉:使接合導線之剖面露出,對Cu合金芯材之區域進行濃度分析之方法;一面利用濺擊等自接合導線之表面朝向深度方向切削,一面對Cu合金芯材之區域進行濃度分析之方法。例如於Cu合金芯材包含具有Pd之濃度梯度之區域之情形時,只要對接合導線之剖面進行線分析,對不具有Pd之濃度梯度之區域(即,深度方向上之Pd之濃度變化程度係每0.1μm未達10mol%之區域)進行濃度分析即可。濃度分析之方法將於下文中說明。
又,藉由以上述含量範圍含有Ni、Zn、Rh、In、Ir、Pt、Ga、Ge、Pd,本發明之接合導線可進一步延長溫度130℃、相對濕度85%之高溫高濕環境下之球接合部之接合壽命。可認為若本發明之接合導線進而含有特定量之Ni、Zn、Rh、In、Ir、Pt、Ga、Ge、Pd,則存在進一步抑制接合部中生成Cu9Al4金屬間化合物之傾向。推測若進而含有該等元素,則芯材之Cu與被覆層之Pd的界面張力進一步降低,球接合界面之Pd濃化更顯著地顯現。因此,由Pd濃化層所得之Cu與Al之相互擴散抑制效果進一步增強,結果可大幅度地減少容易因Cl之作用而腐蝕之Cu9Al4之生成量,球接合部之高溫高濕環境下之可靠性進一步提高。
本發明之接合導線較佳為進而包含選自B、P、Mg、Ca、La中之至少1種以上之元素,且上述元素相對於導線整體之濃度分別為1~100質量ppm。藉此,可改善於高密度安裝時所要求之球接合部之壓塌形狀,即,可改善球接合部形狀之正圓性。可認為其原因在於:藉 由添加上述元素,可使球之結晶粒徑微細化,可抑制球之變形。就改善球接合部之壓塌形狀、即改善球接合部形狀之正圓性之觀點而言,上述元素相對於導線整體之濃度分別較佳為1質量ppm以上,更佳為2質量ppm以上、3質量ppm以上、4質量ppm以上、或5質量ppm以上。就抑制球之硬質化而抑制球接合時之晶片損傷之觀點而言,上述元素相對於導線整體之濃度分別較佳為100質量ppm以下,更佳為95質量ppm以下、90質量ppm以下、85質量ppm以下、或80質量ppm以下。於本發明之接合導線包含選自B、P、Mg、Ca、La中之複數種元素之情形時,該等元素相對於導線整體之濃度合計較佳為1~100質量ppm。就改善球接合部之壓塌形狀、即改善球接合部形狀之正圓性之觀點而言,上述元素相對於導線整體之濃度合計較佳為1質量ppm以上,更佳為2質量ppm以上、3質量ppm以上、4質量ppm以上、或5質量ppm以上。又,就抑制球之硬質化而抑制球接合時之晶片損傷之觀點而言,上述元素相對於導線整體之濃度合計較佳為90質量ppm以下、80質量ppm以下、或70質量ppm以下。
關於Pd被覆層、包含Au與Pd之合金表皮層之濃度分析、Cu合金芯材中之Pd之濃度分析,有效的是一面利用濺擊等自接合導線之表面朝向深度方向切削一面進行分析之方法,或者使導線剖面露出而進行線分析、點分析等之方法。用於該等濃度分析之分析裝置可利用掃描式電子顯微鏡或穿透式電子顯微鏡所附帶之歐傑電子分光分析裝置、能量分散型X射線分析裝置、電子束微量分析器等。作為使導線剖面露出之方法,可利用機械研磨、離子蝕刻法等。關於接合導線中之As、Te、Sn、Sb、Bi、Se、Ni、Zn、Rh、In、Ir、Pt、Ga、Ge、B、P、Mg、Ca、La等之微量分析,可利用ICP(Inductively Coupled Plasma,感應耦合電漿)發射分光分析裝置或ICP質量分析裝置對使接合導線於強酸中溶解所得之溶液進行分析,以接合導線整體所含之元 素之濃度之形式進行檢測。
本發明之一較佳實施形態中,於測定接合導線表面之結晶方位時之測定結果中,相對於接合導線長度方向而角度差為15度以下之結晶方位<111>之存在比率以面積率計為30~100%。該實施形態中,可提高迴路形成性,即,可提高於高密度安裝時所要求之迴路之直線性,並且可減小迴路高度之偏差。其原因在於:若表面結晶方位一致,則對橫向變形之耐受性增強,抑制橫向變形,故可抑制偏斜不良。就抑制偏斜不良之觀點而言,上述結晶方位<111>之存在比率以面積率計更佳為35%以上,進而較佳為40%以上、45%以上、50%以上、或55%以上。
(製造方法)
其次,對本發明之實施形態之接合導線之製造方法進行說明。接合導線係藉由如下方式獲得,即,製造用於芯材之Cu合金後,細細地加工成導線狀,形成Pd被覆層、Au層,進行熱處理。亦存在於形成Pd被覆層、Au層後再次進行拉絲與熱處理之情況。對Cu合金芯材之製造方法、Pd被覆層、包含Au與Pd之合金表皮層之形成方法、熱處理方法進行詳細說明。
用於芯材之Cu合金係藉由將成為原料之Cu與添加元素一起熔解、凝固而獲得。熔解時可利用電弧加熱爐、高頻加熱爐、電阻加熱爐等。為了防止來自大氣中之O2、H2等氣體混入,較佳為於真空環境或者Ar或N2等惰性氣體環境中進行熔解。
於Cu合金芯材之表面上形成Pd被覆層、Au層之方法存在鍍敷法、蒸鍍法、熔融法等。鍍敷法可應用電解鍍敷法、無電解鍍敷法之任一種。對於被稱為觸擊鍍敷、閃熔鍍敷之電解鍍敷而言,鍍敷速度較快,與基底之密接性亦良好。用於無電解鍍敷之溶液分為置換型與還原型,於厚度較薄之情形時,僅進行置換型鍍敷便足矣,於厚度較 厚之情形時,有效的是分階段於置換型鍍敷後實施還原型鍍敷。
關於蒸鍍法,可利用濺鍍法、離子鍍覆法、真空蒸鍍等物理吸附及電漿CVD(Chemical Vapor Deposition,化學氣相沈積)等化學吸附。該等均為乾式,於Pd被覆層、Au層形成後無需洗淨而無洗淨時之表面污染等擔憂。
藉由在Pd被覆層、Au層形成後進行熱處理,Pd被覆層之Pd擴散至Au層中,形成包含Au與Pd之合金表皮層。亦可並非於形成Au層後藉由熱處理形成包含Au與Pd之合金表皮層,而自最初開始被覆包含Au與Pd之合金表皮層。
對於Pd被覆層、包含Au與Pd之合金表皮層之形成而言,拉絲至最終線徑後形成該等層之方法、與於粗徑之Cu合金芯材上形成該等層後進行複數次拉絲直至達成目標線徑之方法均有效。於前者之以最終徑之狀態形成Pd被覆層、包含Au與Pd之合金表皮層之情形時,便於製造、品質管理等。於後者之將Pd被覆層、包含Au與Pd之合金表皮層與拉絲加以組合之情形時,於與Cu合金芯材之密接性提高之方面有利。作為各形成法之具體例,可列舉:一面於電解鍍敷溶液中連續地掠過導線,一面於最終線徑之Cu合金芯材上形成Pd被覆層、包含Au與Pd之合金表皮層之方法;或者將較粗之Cu合金芯材浸漬於電解或無電解之鍍敷浴中形成Pd被覆層、包含Au與Pd之合金表皮層後,將導線拉細至最終線徑之方法等。
於形成Pd被覆層、包含Au與Pd之合金表皮層後,存在進行熱處理之情況。藉由進行熱處理,於包含Au與Pd之合金表皮層、Pd被覆層、Cu合金芯材之間原子擴散而密接強度提高,因此可抑制加工中之包含Au與Pd之合金表皮層或Pd被覆層的剝離,於生產性提高之方面有效。為了防止來自大氣中之O2混入,較佳為於真空環境或Ar或N2等惰性氣體環境中進行熱處理。
如上所述,藉由調整對接合導線實施之擴散熱處理或退火熱處理之條件,芯材之Cu可藉由晶界擴散等而於Pd被覆層或包含Au與Pd之表皮合金層中擴散,使Cu到達至接合導線之最表面而使Cu存在於最表面。作為用以使Cu存在於最表面上之熱處理,可採用如上所述般用以形成包含Au與Pd之合金表皮層之熱處理。於進行用以形成合金表皮層之熱處理時,藉由選擇熱處理溫度與時間,可使最表面存在Cu或不存在Cu。進而,亦可將最表面之Cu濃度調整為特定範圍(例如1~50原子%之範圍)。亦可藉由形成合金表皮層時以外進行之熱處理而使Cu擴散至最表面。
如上所述,於使接合導線中含有As、Te、Sn、Sb、Bi、Se時,採用使該等元素含有於Cu芯材中之方法、被覆於Cu芯材或導線表面而含有之方法均可發揮上述本發明之效果。關於Ni、Zn、Rh、In、Ir、Pt、Ga、Ge、B、P、Mg、Ca、La亦同樣。
作為上述成分之添加方法,最簡便的是預先添加至Cu合金芯材之起始材料中之方法。例如秤量高純度之銅與上述成分元素原料作為起始原料後,將該等於高真空下或氮氣或氬氣等惰性氣體環境下加熱而熔解,藉此製作添加有目標濃度範圍之上述成分之鑄錠,作為包含目標濃度之上述成分元素之起始材料。因此,於一較佳實施形態中,本發明之接合導線之Cu合金芯材以下述元素相對於導線整體之濃度合計為0.1~100質量ppm、且Sn≦10質量ppm、Sb≦10質量ppm、Bi≦1質量ppm之方式包含選自As、Te、Sn、Sb、Bi、Se中之至少1種以上之元素。該合計濃度之較佳數值範圍如上所述。於另一較佳實施形態中,本發明之接合導線之Cu合金芯材以下述元素相對於導線整體之濃度分別為0.011~1.2質量%之方式包含選自Ni、Zn、Rh、In、Ir、Pt、Ga、Ge中之至少1種以上之元素。該濃度之較佳數值範圍如上所述。於一較佳實施形態中,Cu合金芯材之Cu之純度為3N以下(較佳 為2N以下)。關於先前之Pd被覆Cu接合導線,就接合性之觀點而言使用高純度(4N以上)之Cu芯材,存在避免使用低純度之Cu芯材之傾向。含有特定元素之本發明之接合導線特別適於如上所述般使用Cu純度較低之Cu合金芯材之情形,且實現了車載裝置所要求之高溫高濕環境下之球接合部之接合可靠性。於另一較佳實施形態中,本發明之接合導線之Cu合金芯材以下述元素相對於導線整體之濃度分別成為1~100質量ppm之方式包含選自B、P、Mg、Ca、La中之至少1種以上之元素。該濃度之較佳數值範圍如上所述。
亦可藉由在導線製造步驟之中途使上述成分被覆於導線表面而含有上述成分。於該情形時,可組入至導線製造步驟中之某處,亦可反覆多次。亦可組入至複數個步驟中。可於Pd被覆前之Cu表面上添加,亦可於Pd被覆後之Pd表面上添加,亦可於Au被覆後之Au表面上添加,可組入至各被覆步驟中。作為被覆方法,可自(1)水溶液之塗佈乾燥熱處理、(2)鍍敷法(濕式)、(3)蒸鍍法(乾式)中選擇。
於採用水溶液之塗佈乾燥熱處理之方法之情形時,首先利用包含上述成分元素之水溶性化合物製備適當濃度之水溶液。藉此,可將上述成分取入至導線材料中。可組入至導線製造步驟中之某處,亦可反覆多次。亦可組入至複數個步驟中。可於Pd被覆前之Cu表面上添加,亦可於Pd被覆後之Pd表面上添加,亦可於Au被覆後之Au表面上添加,亦可組入至各被覆步驟中。
於採用鍍敷法(濕式)之情形時,鍍敷法可應用電解鍍敷法、無電解鍍敷法之任一種。關於電解鍍敷法,除了通常之電解鍍敷以外,亦可應用被稱為閃熔鍍敷之鍍敷速度較速且與基底之密接性亦良好之鍍敷法。用於無電解鍍敷之溶液有置換型與還原型。一般而言,於鍍敷厚度較薄之情形時應用置換型鍍敷,於較厚之情形時應用還原型鍍敷,可應用任一種,只要根據所欲添加之濃度而選擇並調整鍍敷液濃 度、時間即可。電解鍍敷法、無電解鍍敷法均可組入至導線製造步驟中之某處,亦可反覆多次。亦可組入至複數個步驟中。可於Pd被覆前之Cu表面上添加,亦可於Pd被覆後之Pd表面上添加,亦可於Au被覆後之Au表面上添加,亦可組入至各被覆步驟中。
蒸鍍法(乾式)中,有濺鍍法、離子鍍覆法、真空蒸鍍法、電漿CVD等。由於為乾式,故具有無需預處理後處理且亦無污染擔憂之優點。一般而言,蒸鍍法存在目標元素之添加速度較慢之問題,但由於上述成分元素之添加濃度相對較低,故而為適於實現本發明之目的之方法之一。
各蒸鍍法可組入至導線製造步驟中之某處,亦可反覆多次。亦可組入至複數個步驟中。可於Pd被覆前之Cu表面上添加,亦可於Pd被覆後之Pd表面上添加,亦可於Au被覆後之Au表面上添加,亦可組入至各被覆步驟中。
使測定接合導線表面之結晶方位時的相對於接合導線長度方向而角度差為15度以下之結晶方位<111>之存在比率以面積率計成為30~100%之方法如下所述。即,藉由增大Pd被覆層形成後、或形成Pd被覆層與Au表皮層後之加工率,可使導線表面上具有方向性之集合組織(結晶方位與拉絲方向一致之集合組織)成長壯大。具體而言,藉由使Pd被覆層形成後、或形成Pd被覆層與Au表皮層後之加工率成為90%以上,可使測定接合導線表面之結晶方位時的相對於接合導線長度方向而角度差為15度以下之結晶方位<111>之存在比率以面積率計成為30%以上。此處,以「加工率(%)=(加工前之導線剖面面積一加工後之導線剖面面積)/加工前之導線剖面面積×100」表示。
測定導線表面之結晶方位時,較佳為使用背向散射電子繞射法(EBSD:Electron Backscattered Diffraction)。EBSD法具有對觀察面之結晶方位進行觀察且可於圖中示出相鄰測定點間之結晶方位之角度差 之特徵,即便為如接合導線般之細線,亦可相對簡便且精度良好地觀察結晶方位。
本發明不限定於上述實施形態,可於本發明之主旨之範圍內適當變更。
[實施例]
以下一面揭示實施例一面對本發明之實施形態之接合導線進行具體說明。
(樣品)
首先,對樣品之製作方法進行說明。成為芯材原材料之Cu係使用純度為99.99質量%以上且其餘部分由不可避免之雜質所構成者。As、Te、Sn、Sb、Bi、Se、Ni、Zn、Rh、In、Ir、Pt、Ga、Ge、Pd、B、P、Mg、Ca、La係使用純度為99質量%以上且其餘部分由不可避免之雜質所構成者。以導線或芯材之組成成為目標組成之方式,調配作為對芯材之添加元素之As、Te、Sn、Sb、Bi、Se、Ni、Zn、Rh、In、Ir、Pt、Ga、Ge、Pd、B、P、Mg、Ca、La。關於As、Te、Sn、Sb、Bi、Se、Ni、Zn、Rh、In、Ir、Pt、Ga、Ge、Pd、B、P、Mg、Ca、La之添加,可以單體形態進行調配,於單體形態下為高熔點元素或添加量極微量之情形時,亦可預先製作包含添加元素之Cu母合金後以成為目標添加量之方式調配。
芯材之Cu合金係藉由如下方式製造,即,將原料裝填於經加工成直徑為3~6mm之圓柱型之碳坩鍋內,使用高頻爐,於真空中或者氮氣或氬氣等惰性氣體環境下加熱至1090~1300℃而熔解後,進行爐冷。對所獲得之3~6mm之合金進行抽拉加工,加工至0.9~1.2mm後,使用模具連續地進行拉絲加工等,藉此製作300~600μm之導線。拉絲時使用市售之潤滑液,拉絲速度係設為20~150m/min。為了將導線表面之氧化膜去除而利用鹽酸進行酸洗處理後,以被覆芯 材之Cu合金整個表面之方式形成1~15μm之Pd被覆層。進而,對一部分導線於Pd被覆層上形成0.05~1.5μm之包含Au與Pd之合金表皮層。Pd被覆層、包含Au與Pd之合金表皮層之形成係採用電解鍍敷法。鍍敷液係使用市售之半導體用鍍敷液。其後,反覆進行200~500℃之熱處理與拉絲加工,藉此將直徑加工至20μm。加工後,以最終斷裂伸長率成為約5~15%之方式,一面流通氮氣或氬氣一面進行熱處理。熱處理方法係一面連續地掠過導線一面進行,且一面流通氮氣或氬氣一面進行。導線之傳送速度係設為20~200m/min,熱處理溫度係設為200~600℃且熱處理時間係設為0.2~1.0秒。
藉由對Pd被覆層形成後、或形成Pd被覆層與包含Au與Pd之合金表皮層後之加工率進行調整,可對測定接合導線表面之結晶方位時的相對於接合導線長度方向而角度差為15度以下之結晶方位<111>之存在比率(面積率)進行調整。
關於Pd被覆層、包含Au與Pd之合金表皮層之濃度分析,一面利用濺擊等自接合導線之表面朝向深度方向切削一面實施歐傑電子分光分析。根據所獲得之深度方向之濃度分佈,求出Pd被覆層厚、包含Au與Pd之合金表皮層厚。
關於下述表1-5中記載之本發明例93~98,芯材係使用純度為99.99質量%以上之Cu,於導線製造步驟之中途,利用電氣鍍敷法使As、Te、Sn、Sb、Bi、Se被覆於導線表面,藉此含有該等元素。因此,表1-5中設有「成分添加方法」欄,關於本發明例99~109記載為「被覆層」。關於表1-1~表1-4全部、及表1-5之「成分添加方法」欄中記載為「芯材」之例,使As、Te、Sn、Sb、Bi、Se含有於芯材中。
關於下述表1-5中記載之本發明例99~109、比較例13、14,使Cu存在於接合導線之最表面。因此,表1-5中設有「導線表面Cu濃 度」欄,記載藉由歐傑電子分光裝置測定接合導線之表面所得之結果。藉由選擇接合導線之熱處理溫度與時間而使最表面含有特定濃度之Cu。關於表1-1~表1-4全部、及表1-5之「導線表面Cu濃度」欄為空欄之例,係設為使最表面不存在Cu之熱處理條件,即便利用歐傑電子分光裝置亦未檢測出Cu。
將依據上述順序所製作之各樣品之構成示於表1-1~表1-5。
(評價方法)
將導線表面作為觀察面,進行結晶組織之評價。作為評價方法,使用背向散射電子繞射法(EBSD:Electron Backscattered Diffraction)。EBSD法具有對觀察面之結晶方位進行觀察且可於圖中示出相鄰測定點間之結晶方位之角度差之特徵,即便為如接合導線般之細線,亦可相對簡便且精度良好地觀察結晶方位。
將如導線表面般之曲面作為對象而實施EBSD法之情形時需要注意下列事項。若測定曲率較大之部位,則難以進行高精度之測定。然而,藉由將供於測定之接合導線以平面固定於直線上,並測定該接合導線之中心附近之平坦部,可進行高精度之測定。具體而言,設定為如下測定區域即可。圓周方向之尺寸係以導線長度方向之中心作為軸而設為線徑之50%以下,導線長度方向之尺寸係設為100μm以下。較佳為圓周方向之尺寸係設為線徑之40%以下,導線長度方向之尺寸係設為40μm以下,若如此則可藉由縮短測定時間而提高測定效率。進而為了提高精度,較理想的是對3處以上進行測定而獲得考慮到不均之平均資訊。測定部位只要以不靠近之方式隔開1mm以上即可。
表面<111>方位比率係藉由如下方式求出,即,將可由專用軟體(例如TSL Solutions公司製造之OIM analysis等)特定之所有結晶方位作為母集團,算出相對於接合導線長度方向而角度差為15度以下之結晶方位<111>之存在比率(面積率)。
關於高溫高濕環境或高溫環境下之球接合部之接合可靠性,製作接合可靠性評價用樣品,進行HAST及HTS評價,根據各試驗中之球接合部之接合壽命進行判定。關於接合可靠性評價用樣品,於通常之金屬框架上之Si基板上成膜厚度0.8μm之Al-1.0%Si-0.5%Cu之合金而形成電極,對所形成之電極使用市售之打線接合機進行球接合,藉由市售之環氧樹脂加以密封而製作樣品。球係一面以0.4~0.6L/min 之流量流通氮氣+5%氫氣一面形成,其大小係設為33~34μm之範圍。
關於HAST評價,使用不飽和型壓力鍋試驗機,將所製作之接合可靠性評價用樣品暴露於溫度130℃、相對濕度85%之高溫高濕環境下,施加5V之偏壓。關於球接合部之接合壽命,每隔48小時對球接合部實施剪切試驗,設定為剪切強度之值成為初期獲得之剪切強度之1/2的時間。高溫高濕試驗後之剪切試驗係藉由酸處理將樹脂去除而使球接合部露出後進行。
HAST評價之剪切試驗機係使用DAGE公司製造之試驗機。剪切強度之值係採用隨意選取之球接合部上之10處測定值之平均值。於上述評價中,若接合壽命未達96小時則判斷為實用上有問題而標註記號×,若為96小時以上且未達144小時則判斷為可實用但稍有問題而標註記號“△”,若為144小時以上且未達288小時則判斷為實用上無問題而標註記號“○”,若為288小時以上且未達384小時則判斷為優異而標註記號“◎”,若為384小時以上則判斷為特別優異而標註記號“◎◎”,記載於表1之「HAST」欄。
關於HTS評價,使用高溫恆溫器,將所製作之接合可靠性評價用樣品暴露於溫度200℃之高溫環境下。關於球接合部之接合壽命,每隔500小時對球接合部實施剪切試驗,設定為剪切強度之值成為初期所獲得之剪切強度之1/2的時間。高溫高濕試驗後之剪切試驗係藉由酸處理將樹脂去除而使球接合部露出後進行。
HTS評價之剪切試驗機係使用DAGE公司製造之試驗機。剪切強度之值係採用隨意選取之球接合部上之10處測定值之平均值。上述評價中,若接合壽命為500小時以上且未達1000小時則判斷為可實用但仍需改善而標註記號“△”,若為1000小時以上且未達3000小時則判斷為實用上無問題而標註記號“○”,若為3000小時以上則判斷為特 別優異而標註記號“◎”。
關於球形成性(FAB形狀)之評價,採集進行接合前之球進行觀察,判定於球表面有無氣泡、原本呈圓球狀之球有無變形。將產生上述任一情況之情形判斷為不良。關於球之形成,為了抑制熔融步驟中之氧化,一面以0.5L/min之流量吹送氮氣一面進行。球之大小係設為34μm。於一條件下觀察50個球。觀察時使用SEM。球形成性之評價中,產生5個以上之不良之情形時判斷為有問題而標註記號“×”,不良為3~4個之情形時判斷為可實用但稍有問題而標註記號“△”,不良為1~2個之情形時判斷為無問題而標註記號“○”,未產生不良之情形時判斷為優異而標註記號“◎”,記載於表1之「FAB形狀」欄。
關於導線接合部之楔形接合性之評價,於引線框架之引線部分接合1000根導線,根據接合部之剝離之發生頻度而判定。引線框架係使用經1~3μm之鍍Ag處理之Fe-42原子%Ni合金引線框架。該評價中,設想較通常更嚴酷之接合條件,將平台溫度設定為低於一般設定溫度域之150℃。上述評價中,產生11個以上之不良之情形時判斷為有問題而標註記號“×”,不良為6~10個之情形時判斷為可實用但稍有問題而標註記號“△”,不良為1~5個之情形時判斷為無問題而標註記號“○”,未產生不良之情形時判斷為優異而標註記號“◎”,記載於表1之「楔形接合性」欄。
關於球接合部之壓塌形狀之評價,對經接合之球接合部自其正上方進行觀察,根據其正圓性而判定。接合對象係使用於Si基板上成膜厚度1.0μm之Al-0.5%Cu之合金所得之電極。觀察係使用光學顯微鏡,於一條件下觀察200處。將與正圓偏差較大之橢圓狀者、變形具有異向性者判斷為球接合部之壓塌形狀不良。上述評價中,產生6個以上之不良之情形時判斷為有問題而標註記號“×”,不良為4~5個 之情形時判斷為可實用但稍有問題而標註記號“△”,不良為1~3個之情形時判斷為無問題而標註記號“○”,均獲得良好正圓性之情形時判斷為特別優異而標註記號“◎”,記載於表1之「壓塌形狀」欄。
[偏斜]
於評價用引線框架上以迴路長度5mm、迴路高度0.5mm接合100根導線。作為評價方法,自晶片水平方向觀察導線直立部,以通過球接合部中心之垂線與導線直立部之間隔為最大時之間隔(偏斜間隔)進行評價。偏斜間隔小於導線徑之情形時判斷為偏斜良好,大於導線徑之情形時由於直立部傾斜故判斷為偏斜不良。利用光學顯微鏡觀察100根經接合之導線,對偏斜不良之根數進行計數。產生7個以上之不良之情形時判斷為有問題而標註記號“×”,不良為4~6個之情形時判斷為可實用但稍有問題而標註記號“△”,不良為1~3個之情形時判斷為無問題而標註記號“○”,未產生不良之情形時判斷為優異而標註記號“◎”,記載於表1之「偏斜」欄。
(評價結果)
本發明例1~109之接合導線具有Cu合金芯材、與形成於Cu合金芯材之表面之Pd被覆層,接合導線包含選自As、Te、Sn、Sb、Bi、Se中之至少1種以上之元素,上述元素相對於導線整體之濃度合計為0.1~100質量ppm。確認到藉此本發明例1~109之接合導線於溫度130℃、相對濕度85%之高溫高濕環境下之HAST試驗中,可獲得球接合部可靠性。
另一方面,比較例1、2、4~6、11~14中,上述元素濃度超出下限,於HAST試驗中無法獲得球接合部可靠性。比較例3、7~10中,上述元素濃度超出上限,FAB形狀不良。比較例1、3、5~10中,<111>結晶方位之面積率超出本發明較佳範圍,偏斜為“△”。
關於在Pd被覆層上進而具有包含Au與Pd之合金表皮層之本發明例,確認到藉由包含Au與Pd之合金表皮層之層厚為0.0005~0.050μm,可獲得優異之楔形接合性。
關於本發明例27~92、100、102、104~109,確認到藉由接合導線進而包含選自Ni、Zn、Rh、In、Ir、Pt、Ga、Ge、Pd中之至少1種以上之元素,除Pd以外之上述元素相對於導線整體之濃度分別為0.011~1.2質量%,且Cu合金芯材所含之Pd之濃度為0.05~1.2質量%,由HTS評價所得之球接合部高溫可靠性良好。
本發明例28~92之一部分中,藉由接合導線進而包含選自B、P、Mg、Ca、La中之至少1種以上之元素,且上述元素相對於導線整體之濃度分別為1~100質量ppm,FAB形狀良好,並且楔形接合性良好。
本發明例99~109中,導線含有As、Te、Sn、Sb、Bi、Se,並且於導線之最表面存在Cu。藉此,本發明例99、101、103、105、106、108、109之HAST評價結果為◎◎或◎,使最表面存在Cu之效果顯現。本發明例100、102、104、107中,進而導線之Cu之純度低至2N以下,HAST評價結果均為◎◎而極良好。另一方面,該等本發明例中關於楔形接合性觀察到些許降低。
比較例13、14中,導線不含As、Te、Sn、Sb、Bi、Se,另一方面,導線之最表面存在Cu,因此不僅HAST評價而且HTS評價結果亦不良,FAB形狀、壓塌形狀亦不良,進而楔形接合性、偏斜亦劣化。

Claims (9)

  1. 一種半導體裝置用接合導線,其係具有Cu合金芯材、與形成於上述Cu合金芯材之表面之Pd被覆層者,其特徵在於:上述接合導線包含選自Sn、Sb、Bi、Se中之至少1種以上之元素,上述元素相對於導線整體之濃度合計為0.1~100質量ppm,Sn≦10質量ppm,Sb≦10質量ppm,Bi≦1質量ppm,上述Pd被覆層之厚度為0.015~0.150μm。
  2. 如請求項1之半導體裝置用接合導線,其中選自Sn、Sb、Bi、Se中之至少1種以上之元素相對於導線整體之濃度合計為1~100質量ppm。
  3. 如請求項1之半導體裝置用接合導線,其於上述Pd被覆層上進而具有包含Au與Pd之合金表皮層。
  4. 如請求項3之半導體裝置用接合導線,其中上述包含Au與Pd之合金表皮層之厚度為0.0005~0.050μm。
  5. 如請求項1之半導體裝置用接合導線,其中上述接合導線進而包含選自Ni、Zn、Rh、In、Ir、Pt、Ga、Ge中之至少1種以上之元素,上述元素相對於導線整體之濃度分別為0.011~1.2質量%。
  6. 如請求項1之半導體裝置用接合導線,其中上述Cu合金芯材包含Pd,上述Cu合金芯材所含之Pd之濃度為0.05~1.2質量%。
  7. 如請求項1之半導體裝置用接合導線,其中上述接合導線進而包含選自B、P、Mg、Ca、La中之至少1種以上之元素,上述元素相對於導線整體之濃度分別為1~100質量ppm。
  8. 如請求項1之半導體裝置用接合導線,其中於測定上述接合導線表面之結晶方位時之測定結果中,相對於上述接合導線長度方向而角度差為15度以下之結晶方位<111>之存在比率以面積率計為30~100%。
  9. 如請求項1至8中任一項之半導體裝置用接合導線,其中於上述接合導線之最表面存在Cu。
TW105121817A 2015-05-26 2015-09-23 Bonding wire for semiconductor device TWI628671B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105121817A TWI628671B (zh) 2015-05-26 2015-09-23 Bonding wire for semiconductor device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2015106368 2015-05-26
JP2015-106368 2015-05-26
??104118466 2015-06-05
TW104118466 2015-06-05
TW105121817A TWI628671B (zh) 2015-05-26 2015-09-23 Bonding wire for semiconductor device

Publications (2)

Publication Number Publication Date
TW201642282A TW201642282A (zh) 2016-12-01
TWI628671B true TWI628671B (zh) 2018-07-01

Family

ID=57445156

Family Applications (2)

Application Number Title Priority Date Filing Date
TW105121817A TWI628671B (zh) 2015-05-26 2015-09-23 Bonding wire for semiconductor device
TW104131499A TWI550639B (zh) 2015-05-26 2015-09-23 Connecting wires for semiconductor devices

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW104131499A TWI550639B (zh) 2015-05-26 2015-09-23 Connecting wires for semiconductor devices

Country Status (1)

Country Link
TW (2) TWI628671B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120693A (ja) * 1984-07-06 1986-01-29 Toshiba Corp ボンデイングワイヤ−
JP2004064033A (ja) * 2001-10-23 2004-02-26 Sumitomo Electric Wintec Inc ボンディングワイヤー
JP2011077254A (ja) * 2009-09-30 2011-04-14 Nippon Steel Materials Co Ltd 半導体用ボンディングワイヤー
TW201205695A (en) * 2010-07-16 2012-02-01 Nippon Steel Materials Co Ltd Bonding wire for semiconductor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152332A (ja) * 1984-08-21 1986-03-15 Toshiba Corp ボンデイングワイヤ−
JPS6152333A (ja) * 1984-08-21 1986-03-15 Toshiba Corp ボンデイングワイヤ−
WO2009072525A1 (ja) * 2007-12-03 2009-06-11 Nippon Steel Materials Co., Ltd. 半導体装置用ボンディングワイヤ
CN106119595A (zh) * 2009-06-24 2016-11-16 新日铁住金高新材料株式会社 半导体用铜合金接合线
JP5497360B2 (ja) * 2009-07-30 2014-05-21 新日鉄住金マテリアルズ株式会社 半導体用ボンディングワイヤー

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120693A (ja) * 1984-07-06 1986-01-29 Toshiba Corp ボンデイングワイヤ−
JP2004064033A (ja) * 2001-10-23 2004-02-26 Sumitomo Electric Wintec Inc ボンディングワイヤー
JP2011077254A (ja) * 2009-09-30 2011-04-14 Nippon Steel Materials Co Ltd 半導体用ボンディングワイヤー
TW201205695A (en) * 2010-07-16 2012-02-01 Nippon Steel Materials Co Ltd Bonding wire for semiconductor

Also Published As

Publication number Publication date
TW201642279A (zh) 2016-12-01
TWI550639B (zh) 2016-09-21
TW201642282A (zh) 2016-12-01

Similar Documents

Publication Publication Date Title
TWI652693B (zh) 半導體裝置用接合導線
JP6706280B2 (ja) 半導体装置用ボンディングワイヤ
TWI550638B (zh) Connecting wires for semiconductor devices
TWI571888B (zh) Connection lines for semiconductor devices
TWI764972B (zh) 半導體裝置用接合導線
CN112038312B (zh) 半导体装置用接合线
TWI628671B (zh) Bonding wire for semiconductor device