TWI623805B - Blankmask for extreme ultra-violet lithography and photomask using the same - Google Patents

Blankmask for extreme ultra-violet lithography and photomask using the same Download PDF

Info

Publication number
TWI623805B
TWI623805B TW105112747A TW105112747A TWI623805B TW I623805 B TWI623805 B TW I623805B TW 105112747 A TW105112747 A TW 105112747A TW 105112747 A TW105112747 A TW 105112747A TW I623805 B TWI623805 B TW I623805B
Authority
TW
Taiwan
Prior art keywords
film
absorber
extreme ultraviolet
absorber film
ultraviolet lithography
Prior art date
Application number
TW105112747A
Other languages
Chinese (zh)
Other versions
TW201725440A (en
Inventor
南基守
申澈
李鍾華
梁澈圭
崔珉箕
金昌俊
Original Assignee
S&S技術股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S&S技術股份有限公司 filed Critical S&S技術股份有限公司
Publication of TW201725440A publication Critical patent/TW201725440A/en
Application granted granted Critical
Publication of TWI623805B publication Critical patent/TWI623805B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/50Mask blanks not covered by G03F1/20 - G03F1/34; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • G03F1/58Absorbers, e.g. of opaque materials having two or more different absorber layers, e.g. stacked multilayer absorbers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/168Finishing the coated layer, e.g. drying, baking, soaking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Abstract

揭示一種用於極紫外線微影之空白遮罩,其中一多反射膜、一吸收體膜、及一光阻膜(resist film)之至少一者堆疊於一透明基材上。該吸收體膜包含選自鉑(Pt)、鎳(Ni)、鉭(Ta)、鋅(Zn)、釕(Ru)、銠(Rh)、銀(Ag)、銦(In)、鋨(Os)、銥(Ir)、及金(Au)之一或多種金屬材料,並且除包含該金屬材料外,亦包含氧(O)、氮(N)、碳(C)、硼(B)、及氫(H)之一或多種輕元素。運用此,有可能使該吸收體膜較薄,同時保證該吸收體膜之遮光性質。進一步,有可能改善耐化學性及耐曝光性。 A blank mask for extreme ultraviolet lithography is disclosed, in which at least one of a multi-reflective film, an absorber film, and a resist film is stacked on a transparent substrate. The absorber film contains a material selected from the group consisting of platinum (Pt), nickel (Ni), tantalum (Ta), zinc (Zn), ruthenium (Ru), rhodium (Rh), silver (Ag), indium (In), osmium (Os ), One or more metal materials of iridium (Ir), and gold (Au), and in addition to the metal materials, also includes oxygen (O), nitrogen (N), carbon (C), boron (B), and One or more light elements of hydrogen (H). By using this, it is possible to make the absorber film thin, while ensuring the light-shielding properties of the absorber film. Further, it is possible to improve chemical resistance and exposure resistance.

Description

用於極紫外線微影之空白遮罩及使用其之光罩 Blank mask for extreme ultraviolet lithography and mask using the same

本發明係關於一種用於極紫外線微影之空白遮罩及一種使用其之光罩,且更具體而言,係關於一種用於極紫外線微影之空白遮罩及一種使用其之光罩,其中使用具有一13.5nm波長之極紫外線光作為曝光光(exposure light),以藉此達成不大於14nm且較佳地不大於10nm之一精細圖案。 The present invention relates to a blank mask for extreme ultraviolet lithography and a mask using the same, and more particularly, to a blank mask for extreme ultraviolet lithography and a mask using the same, Wherein, extreme ultraviolet light having a wavelength of 13.5 nm is used as exposure light, so as to achieve a fine pattern of no more than 14 nm and preferably no more than 10 nm.

隨著高度整合,光微影術已自目前使用具有193nm波長(ArF)之曝光光開發至最近使用具有13.5nm波長之極紫外線(EUV)光,以達成高解析度。 With high integration, photolithography has been developed from the current use of exposure light with a wavelength of 193nm (ArF) to the recent use of extreme ultraviolet (EUV) light with a wavelength of 13.5nm to achieve high resolution.

附帶說明,在大多數材料(亦涵蓋氣體材料)中很可能會吸收EUV微影中使用的曝光光(其具有13.5nm波長),且因此EUV微影具有其中依序堆疊用於反射極紫外線光之一反射膜及用於吸收極紫外線光之一吸收體膜之一結構,此與現有透射型微影(例如,ArF微影使用一光透射部件及一遮光部件)相反。換言之,一種用於極紫外線微影之空白遮罩廣泛分成兩個部件,即, 一多反射膜(或多反射層)部件及一吸收體膜(或吸收體層)部件。 Incidentally, the exposure light (which has a wavelength of 13.5 nm) used in EUV lithography is likely to be absorbed in most materials (also covering gaseous materials), and therefore EUV lithography has a sequence in which it is stacked for reflecting extreme ultraviolet light A reflective film and a structure of an absorber film for absorbing extreme ultraviolet light, as opposed to the existing transmission type lithography (for example, ArF lithography uses a light transmitting member and a light shielding member). In other words, a blank mask for extreme ultraviolet lithography is widely divided into two parts, namely, A multi-reflective film (or multi-reflective layer) component and an absorber film (or absorber layer) component.

一般而言,多反射膜具有其中交替堆疊鉬(Mo)及矽(Si)多達40至60層之一結構,並且展現對13.5nm波長的64%至66%之反射率。進一步,吸收體膜含有鉭(Ta)作為用於吸收13.5nm極紫外線光之材料,並且通常含有具有高吸收係數之基於鉭(Ta)之材料。例如,目前開發的吸收體膜含有基於鉭的材料,諸如氮化鉭(TaN)、氮氧化鉭(TaON)等。在鉭(Ta)化合物的情況中,使用在半導體製造程序中廣泛使用且有助於遮罩製造程序的氯(Cl)及氟(F)之自由基進行電漿蝕刻係有利的。 Generally, a multi-reflective film has a structure in which molybdenum (Mo) and silicon (Si) are alternately stacked up to 40 to 60 layers, and exhibits a reflectance of 64% to 66% for a wavelength of 13.5 nm. Further, the absorber film contains tantalum (Ta) as a material for absorbing 13.5 nm extreme ultraviolet light, and usually contains a tantalum (Ta) -based material having a high absorption coefficient. For example, currently developed absorber films contain tantalum-based materials such as tantalum nitride (TaN), tantalum oxynitride (TaON), and the like. In the case of a tantalum (Ta) compound, it is advantageous to perform plasma etching using radicals of chlorine (Cl) and fluorine (F) that are widely used in semiconductor manufacturing processes and contribute to masking the manufacturing process.

然而,當使用含有鉭(Ta)化合物的該吸收體膜形成不大於14nm之圖案時,會發生如下問題。 However, when a pattern not larger than 14 nm is formed using the absorber film containing a tantalum (Ta) compound, the following problems occur.

圖1係用於解說在使用習知用於極紫外線微影之空白遮罩所製造之光罩中的陰影效應之視圖。 FIG. 1 is a view for explaining a shadow effect in a mask manufactured using a conventional blank mask for extreme ultraviolet lithography.

請參閱圖1,該習知用於極紫外線微影之空白遮罩具有歸因於吸收體膜之厚度所致的陰影效應問題。陰影效應係指歸因於吸收體膜圖案106a之厚度而使得一些反射光未被傳遞而是在吸收體膜圖案106a中被吸收,此係因為當一吸收體膜圖案106a經曝光於該極紫外線光時該極紫外線光之入射角相對於法線入射(normal incidence)傾斜(約4°至6°)。在其中吸收體膜圖案106a含有鉭(Ta)化合物的情況中,吸收體膜圖案106a需具有等於或大於70nm之厚度,此係因為鉭(Ta)對極紫外線光具有相對低的吸收 率。隨著吸收體膜圖案106a之厚度增加,陰影效應變得嚴重。因此,需要使吸收體膜圖案106a為薄。(在圖1中,元件符號「102」指示一透明基材,而元件符號「104」指示一多反射膜)。 Please refer to FIG. 1. The conventional blank mask for extreme ultraviolet lithography has a problem of shadow effect due to the thickness of the absorber film. The shadow effect is that some reflected light is not transmitted but is absorbed in the absorber film pattern 106a due to the thickness of the absorber film pattern 106a. This is because when an absorber film pattern 106a is exposed to the extreme ultraviolet light At the time of light, the incident angle of the extreme ultraviolet light is inclined with respect to normal incidence (about 4 ° to 6 °). In the case where the absorber film pattern 106a contains a tantalum (Ta) compound, the absorber film pattern 106a needs to have a thickness of 70 nm or more because tantalum (Ta) has relatively low absorption of extreme ultraviolet light rate. As the thickness of the absorber film pattern 106a increases, the shadow effect becomes serious. Therefore, it is necessary to make the absorber film pattern 106a thin. (In FIG. 1, the element symbol "102" indicates a transparent substrate, and the element symbol "104" indicates a multi-reflective film.)

進一步,一所製造光罩施用至一晶圓後,陰影效應引起水平圖案(HP)與垂直圖案(VP)之間的臨界尺寸(CD)偏差。具體而言,此引起水平圖案(HP)與垂直圖案(VP)之間根據圖案方向(例如,水平方向及垂直方向)及掃描器方向之陰影效應的差異。 Further, after a manufactured mask is applied to a wafer, the shadow effect causes a critical dimension (CD) deviation between the horizontal pattern (HP) and the vertical pattern (VP). Specifically, this causes a difference in the shadow effect between the horizontal pattern (HP) and the vertical pattern (VP) according to the pattern direction (for example, the horizontal direction and the vertical direction) and the scanner direction.

圖2係用於解說根據使用習知用於極紫外線微影之空白遮罩所製造之光罩的圖案方向而存在的陰影效應之視圖。 FIG. 2 is a view for explaining a shadow effect existing according to a pattern direction of a mask manufactured using a conventional blank mask for extreme ultraviolet lithography.

請參閱圖2,垂直圖案(a)具有陰影效應,但水平圖案(b)不具有該陰影效應,此係因為水平圖案之圖案方向平行於入射光及反射光。因此,垂直圖案(a)與水平圖案(b)之間有CD偏差。 Referring to FIG. 2, the vertical pattern (a) has a shadow effect, but the horizontal pattern (b) does not have the shadow effect because the pattern direction of the horizontal pattern is parallel to the incident light and the reflected light. Therefore, there is a CD deviation between the vertical pattern (a) and the horizontal pattern (b).

如果由鉭(Ta)化合物製成的吸收體膜圖案具有之一厚度等於或高於70nm,則水平圖案與垂直圖案之間的CD偏差等於或大於約10nm。隨著圖案變得愈精細,CD偏差增加。 If the absorber film pattern made of a tantalum (Ta) compound has a thickness equal to or higher than 70 nm, the CD deviation between the horizontal pattern and the vertical pattern is equal to or greater than about 10 nm. As the pattern becomes finer, the CD deviation increases.

據此,吸收體膜可由具有高消光係數(k)的一單一金屬材料(諸如鎳(Ni)、銀(Ag)、銦(In)、鉑(Pt)、或類似者)所製成,以減小吸收體膜之厚度。然而,由單一金屬材料製成之吸收體膜具有不良的耐化學性。 Accordingly, the absorber film may be made of a single metal material (such as nickel (Ni), silver (Ag), indium (In), platinum (Pt), or the like) having a high extinction coefficient (k) to Reduce the thickness of the absorber film. However, an absorber film made of a single metal material has poor chemical resistance.

本發明提供一種用於極紫外線微影之空白遮罩,其中減小吸收體膜之厚度,同時保證其遮光性質,並且本發明提供一種使用其之光罩。 The present invention provides a blank mask for extreme ultraviolet lithography, in which the thickness of the absorber film is reduced while ensuring its light shielding properties, and the present invention provides a mask using the same.

進一步,本發明提供一種用於極紫外線微影之空白遮罩,其改善耐化學性及耐曝光性,並且本發明提供一種使用其之光罩。 Further, the present invention provides a blank mask for extreme ultraviolet lithography, which improves chemical resistance and exposure resistance, and the present invention provides a photomask using the same.

根據本發明之一態樣,提供一種用於極紫外線微影之空白遮罩,其中一多反射膜、一吸收體膜、及一光阻膜(resist film)之至少一者堆疊於一透明基材上,該吸收體膜包含選自鉑(Pt)、鎳(Ni)、鉭(Ta)、鋅(Zn)、釕(Ru)、銠(Rh)、銀(Ag)、銦(In)、鋨(Os)、銥(Ir)、及金(Au)之一或多種金屬材料,並且除包含該金屬材料外,亦包含氧(O)、氮(N)、碳(C)、硼(B)、及氫(H)之一或多種輕元素。 According to one aspect of the present invention, a blank mask for extreme ultraviolet lithography is provided, in which at least one of a multi-reflective film, an absorber film, and a resist film is stacked on a transparent substrate. On the material, the absorber film contains a material selected from the group consisting of platinum (Pt), nickel (Ni), tantalum (Ta), zinc (Zn), ruthenium (Ru), rhodium (Rh), silver (Ag), indium (In), One or more metal materials of osmium (Os), iridium (Ir), and gold (Au), and in addition to the metal material, it also contains oxygen (O), nitrogen (N), carbon (C), boron (B ), And one or more light elements of hydrogen (H).

根據本發明之一態樣,提供一種用於極紫外線微影之空白遮罩,其中一多反射膜、一吸收體膜、及一光阻膜之至少一者堆疊於一透明基材上,該吸收體膜基本上包含鉑(Pt),並且除包含鉑(Pt)外,亦包含選自鎳(Ni)、鉭(Ta)、鋅(Zn)、釕(Ru)、銠(Rh)、銀(Ag)、銦(In)、鋨(Os)、銥(Ir)、及金(Au)之一或多種金屬材料,或除包含該金屬材料外,亦包含氧(O)、氮(N)、碳(C)、硼(B)、及氫(H)之一或多種輕元素。 According to one aspect of the present invention, a blank mask for extreme ultraviolet lithography is provided, in which at least one of a multi-reflective film, an absorber film, and a photoresist film is stacked on a transparent substrate, the The absorber film basically contains platinum (Pt), and in addition to platinum (Pt), it also contains a member selected from the group consisting of nickel (Ni), tantalum (Ta), zinc (Zn), ruthenium (Ru), rhodium (Rh), silver (Ag), indium (In), osmium (Os), iridium (Ir), and gold (Au) one or more metal materials, or in addition to the metal material, also contains oxygen (O), nitrogen (N) , Carbon (C), boron (B), and hydrogen (H) one or more light elements.

在該吸收體膜中的鉑(Pt)對額外金屬(Ni、Ta、Zn、Ru、Rh、Ag、In、Os、Ir、Au)之一組成物比率可係95原子%:5原子%至5原子%:95原子%。 The composition ratio of platinum (Pt) to the additional metal (Ni, Ta, Zn, Ru, Rh, Ag, In, Os, Ir, Au) in the absorber film may be 95 atomic%: 5 atomic% to 5 atomic%: 95 atomic%.

金屬對輕元素之一組成物比率可係9:1至2:8。 A composition ratio of a metal to a light element may be 9: 1 to 2: 8.

可藉由一鉑(Pt)化合物之一單一靶材、或藉由共濺鍍包含一鉑(Pt)靶材之複數個靶材,來形成該吸收體膜。 The absorber film may be formed by a single target of a platinum (Pt) compound, or by co-sputtering a plurality of targets including a platinum (Pt) target.

如果藉由該鉑(Pt)化合物之該單一靶材來形成該吸收體膜,則該單一靶材可包含鉑(Pt):額外金屬(Ni、Ta、Zn、Ru、Rh、Ag、In、Os、Ir、Au)=1原子%:99原子%至99原子%:1原子%之一組成物比率。 If the absorber film is formed by the single target of the platinum (Pt) compound, the single target may include platinum (Pt): additional metals (Ni, Ta, Zn, Ru, Rh, Ag, In, Os, Ir, Au) = 1 atomic%: 99 atomic% to 99 atomic%: 1 atomic% composition ratio.

該吸收體膜可包含30nm至70nm之一厚度。 The absorber film may include a thickness of 30 nm to 70 nm.

該吸收體膜可包含一上層及一下層之一雙層結構,且該上層及該下層可在金屬及輕元素的含量之量方面相差至少10%。 The absorber film may include a two-layer structure of an upper layer and a lower layer, and the upper layer and the lower layer may differ by at least 10% in terms of the amount of metal and light element content.

該吸收體膜相對於具有一13.5nm波長之極紫外線微影曝光光具有的一反射率可不高於10%,且該吸收體膜相對於一測試193nm波長具有的一反射率可不高於50%。 The absorber film may have a reflectance not higher than 10% with respect to the extreme ultraviolet lithography exposure light having a wavelength of 13.5nm, and the absorber film may have a reflectance not higher than 50% with respect to a test 193nm wavelength. .

該吸收體膜可包含不高於300MPa的一薄膜應力,且較佳地不高於200MPa。 The absorber film may include a thin film stress of not higher than 300 MPa, and preferably not higher than 200 MPa.

該空白遮罩可進一步包含下列至少一者:一囊封膜,其提供於該多反射膜與該吸收體膜之間;一緩衝膜,其插置於該囊封膜與該吸收體膜之間;一傳導膜,其提供於該透明基材下 方;一相移膜,其提供於該多反射膜上方;及一硬膜,其提供於該吸收體膜上方。 The blank mask may further include at least one of the following: a capsule film provided between the multi-reflective film and the absorber film; a buffer film inserted between the capsule film and the absorber film Between; a conductive film provided under the transparent substrate A phase shift film provided above the multi-reflective film; and a hard film provided above the absorber film.

根據本發明之再另一態樣,提供一種使用前述空白遮罩形成之用於極紫外線微影之光罩。 According to still another aspect of the present invention, a mask for extreme ultraviolet lithography formed using the aforementioned blank mask is provided.

102‧‧‧透明基材 102‧‧‧ transparent substrate

104‧‧‧多反射膜 104‧‧‧Multi-Reflective Film

106a‧‧‧吸收體膜圖案 106a‧‧‧ Absorber film pattern

200‧‧‧空白光罩 200‧‧‧ blank mask

202‧‧‧透明基材 202‧‧‧ transparent substrate

204‧‧‧多反射膜 204‧‧‧Multi-Reflective Film

206‧‧‧囊封膜 206‧‧‧ Capsule

208‧‧‧下層 208‧‧‧lower floor

210‧‧‧上層 210‧‧‧ Upper floor

212‧‧‧吸收體膜 212‧‧‧ Absorber Body Mask

214‧‧‧光阻膜 214‧‧‧Photoresistive film

HP‧‧‧水平圖案 HP‧‧‧ Horizontal Pattern

VP‧‧‧垂直圖案 VP‧‧‧Vertical Pattern

(a)‧‧‧垂直圖案 (a) ‧‧‧Vertical pattern

(b)‧‧‧水平圖案 (b) ‧‧‧ horizontal pattern

藉由參照附圖所詳細描述之本發明之例示性實施例,本發明之上述及其他目的、特徵、及優點對於所屬技術領域中具有通常知識者將更為顯而易見,其中:圖1係用於解說在使用一習知用於極紫外線微影之空白遮罩所製造之一光罩中的陰影效應之視圖;圖2係用於解說根據使用習知用於極紫外線微影之空白遮罩所製造之光罩的圖案方向而存在的陰影效應之視圖;而圖3係根據本發明之一實施例之一種用於極紫外線微影之空白遮罩之截面圖。 The above and other objects, features, and advantages of the present invention will be more apparent to those having ordinary knowledge in the technical field by referring to the exemplary embodiments of the present invention described in detail with reference to the accompanying drawings, in which: FIG. 1 is used for A view illustrating a shadow effect in a mask manufactured using a conventional blank mask for extreme ultraviolet lithography; FIG. 2 is a diagram illustrating a blank mask used for extreme ultraviolet lithography according to the conventional use A view of the shadow effect existing in the pattern direction of the manufactured mask; and FIG. 3 is a cross-sectional view of a blank mask for extreme ultraviolet lithography according to an embodiment of the present invention.

下文,將參照附圖更詳細地描述本發明之實施例。然而,提供實施例僅用於闡釋之目的,且不應被解釋為限制本發明之範疇。因此,在所屬技術領域中具有通常知識者應理解,實施例可做出多種修改及同等物。進一步,本發明之範疇必須於隨附申請專利範圍中定義。 Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. However, the examples are provided for illustrative purposes only and should not be construed as limiting the scope of the invention. Therefore, those having ordinary knowledge in the technical field should understand that the embodiments can make various modifications and equivalents. Further, the scope of the present invention must be defined within the scope of the accompanying patent application.

圖3係根據本發明之一實施例之一種用於極紫外線微影之空白遮罩之截面圖。 3 is a cross-sectional view of a blank mask for extreme ultraviolet lithography according to an embodiment of the present invention.

請參閱圖3,根據本發明之一實施例之一種用於極紫外線微影之一空白遮罩200包括堆疊於一透明基材202上的一多反射膜204、一吸收體膜212、及一光阻膜214,且進一步包括插置於多反射膜204與吸收體膜212之間之一囊封膜206。 Referring to FIG. 3, a blank mask 200 for extreme ultraviolet lithography according to an embodiment of the present invention includes a multi-reflective film 204, an absorber film 212, and a transparent substrate 202 stacked on a transparent substrate 202. The photoresist film 214 further includes an encapsulation film 206 interposed between the multi-reflective film 204 and the absorber film 212.

透明基材202係由具有在6±1.0×10-7/℃範圍內且較佳地在6±0.3×10-7/℃範圍內之低熱膨脹係數的一低熱膨脹材料(LTEM)製成的一基材,以防止圖案在曝光中因受熱而變形,使其可適合用於使用極紫外線(EUV)光之反射空白遮罩之一玻璃基材。 The transparent substrate 202 is made of a low thermal expansion material (LTEM) having a low thermal expansion coefficient in the range of 6 ± 1.0 × 10-7 / ° C, and preferably in the range of 6 ± 0.3 × 10-7 / ° C. A substrate to prevent the pattern from being deformed by heat during exposure, making it suitable for use as a glass substrate using a reflective blanking mask for extreme ultraviolet (EUV) light.

要求LTEM基材具有高平坦度(flatness)以改善曝光中所反射光之精確度。該平坦度係由總指示讀數(TIR)值表示。TIR值表達一表面之曲率(變形),且當將藉由最小平方法界定之一平面視為相對於一基材表面的一焦平面時,TIR值係指介於高於該焦平面之該基材表面的最高位置與低於該焦平面之該基材表面的最低位置之間的高度差之絕對值。因此,平坦度愈佳,TIR值愈低。LTEM基材必須具有低TIR值。LTEM基材可具有不大於60nm的平坦度,且較佳地不大於40nm的平坦度。 The LTM substrate is required to have high flatness to improve the accuracy of light reflected during exposure. The flatness is represented by a total indicator reading (TIR) value. The TIR value expresses the curvature (deformation) of a surface, and when a plane defined by the least square method is regarded as a focal plane relative to the surface of a substrate, the TIR value refers to the The absolute value of the height difference between the highest position of the substrate surface and the lowest position of the substrate surface below the focal plane. Therefore, the better the flatness, the lower the TIR value. The LTEM substrate must have a low TIR value. The LTEM substrate may have a flatness of not more than 60 nm, and preferably a flatness of not more than 40 nm.

多反射膜204之形成方式使得交替堆疊鉬(Mo)及矽(Si)多達40至60層。要求多反射膜204相對於13.5nm波長具有較高之反射率,以使影像對比度更佳。多反射膜之此反射強度取決於曝光光之入射角及各膜之厚度而變化。例如,如果曝光光之入射角係5°,則鉬(Mo)及矽(Si)膜可形成為分別具有2.8nm及4.2nm 之厚度。然而,當曝光光應用於EUV浸漬微影時,該曝光光之入射角增加至高達8°至14°,反射強度會變化。因此,多反射膜204必須具有針對曝光光之最終入射角最佳化的反射強度,其中鉬(Mo)之厚度為2nm至4nm,及矽(Si)之厚度為3nm至5nm。 The multi-reflective film 204 is formed in such a manner that molybdenum (Mo) and silicon (Si) are alternately stacked up to 40 to 60 layers. The multi-reflective film 204 is required to have a high reflectivity with respect to a wavelength of 13.5 nm in order to make the image contrast better. This reflection intensity of the multi-reflective film varies depending on the incident angle of the exposure light and the thickness of each film. For example, if the incident angle of the exposure light is 5 °, the molybdenum (Mo) and silicon (Si) films can be formed to have 2.8 nm and 4.2 nm, respectively. Of thickness. However, when the exposure light is applied to the EUV immersion lithography, the incident angle of the exposure light increases up to 8 ° to 14 °, and the reflection intensity changes. Therefore, the multi-reflective film 204 must have a reflection intensity optimized for the final incident angle of the exposure light, wherein the thickness of molybdenum (Mo) is 2 nm to 4 nm and the thickness of silicon (Si) is 3 nm to 5 nm.

多反射膜204可含有在其最上層上的矽(Si)作為用於防止鉬(Mo)氧化的保護膜,此係因為鉬(Mo)在空氣中易於氧化而減小反射率。多反射膜204相對於用於極紫外線微影之曝光光之13.5nm波長具有65%或更高之反射率,且相對於193nm或257nm波長具有40%至65%之反射率。多反射膜204之表面的TIR值不大於300nm且較佳地不大於100nm。多反射膜204的表面粗糙度不大於0.2nm RMS且較佳地不大於0.1nm RMS。 The multi-reflective film 204 may contain silicon (Si) on its uppermost layer as a protective film for preventing oxidation of molybdenum (Mo), because molybdenum (Mo) is susceptible to oxidation in the air to reduce reflectance. The multi-reflective film 204 has a reflectance of 65% or higher with respect to the 13.5 nm wavelength of the exposure light for extreme ultraviolet lithography, and has a reflectance of 40% to 65% with respect to the 193 nm or 257 nm wavelength. The TIR value of the surface of the multi-reflective film 204 is not more than 300 nm and preferably not more than 100 nm. The surface roughness of the multi-reflective film 204 is not more than 0.2 nm RMS and preferably not more than 0.1 nm RMS.

一囊封膜206形成於多反射膜204上且在形成圖案時保護多反射膜204。 An encapsulation film 206 is formed on the multi-reflective film 204 and protects the multi-reflective film 204 during patterning.

囊封膜206可含有釕(Ru)或鈮(Nb)、含有釕(Ru)化合物或鈮(Nb)化合物,或含有釕(Ru)及鈮(Nb)之化合物。囊封膜206除含有該等金屬材料外,可進一步含有氧(O)、氮(N)及碳(C)中之一或多種輕元素。在囊封膜206中,金屬及輕元素(含有氧(O)、氮(N)、碳(C)中之材料組合)的含量比率係10:0至5:5。 The encapsulation film 206 may contain ruthenium (Ru) or niobium (Nb), a ruthenium (Ru) compound or a niobium (Nb) compound, or a compound containing ruthenium (Ru) and niobium (Nb). In addition to the metal material, the encapsulation film 206 may further contain one or more light elements of oxygen (O), nitrogen (N), and carbon (C). In the encapsulation film 206, the content ratio of the metal and light elements (a material combination containing oxygen (O), nitrogen (N), and carbon (C)) is 10: 0 to 5: 5.

囊封膜206之厚度為1nm至10nm,且較佳地,厚度為1nm至5nm。如果囊封膜206之厚度不大於1nm,則難以保護形成於囊封膜206下方的多反射膜204以免於形成上吸收體膜圖案時的蝕刻條件(例如,過蝕刻等)。另一方面,如果囊封膜206 具有之厚度不小於10nm,則囊封膜206相對於13.5nm波長之曝光光具有低於60%的反射率,藉此減小對吸收體膜212之反射率的影像對比度。 The thickness of the encapsulation film 206 is 1 nm to 10 nm, and preferably, the thickness is 1 nm to 5 nm. If the thickness of the encapsulation film 206 is not greater than 1 nm, it is difficult to protect the multi-reflective film 204 formed under the encapsulation film 206 from the etching conditions (for example, over-etching, etc.) when forming the upper absorber film pattern. On the other hand, if the encapsulation membrane 206 With a thickness of not less than 10 nm, the encapsulation film 206 has a reflectance of less than 60% with respect to the exposure light having a wavelength of 13.5 nm, thereby reducing the image contrast of the reflectance to the absorber film 212.

因此,囊封膜206相對於13.5nm波長之極紫外線光具有不低於60%的反射率,且囊封膜206具有之表面TIR絕對值不大於300nm且較佳地不大於100nm。囊封膜206的表面粗糙度不大於0.2nm RMS且較佳地不大於0.1nm RMS。 Therefore, the encapsulation film 206 has a reflectance of not less than 60% with respect to extreme ultraviolet light having a wavelength of 13.5 nm, and the absolute value of the surface TIR of the encapsulation film 206 is not more than 300 nm and preferably not more than 100 nm. The surface roughness of the encapsulation film 206 is not more than 0.2 nm RMS and preferably not more than 0.1 nm RMS.

吸收體膜212形成於囊封膜206上且用於吸收曝光光。 The absorber film 212 is formed on the encapsulation film 206 and is used to absorb exposure light.

根據本發明之一實施例,用於極紫外線微影之空白遮罩200需使吸收體膜212較薄,以減小可發生於用於極紫外線微影之光罩的曝光期間的陰影效應。為此,吸收體膜212由對曝光光具有高消光係數(k)的材料製成、對囊封膜206的蝕刻選擇性極佳、且對用於清潔之化學品具有良好抗性。 According to an embodiment of the present invention, the blank mask 200 for extreme ultraviolet lithography needs to make the absorber film 212 thinner to reduce shadow effects that may occur during exposure of the mask for extreme ultraviolet lithography. For this reason, the absorber film 212 is made of a material having a high extinction coefficient (k) to exposure light, has excellent etching selectivity to the encapsulation film 206, and has good resistance to chemicals used for cleaning.

根據本發明之一實施例,吸收體膜212基本上含有鉑(Pt),且含有選自鎳(Ni)、鉭(Ta)、鋅(Zn)、釕(Ru)、銠(Rh)、銀(Ag)、銦(In)、鋨(Os)、銥(Ir)及金(Au)之一或多種金屬材料,或除含有該一或多種金屬材料外,進一步含有氧(O)、氮(N)、碳(C)、硼(B)、氫(H)中之一或多種輕元素。 According to an embodiment of the present invention, the absorber film 212 basically contains platinum (Pt), and contains a material selected from the group consisting of nickel (Ni), tantalum (Ta), zinc (Zn), ruthenium (Ru), rhodium (Rh), and silver. (Ag), indium (In), osmium (Os), iridium (Ir) and gold (Au) one or more metal materials, or in addition to the one or more metal materials, further containing oxygen (O), nitrogen ( N), carbon (C), boron (B), hydrogen (H) one or more light elements.

鉑(Pt)對清潔化學品及其他化學品具有良好抗性且相對於13.5nm波長之曝光光具有高消光係數(k),且因此適合用於耐化學性極佳的吸收體膜。具體而言,與其一主材料(即,鉭(Ta)) 相對於13.5nm波長之曝光光具有0.0408之消光係數(k)的習知吸收體膜相比較,根據本發明之一實施例的吸收體膜含有具有0.0600之消光係數(k)之鉑(Pt),藉此增加吸收體膜之每單元厚度之遮光性質並且有可能使吸收體膜較薄。例如,鉭(Ta)之厚度需不小於70nm,以滿足對於13.5nm波長之曝光光不大於1.0%之反射率,而鉑(Pt)之厚度需不大於70nm且較佳地不大於65nm,以藉此減小陰影效應。 Platinum (Pt) has good resistance to cleaning chemicals and other chemicals and has a high extinction coefficient (k) with respect to exposure light at a wavelength of 13.5 nm, and is therefore suitable for use in absorber films with excellent chemical resistance. Specifically, with one of its main materials (ie, tantalum (Ta)) Compared to a conventional absorber film having an extinction coefficient (k) of 0.0408 with respect to the exposure light having a wavelength of 13.5 nm, the absorber film according to an embodiment of the present invention contains platinum (Pt) having an extinction coefficient (k) of 0.0600. Thus, the light-shielding property per unit thickness of the absorber film is increased and it is possible to make the absorber film thinner. For example, the thickness of tantalum (Ta) must be not less than 70nm to meet the reflectance of exposure light with a wavelength of 13.5nm not greater than 1.0%, and the thickness of platinum (Pt) must be not greater than 70nm and preferably not greater than 65nm. This reduces shadow effects.

進一步,吸收體膜212含有鉑(Pt)作為一主材料,並含有該等金屬材料中之一者或除該等金屬材料外還含有該等輕元素中之一者。具體而言,具有高於鉑(Pt)之消光係數(k)的金屬材料(選自鎳(Ni)、鋅(Zn)、釕(Ru)、銠(Rh)、銀(Ag)、銦(In)、鋨(Os)、銥(Ir)及金(Au)之一或多者)添加至吸收體膜,藉此增加吸收體膜之消光係數(k)並且使吸收體膜更薄。此時,鉑(Pt)對額外金屬材料(Ni、Ta、Zn、Ru、Rh、Ag、In、Os或Ir)之一組成物比率可係95原子%:5原子%至5原子%:95原子%。 Further, the absorber film 212 contains platinum (Pt) as a main material, and contains one of the metal materials or one of the light elements in addition to the metal materials. Specifically, a metal material having a higher extinction coefficient (k) than platinum (Pt) (selected from nickel (Ni), zinc (Zn), ruthenium (Ru), rhodium (Rh), silver (Ag), indium ( In), osmium (Os), iridium (Ir), and gold (Au) are added to the absorber film, thereby increasing the extinction coefficient (k) of the absorber film and making the absorber film thinner. At this time, the composition ratio of platinum (Pt) to one of the additional metal materials (Ni, Ta, Zn, Ru, Rh, Ag, In, Os, or Ir) may be 95 atomic%: 5 atomic% to 5 atomic%: 95 atom%.

吸收體膜212可進一步包括氧(O)、氮(N)及碳(C)中之一或多種輕元素,其中金屬對輕元素之含量比率可係9:1至2:8。 The absorber film 212 may further include one or more light elements of oxygen (O), nitrogen (N), and carbon (C). The content ratio of the metal to the light elements may be 9: 1 to 2: 8.

可藉由一單層膜或包括兩個或更多個層之一多層膜來達成吸收體膜212。 The absorber film 212 may be achieved by a single-layer film or a multilayer film including two or more layers.

如果吸收體膜212具有一單層結構,則吸收體膜212可係具有一恆定組成物比率的一單膜,或具有依一厚度方向變化之 一組成物比率的一連續膜。進一步,可藉由連續膜(其中組成物比率依厚度方向變化)或包括兩個或更多個膜之多層膜來達成吸收體膜212。例如,如果藉由包括一下層208及一上層210之兩層膜的多層膜來達成吸收體膜212,則包括鉑(Pt)作為主材料的上層210含有氧(O)及氮(N)之至少一者,上層210之組成物比率高於下層208之組成物比率。較佳地,下層208的氧(O)之含量低於上層210的氧(O)之含量,以使吸收體膜212較薄。此時,吸收體膜212的下層208及上層210在金屬材料及輕元素的含量之量方面相差至少10%。 If the absorber film 212 has a single-layer structure, the absorber film 212 may be a single film having a constant composition ratio, or a film having a change in thickness direction. A continuous film with a composition ratio. Further, the absorber film 212 can be achieved by a continuous film (wherein the composition ratio varies depending on the thickness direction) or a multilayer film including two or more films. For example, if the absorber film 212 is achieved by a multilayer film including two films of a lower layer 208 and an upper layer 210, the upper layer 210 including platinum (Pt) as a main material contains oxygen (O) and nitrogen (N). In at least one, the composition ratio of the upper layer 210 is higher than the composition ratio of the lower layer 208. Preferably, the content of oxygen (O) in the lower layer 208 is lower than the content of oxygen (O) in the upper layer 210 so that the absorber film 212 is thinner. At this time, the lower layer 208 and the upper layer 210 of the absorber film 212 differ by at least 10% in the amount of the content of the metal material and the light element.

可藉由共濺鍍包括一鉑(Pt)化合物之一單一靶材或包括一鉑(Pt)靶材之複數個靶材,來形成吸收體膜212。 The absorber film 212 may be formed by co-sputtering a single target including a platinum (Pt) compound or a plurality of targets including a platinum (Pt) target.

如果使用單一靶材形成吸收體膜212,該單一靶材可由鉑(Pt)化合物製成且組成物比率為鉑(Pt):額外金屬材料(Ni、Ta、Zn、Ru、Rh、Ag、In、Os、Ir、Au)=1原子%:99原子%至99原子%:1原子%之一組成物比率。 If the absorber film 212 is formed using a single target, the single target may be made of a platinum (Pt) compound and the composition ratio is platinum (Pt): additional metal materials (Ni, Ta, Zn, Ru, Rh, Ag, In , Os, Ir, Au) = 1 atomic%: 99 atomic% to 99 atomic%: 1 atomic% composition ratio.

如果使用複數個靶材來形成吸收體膜212,則可在一腔室中共濺鍍該複數個靶材,其中可藉由調整靶材之大小(即,表面比率)來控制吸收體膜212之組成物比率。 If a plurality of targets are used to form the absorber film 212, the plurality of targets can be sputter-coated in a chamber, wherein the size of the absorber film 212 can be controlled by adjusting the size of the target (i.e., surface ratio). Composition ratio.

吸收體膜212具有30nm至70nm之一厚度。如果吸收體膜212之厚度不大於30nm,則吸收體膜212相對於曝光光的高反射率不低於10%。如果吸收體膜212之厚度不小於70nm,水平圖案與垂直圖案的臨界尺寸偏差高於靶材臨界尺寸的偏差,於 是引起臨界尺寸均勻性劣化且遮罩增強誤差因數(MEEF)增加。進一步,當形成不大於10nm之圖案時,曝光光之入射角相對於垂直入射傾斜9°或以上,且因此陰影效應變更嚴重。為了減輕此一陰影效應,較佳地,吸收體膜212之厚度不大於55nm。 The absorber film 212 has a thickness of 30 nm to 70 nm. If the thickness of the absorber film 212 is not greater than 30 nm, the high reflectance of the absorber film 212 with respect to the exposure light is not less than 10%. If the thickness of the absorber film 212 is not less than 70 nm, the critical dimension deviation of the horizontal pattern and the vertical pattern is higher than the critical dimension deviation of the target. It causes the critical dimension uniformity to deteriorate and the mask enhancement error factor (MEEF) to increase. Further, when a pattern not larger than 10 nm is formed, the incident angle of the exposure light is inclined by 9 ° or more with respect to the normal incidence, and thus the shadow effect is severely changed. To mitigate this shadow effect, preferably, the thickness of the absorber film 212 is not greater than 55 nm.

吸收體膜212對於193nm波長或257nm的低反射率不高於50%。對於13.5之極紫外線微影曝光光,吸收體膜212具有低於10%之反射率,較佳地不大於5%之反射率,且更佳地不大於1%之反射率。 The low reflectance of the absorber film 212 for a wavelength of 193 nm or 257 nm is not higher than 50%. For the extreme ultraviolet lithographic exposure light of 13.5, the absorber film 212 has a reflectance of less than 10%, preferably a reflectance of not more than 5%, and more preferably a reflectance of not more than 1%.

吸收體膜212之薄膜應力不大於300MPa,且較佳地不大於200MPa。 The film stress of the absorber film 212 is not more than 300 MPa, and preferably not more than 200 MPa.

光阻膜214由一化學放大型光阻(CAR)製成,且光阻膜214之厚度不大於200nm,且較佳地不大於100nm。 The photoresist film 214 is made of a chemically amplified photoresist (CAR), and the thickness of the photoresist film 214 is not more than 200 nm, and preferably not more than 100 nm.

雖然未繪示,然而根據本發明之一實施例之用於極紫外線微影之空白遮罩可進一步包括提供於該透明基材之背表面上的一傳導膜。形成該多反射膜、該囊封膜及該吸收體膜於該LTEM基材上後,該傳導膜可形成於該基材之該背面,或可優先地形成於該基材之該背面,之後再形成該多反射膜、該囊封膜及該吸收體膜。 Although not shown, a blank mask for extreme ultraviolet lithography according to an embodiment of the present invention may further include a conductive film provided on a back surface of the transparent substrate. After the multi-reflective film, the encapsulation film, and the absorber film are formed on the LTEM substrate, the conductive film may be formed on the back surface of the substrate, or may be preferentially formed on the back surface of the substrate, and thereafter The multi-reflective film, the encapsulating film, and the absorber film are further formed.

該傳導膜具有一低片電阻,使得可改善電子夾頭與用於極紫外線微影之空白遮罩之間的黏著性,藉此防止自介於該電子夾頭(electronic chuck)與該傳導膜之間的摩擦力產生粒子。因 此,該傳導膜之片電阻不高於100Ω/□,較佳地不高於50Ω/□,且更佳地不高於20Ω/□。 The conductive film has a low sheet resistance, so that the adhesion between the electronic chuck and a blank mask for extreme ultraviolet lithography can be improved, thereby preventing the electronic chuck from being interposed between the electronic chuck and the conductive film. The friction between the particles. because Therefore, the sheet resistance of the conductive film is not higher than 100Ω / □, preferably not higher than 50Ω / □, and more preferably not higher than 20Ω / □.

該傳導膜之厚度可不大於70nm,可依一單一層之一單膜、一單一層之一連續膜、或一多層膜之形式提供該傳導膜,且該傳導膜相對於193nm至257nm之波長可具有不高於30%之反射率。例如,該傳導膜可含有鉻(Cr)作為一主材料。如果藉由兩個層之多層膜來達成該傳導膜,則一下層可含有鉻(Cr)及氮(N),及一上層可含有鉻(Cr)、氮(N)及氧(O)。此時,在該傳導膜中的鉻(Cr)對輕元素(含有氧(O)、氮(N)、碳(C)及硼(B)中之材料組合)之一組成物比率可係8:2至2:8。 The thickness of the conductive film may be not more than 70 nm. The conductive film may be provided in the form of a single layer, a single film, a single layer, a continuous film, or a multilayer film, and the conductive film is relative to the wavelength of 193nm to 257nm. It may have a reflectivity of not higher than 30%. For example, the conductive film may contain chromium (Cr) as a main material. If the conductive film is achieved by a multilayer film of two layers, a lower layer may contain chromium (Cr) and nitrogen (N), and an upper layer may contain chromium (Cr), nitrogen (N), and oxygen (O). At this time, the composition ratio of one of chromium (Cr) to light elements (containing a material combination of oxygen (O), nitrogen (N), carbon (C), and boron (B)) in the conductive film may be 8 : 2 to 2: 8.

進一步,藉由形成一相移膜於該多反射膜上,或新增一硬膜(其具有對該吸收體膜的蝕刻選擇性且當該吸收體膜被圖案化時用作為一蝕刻遮罩)於該吸收體膜上,根據本發明之一實施例之用於極紫外線微影之空白遮罩可改善圖案之精確度。 Further, by forming a phase shift film on the multi-reflective film, or adding a hard film (which has an etching selectivity to the absorber film and used as an etching mask when the absorber film is patterned) ) On the absorber film, a blank mask for extreme ultraviolet lithography according to an embodiment of the present invention can improve the accuracy of the pattern.

此外,該多反射膜、該囊封膜、該吸收體膜及該傳導膜可選擇性經受熱處理,且可藉由快速熱程序(RTP)、真空熱板烘乾、電漿及爐中之一或多種方法來執行該熱處理。 In addition, the multi-reflective film, the encapsulation film, the absorber film, and the conductive film can be selectively subjected to heat treatment, and can be one of rapid thermal process (RTP), vacuum hot plate drying, plasma, and furnace. One or more methods to perform the heat treatment.

下文,將詳細描述根據本發明之一實施例之用於極紫外線微影之空白遮罩。 Hereinafter, a blank mask for extreme ultraviolet lithography according to an embodiment of the present invention will be described in detail.

(發明實例) (Example of invention) 根據材料評估吸收體膜之厚度 Evaluate the thickness of the absorbent film based on the material

用於極紫外線微影之空白遮罩具有歸因於吸收體膜之厚度的陰影效應問題。據此,根據吸收體膜之材料及其等組成物比率來比較及評估用於滿足光學性質之厚度。 Blank masks for extreme ultraviolet lithography have problems with shadowing effects due to the thickness of the absorber film. Accordingly, the thickness for satisfying the optical properties is compared and evaluated according to the ratio of the material of the absorber film and its composition.

藉由DC磁控濺鍍系統形成具有雙層結構之吸收體膜,而該雙層結構之下層係由各自金屬之氮化物層所製成,其製成方式係藉由注入程序氣體Ar:N2=9sccm:1sccm及使用1.0kW之程序功率。進一步,上層係由各自金屬之氮氧化物層所製成,其製成方式係藉由注入程序氣體Ar:N2=5sccm:5sccm及使用1.0kW之程序功率。此外,由鎳(Ni)及鎳-鉭(NiTa)化合物製成的習知吸收體膜用作為比較性實例。 An absorber film with a double-layer structure is formed by a DC magnetron sputtering system, and the lower layer of the double-layer structure is made of a nitride layer of the respective metal, and the manufacturing method is made by injecting a program gas Ar: N 2 = 9sccm: 1sccm and use a program power of 1.0kW. Further, the upper layer is made of an oxynitride layer of the respective metal, and the manufacturing method thereof is by injecting a program gas Ar: N 2 = 5sccm: 5sccm and using a program power of 1.0kW. In addition, a conventional absorber film made of nickel (Ni) and nickel-tantalum (NiTa) compounds is used as a comparative example.

使用EUV反射計來測量吸收體膜之反射率。 The reflectance of the absorber film was measured using an EUV reflectometer.

表1展示對於13.5nm波長之曝光光的反射率為1%及對於一測試193nm波長的反射率低於30%的吸收體膜之厚度。 Table 1 shows the thickness of the absorber film with a reflectance of 1% for the exposure light at a wavelength of 13.5nm and a reflectance of less than 30% for a test 193nm wavelength.

請參閱表1,根據發明實例2至4之吸收體膜經形成為具有43.1nm至53.6nm之較佳厚度(小於55nm之厚度)。 Referring to Table 1, the absorber films according to Invention Examples 2 to 4 are formed to have a preferred thickness (thickness less than 55 nm) of 43.1 nm to 53.6 nm.

根據材料評估吸收體膜之光學性質及耐化學性 Evaluation of optical properties and chemical resistance of absorber films based on materials

根據吸收體膜之材料及其等組成物比率來測試吸收體膜之光學性質及耐化學性。 The optical properties and chemical resistance of the absorber film are tested according to the material of the absorber film and its composition ratio.

吸收體膜相同於在「根據材料評估吸收體膜之厚度」中之發明實例1至4及比較性實例1中使用者,及使用EUV反射計來測量吸收體膜之反射率。進一步,執行SPM測試評估各自膜之耐化學性。 The absorber film is the same as the users in Invention Examples 1 to 4 and Comparative Example 1 in "Evaluating the Thickness of the Absorber Film Based on the Material", and the reflectance of the absorber film was measured using an EUV reflectometer. Further, an SPM test was performed to evaluate the chemical resistance of the respective films.

使用下列溶液執行SPM測試:其中H2SO4及H2O2之混合比率為H2SO4:H2O2=10:1,及在約90℃溫度下執行清潔程序三次達10分鐘。在此條件中,測量清潔程序前後的厚度變化。此時,使用X射線反射量測法(XRR)或使用Bruker AXS之D8 Discover來測量吸收體膜之厚度。 The SPM test was performed using the following solution: where the mixing ratio of H 2 SO 4 and H 2 O 2 was H 2 SO 4 : H 2 O 2 = 10: 1, and the cleaning procedure was performed three times at a temperature of about 90 ° C. for 10 minutes. In this condition, the change in thickness before and after the cleaning procedure is measured. At this time, the thickness of the absorber film was measured using X-ray reflection measurement (XRR) or D8 Discover using Bruker AXS.

表2根據材料展示具有一定厚度之吸收體膜之光學性質及得自SPM測試之耐化學性。 Table 2 shows the optical properties of the absorber film with a certain thickness and the chemical resistance obtained from the SPM test according to the materials.

請參閱表2,應理解,根據發明實例之吸收體膜具有極佳耐化學性,此係因為與比較性實例1相比較,根據發明實例之吸收體膜之厚度的變化極小。 Please refer to Table 2. It should be understood that the absorbent film according to the inventive example has excellent chemical resistance, because the thickness of the absorbent film according to the inventive example has little change compared with the comparative example 1.

製造根據本發明之一實施例之用於極紫外線微影之空白遮罩 Making a blank mask for extreme ultraviolet lithography according to an embodiment of the present invention

為了製造根據本發明之一實施例之用於極紫外線微影之空白遮罩,製備LTEM基材,其具有6吋×6吋×0.25吋之尺寸、受控制而具有不大於60nm之平坦度(即,TIR值)且由SiO2-TiO製成。 In order to manufacture a blank mask for extreme ultraviolet lithography according to an embodiment of the present invention, an LTM substrate is prepared, which has a size of 6 inches × 6 inches × 0.25 inches and is controlled to have a flatness of not more than 60 nm ( That is, the TIR value) is made of SiO 2 -TiO.

在該LTEM基材之背面上,藉由DC磁控反應性濺鍍系統來形成傳導膜(其含有鉻(Cr)作為一主材料)。該傳導膜經形成為具有由氮化鉻(CrN)製成之一下層及由鉻氮氧化物(CrON)製成之一上層之一雙層結構。使用鉻(Cr)靶材形成該上層及該下層兩者之傳導膜。藉由厚度為42nm之氮化鉻(CrN)膜來達成該下層之傳導膜,其形成方式係藉由注入程序氣體Ar:N2=5sccm:5sccm及使用1.4kW之程序功率。進一步,藉由厚度為42nm之氮化鉻(CrN)膜來達成該上層之傳導膜,其形成方式係藉由注入程序氣體Ar:N2=5sccm:5sccm及使用1.4kW之程序功率。進一步,藉由厚度為24nm之鉻氮氧化物(CrON)膜來達成該上層之傳導膜,其形成方式係藉由注入程序氣體Ar:N2:NO=7sccm:7sccm:7sccm及使用1.4kW之程序功率。最後,傳導膜經形成為具有66nm之厚度,及使用4四點探針來測量該所形成傳導膜之片電阻。結果,傳導膜之片 電阻為16.5Ω/□,且因此在使用電子夾頭進行電子夾住(E-chucking)時沒有問題。 A conductive film (which contains chromium (Cr) as a main material) is formed on the back surface of the LTM substrate by a DC magnetron reactive sputtering system. The conductive film is formed to have a double-layered structure including a lower layer made of chromium nitride (CrN) and an upper layer made of chromium nitride oxide (CrON). A conductive film of both the upper layer and the lower layer is formed using a chromium (Cr) target. The lower-layer conductive film is achieved by a chromium nitride (CrN) film with a thickness of 42 nm. The formation method is by injecting a process gas Ar: N 2 = 5sccm: 5sccm and using a program power of 1.4kW. Further, the upper-layer conductive film is achieved by a chromium nitride (CrN) film having a thickness of 42 nm, and the formation method is by injecting a process gas Ar: N 2 = 5sccm: 5sccm and using a program power of 1.4kW. Further, the upper layer of the conductive film is formed by a CrON film having a thickness of 24 nm, and the formation method is by injecting a process gas Ar: N 2: NO = 7sccm: 7sccm: 7sccm and using 1.4kW Program power. Finally, the conductive film was formed to have a thickness of 66 nm, and the four-point probe was used to measure the sheet resistance of the formed conductive film. As a result, the sheet resistance of the conductive film was 16.5 Ω / □, and therefore there was no problem in electronic clamping using an electronic chuck.

使用離子束沉積-低缺陷密度(下文稱為「IBD-LDD」)系統,交替生長厚度為4.8nm之鉬(Mo)層及厚度為2.2nm之矽(Si)層多達40層於LTEM基材之前表面上,藉此形成多反射膜。使用EUV反射計來測量該多反射膜之反射率。結果,該多反射膜展現對於13.5之波長的67.8%之反射率,及對於193nm之波長的64.6%之反射率。進一步,使用原子力顯微鏡(AFM)系統來測量該多反射膜之表面粗糙度。結果,該多反射膜展現0.12nmRMS之表面粗糙度。因此,應瞭解,當自該多反射膜反射EUV曝光光時,歸因於表面粗糙度之漫射反射減小。進一步,使用相對於142mm2面積之超平坦系統來測量該多反射膜之平坦度。結果,該多反射膜展現54nm之TIR值。因此,應理解,歸因於該反射膜之圖案變形減小。 Using an ion beam deposition-low defect density (hereinafter referred to as "IBD-LDD") system, alternately growing molybdenum (Mo) layers with a thickness of 4.8 nm and silicon (Si) layers with a thickness of 2.2 nm up to 40 layers on an LTEM-based Material on the front surface, thereby forming a multi-reflective film. An EUV reflectometer was used to measure the reflectance of the multi-reflective film. As a result, the multi-reflective film exhibited a reflectance of 67.8% for a wavelength of 13.5 and a reflectance of 64.6% for a wavelength of 193 nm. Further, an atomic force microscope (AFM) system was used to measure the surface roughness of the multi-reflective film. As a result, the multi-reflective film exhibited a surface roughness of 0.12 nm RMS. Therefore, it should be understood that when the EUV exposure light is reflected from the multi-reflective film, the diffuse reflection due to the surface roughness is reduced. Further, the flatness of the multi-reflective film was measured using an ultra-flat system with respect to an area of 142 mm 2 . As a result, the multi-reflective film exhibited a TIR value of 54 nm. Therefore, it should be understood that the pattern distortion due to the reflective film is reduced.

使用IBD-LDD系統,厚度為2.5nm之釕(Ru)層經堆疊以形成該囊封膜於該多反射膜上。形成該囊封膜後,藉由相同於測量該多反射膜之方法來測量該囊封膜之反射率。結果,該囊封膜展現對於13.5nm波長的65.8%之反射率。因此,應理解,該囊封膜對該多反射膜之67.8%反射率引起極小反射率變化。進一步,對於193nm波長的反射率係55.43%。同樣地,亦藉由相同方法來測量表面粗糙度及平坦度。結果,該囊封膜展現0.13nm RMS之表 面粗糙度及54nm之TIR。據此,應理解,該囊封膜對該多反射膜之表面粗糙度及平坦度引起極小表面粗糙度及平坦度變化。 Using an IBD-LDD system, a ruthenium (Ru) layer with a thickness of 2.5 nm is stacked to form the encapsulation film on the multi-reflective film. After the encapsulation film is formed, the reflectance of the encapsulation film is measured by the same method as that for measuring the multi-reflective film. As a result, the encapsulated film exhibited a reflectance of 65.8% for a wavelength of 13.5 nm. Therefore, it should be understood that the 67.8% reflectance of the encapsulated film to the multi-reflective film causes minimal change in reflectance. Furthermore, the reflectance for a wavelength of 193 nm is 55.43%. Similarly, the surface roughness and flatness were also measured by the same method. As a result, the encapsulated film exhibited a table of 0.13 nm RMS Surface roughness and TIR of 54nm. Based on this, it should be understood that the surface roughness and flatness of the multi-reflective film caused by the encapsulation film cause minimal changes in surface roughness and flatness.

藉由DC磁控濺鍍系統生長具有一上層及一下層之一雙層結構的該吸收體膜於該囊封膜上。使用鎳-鉑(NiPt)靶材來形成該上層及該下層(鎳-鉑(NiPt)之組成物比率為Ni:Pt=50原子%:50原子%),同時調整程序氣體及程序功率。 The absorber film having a double layer structure of an upper layer and a lower layer was grown on the encapsulation film by a DC magnetron sputtering system. A nickel-platinum (NiPt) target is used to form the upper layer and the lower layer (the composition ratio of nickel-platinum (NiPt) is Ni: Pt = 50 atomic%: 50 atomic%), and the program gas and program power are adjusted at the same time.

藉由厚度為48nm之鎳-鉑氮化物(NiPtN)膜來達成該下層,其達成方式係藉由注入程序氣體Ar:N2=9sccm:1sccm及使用1.0kW之程序功率;藉由厚度為13nm之鎳-鉑氮氧化物(NiPtON)膜來達成該上層,其達成方式係藉由注入程序氣體Ar:N2:NO=5sccm:5sccm:3sccm及使用1.0kW之程序功率。作為測量該上層及下層之反射率之結果,該上層展現對於13.5nm波長之曝光光的1.65%之反射率,以及該下層展現對於13.5nm波長之曝光光的0.76%之反射率及對於測試193nm波長的22.4%之反射率。 The lower layer is achieved by a nickel-platinum nitride (NiPtN) film with a thickness of 48 nm, which is achieved by injecting a process gas Ar: N 2 = 9 sccm: 1 sccm and using a program power of 1.0 kW; with a thickness of 13 nm A nickel-platinum oxynitride (NiPtON) film is used to achieve the upper layer, which is achieved by injecting a process gas Ar: N 2: NO = 5sccm: 5sccm: 3sccm and using a program power of 1.0kW. As a result of measuring the reflectance of the upper layer and the lower layer, the upper layer exhibited a reflectance of 1.65% for the exposure light at a wavelength of 13.5 nm, and the lower layer exhibited a reflectance of 0.76% for the exposure light at a wavelength of 13.5 nm and for testing at 193 nm 22.4% reflectance at wavelength.

使用超平坦系統來測量此吸收體膜之平坦度。結果,該吸收體膜展現61nm之TIR值,其轉換成約97MPa之薄膜應力。因此,應理解,無平坦度問題。 The flatness of this absorber film was measured using an ultra-flat system. As a result, the absorber film exhibited a TIR value of 61 nm, which was converted into a thin film stress of about 97 MPa. Therefore, it should be understood that there is no flatness problem.

根據本發明之一實施例,提供一種用於極紫外線微影之空白遮罩及一種使用其之光罩,其中吸收體膜含有具有一高消光係數(k)之一金屬化合物,藉此不僅使吸收體膜較薄,而且亦保證吸收體膜之遮光性質。 According to an embodiment of the present invention, a blank mask for extreme ultraviolet lithography and a photomask using the same are provided, wherein the absorber film contains a metal compound having a high extinction coefficient (k), thereby not only making The absorber film is thin, and the light-shielding property of the absorber film is also guaranteed.

進一步,根據本發明之一實施例,提供一種用於極紫外線微影之空白遮罩及一種使用其之光罩,其藉由調整在吸收體膜中含有之金屬及輕元素之組成物比率而改善耐化學性及耐曝光性。 Further, according to an embodiment of the present invention, a blank mask for extreme ultraviolet lithography and a photomask using the same are provided, which are obtained by adjusting a composition ratio of a metal and a light element contained in an absorber film Improve chemical resistance and exposure resistance.

雖然上文已描述本發明之少數例示性實施例,但是本發明之技術範疇不限於前述例示性實施例。所屬技術領域中具有通常知識者應明白,可對這些例示性實施例做出變更及修改,而未脫離本發明之原理及範疇,本發明之範疇定義於隨附申請專利範圍及其均等例中。 Although a few exemplary embodiments of the present invention have been described above, the technical scope of the present invention is not limited to the foregoing exemplary embodiments. Those with ordinary knowledge in the technical field should understand that changes and modifications can be made to these exemplary embodiments without departing from the principles and scope of the present invention. The scope of the present invention is defined in the scope of the accompanying patent applications and their equivalents. .

Claims (11)

一種用於極紫外線微影之空白遮罩,其中一多反射膜、一吸收體膜、及一光阻膜(resist film)之至少一者堆疊於一透明基材上,該吸收體膜包含選自鉑(Pt)、鎳(Ni)、鉭(Ta)、鋅(Zn)、釕(Ru)、銠(Rh)、銀(Ag)、銦(In)、鋨(Os)、銥(Ir)、及金(Au)之一或多種金屬材料,並且除包含該金屬材料外,亦包含氧(O)、氮(N)、碳(C)、硼(B)、及氫(H)中之一或多種輕元素,一囊封膜,其提供於該多反射膜與該吸收體膜之間;一緩衝膜,其插置於該囊封膜與該吸收體膜之間;一傳導膜,其提供於該透明基材下方;一相移膜,其提供於該多反射膜上方;及一硬膜,其提供於該吸收體膜上方。A blank mask for extreme ultraviolet lithography, in which at least one of a multi-reflective film, an absorber film, and a resist film is stacked on a transparent substrate. The absorber film includes a selective substrate. From platinum (Pt), nickel (Ni), tantalum (Ta), zinc (Zn), ruthenium (Ru), rhodium (Rh), silver (Ag), indium (In), osmium (Os), iridium (Ir) And one or more metal materials including gold (Au), and in addition to the metal material, also includes one of oxygen (O), nitrogen (N), carbon (C), boron (B), and hydrogen (H) One or more light elements, a capsule film provided between the multi-reflective film and the absorber film; a buffer film inserted between the capsule film and the absorber film; a conductive film, It is provided below the transparent substrate; a phase shift film is provided above the multi-reflective film; and a hard film is provided above the absorber film. 一種用於極紫外線微影之空白遮罩,其中一多反射膜、一吸收體膜、及一光阻膜之至少一者堆疊於一透明基材上,該吸收體膜基本上包含鉑(Pt),並且除包含鉑(Pt)外,亦包含選自鎳(Ni)、鉭(Ta)、鋅(Zn)、釕(Ru)、銠(Rh)、銀(Ag)、銦(In)、鋨(Os)、銥(Ir)、及金(Au)之一或多種金屬材料,或除包含該金屬材料外,亦包含氧(O)、氮(N)、碳(C)、硼(B)及氫(H)中之一或多種輕元素,一囊封膜,其提供於該多反射膜與該吸收體膜之間;一緩衝膜,其插置於該囊封膜與該吸收體膜之間;一傳導膜,其提供於該透明基材下方;一相移膜,其提供於該多反射膜上方;及一硬膜,其提供於該吸收體膜上方。A blank mask for extreme ultraviolet lithography, in which at least one of a multi-reflective film, an absorber film, and a photoresist film is stacked on a transparent substrate. The absorber film basically contains platinum (Pt ), And in addition to platinum (Pt), it also contains a member selected from the group consisting of nickel (Ni), tantalum (Ta), zinc (Zn), ruthenium (Ru), rhodium (Rh), silver (Ag), indium (In), One or more metal materials of osmium (Os), iridium (Ir), and gold (Au), or in addition to the metal material, also contains oxygen (O), nitrogen (N), carbon (C), boron (B ) And one or more light elements of hydrogen (H), an encapsulating film provided between the multi-reflective film and the absorber film; a buffer film inserted between the encapsulating film and the absorber Between the films; a conductive film provided below the transparent substrate; a phase shift film provided above the multi-reflective film; and a hard film provided above the absorber film. 如申請專利範圍第1項或第2項之用於極紫外線微影之空白遮罩,其中在該吸收體膜中的鉑(Pt)對額外金屬(Ni、Ta、Zn、Ru、Rh、Ag、In、Os、Ir、Au)之一組成物比率包含95原子%:5原子%至5原子%:95原子%。For example, the blank mask for extreme ultraviolet lithography in the first or second scope of the patent application, in which platinum (Pt) in the absorber film is used for additional metals (Ni, Ta, Zn, Ru, Rh, Ag , In, Os, Ir, Au) contains a composition ratio of 95 atomic%: 5 atomic% to 5 atomic%: 95 atomic%. 如申請專利範圍第1項或第2項之用於極紫外線微影之空白遮罩,其中金屬對輕元素之一組成物比率包含9:1至2:8。For example, the blank mask for extreme ultraviolet lithography in the first or second scope of the patent application, wherein the composition ratio of a metal to a light element includes 9: 1 to 2: 8. 如申請專利範圍第1項之用於極紫外線微影之空白遮罩,其中藉由一鉑(Pt)化合物之一單一靶材、或藉由共濺鍍包含一鉑(Pt)靶材之複數個靶材,來形成該吸收體膜。For example, the blank mask for extreme ultraviolet lithography in the first scope of the patent application, wherein a single target containing a platinum (Pt) compound or a plurality of targets containing a platinum (Pt) target is co-sputtered. Targets to form the absorber film. 如申請專利範圍第5項之用於極紫外線微影之空白遮罩,其中如果藉由該鉑(Pt)化合物之該單一靶材形成該吸收體膜,則該單一靶材包含鉑(Pt):額外金屬(Ni、Ta、Zn、Ru、Rh、Ag、In、Os、Ir、Au)=1原子%:99原子%至99原子%:1原子%之一組成物比率。For example, if the blank mask for extreme ultraviolet lithography is applied for item 5 of the patent scope, if the absorber film is formed by the single target of the platinum (Pt) compound, the single target includes platinum (Pt) : Additional metal (Ni, Ta, Zn, Ru, Rh, Ag, In, Os, Ir, Au) = 1 atomic%: 99 atomic% to 99 atomic%: one atomic% composition ratio. 如申請專利範圍第1項之用於極紫外線微影之空白遮罩,其中該吸收體膜包含30nm至70nm之一厚度。For example, the blank mask for extreme ultraviolet lithography according to item 1 of the application, wherein the absorber film includes a thickness of 30 nm to 70 nm. 如申請專利範圍第1項之用於極紫外線微影之空白遮罩,其中該吸收體膜包含一上層及一下層之一雙層結構,且該上層及該下層在金屬及輕元素的含量之量方面相差至少10%。For example, the blank mask for extreme ultraviolet lithography in the first scope of the patent application, wherein the absorber film includes a two-layer structure of an upper layer and a lower layer, and the content of the upper layer and the lower layer in metal and light elements is The difference in quantity is at least 10%. 如申請專利範圍第1項之用於極紫外線微影之空白遮罩,其中該吸收體膜相對於具有一13.5nm波長之極紫外線微影曝光光具有不高於10%的一反射率,且該吸收體膜相對於一測試193nm波長具有不高於50%的一反射率。For example, the blank mask for extreme ultraviolet lithography in the first patent application range, wherein the absorber film has a reflectivity of not higher than 10% with respect to the extreme ultraviolet lithography exposure light having a wavelength of 13.5 nm, and The absorber film has a reflectivity of not more than 50% with respect to a test wavelength of 193 nm. 如申請專利範圍第1項之用於極紫外線微影之空白遮罩,其中該吸收體膜包含的一薄膜應力不高於300MPa。For example, the blank mask for extreme ultraviolet lithography in the first scope of the patent application, wherein the absorber film contains a thin film with a stress not higher than 300 MPa. 一種用於極紫外線微影之光罩,其使用如請求項1至10中任一項之空白遮罩形成。A mask for extreme ultraviolet lithography, which is formed using a blank mask according to any one of claims 1 to 10.
TW105112747A 2015-08-17 2016-04-25 Blankmask for extreme ultra-violet lithography and photomask using the same TWI623805B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
??10-2015-0115198 2015-08-17
KR20150115198 2015-08-17

Publications (2)

Publication Number Publication Date
TW201725440A TW201725440A (en) 2017-07-16
TWI623805B true TWI623805B (en) 2018-05-11

Family

ID=58315726

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105112747A TWI623805B (en) 2015-08-17 2016-04-25 Blankmask for extreme ultra-violet lithography and photomask using the same

Country Status (2)

Country Link
KR (1) KR101772943B1 (en)
TW (1) TWI623805B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI811610B (en) * 2020-01-08 2023-08-11 南韓商S&S技術股份有限公司 Reflective type blankmask and photomask for euv

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI730139B (en) 2016-07-27 2021-06-11 美商應用材料股份有限公司 Extreme ultraviolet mask blank with multilayer absorber and method of manufacture
EP3454119B1 (en) * 2017-09-09 2023-12-27 IMEC vzw Euv absorbing alloys
EP3454120B1 (en) 2017-09-09 2024-05-01 IMEC vzw Method for manufacturing euv reticles and reticles for euv lithography
JP2020034666A (en) * 2018-08-29 2020-03-05 Hoya株式会社 Reflective mask blank, reflective mask and method of manufacturing the same, and method of manufacturing semiconductor device
US11119398B2 (en) * 2018-09-28 2021-09-14 Taiwan Semiconductor Manufacturing Co., Ltd. EUV photo masks
TW202026770A (en) 2018-10-26 2020-07-16 美商應用材料股份有限公司 Ta-cu alloy material for extreme ultraviolet mask absorber
TW202028495A (en) 2018-12-21 2020-08-01 美商應用材料股份有限公司 Extreme ultraviolet mask absorber and processes for manufacture
TWI828843B (en) * 2019-01-31 2024-01-11 美商應用材料股份有限公司 Extreme ultraviolet (euv) mask blanks and methods of manufacturing the same
TW202035792A (en) 2019-01-31 2020-10-01 美商應用材料股份有限公司 Extreme ultraviolet mask absorber materials
US11249390B2 (en) 2019-01-31 2022-02-15 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
TW202111420A (en) 2019-05-22 2021-03-16 美商應用材料股份有限公司 Extreme ultraviolet mask absorber materials
US11366379B2 (en) 2019-05-22 2022-06-21 Applied Materials Inc. Extreme ultraviolet mask with embedded absorber layer
TW202104666A (en) 2019-05-22 2021-02-01 美商應用材料股份有限公司 Extreme ultraviolet mask absorber materials
US11275303B2 (en) 2019-05-22 2022-03-15 Applied Materials Inc. Extreme ultraviolet mask absorber matertals
TW202104667A (en) 2019-05-22 2021-02-01 美商應用材料股份有限公司 Extreme ultraviolet mask absorber materials
US11385536B2 (en) 2019-08-08 2022-07-12 Applied Materials, Inc. EUV mask blanks and methods of manufacture
KR102473558B1 (en) * 2019-10-23 2022-12-05 주식회사 에스앤에스텍 Half-tone attenuated phase shift blankmask and photomask for EUV lithography
US11630385B2 (en) 2020-01-24 2023-04-18 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
TWI817073B (en) 2020-01-27 2023-10-01 美商應用材料股份有限公司 Extreme ultraviolet mask blank hard mask materials
TW202131087A (en) 2020-01-27 2021-08-16 美商應用材料股份有限公司 Extreme ultraviolet mask absorber materials
TW202129401A (en) 2020-01-27 2021-08-01 美商應用材料股份有限公司 Extreme ultraviolet mask blank hard mask materials
US11392036B2 (en) 2020-01-31 2022-07-19 Taiwan Semiconductor Manufacturing Co., Ltd. Photoresist and method
TW202141165A (en) 2020-03-27 2021-11-01 美商應用材料股份有限公司 Extreme ultraviolet mask absorber materials
US11644741B2 (en) 2020-04-17 2023-05-09 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
US11300871B2 (en) 2020-04-29 2022-04-12 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
US11294271B2 (en) 2020-04-30 2022-04-05 Taiwan Semiconductor Manufacturing Co., Ltd. Mask for extreme ultraviolet photolithography
TW202202641A (en) 2020-07-13 2022-01-16 美商應用材料股份有限公司 Extreme ultraviolet mask absorber materials
US11609490B2 (en) 2020-10-06 2023-03-21 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
US11513437B2 (en) * 2021-01-11 2022-11-29 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
US11592738B2 (en) 2021-01-28 2023-02-28 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
US20220350233A1 (en) * 2021-05-03 2022-11-03 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
WO2024053634A1 (en) * 2022-09-09 2024-03-14 Agc株式会社 Reflective mask blank, reflective mask, reflective mask blank manufacturing method, and reflective mask manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102089860A (en) * 2008-07-14 2011-06-08 旭硝子株式会社 Reflective mask blank for EUV lithography and reflective mask for EUV lithography
TW201514612A (en) * 2013-08-28 2015-04-16 Hoya Corp Mask blank, method of manufacturing mask blank and method of manufacturing transfer mask
TW201518855A (en) * 2013-11-15 2015-05-16 S&S Tech Co Ltd Blankmask for extreme ultra-violet lithography and photomask using the same
US20150198874A1 (en) * 2012-09-28 2015-07-16 Asahi Glass Company, Limited Reflective mask blank for euv lithography, method of manufacturing thereof, reflective mask for euv lithography and method of manufacturing thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015073013A (en) 2013-10-03 2015-04-16 旭硝子株式会社 Method of manufacturing reflective mask blank for euv lithography

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102089860A (en) * 2008-07-14 2011-06-08 旭硝子株式会社 Reflective mask blank for EUV lithography and reflective mask for EUV lithography
US20150198874A1 (en) * 2012-09-28 2015-07-16 Asahi Glass Company, Limited Reflective mask blank for euv lithography, method of manufacturing thereof, reflective mask for euv lithography and method of manufacturing thereof
TW201514612A (en) * 2013-08-28 2015-04-16 Hoya Corp Mask blank, method of manufacturing mask blank and method of manufacturing transfer mask
TW201518855A (en) * 2013-11-15 2015-05-16 S&S Tech Co Ltd Blankmask for extreme ultra-violet lithography and photomask using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI811610B (en) * 2020-01-08 2023-08-11 南韓商S&S技術股份有限公司 Reflective type blankmask and photomask for euv
US11815801B2 (en) 2020-01-08 2023-11-14 S & S Tech Co., Ltd. Reflective type blankmask and photomask for EUV

Also Published As

Publication number Publication date
TW201725440A (en) 2017-07-16
KR20170021191A (en) 2017-02-27
KR101772943B1 (en) 2017-09-12

Similar Documents

Publication Publication Date Title
TWI623805B (en) Blankmask for extreme ultra-violet lithography and photomask using the same
JP6863169B2 (en) Reflective mask blank, and reflective mask
JP7047046B2 (en) A method for manufacturing a mask blank substrate, a substrate with a multilayer reflective film, a reflective mask blank and a reflective mask, and a semiconductor device.
TWI620977B (en) Blankmask for extreme ultra-violet lithography and photomask using the same
TWI579639B (en) Blankmask for extreme ultra-violet lithography and photomask using the same
KR20180127197A (en) Blankmask for Extreme Ultra-Violet Lithography and Photomask using the same
TWI826587B (en) Reflective blank mask and reflective mask
TWI761546B (en) Reflective Blank Mask and Reflective Mask
JP2006228767A (en) Mask for extreme ultraviolet ray exposure, mask blank, and exposure method
JP2019139085A (en) Reflective photomask blank and reflective photomask
JP2017116931A (en) Methods for manufacturing substrate with multilayer reflection film, reflective mask blank, reflective mask, and semiconductor device
CN114424119A (en) Substrate with multilayer reflective film, reflective mask blank, reflective mask, and method for manufacturing semiconductor device
KR101579852B1 (en) Blankmask for extreme ultra-violet lithography and photomask using the same
KR20160016098A (en) Blankmask for Extreme Ultra-Violet Lithography and Photomask using the same
JP2023171382A (en) Substrate with electroconductive film, reflective mask blank, reflective mask, and method for producing semiconductor device
KR101615890B1 (en) Blankmask for Extreme Ultra-Violet Lithography and Photomask using the same
EP4067994A1 (en) Reflective photomask blank and reflective photomask
KR102653352B1 (en) Multilayer reflective film-attached substrate, reflective mask blank and reflective mask, and manufacturing method of semiconductor device
CN111752085A (en) Substrate with multilayer reflective film, reflective mask blank, reflective mask, and method for manufacturing semiconductor device
JP2020160354A (en) Substrate having multilayer reflection film, reflection type mask blank, reflection type mask and method for manufacturing semiconductor device
JP6855645B1 (en) Manufacturing method of thin film substrate, multilayer reflective coating substrate, reflective mask blank, reflective mask and semiconductor device
TW202332985A (en) Multilayer reflective film-equipped substrate, reflective mask blank, reflective mask, and method for manufacturing semiconductor device
TW202043908A (en) Reflective mask blank for EUV lithography
KR20210022479A (en) Blankmask for EUV, and Photomask manufactured with the same
TW202248742A (en) Substrate with multilayer reflective film, reflective mask blank, reflective mask, and method for manufacturing semiconductor device