TWI579639B - Blankmask for extreme ultra-violet lithography and photomask using the same - Google Patents

Blankmask for extreme ultra-violet lithography and photomask using the same Download PDF

Info

Publication number
TWI579639B
TWI579639B TW103110205A TW103110205A TWI579639B TW I579639 B TWI579639 B TW I579639B TW 103110205 A TW103110205 A TW 103110205A TW 103110205 A TW103110205 A TW 103110205A TW I579639 B TWI579639 B TW I579639B
Authority
TW
Taiwan
Prior art keywords
film
atom
extreme ultraviolet
nickel
blank mask
Prior art date
Application number
TW103110205A
Other languages
Chinese (zh)
Other versions
TW201518855A (en
Inventor
南基守
梁澈圭
姜亘遠
申澈
李鐘華
金昌俊
鄭始俊
張圭珍
Original Assignee
S&S技術股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S&S技術股份有限公司 filed Critical S&S技術股份有限公司
Publication of TW201518855A publication Critical patent/TW201518855A/en
Application granted granted Critical
Publication of TWI579639B publication Critical patent/TWI579639B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

極紫外線微影用空白罩幕以及使用該空白罩幕的光罩 Ultraviolet lithography with a blank mask and a mask using the blank mask

本發明是關於一種使用波長為13.5奈米的極紫外線(extreme ultraviolet,EUV)射線作為曝光光線(exposure light)的極紫外線微影用空白罩幕,以及一種使用極紫外線微影用空白罩幕的極紫外線微影用光罩,且更特定言之,是關於一種藉由形成次解析度特徵尺寸(sub-resolution feature size,SRFS)為14奈米或小於14奈米(尤其是10奈米或小於10奈米)的圖案而具有改良型圖案準確度的極紫外線微影用空白罩幕,以及一種使用極紫外線微影用空白罩幕的極紫外線微影用光罩。 The present invention relates to a blank mask for extreme ultraviolet lithography using extreme ultraviolet (EUV) rays having a wavelength of 13.5 nm as an exposure light, and a blank mask using an extreme ultraviolet lithography Extreme ultraviolet lithography with a reticle, and more specifically, by forming a sub-resolution feature size (SRFS) of 14 nm or less (especially 10 nm or A blank mask for extreme ultraviolet lithography with improved pattern accuracy and a mask for extreme ultraviolet lithography with a blank mask for extreme ultraviolet lithography.

已使用波長為436奈米(g線)、405奈米(h線)、365奈米(i線)、248奈米(KrF)以及193奈米(ArF)的曝光光線以改良解析度而開發使用高集度(integration)的光微影技術。近年來,已開發使用波長為13.5奈米的極紫外線曝光光線的微影技術。 Developed with exposure light of wavelengths of 436 nm (g line), 405 nm (h line), 365 nm (i line), 248 nm (KrF), and 193 nm (ArF) to improve resolution Use high-integration photolithography. In recent years, lithography techniques using extreme ultraviolet exposure light with a wavelength of 13.5 nm have been developed.

然而,因為用於極紫外線微影中的波長為13.5奈米的曝 光光線具有容易被吸收至大多數材料(包含氣體)中的性質,所以不同於習知透射微影技術(例如,在ArF微影技術中使用光透射單元(light transmission unit)以及光屏蔽單元(light shielding unit)的原理),極紫外線微影技術具有反射曝光光線的結構與吸收曝光光線的結構的組合。亦即,極紫外線微影用空白罩幕主要是由兩個部分組成,亦即:多層反射膜(multilayer reflective film),以及吸收膜(absorption film)。 However, because of the exposure of 13.5 nm for extreme ultraviolet lithography Light rays have properties that are easily absorbed into most materials, including gases, and are therefore different from conventional transmission lithography techniques (eg, the use of light transmission units and light-shielding units in ArF lithography) The principle of light shielding unit), the ultra-violet lithography technique has a combination of a structure that reflects exposure light and a structure that absorbs exposure light. That is, the blank mask for extreme ultraviolet lithography is mainly composed of two parts, namely, a multilayer reflective film, and an absorption film.

一般而言,多層反射膜具有交替地堆疊有40個至60個鉬(Mo)層與矽(Si)層的結構,且在13.5奈米的波長下具有64%至66%的反射率。再者,吸收膜通常包含含有鉭(Ta)的化合物,例如,氮化鉭(tantalum nitride,TaN)或氮氧化鉭(tantalum oxide nitride,TaON),以作為能夠吸收波長為13.5奈米的極紫外線曝光光線的材料。此是因為鉭(Ta)化合物所具有的優點為:易於執行使用廣泛地用於半導體製造方法中的氯(Cl)基以及氟(F)基自由基的電漿蝕刻製程(plasma etching process),如此使得執行罩幕製造方法是有可能的。 In general, the multilayer reflective film has a structure in which 40 to 60 layers of molybdenum (Mo) and bismuth (Si) are alternately stacked, and has a reflectance of 64% to 66% at a wavelength of 13.5 nm. Further, the absorption film usually contains a compound containing tantalum (Ta), for example, tantalum nitride (TaN) or tantalum oxide nitride (TaON) as an ultraviolet light capable of absorbing a wavelength of 13.5 nm. The material that exposes the light. This is because the cerium (Ta) compound has an advantage of being easy to perform a plasma etching process using chlorine (Cl)-based and fluorine (F)-based radicals widely used in a semiconductor manufacturing method, This makes it possible to perform a mask manufacturing method.

然而,當使用包含上述鉭(Ta)化合物的吸收膜來實現波長為14奈米或小於14奈米(特別是10奈米或小於10奈米)的圖案時,可造成如下問題。 However, when a pattern having a wavelength of 14 nm or less (particularly 10 nm or less) is used to realize a pattern having an absorption film containing the above-described cerium (Ta) compound, the following problems can be caused.

圖1為展示描述光罩上發生的遮蔽效應(shadowing effect)的圖解,光罩是使用習知極紫外線微影用空白罩幕而製造。 Figure 1 is a diagram showing the shadowing effect occurring on a reticle, which is fabricated using a conventional urethane lithography with a blank mask.

參看圖1,經配置以使用鉭(Ta)化合物來形成吸收膜106的習知極紫外線微影用空白罩幕具有關於由吸收膜106的厚度造成的遮蔽效應的問題。術語「遮蔽效應」意謂:隨著當運用 極紫外線曝光光線來輻照吸收膜圖案106a時,極紫外線曝光光線的入射角相對於垂直入射而傾斜(大約4°至6°),歸因於吸收膜圖案106a的厚度而將反射光吸收至吸收膜圖案106a中以部分地防止反射光的轉移。當吸收膜106包含鉭(Ta)化合物時,吸收膜106應具有70奈米或大於70奈米的厚度,使得吸收膜106可具有預定消光係數(extinction coefficient),此是因為鉭(Ta)相對於極紫外線曝光光線具有相對低吸收性。如此一來,遮蔽效應的增強亦歸因於吸收膜106的厚度增加。 Referring to FIG. 1, a conventional ultra-violet lithography blank mask configured to form a absorbing film 106 using a tantalum (Ta) compound has a problem with respect to a shadowing effect caused by the thickness of the absorbing film 106. The term "shadowing effect" means: as it applies When the ultraviolet ray is irradiated with light to irradiate the absorbing film pattern 106a, the incident angle of the extreme ultraviolet ray exposure light is inclined with respect to the normal incidence (about 4 to 6), and the reflected light is absorbed due to the thickness of the absorbing film pattern 106a. The absorption film pattern 106a is partially prevented from shifting the reflected light. When the absorbing film 106 contains a cerium (Ta) compound, the absorbing film 106 should have a thickness of 70 nm or more, so that the absorbing film 106 can have a predetermined extinction coefficient because 钽 (Ta) is relatively Light exposure to extreme ultraviolet light has a relatively low absorption. As a result, the enhancement of the shadowing effect is also attributed to an increase in the thickness of the absorbing film 106.

再者,水平圖案(horizontal pattern,HP)與垂直圖案(vertical pattern,VP)之間的臨界尺寸(critical dimension,CD)偏差可由吸收膜106的厚度造成。詳言之,歸因於此等性質,水平圖案(HP)與垂直圖案(VP)之間的不同遮蔽效應是根據圖案的方向(水平或垂直)以及掃描器的方向而造成。 Furthermore, the critical dimension (CD) deviation between the horizontal pattern (HP) and the vertical pattern (VP) may be caused by the thickness of the absorbing film 106. In particular, due to these properties, the different shadowing effects between the horizontal pattern (HP) and the vertical pattern (VP) are caused by the direction of the pattern (horizontal or vertical) and the direction of the scanner.

圖2A以及圖2B為展示描述遮蔽效應的發生的圖解,遮蔽效應是根據使用習知極紫外線微影用空白罩幕而製造的光罩中的圖案的方向而發生。 2A and 2B are diagrams showing the occurrence of a shadowing effect, which occurs in accordance with the direction of a pattern in a reticle fabricated using a conventional ultra-violet lithography with a blank mask.

參看圖2A以及圖2B,在如上文所描述的垂直圖案(VP)的狀況下造成遮蔽效應,但在水平圖案(HP)的狀況下未造成遮蔽效應,此是因為入射光以及反射光平行於圖案的方向。因此,在垂直圖案(VP)與水平圖案(HP)之間出現臨界尺寸偏差。 Referring to FIGS. 2A and 2B, the shadowing effect is caused in the case of the vertical pattern (VP) as described above, but the shadowing effect is not caused in the case of the horizontal pattern (HP) because the incident light and the reflected light are parallel to The direction of the pattern. Therefore, a critical dimension deviation occurs between the vertical pattern (VP) and the horizontal pattern (HP).

因此,當由鉭(Ta)化合物形成的吸收膜的圖案具有70奈米或大於70奈米的厚度時,水平圖案與垂直圖案之間的臨界尺寸偏差被證實為在臨界尺寸偏差應用於20奈米的半間距(half pitch)時為大約4奈米,且被證實為在臨界尺寸偏差應用於14奈 米的半間距時大於或等於大約10奈米。結果,隨著待實現的圖案的尺寸減小,臨界尺寸偏差增加。 Therefore, when the pattern of the absorption film formed of the tantalum (Ta) compound has a thickness of 70 nm or more, the critical dimension deviation between the horizontal pattern and the vertical pattern is confirmed to be applied to the 20 nm in the critical dimension deviation. The half pitch of the meter is about 4 nm, and it is confirmed that the critical dimension deviation is applied to 14 The half pitch of the meter is greater than or equal to about 10 nm. As a result, as the size of the pattern to be realized decreases, the critical dimension deviation increases.

再者,當吸收膜包含鉭(Ta)化合物時,吸收膜通常被形成為具有雙層結構(亦即,吸收層(absorption layer)以及抗反射層(anti-reflective layer)),且材料具有不同成分。更特定言之,因為構成吸收膜的吸收層(亦即,下部層)是由具有高消光係數以吸收波長為13.5奈米的曝光光線的氮化鉭(TaN)膜形成,且抗反射層(亦即,上部層)是由用以在檢測波長(例如,193奈米或257奈米)下增強檢測對比度效率的氮氧化鉭(TaON)膜形成。如此一來,吸收層以及抗反射層具有不同蝕刻性質。作為實例,被應用為抗反射層的氮氧化鉭(TaON)膜具有可被氟氣體高度蝕刻的性質,且氮化鉭(TaN)膜具有可被氯氣體高度蝕刻的性質。因此,當前運用氟氣體以及氯氣體而將包含鉭(Ta)化合物的吸收膜蝕刻兩次,具有製程麻煩的缺點,且可能在製程期間逐漸地導致缺陷以及雜質形成。最終,此問題影響產品產率。 Further, when the absorbing film contains a cerium (Ta) compound, the absorbing film is usually formed to have a two-layer structure (that is, an absorption layer and an anti-reflective layer), and the materials have different ingredient. More specifically, since the absorbing layer (i.e., the lower layer) constituting the absorbing film is formed of a tantalum nitride (TaN) film having a high extinction coefficient to absorb an exposure light having a wavelength of 13.5 nm, and an antireflection layer ( That is, the upper layer) is formed of a tantalum oxynitride (TaON) film for enhancing the contrast detection efficiency at a detection wavelength (for example, 193 nm or 257 nm). As such, the absorbing layer and the anti-reflective layer have different etching properties. As an example, a tantalum oxynitride (TaON) film applied as an antireflection layer has a property of being highly etchable by a fluorine gas, and a tantalum nitride (TaN) film has a property of being highly etchable by chlorine gas. Therefore, the current etching of the absorption film containing a ruthenium (Ta) compound twice by using a fluorine gas and a chlorine gas has a drawback of a troublesome process, and may gradually cause defects and impurity formation during the process. Ultimately, this problem affects product yield.

同時,使用極紫外線微影用空白罩幕來製造極紫外線微影用光罩的方法需要用於光學近接校正(optical proximity correction,OPC)的輔助特徵圖案(次解析度特徵尺寸:例如,輔助條(assist bar),等等)。輔助特徵圖案為形成於光罩上但未印刷於晶圓上的圖案,且在光罩的製造期間,輔助特徵圖案與主圖案都需要高解析度。當抗蝕劑膜(resist film)在藉由極紫外線微影用空白罩幕曝露(書寫(writing))至電子束後就變厚時,歸因於電子的散射而難以形成精細圖案(fine pattern)。因此,基本上需要抗蝕劑膜的薄化。 Meanwhile, the method of manufacturing a very ultraviolet lithography reticle using a blank mask using an extreme ultraviolet lithography requires an auxiliary feature pattern for optical proximity correction (OPC) (sub-resolution feature size: for example, an auxiliary strip (assist bar), etc.). The auxiliary feature pattern is a pattern formed on the reticle but not printed on the wafer, and both the auxiliary feature pattern and the main pattern require high resolution during the manufacture of the reticle. When a resist film becomes thick after being exposed (writing) to an electron beam by a super-violet lithography, it is difficult to form a fine pattern due to scattering of electrons (fine pattern) ). Therefore, the thinning of the resist film is basically required.

本發明是關於一種極紫外線微影用空白罩幕,由於空白罩幕包含硬膜,因此極紫外線微影用空白罩幕在經由使抗蝕劑膜薄化以形成次解析度特徵尺寸為14奈米或小於14奈米(特別是10奈米或小於10奈米)的圖案後就具有極佳圖案準確度,且本發明是關於一種使用極紫外線微影用空白罩幕的光罩。 The invention relates to a blank mask for extreme ultraviolet lithography. Since the blank mask comprises a hard film, the ultra-violet lithography uses a blank mask to thin the resist film to form a sub-resolution feature size of 14 The pattern of meters or less than 14 nm (especially 10 nm or less) has excellent pattern accuracy, and the present invention relates to a mask using a blank mask for extreme ultraviolet lithography.

此外,本發明是關於一種極紫外線微影用光罩,極紫外線微影用光罩能夠藉由調整構成吸收膜的金屬與輕元素之間的成分比率來確保吸收膜的光學性質且同時地實現吸收膜的薄化。 Further, the present invention relates to a photomask for extreme ultraviolet lithography, which can ensure the optical properties of the absorbing film by simultaneously adjusting the composition ratio between the metal and the light element constituting the absorbing film. Thinning of the absorbing film.

另外,本發明是關於一種高品質極紫外線微影用光罩,高品質極紫外線微影用光罩能夠藉由使硬膜以及吸收膜具有不同蝕刻性質來最小化在蝕刻每一膜的製程期間施加至不同膜的蝕刻損害。 In addition, the present invention relates to a high-quality ultra-violet lithography reticle, and the high-quality ultra-violet lithography reticle can minimize the process of etching each film by making the hard film and the absorbing film have different etching properties. Etching damage applied to different films.

根據本發明的態樣,提供一種極紫外線微影用空白罩幕,極紫外線微影用空白罩幕包含皆順序地堆疊於透明基板上的多層反射膜、罩蓋膜(capping film)、吸收膜以及抗蝕劑膜。此處,吸收膜包含鎳(Ni)以及鎳鉭(NiTa)中的至少一者。 According to an aspect of the present invention, a blank mask for extreme ultraviolet lithography is provided, and a blank mask for an extreme ultraviolet lithography comprises a multilayer reflective film, a capping film, an absorbing film which are sequentially stacked on a transparent substrate. And a resist film. Here, the absorption film contains at least one of nickel (Ni) and nickel strontium (NiTa).

根據本發明的另一態樣,提供一種極紫外線微影用空白罩幕,極紫外線微影用空白罩幕包含皆順序地堆疊於透明基板上的反射膜、罩蓋膜、吸收膜、第一功能膜(functional film)以及抗蝕劑膜。此處,吸收膜包含鎳(Ni)以及鎳鉭(NiTa)中的至少一者,且第一功能膜作為用於圖案化吸收膜的蝕刻罩幕(etching mask)。 According to another aspect of the present invention, a blank mask for ultra-violet lithography is provided, and a blank mask for ultra-violet lithography comprises a reflective film, a cover film, an absorption film, and a first layer which are sequentially stacked on a transparent substrate. A functional film and a resist film. Here, the absorption film contains at least one of nickel (Ni) and nickel lanthanum (NiTa), and the first functional film serves as an etching mask for patterning the absorption film.

根據本發明的又一態樣,提供一種極紫外線微影用空白罩幕,極紫外線微影用空白罩幕包含皆順序地堆疊於透明基板上的反射膜、罩蓋膜、包含吸收層以及第二功能膜的吸收膜,以及抗蝕劑膜。此處,吸收層包含鎳(Ni)以及鎳鉭(NiTa)中的至少一者,且第二功能膜作為經配置以圖案化吸收層的蝕刻罩幕,且在第二功能膜餘留於吸收層上時作為抗反射層。 According to still another aspect of the present invention, a blank mask for an extreme ultraviolet lithography is provided, and a blank mask for an extreme ultraviolet lithography comprises a reflective film, a cover film, an absorbing layer, and a first layer which are sequentially stacked on a transparent substrate. An absorbing film of a two-functional film, and a resist film. Here, the absorbing layer contains at least one of nickel (Ni) and nickel lanthanum (NiTa), and the second functional film serves as an etching mask configured to pattern the absorbing layer, and remains in the second functional film for absorption It acts as an anti-reflection layer on the layer.

根據本發明的又一態樣,提供一種極紫外線微影用空白罩幕,極紫外線微影用空白罩幕包含皆順序地堆疊於透明基板上的反射膜、罩蓋膜、包含吸收層以及第二功能膜的吸收膜、第三功能膜,以及抗蝕劑膜。此處,吸收層包含鎳(Ni)以及鎳鉭(NiTa)中的至少一者,第二功能膜作為經配置以圖案化吸收層的蝕刻罩幕,且第二功能膜餘留於吸收層上時會作為抗反射層,且第三功能膜作為經配置以圖案化第二功能膜的蝕刻罩幕。 According to still another aspect of the present invention, a blank mask for an extreme ultraviolet lithography is provided, and a blank mask for an extreme ultraviolet lithography comprises a reflective film, a cover film, an absorbing layer, and a first layer which are sequentially stacked on a transparent substrate. An absorption film of a two-functional film, a third functional film, and a resist film. Here, the absorbing layer comprises at least one of nickel (Ni) and nickel lanthanum (NiTa), the second functional film acts as an etching mask configured to pattern the absorbing layer, and the second functional film remains on the absorbing layer It acts as an anti-reflective layer and the third functional film acts as an etch mask configured to pattern the second functional film.

在此狀況下,吸收膜以及吸收層可更包含選自由氧(O)、氮(N)、碳(C)以及硼(B)組成的群組的至少一輕元素,且輕元素對鎳(Ni)或鎳鉭(NiTa)金屬的成分比率可在99原子%:1原子%至20原子%:80原子%的範圍內。 In this case, the absorbing film and the absorbing layer may further comprise at least one light element selected from the group consisting of oxygen (O), nitrogen (N), carbon (C), and boron (B), and the light element is nickel ( The composition ratio of the Ni) or nickel lanthanum (NiTa) metal may be in the range of 99 at%: 1 at% to 20 at%: 80 at%.

當吸收層被形成為包含鎳鉭(NiTa)時,鎳鉭(NiTa)標靶的成分比率可在Ni:Ta=5原子%至95原子%:95原子%至5原子%的範圍內。 When the absorption layer is formed to contain nickel lanthanum (NiTa), the composition ratio of the nickel lanthanum (NiTa) target may be in the range of Ni:Ta = 5 at% to 95 at%: 95 at% to 5 at%.

吸收膜或吸收層以及第二功能膜可具有30奈米至70奈米的堆疊厚度。 The absorbing film or absorbing layer and the second functional film may have a stack thickness of 30 nm to 70 nm.

吸收膜或吸收層可具有單層或多層結構,使得吸收膜或吸收層可呈具有均勻成分的膜或成分比率連續變化的連續膜的形 式。 The absorbing film or the absorbing layer may have a single layer or a multilayer structure such that the absorbing film or the absorbing layer may be in the form of a film having a uniform composition or a continuous film whose composition ratio continuously changes. formula.

第一功能膜或第二功能膜可包含選自由鉻(Cr)、鉭(Ta)、鉬(Mo)以及矽(Si)組成的群組的至少一材料,或除了包含此材料以外亦可更包含選自由氧(O)、氮(N)、碳(C)、硼(B)以及氫(H)組成的群組的至少一輕元素,且輕元素對材料的成分比率可在100原子%:0原子%至20原子%:80原子%的範圍內。 The first functional film or the second functional film may include at least one material selected from the group consisting of chromium (Cr), tantalum (Ta), molybdenum (Mo), and antimony (Si), or may be included in addition to the material. Having at least one light element selected from the group consisting of oxygen (O), nitrogen (N), carbon (C), boron (B), and hydrogen (H), and the composition ratio of the light element to the material may be 100 atom% : 0 atom% to 20 atom%: 80 atom%.

第一功能膜、第二功能膜或第三功能膜可具有單層結構或兩個或大於兩個層的多層結構,使得第一功能膜、第二功能膜或第三功能膜可呈單膜或成分比率連續變化的連續膜的形式。 The first functional film, the second functional film or the third functional film may have a single layer structure or a multilayer structure of two or more layers, such that the first functional film, the second functional film or the third functional film may be a single film Or in the form of a continuous film whose composition ratio varies continuously.

第一功能膜、第二功能膜或第三功能膜可相對於分別安置於第一功能膜、第二功能膜或第三功能膜下方的吸收膜、吸收層或第二功能膜具有10或大於10的蝕刻比率(etching ratio)。 The first functional film, the second functional film or the third functional film may have 10 or more with respect to the absorption film, the absorption layer or the second functional film respectively disposed under the first functional film, the second functional film or the third functional film 10 etching ratio.

第一功能膜或第三功能膜可具有1奈米至10奈米的厚度。 The first functional film or the third functional film may have a thickness of from 1 nm to 10 nm.

第二功能膜可具有5奈米至20奈米的厚度。 The second functional film may have a thickness of from 5 nm to 20 nm.

吸收膜可相對於波長為13.5奈米的極紫外線曝光光線具有小於10%的反射率。 The absorbing film can have a reflectivity of less than 10% with respect to extreme ultraviolet exposure light having a wavelength of 13.5 nm.

吸收膜可在193奈米的檢測波長下具有小於30%的反射率。 The absorbing film can have a reflectance of less than 30% at a detection wavelength of 193 nm.

第三功能膜可包含鉻(Cr),或除了包含鉻(Cr)以外亦可更包含選自由氧(O)、氮(N)、碳(C)、硼(B)以及氫(H)組成的群組的至少一輕元素,且輕元素對材料的成分比率可在100原子%:0原子%至20原子%:80原子%的範圍內。 The third functional film may comprise chromium (Cr) or may comprise, in addition to chromium (Cr), a component selected from the group consisting of oxygen (O), nitrogen (N), carbon (C), boron (B), and hydrogen (H). At least one light element of the group, and the composition ratio of the light element to the material may be in the range of 100 atom%: 0 atom% to 20 atom%: 80 atom%.

根據本發明的極紫外線微影用空白罩幕可更包含配置於 罩蓋膜與吸收膜之間的緩衝膜(buffer film)。 The blank mask for extreme ultraviolet lithography according to the present invention may further comprise A buffer film between the cover film and the absorbing film.

根據本發明的極紫外線微影用空白罩幕可更包含提供於透明基板的後表面中的導電膜(conductive film)。 The blank mask for extreme ultraviolet lithography according to the present invention may further comprise a conductive film provided in the rear surface of the transparent substrate.

根據本發明的極紫外線微影用空白罩幕可更包含配置於抗蝕劑膜與安置於抗蝕劑膜下方的膜之間的含矽高分子化合物。 The blank mask for extreme ultraviolet lithography according to the present invention may further comprise a ruthenium containing polymer compound disposed between the resist film and the film disposed under the resist film.

根據本發明的又一態樣,提供一種極紫外線微影用光罩,極紫外線微影用光罩是使用如上文所描述的極紫外線微影用空白罩幕中的一者而製造。 According to still another aspect of the present invention, there is provided a photomask for an extreme ultraviolet lithography, which is manufactured using one of a blank mask for extreme ultraviolet lithography as described above.

106a‧‧‧吸收膜圖案 106a‧‧ absorbing film pattern

300‧‧‧極紫外線微影用空白罩幕 300‧‧‧Very UV lithography with blank mask

302‧‧‧透明基板 302‧‧‧Transparent substrate

304‧‧‧多層反射膜 304‧‧‧Multilayer Reflective Film

306‧‧‧罩蓋膜 306‧‧‧ Cover film

307‧‧‧緩衝膜 307‧‧‧ buffer film

308‧‧‧吸收層 308‧‧‧Absorbent layer

309‧‧‧導電膜 309‧‧‧Electrical film

310‧‧‧抗反射層 310‧‧‧Anti-reflective layer

312‧‧‧吸收膜 312‧‧‧Absorbing film

314‧‧‧第一功能膜 314‧‧‧First functional film

318‧‧‧抗蝕劑膜 318‧‧‧resist film

400‧‧‧極紫外線微影用空白罩幕 400‧‧‧Very UV lithography with blank mask

402‧‧‧透明基板 402‧‧‧Transparent substrate

404‧‧‧多層反射膜 404‧‧‧Multilayer reflective film

406‧‧‧罩蓋膜 406‧‧‧ Cover film

408‧‧‧吸收層 408‧‧‧absorbing layer

412‧‧‧吸收膜 412‧‧‧Absorbing film

416‧‧‧第二功能膜 416‧‧‧Second functional film

418‧‧‧抗蝕劑膜 418‧‧‧resist film

420‧‧‧第三功能膜 420‧‧‧ Third functional film

HP‧‧‧水平圖案 HP‧‧‧ horizontal pattern

VP‧‧‧垂直圖案 VP‧‧‧ vertical pattern

藉由參看隨附圖式來詳細地描述本發明的例示性實施例,本發明的以上以及其他目標、特徵以及優點對於本領域中具有通常知識者而言將變得更顯而易見,在隨附圖式中:圖1為展示描述光罩上發生的遮蔽效應的圖解,光罩是使用習知極紫外線微影用空白罩幕而製造。 The above and other objects, features and advantages of the present invention will become more apparent from the <RTIgt In the formula: Figure 1 is a diagram showing the shadowing effect occurring on the reticle, which is manufactured using a conventional urethane lithography with a blank mask.

圖2A以及圖2B為展示描述遮蔽效應的發生的圖解,遮蔽效應是根據使用習知極紫外線微影用空白罩幕而製造的光罩中的圖案的方向。 2A and 2B are diagrams showing the occurrence of a shadowing effect, which is a direction of a pattern in a reticle manufactured using a blank mask using conventional extreme ultraviolet lithography.

圖3為展示根據本發明的第一例示性實施例的極紫外線微影用空白罩幕的橫截面圖。 3 is a cross-sectional view showing a blank mask for extreme ultraviolet lithography according to a first exemplary embodiment of the present invention.

圖4為展示根據本發明的第二例示性實施例的極紫外線微影用空白罩幕的橫截面圖。 4 is a cross-sectional view showing a blank mask for extreme ultraviolet lithography according to a second exemplary embodiment of the present invention.

圖5為展示根據本發明的第三例示性實施例的極紫外線微影用空白罩幕的橫截面圖。 FIG. 5 is a cross-sectional view showing a blank mask for extreme ultraviolet lithography according to a third exemplary embodiment of the present invention.

圖6為展示根據本發明的第四例示性實施例的極紫外線微影用空白罩幕的橫截面圖。 6 is a cross-sectional view showing a blank mask for extreme ultraviolet lithography according to a fourth exemplary embodiment of the present invention.

圖7為展示根據本發明的第五例示性實施例的極紫外線微影用空白罩幕的橫截面圖。 7 is a cross-sectional view showing a blank mask for extreme ultraviolet lithography according to a fifth exemplary embodiment of the present invention.

圖8為展示根據本發明的第六例示性實施例的極紫外線微影用空白罩幕的橫截面圖。 FIG. 8 is a cross-sectional view showing a blank mask for extreme ultraviolet lithography according to a sixth exemplary embodiment of the present invention.

下文將參看隨附圖式來詳細地描述本發明的例示性實施例。雖然結合本發明的例示性實施例而展示以及描述本發明,但對於本領域中具有知識者而言將顯而易見,可在不脫離本發明的範疇的情況下進行各種修改。 Exemplary embodiments of the present invention are described in detail below with reference to the accompanying drawings. While the invention has been shown and described with reference to the embodiments of the invention

除非另有特定陳述,否則用於本說明書中的所有技術以及科學術語皆具有與通常由本發明所屬相關技術中具有知識者理解的意義相同的意義。一般而言,用於本說明書以及下文所描述的實驗方法中的命名法為吾人廣泛地所知且通常用於相關技術中。 Unless otherwise stated, all technical and scientific terms used in the specification have the same meaning as those which are generally understood by those skilled in the art to which the invention pertains. In general, the nomenclature used in the present specification and the experimental methods described below is widely known and commonly used in the related art.

圖3為展示根據本發明的第一例示性實施例的極紫外線微影用空白罩幕的橫截面圖。 3 is a cross-sectional view showing a blank mask for extreme ultraviolet lithography according to a first exemplary embodiment of the present invention.

參看圖3,根據本發明的極紫外線微影用空白罩幕300包含透明基板302,以及皆順序地堆疊於透明基板302上的多層反射膜304、罩蓋膜306、吸收膜312以及抗蝕劑膜318。 Referring to FIG. 3, the blank mask 300 for extreme ultraviolet lithography according to the present invention comprises a transparent substrate 302, and a multilayer reflective film 304, a cover film 306, an absorbing film 312, and a resist which are sequentially stacked on the transparent substrate 302. Membrane 318.

吸收膜312具有堆疊有吸收層308與抗反射層310的多層結構。當吸收層308具有抗反射功能時,吸收膜312可被形成 為具有單層結構。當吸收膜312具有單層結構時,吸收膜312是由具有均勻成分比率的單膜形成,或可以成分比率在厚度方向上變化的連續膜的形式而形成。 The absorption film 312 has a multilayer structure in which an absorption layer 308 and an anti-reflection layer 310 are stacked. When the absorbing layer 308 has an anti-reflective function, the absorbing film 312 can be formed It has a single layer structure. When the absorbing film 312 has a single layer structure, the absorbing film 312 is formed of a single film having a uniform composition ratio, or may be formed in the form of a continuous film whose composition ratio varies in the thickness direction.

透明基板302為低熱膨脹材料(low thermal expansion material,LTEM)基板,具有0±1.0×10-7/℃的低熱膨脹係數,較佳地具有0±0.3×10-7/℃的低熱膨脹係數,以防止在曝光後就使圖案因熱而變形,使得透明基板302可適於作為使用極紫外線光的反射空白罩幕用的玻璃基板。 The transparent substrate 302 is a low thermal expansion material (LTEM) substrate having a low thermal expansion coefficient of 0±1.0×10 -7 /° C., preferably having a low thermal expansion coefficient of 0±0.3×10 -7 /° C. In order to prevent the pattern from being deformed by heat after exposure, the transparent substrate 302 can be suitably used as a glass substrate for a reflective blank mask using extreme ultraviolet light.

低熱膨脹材料基板需要具有高平坦度以在曝光時增強反射光的精確度。平坦度是由總指示讀數(total indicated reading,TIR)值表示,且總指示讀數值表示用以判定基板的表面的彎曲(變形度)的值,亦即,配置於超平面(hyperplane,其為藉由最小平方法基於基板的表面而判定的平面)上的基板的表面的最高位置與配置於超平面下方的基板的表面的最低位置之間的高度差的絕對值。因此,隨著平坦度增加,總指示讀數值減小。因此,低熱膨脹材料基板較佳地具有低總指示讀數值。 The substrate of low thermal expansion material needs to have high flatness to enhance the accuracy of reflected light upon exposure. The flatness is represented by a total indicated reading (TIR) value, and the total indicating reading value represents a value for determining the curvature (deformation) of the surface of the substrate, that is, is disposed in a hyperplane (hyperplane) The absolute value of the height difference between the highest position of the surface of the substrate on the plane determined based on the surface of the substrate by the least square method and the lowest position of the surface of the substrate disposed under the hyperplane. Therefore, as the flatness increases, the total indication reading decreases. Therefore, the low thermal expansion material substrate preferably has a low total indicator reading value.

低熱膨脹材料基板的平坦度影響形成於低熱膨脹材料基板上的多層反射膜以及罩蓋膜的平坦度,以及吸收膜的平坦度。詳言之,當反射膜以及罩蓋膜上的平坦度低(反射膜以及罩蓋膜具有高總指示讀數值)時,在極紫外線曝光光線以大約4°至6°的角度傾斜地入射以使得自光罩傳送極紫外線曝光光線時造成圖案的位置失真(position distortion)。因此,基板的平坦度(總指示讀數值)較佳理想地為「0」,但歸因於實際處理(例如,諸如拋光、部分研磨等等的機械處理)而難以實現為「0」的總指示讀數 值。因此,低熱膨脹材料基板具有60奈米或小於60奈米的平坦度(總指示讀數值),較佳地為40奈米或小於40奈米的平坦度。 The flatness of the substrate of the low thermal expansion material affects the flatness of the multilayer reflective film and the cover film formed on the substrate of the low thermal expansion material, and the flatness of the absorption film. In particular, when the flatness on the reflective film and the cover film is low (the reflective film and the cover film have high total indication reading values), the extreme ultraviolet exposure light is obliquely incident at an angle of about 4 to 6 to make The position distortion of the pattern is caused when the illuminator transmits extreme ultraviolet light. Therefore, the flatness of the substrate (total indication reading value) is preferably desirably "0", but it is difficult to achieve "0" due to actual processing (for example, mechanical processing such as polishing, partial grinding, etc.) Indicating reading value. Thus, the low thermal expansion material substrate has a flatness of 60 nanometers or less (total indication reading value), preferably 40 nanometers or less than 40 nanometers.

藉由交替地堆疊40個至60個鉬(Mo)層與矽(Si)層而形成多層反射膜304。多層反射膜304需要在13.5奈米的波長下具有高反射率,以便改良影像對比度。多層反射膜的此反射強度是根據曝光光線的入射角以及每一層的厚度而變化。舉例而言,當曝光光線的入射角為5°時,鉬(Mo)層以及矽(Si)層可被形成為分別具有2.8奈米以及4.2奈米的厚度。然而,隨著入射角在應用於極紫外線浸沒式微影時會加寬至8°至14°,反射強度會變化。因此,反射膜304必須具有針對曝光光線的最終入射角而最佳化的反射強度。在此狀況下,鉬(Mo)層具有2奈米至4奈米的厚度,且矽(Si)層具有3奈米至5奈米的厚度。 The multilayer reflective film 304 is formed by alternately stacking 40 to 60 molybdenum (Mo) layers and a bismuth (Si) layer. The multilayer reflective film 304 needs to have a high reflectance at a wavelength of 13.5 nm in order to improve image contrast. This reflection intensity of the multilayer reflective film varies depending on the incident angle of the exposure light and the thickness of each layer. For example, when the incident angle of the exposure light is 5°, the molybdenum (Mo) layer and the bismuth (Si) layer may be formed to have thicknesses of 2.8 nm and 4.2 nm, respectively. However, as the angle of incidence is widened to 8° to 14° when applied to extreme ultraviolet immersion lithography, the intensity of the reflection changes. Therefore, the reflective film 304 must have a reflection intensity that is optimized for the final incident angle of the exposure light. In this case, the molybdenum (Mo) layer has a thickness of 2 nm to 4 nm, and the bismuth (Si) layer has a thickness of 3 nm to 5 nm.

因為當鉬(Mo)與空氣接觸時多層反射膜304容易氧化,所以反射率可能劣化。因此,矽(Si)層較佳地形成於最上部層上以作為經配置以防止氧化的保護膜。反射膜304在13.5奈米的極紫外線曝光波長下具有65%或大於65%的反射率,且在193奈米或257奈米的檢測波長下具有40%至65%的反射率。反射膜304具有60奈米或小於60奈米的表面總指示讀數的絕對值,較佳地具有40奈米或小於40奈米的表面總指示讀數的絕對值。反射膜304具有0.2奈米均方根(nmRMS)或小於0.2奈米均方根的表面粗糙度(surface roughness),較佳地具有0.1奈米均方根或小於0.1奈米均方根的表面粗糙度。 Since the multilayer reflective film 304 is easily oxidized when molybdenum (Mo) is in contact with air, the reflectance may be deteriorated. Therefore, a bismuth (Si) layer is preferably formed on the uppermost layer as a protective film configured to prevent oxidation. The reflective film 304 has a reflectance of 65% or more at a very ultraviolet exposure wavelength of 13.5 nm and a reflectance of 40% to 65% at a detection wavelength of 193 nm or 257 nm. The reflective film 304 has an absolute value of the total surface indication reading of 60 nanometers or less, preferably having an absolute value of the total surface indication reading of 40 nanometers or less. The reflective film 304 has a surface roughness of 0.2 nm root mean square (nmRMS) or less than 0.2 nm root mean square, preferably having a surface of 0.1 nm root mean square or less than 0.1 nm root mean square Roughness.

罩蓋膜306包含選自由釕(Ru)、鈦(Ti)、鉬(Mo)、鉭(Ta)、釩(V)、鈷(Co)、鎳(Ni)、鋯(Zr)、鈮(Nb)、鈀 (Pd)、鋅(Zn)、鉻(Cr)、鋁(Al)、錳(Mn)、鎘(Cd)、鎂(Mg)、鋰(Li)、硒(Se)、銅(Cu)、鉿(Hf)、鎢(W),以及矽(Si)組成的群組的至少一材料,或除了包含材料以外亦更包含選自由氧(O)、氮(N)、碳(C)以及硼(B)組成的群組的至少一材料。 The cover film 306 comprises a layer selected from the group consisting of ruthenium (Ru), titanium (Ti), molybdenum (Mo), tantalum (Ta), vanadium (V), cobalt (Co), nickel (Ni), zirconium (Zr), and niobium (Nb). ),palladium (Pd), zinc (Zn), chromium (Cr), aluminum (Al), manganese (Mn), cadmium (Cd), magnesium (Mg), lithium (Li), selenium (Se), copper (Cu), antimony At least one material of the group consisting of (Hf), tungsten (W), and bismuth (Si), or in addition to the inclusion material, further comprising an oxygen (O), nitrogen (N), carbon (C), and boron ( B) at least one material of the group consisting of.

在此狀況下,罩蓋膜306是由釕(Ru)以及鈮(Nb)形成,或由釕(Ru)化合物以及鈮(Nb)化合物形成。再者,罩蓋膜306是可由包含釕(Ru)以及鈮(Nb)的化合物形成。輕元素的含量(氧(O)、氮(N)、碳(C)以及硼(B)的含量總和)相對於金屬是在10:0至5:5的範圍內。 In this case, the cap film 306 is formed of ruthenium (Ru) and niobium (Nb), or a ruthenium (Ru) compound and a niobium (Nb) compound. Further, the cover film 306 may be formed of a compound containing ruthenium (Ru) and niobium (Nb). The content of light elements (the sum of the contents of oxygen (O), nitrogen (N), carbon (C), and boron (B)) is in the range of 10:0 to 5:5 with respect to the metal.

罩蓋膜306具有1奈米至10奈米的厚度,較佳地具有1奈米至5奈米的厚度。當罩蓋膜306的厚度小於或等於1奈米時,在考慮到蝕刻條件(例如,過度蝕刻等等)的情況下,難以在形成於罩蓋膜306上的吸收膜上形成圖案後就保護形成於罩蓋膜306下方的反射膜304。再者,當罩蓋膜306的厚度大於或等於10奈米時,罩蓋膜306在13.5奈米的曝光波長下具有小於60%的反射率,且因此,相對於吸收膜312的反射率的影像對比度可降級(degraded),且相對於吸收膜的最終檢測對比度亦可歸因於在檢測波長(例如,193奈米或257奈米)下的低反射率而降級,此情形使得檢測難以執行。 The cover film 306 has a thickness of from 1 nm to 10 nm, preferably from 1 nm to 5 nm. When the thickness of the cap film 306 is less than or equal to 1 nm, it is difficult to protect after forming a pattern on the absorbing film formed on the cap film 306 in consideration of etching conditions (for example, over-etching or the like). The reflective film 304 is formed under the cover film 306. Furthermore, when the thickness of the cover film 306 is greater than or equal to 10 nm, the cover film 306 has a reflectance of less than 60% at an exposure wavelength of 13.5 nm, and thus, with respect to the reflectance of the absorption film 312 The image contrast can be degraded, and the final detected contrast relative to the absorbing film can also be degraded due to low reflectance at the detection wavelength (eg, 193 nm or 257 nm), which makes detection difficult to perform. .

罩蓋膜306在13.5奈米的極紫外線曝光波長下具有60%或大於60%的反射率,且具有60奈米或小於60的表面總指示讀數的絕對值,較佳地具有40奈米或小於40奈米的表面總指示讀數的絕對值。罩蓋膜306具有0.2奈米均方根或小於0.2奈米均方根的表面粗糙度,較佳地具有0.1奈米均方根或小於0.1奈米均方 根的表面粗糙度。 The cover film 306 has a reflectance of 60% or greater at a very ultraviolet exposure wavelength of 13.5 nm and has an absolute value of the total surface indication reading of 60 nm or less, preferably 40 nm or A surface total of less than 40 nm indicates the absolute value of the reading. The cover film 306 has a surface roughness of 0.2 nm root mean square or less than 0.2 nm root mean square, preferably having a root mean square of 0.1 nm or less than 0.1 nm square. The surface roughness of the root.

吸收膜312包含選自由鎳(Ni)、碲(Te)、錫(Sn)、鈀(Pd)、硒(Se)、鎢(W)、鋨(Os)、銥(Ir)、銻(Sb)、矽(Si)以及鉭(Ta)組成的群組的至少一材料,或除了包含至少一材料以外亦更包含選自由氧(O)、氮(N)、碳(C)、硼(B)以及氫(H)組成的群組的至少一材料。 The absorption film 312 is selected from the group consisting of nickel (Ni), tellurium (Te), tin (Sn), palladium (Pd), selenium (Se), tungsten (W), antimony (Os), antimony (Ir), antimony (Sb). At least one material of the group consisting of cerium (Si) and cerium (Ta), or in addition to at least one material, further comprising oxygen (O), nitrogen (N), carbon (C), boron (B) And at least one material of the group consisting of hydrogen (H).

除了縮減光源的入射角以外,亦需要使吸收膜312的厚度薄化,以便縮減在通過極紫外線微影用光罩進行曝光時造成的遮蔽效應。在此等者當中,相對於曝光光線具有高消光係數的構成材料展示極佳蝕刻性質以及對形成於吸收膜312下方的罩蓋膜306的蝕刻選擇性,且對用於實現吸收膜312厚度的薄化所需要的沖洗用的化學品具有極佳抵抗。當前所使用的鉭(Ta)在13.5奈米的曝光波長下具有0.0408的消光係數,且包含鉭(Ta)作為主組分的吸收膜需要具有70奈米或大於70奈米的厚度以滿足吸收膜的特定反射率。 In addition to reducing the angle of incidence of the light source, it is also desirable to thin the thickness of the absorbing film 312 in order to reduce the shadowing effect caused by exposure with the reticle by the extreme ultraviolet lithography. Among these, the constituent material having a high extinction coefficient with respect to the exposure light exhibits excellent etching properties and etching selectivity to the cap film 306 formed under the absorption film 312, and is used for realizing the thickness of the absorption film 312. The chemicals used for the rinsing required for thinning are extremely resistant. The tantalum (Ta) currently used has an extinction coefficient of 0.0408 at an exposure wavelength of 13.5 nm, and an absorption film containing tantalum (Ta) as a main component needs to have a thickness of 70 nm or more to satisfy absorption. The specific reflectivity of the film.

根據本發明,吸收膜312是由鎳(Ni)或鎳(Ni)化合物形成。此處,因為鎳(Ni)在13.5奈米的曝光波長下具有0.0727的消光係數,所以吸收膜312可薄化至70奈米或小於70奈米的厚度以滿足相同反射率程度。再者,對於包含鎳(Ni)的吸收膜312的蝕刻性質,在鎳(Ni)化合物當中,氮化鎳(nickel nitride,NiN)可具有極佳乾式蝕刻性質,且實現非晶薄膜以維持圖案的極佳性質。 According to the present invention, the absorption film 312 is formed of a nickel (Ni) or nickel (Ni) compound. Here, since nickel (Ni) has an extinction coefficient of 0.0727 at an exposure wavelength of 13.5 nm, the absorption film 312 can be thinned to a thickness of 70 nm or less to satisfy the same degree of reflectance. Further, for the etching property of the absorption film 312 containing nickel (Ni), among nickel (Ni) compounds, nickel nitride (NiN) may have excellent dry etching properties, and an amorphous film is realized to maintain the pattern. Excellent nature.

當吸收膜312是由鎳(Ni)或鎳鉭(NiTa)化合物形成時,吸收膜312可更包含選自由氧(O)、氮(N)、碳(C)、硼(B) 以及氫(H)組成的群組的輕元素以改良乾式蝕刻性質。在此狀況下,吸收膜312具有使得輕元素(氧(O)、氮(N)、碳(C)、硼(B)以及氫(H)中的至少一者)對鎳(Ni)或鎳鉭(NiTa)的比率可在95原子%:5原子%至20原子%:80原子%的範圍內的成分比率。再者,當吸收膜312被形成為包含鎳鉭(NiTa)時,鎳鉭(NiTa)標靶具有Ni:Ta=5原子%至95原子%:95原子%至5原子%的成分比率。 When the absorbing film 312 is formed of a nickel (Ni) or nickel lanthanum (NiTa) compound, the absorbing film 312 may further comprise an object selected from the group consisting of oxygen (O), nitrogen (N), carbon (C), and boron (B). And light elements of the group consisting of hydrogen (H) to improve dry etching properties. In this case, the absorption film 312 has a light element (at least one of oxygen (O), nitrogen (N), carbon (C), boron (B), and hydrogen (H)) to nickel (Ni) or nickel. The ratio of cerium (NiTa) may be a composition ratio in the range of 95 atom%: 5 atom% to 20 atom%: 80 atom%. Further, when the absorption film 312 is formed to contain nickel lanthanum (NiTa), the nickel lanthanum (NiTa) target has a composition ratio of Ni:Ta = 5 at% to 95 at%: 95 at% to 5 at%.

吸收膜312需要在檢測波長(193奈米或257奈米)下具有25%或小於25%的低反射率,以展示吸收膜312與多層反射膜304之間的反射率(對比度)差異。舉例而言,當吸收膜312具有吸收層308以及抗反射層310的多層結構時,抗反射層310除了包含鎳(Ni)或鎳鉭(NiTa)以外亦包含氧(O)以及氮(N),且有可能降低在檢測波長下的反射率。再者,吸收層308相比於抗反射層310具有低氧(O)含量以增強光吸收率且實現薄化。因此,吸收層308包含氮化鎳(NiN)以及氮化鎳鉭(nickel tantalum nitride,NiTaN)中的一者,且抗反射層310包含氮氧化鎳(nickel oxide nitride,NiON)以及氮氧化鎳鉭(nickel tantalum oxide nitride,NiTaON)中的一者。由於運用氯(Cl)氣體來蝕刻構成本發明的吸收膜312的所有氮化鎳(NiN)、氮化鎳鉭(NiTaN)、氮氧化鎳(NiON)以及氮氧化鎳鉭(NiTaON),故製程簡單,此是因為可經由單一蝕刻製程來蝕刻吸收膜312,且可降低缺陷以及雜質的形成。 The absorption film 312 needs to have a low reflectance of 25% or less at a detection wavelength (193 nm or 257 nm) to exhibit a difference in reflectance (contrast) between the absorption film 312 and the multilayer reflection film 304. For example, when the absorption film 312 has a multilayer structure of the absorption layer 308 and the anti-reflection layer 310, the anti-reflection layer 310 contains oxygen (O) and nitrogen (N) in addition to nickel (Ni) or nickel niobium (NiTa). And it is possible to reduce the reflectance at the detection wavelength. Further, the absorption layer 308 has a low oxygen (O) content compared to the anti-reflection layer 310 to enhance the light absorption rate and achieve thinning. Therefore, the absorption layer 308 includes one of nickel nitride (NiN) and nickel tantalum nitride (NiTaN), and the anti-reflection layer 310 includes nickel oxide nitride (NiON) and nickel oxynitride. One of (nickel tantalum oxide nitride, NiTaON). Since all of the nickel nitride (NiN), nickel nitride (NiTaN), nickel oxynitride (NiON), and nickel oxynitride (NiTaON) constituting the absorption film 312 of the present invention are etched using chlorine (Cl) gas, the process is performed. This is simple because the absorbing film 312 can be etched through a single etching process, and defects and formation of impurities can be reduced.

另外,當吸收膜312具有單層結構時,包含鎳(Ni)或鎳鉭(NiTa)作為主組分的吸收膜312是以連續膜的形式而形成, 使得氧(O)以及氮(N)的含量可在連續膜的向上方向上增加,且氧(O)的含量可在連續膜的向下方向上減小。結果,有可能縮減在檢測波長下的反射率,且增強光吸收率。 In addition, when the absorbing film 312 has a single layer structure, the absorbing film 312 containing nickel (Ni) or nickel lanthanum (NiTa) as a main component is formed in the form of a continuous film. The content of oxygen (O) and nitrogen (N) may be increased in the upward direction of the continuous film, and the content of oxygen (O) may be decreased in the downward direction of the continuous film. As a result, it is possible to reduce the reflectance at the detection wavelength and enhance the light absorption rate.

吸收膜312具有30奈米至70奈米的厚度。當吸收膜312的厚度小於或等於30奈米時,吸收膜312相對於曝光光線具有10%或大於10%的高反射率。另一方面,當吸收膜312的厚度大於或等於70奈米時,至臨界尺寸的所要偏差可歸因於水平圖案與垂直圖案之間的高臨界尺寸偏差而增加,此情形引起臨界尺寸的均一性以及罩幕增強型誤差因數(mask-enhanced error factor,MEEF)增加。 The absorbing film 312 has a thickness of 30 nm to 70 nm. When the thickness of the absorption film 312 is less than or equal to 30 nm, the absorption film 312 has a high reflectance of 10% or more with respect to the exposure light. On the other hand, when the thickness of the absorbing film 312 is greater than or equal to 70 nm, the desired deviation from the critical dimension may be increased due to the high critical dimension deviation between the horizontal pattern and the vertical pattern, which causes uniformity of the critical dimension. Sexual and mask-enhanced error factor (MEEF) increases.

吸收膜312相對於波長為13.5奈米的極紫外線曝光光線具有小於10%的反射率,較佳地具有5%或小於5%的反射率,且更佳地具有1%或小於1%的反射率。再者,吸收膜312在193奈米的檢測波長下具有小於30%的反射率,較佳地具有25%或小於25%的反射率。吸收膜312具有200百萬帕斯卡或小於200百萬帕斯卡的薄膜應力(thin-film stress),較佳地具有150百萬帕斯卡或小於150百萬帕斯卡的薄膜應力。 The absorbing film 312 has a reflectance of less than 10% with respect to extreme ultraviolet exposure light having a wavelength of 13.5 nm, preferably having a reflectance of 5% or less, and more preferably having a reflectance of 1% or less. rate. Further, the absorption film 312 has a reflectance of less than 30% at a detection wavelength of 193 nm, preferably a reflectance of 25% or less. The absorbing film 312 has a thin-film stress of 200 megapascals or less, preferably 150 psi or less than 150 MPa.

化學增幅型抗蝕劑(chemically amplified resist,CAR)是用作抗蝕劑膜318,且抗蝕劑膜318具有150奈米或小於150奈米的厚度,較佳地具有100奈米或小於100奈米的厚度,且更佳地具有60奈米或小於60奈米的厚度。 A chemically amplified resist (CAR) is used as the resist film 318, and the resist film 318 has a thickness of 150 nm or less, preferably 100 nm or less. The thickness of the nano, and more preferably has a thickness of 60 nm or less.

另外,儘管未圖示,但經塗佈以改良對抗蝕劑膜的黏結的含矽高分子化合物可形成於安置於抗蝕劑膜318下方的膜上,例如,形成於吸收膜312的抗反射層310上。含矽高分子化合物 可包含選自由如下各者組成的群組的至少一者:六甲基二矽烷、三甲基矽烷基二乙胺、乙酸O-三甲基矽烷酯、丙酸O-三甲基矽烷酯、丁酸O-三甲基矽烷酯、三氟乙酸三甲基矽酯、三甲基甲氧基矽烷、N-甲基-N-三甲基矽烷基三氟乙醯胺、O-三甲基矽烷基乙醯丙酮、異丙烯氧基三甲基矽烷、三甲基矽烷基三氟乙醯胺、乙酸甲基三甲基矽烷基二甲基酮酯,以及三甲基乙氧基矽烷。 Further, although not shown, a ruthenium-containing polymer compound coated to improve adhesion to the resist film may be formed on the film disposed under the resist film 318, for example, anti-reflection formed on the absorption film 312. On layer 310. Antimony polymer compound At least one selected from the group consisting of hexamethyldioxane, trimethyldecyldiethylamine, O-trimethyldecyl acetate, O-trimethyldecyl propionate, O-trimethyldecanoate butyrate, trimethyldecyl trifluoroacetate, trimethylmethoxydecane, N-methyl-N-trimethyldecyltrifluoroacetamide, O-trimethyl Alkyl acetonitrile, isopropenyloxytrimethylnonane, trimethyldecyltrifluoroacetamide, methyltrimethyldecyl dimethyl ketone acetate, and trimethylethoxydecane.

圖4為展示根據本發明的第二例示性實施例的極紫外線微影用空白罩幕的橫截面圖。 4 is a cross-sectional view showing a blank mask for extreme ultraviolet lithography according to a second exemplary embodiment of the present invention.

參看圖4,根據本發明的極紫外線微影用空白罩幕包含透明基板302,以及皆順序地堆疊於透明基板302上的多層反射膜304、罩蓋膜306、吸收膜312、第一功能膜314以及抗蝕劑膜318。此處,多層反射膜304、罩蓋膜306以及包含鎳(Ni)或鎳鉭(NiTa)的吸收膜312具有與第一例示性實施中描述的構形相同的構形。 Referring to FIG. 4, the blank mask for extreme ultraviolet lithography according to the present invention comprises a transparent substrate 302, and a multilayer reflective film 304, a cover film 306, an absorbing film 312, and a first functional film which are sequentially stacked on the transparent substrate 302. 314 and a resist film 318. Here, the multilayer reflective film 304, the cap film 306, and the absorbing film 312 containing nickel (Ni) or nickel lanthanum (NiTa) have the same configuration as that described in the first exemplary embodiment.

第一功能膜314是由蝕刻性質與吸收膜312的蝕刻性質不同的材料形成,以作為經配置以圖案化安置於第一功能膜314下方的吸收膜412的蝕刻罩幕。功能膜314相對於吸收膜312具有1:10或大於1:10的蝕刻選擇性,較佳地具有1:20或大於1:20的蝕刻選擇性。亦即,可運用氯(Cl)基氣體來蝕刻第一功能膜314,此是因為吸收膜312包含氮化鎳(NiN)、氮化鎳鉭(NiTaN)、氮氧化鎳(NiON),或氮氧化鎳鉭(NiTaON)。因此,第一功能膜314是可由能被氟(F)基氣體蝕刻的材料形成。出於此目的,第一功能膜314包含選自由鉻(Cr)、鉭(Ta)、矽(Si)、釕(Ru)、鈦(Ti)、鉬(Mo)、鎢(W)以及矽化鉬(MoSi)組成的群組的至少一材料,或除了包含至少一材料以外亦更包含選自由氧(O)、 氮(N)、碳(C)、硼(B)以及氫(H)組成的群組的至少一材料。在此狀況下,功能膜314具有使得輕元素對金屬的比率可在100原子%:0原子%至20原子%:80原子%的範圍內的成分比率。 The first functional film 314 is formed of a material having an etching property different from that of the absorption film 312 as an etching mask configured to pattern the absorption film 412 disposed under the first functional film 314. The functional film 314 has an etch selectivity of 1:10 or greater than 1:10 with respect to the absorbing film 312, preferably having an etch selectivity of 1:20 or greater than 1:20. That is, the first functional film 314 can be etched using a chlorine (Cl)-based gas because the absorption film 312 contains nickel nitride (NiN), nickel nitride (NiTaN), nickel oxynitride (NiON), or nitrogen. Nickel oxide niobium (NiTaON). Therefore, the first functional film 314 can be formed of a material that can be etched by a fluorine (F)-based gas. For this purpose, the first functional film 314 comprises a layer selected from the group consisting of chromium (Cr), tantalum (Ta), bismuth (Si), ruthenium (Ru), titanium (Ti), molybdenum (Mo), tungsten (W), and molybdenum telluride. At least one material of the group consisting of (MoSi), or in addition to comprising at least one material, further comprising an oxygen (O), At least one material of the group consisting of nitrogen (N), carbon (C), boron (B), and hydrogen (H). In this case, the functional film 314 has a composition ratio such that the ratio of the light element to the metal may be in the range of 100 atom%: 0 atom% to 20 atom%: 80 atom%.

第一功能膜314被形成為具有單層結構或兩個或大於兩個層的多層結構。當第一功能膜314是以單層結構而形成時,第一功能膜314可以成分比率連續變化的連續膜的形式而形成,或以在濺鍍後就具有均勻成分的單膜的形式而形成。再者,第一功能膜314具有非晶結構。 The first functional film 314 is formed into a multilayer structure having a single layer structure or two or more layers. When the first functional film 314 is formed in a single layer structure, the first functional film 314 may be formed in the form of a continuous film in which the composition ratio is continuously changed, or in the form of a single film having a uniform composition after sputtering. . Furthermore, the first functional film 314 has an amorphous structure.

第一功能膜314需要具有小厚度以及快速蝕刻速率以實現抗蝕劑膜318的薄化。出於此目的,功能膜314具有1奈米至10奈米的厚度,較佳地具有3奈米至5奈米的厚度。 The first functional film 314 needs to have a small thickness and a fast etching rate to achieve thinning of the resist film 318. For this purpose, the functional film 314 has a thickness of from 1 nm to 10 nm, preferably from 3 nm to 5 nm.

在光罩製造製程期間移除第一功能膜314,且視情況在有必要增強作為抗反射層的角色時保留第一功能膜314。 The first functional film 314 is removed during the reticle manufacturing process, and the first functional film 314 is retained as necessary to enhance the role as an anti-reflective layer.

圖5為展示根據本發明的第三例示性實施例的極紫外線微影用空白罩幕的橫截面圖。 FIG. 5 is a cross-sectional view showing a blank mask for extreme ultraviolet lithography according to a third exemplary embodiment of the present invention.

參看圖5,根據本發明的極紫外線微影用空白罩幕400包含透明基板402,以及皆順序地堆疊於透明基板402上的多層反射膜404、罩蓋膜406、包含吸收層408以及第二功能膜416的吸收膜412,以及抗蝕劑膜418。此處,多層反射膜404、罩蓋膜406以及吸收層408具有與上文在第一例示性實施例中描述的構形相同的構形。 Referring to FIG. 5, a blank mask 400 for extreme ultraviolet lithography according to the present invention includes a transparent substrate 402, and a multilayer reflective film 404, a cover film 406, an absorbing layer 408, and a second layer, which are sequentially stacked on the transparent substrate 402. An absorbing film 412 of the functional film 416, and a resist film 418. Here, the multilayer reflective film 404, the cap film 406, and the absorbing layer 408 have the same configuration as that described above in the first exemplary embodiment.

第二功能膜416是用作吸收層408的蝕刻罩幕,且亦在對吸收層408進行圖案化之後保留於吸收層408的圖案上,藉此作為抗反射層。因此,吸收層408通常展示經改良的光吸收率, 且出於薄化目的而具有低氧(O)含量。出於此目的,吸收層408是由氮化鎳(NiN)以及氮化鎳鉭(NiTaN)中的一者形成。 The second functional film 416 is an etch mask that serves as the absorbing layer 408 and also remains on the pattern of the absorbing layer 408 after patterning the absorbing layer 408, thereby acting as an anti-reflective layer. Thus, the absorber layer 408 typically exhibits improved light absorption, And has a low oxygen (O) content for thinning purposes. For this purpose, the absorber layer 408 is formed of one of nickel nitride (NiN) and nickel nitride (NiTaN).

吸收層408具有20奈米至50奈米的厚度,以及60奈米或小於60奈米的表面總指示讀數的絕對值,較佳地為40奈米或小於40奈米的表面總指示讀數的絕對值。吸收層408具有0.2奈米均方根或小於0.2奈米均方根的表面粗糙度,較佳地具有0.1奈米均方根或小於0.1奈米均方根的表面粗糙度。 The absorbent layer 408 has a thickness of from 20 nanometers to 50 nanometers, and an absolute value of the total surface indication reading of 60 nanometers or less, preferably 40 nanometers or less. Absolute value. The absorbent layer 408 has a surface roughness of 0.2 nm root mean square or less than 0.2 nm root mean square, preferably having a surface roughness of 0.1 nm root mean square or less than 0.1 nm root mean square.

第二功能膜416相對於吸收層408具有1:10或大於1:10的蝕刻選擇性以作為蝕刻罩幕。亦即,可用氯(Cl)基氣體來蝕刻第二功能膜416,此是因為吸收層408包含氮化鎳(NiN)或氮化鎳鉭(NiTaN)。因此,第二功能膜416是可由能夠用氟(F)基氣體蝕刻的材料形成。出於此目的,第二功能膜416包含選自由鉻(Cr)、鉭(Ta)、矽(Si)、釕(Ru)、鈦(Ti)、鉬(Mo)、鎢(W)以及矽化鉬(MoSi)組成的群組的至少一材料,或除了包含至少一材料以外亦更包含選自由氧(O)、氮(N)、碳(C)、硼(B)以及氫(H)組成的群組的至少一材料。在此狀況下,第二功能膜416具有使得輕元素對金屬的比率可在100原子%:0原子%至20原子%:80原子%的範圍內的成分比率。 The second functional film 416 has an etch selectivity of 1:10 or greater than the absorption layer 408 as an etch mask. That is, the second functional film 416 may be etched with a chlorine (Cl)-based gas because the absorption layer 408 contains nickel nitride (NiN) or nickel nitride (NiTaN). Therefore, the second functional film 416 can be formed of a material that can be etched with a fluorine (F)-based gas. For this purpose, the second functional film 416 comprises a layer selected from the group consisting of chromium (Cr), tantalum (Ta), bismuth (Si), ruthenium (Ru), titanium (Ti), molybdenum (Mo), tungsten (W), and molybdenum telluride. At least one material of the group consisting of (MoSi), or in addition to comprising at least one material, further comprising a component selected from the group consisting of oxygen (O), nitrogen (N), carbon (C), boron (B), and hydrogen (H). At least one material of the group. In this case, the second functional film 416 has a composition ratio such that the ratio of the light element to the metal may be in the range of 100 atom%: 0 atom% to 20 atom%: 80 atom%.

第二功能膜416理想地具有快速蝕刻速率以及較小厚度以用於抗蝕劑膜418的薄化,但需要具有預定厚度以用於抗反射功能。出於此目的,第二功能膜416具有5奈米至20奈米的厚度,較佳地具有10奈米至15奈米的厚度。 The second functional film 416 desirably has a fast etch rate and a small thickness for thinning of the resist film 418, but needs to have a predetermined thickness for the anti-reflection function. For this purpose, the second functional film 416 has a thickness of from 5 nm to 20 nm, preferably from 10 nm to 15 nm.

堆疊有吸收層408與第二功能膜416的吸收膜412相對於波長為13.5奈米的極紫外線曝光光線具有小於10%的反射率, 較佳地具有5%或小於5%的反射率,且更佳地具有1%或小於1%的反射率。再者,吸收膜412在193奈米的檢測波長下具有小於30%的反射率,較佳地具有25%或小於25%的反射率。 The absorption film 412 stacked with the absorption layer 408 and the second functional film 416 has a reflectance of less than 10% with respect to the extreme ultraviolet exposure light having a wavelength of 13.5 nm. It preferably has a reflectance of 5% or less, and more preferably has a reflectance of 1% or less. Further, the absorbing film 412 has a reflectance of less than 30% at a detection wavelength of 193 nm, preferably a reflectance of 25% or less.

化學增幅型抗蝕劑是用作抗蝕劑膜418,且抗蝕劑膜418具有150奈米或小於150奈米的厚度,較佳地具有100奈米或小於100奈米的厚度,且更佳地具有80奈米或小於80奈米的厚度。 The chemically amplified resist is used as the resist film 418, and the resist film 418 has a thickness of 150 nm or less, preferably 100 nm or less, and more Preferably, the ground has a thickness of 80 nm or less.

圖6為展示根據本發明的第四例示性實施例的極紫外線微影用空白罩幕的橫截面圖。 6 is a cross-sectional view showing a blank mask for extreme ultraviolet lithography according to a fourth exemplary embodiment of the present invention.

參看圖6,根據本發明的極紫外線微影用空白罩幕400包含透明基板402,以及皆順序地堆疊於透明基板402上的多層反射膜404、罩蓋膜406、包含吸收層408以及第二功能膜416的吸收膜412、第三功能膜420,以及抗蝕劑膜418。此處,類似於上述第三例示性實施例,多層反射膜404、罩蓋膜406以及吸收層408具有與上文在第一例示性實施例中描述的構形相同的構形,且第二功能膜416經配置以充當蝕刻罩幕以及抗反射層。 Referring to FIG. 6, a blank mask 400 for extreme ultraviolet lithography according to the present invention includes a transparent substrate 402, and a multilayer reflective film 404, a cover film 406, an absorbing layer 408, and a second, which are sequentially stacked on the transparent substrate 402. The absorption film 412 of the functional film 416, the third functional film 420, and the resist film 418. Here, similarly to the above-described third exemplary embodiment, the multilayer reflective film 404, the cover film 406, and the absorption layer 408 have the same configuration as that described above in the first exemplary embodiment, and the second Functional film 416 is configured to function as an etch mask and an anti-reflective layer.

第三功能膜420作為第二功能膜416的蝕刻罩幕。出於此目的,第三功能膜420是由相對於第二功能膜具有1:10或大於1:10的蝕刻選擇性的材料形成。亦即,第三功能膜420較佳地包含相對於為第二功能膜416的蝕刻氣體的氟(F)基氣體具有極佳抗蝕刻性且能夠運用氯(Cl)基氣體蝕刻的材料。因此,舉例而言,第三功能膜420是由包含諸如氧(O)、氮(N)、碳(C)、硼(B)以及氫(H)的輕元素的鉻(Cr)化合物形成。 The third functional film 420 serves as an etching mask for the second functional film 416. For this purpose, the third functional film 420 is formed of a material having an etching selectivity of 1:10 or greater than 1:10 with respect to the second functional film. That is, the third functional film 420 preferably includes a material which has excellent etching resistance with respect to the fluorine (F)-based gas which is the etching gas of the second functional film 416 and which can be etched using a chlorine (Cl)-based gas. Thus, for example, the third functional film 420 is formed of a chromium (Cr) compound containing a light element such as oxygen (O), nitrogen (N), carbon (C), boron (B), and hydrogen (H).

第三功能膜420是以單層結構或兩個或大於兩個層的多層結構而形成。當第三功能膜420是以單層結構而形成時,第三 功能膜420可以成分比率連續變化的連續膜的形式而形成,或以在濺鍍後就具有均勻成分的單膜的形式而形成。再者,第三功能膜420具有非晶結構。 The third functional film 420 is formed in a single layer structure or a multilayer structure of two or more layers. When the third functional film 420 is formed in a single layer structure, the third The functional film 420 may be formed in the form of a continuous film in which the composition ratio is continuously changed, or in the form of a single film having a uniform composition after sputtering. Furthermore, the third functional film 420 has an amorphous structure.

第三功能膜420需要具有快速蝕刻速率以用於抗蝕劑膜418的薄化。出於此目的,第三功能膜420具有1奈米至10奈米的厚度,較佳地具有3奈米至5奈米的厚度。 The third functional film 420 is required to have a fast etching rate for thinning of the resist film 418. For this purpose, the third functional film 420 has a thickness of from 1 nm to 10 nm, preferably from 3 nm to 5 nm.

在光罩製造製程期間移除第三功能膜420,且視情況在有必要增強第二功能膜416的抗反射角色時保留第三功能膜420。 The third functional film 420 is removed during the reticle manufacturing process, and the third functional film 420 is retained as necessary to enhance the anti-reflective character of the second functional film 416.

化學增幅型抗蝕劑(CAR)是用作抗蝕劑膜418,且抗蝕劑膜418具有150奈米或小於150奈米的厚度,較佳地具有100奈米或小於100奈米的厚度,且更佳地具有60奈米或小於60奈米的厚度。 A chemically amplified resist (CAR) is used as the resist film 418, and the resist film 418 has a thickness of 150 nm or less, preferably 100 nm or less. And more preferably having a thickness of 60 nm or less.

圖7為展示根據本發明的第五例示性實施例的極紫外線微影用空白罩幕的橫截面圖。 7 is a cross-sectional view showing a blank mask for extreme ultraviolet lithography according to a fifth exemplary embodiment of the present invention.

參看圖7,根據本發明的極紫外線微影用空白罩幕300可更包含配置於罩蓋膜306與吸收膜312之間的緩衝膜307。緩衝膜307用來防止多層反射膜304在形成吸收膜312的圖案的乾式蝕刻製程期間受到損害。再者,緩衝膜307用來在極紫外線微影用光罩製造製程期間在吸收膜的圖案上發生暗色缺陷以及白色缺陷時執行的修復製程(repair process)中保護多層反射膜304。 Referring to FIG. 7, the blank mask 300 for extreme ultraviolet lithography according to the present invention may further include a buffer film 307 disposed between the cover film 306 and the absorbing film 312. The buffer film 307 serves to prevent the multilayer reflective film 304 from being damaged during the dry etching process of forming the pattern of the absorbing film 312. Further, the buffer film 307 serves to protect the multilayer reflective film 304 in a repair process performed when a dark color defect and a white defect occur on the pattern of the absorbing film during the urethane photomask manufacturing process.

緩衝膜307是由相對於吸收膜312具有蝕刻選擇性的材料(例如,鉻(Cr)基化合物)形成,且緩衝膜307在吸收膜的圖案是使用聚焦離子束(focused ion beam,FIB)校正時較佳地具有20奈米至60奈米的厚度,且在聚焦離子束(FIB)不用以校正 吸收膜的圖案(用以使用處於未激發狀態的電子射線以及氟基氣體(Xe2F等等)來校正缺陷(EB校正))時較佳地具有5奈米至15奈米的厚度。 The buffer film 307 is formed of a material having an etching selectivity with respect to the absorption film 312 (for example, a chromium (Cr)-based compound, and the pattern of the buffer film 307 in the absorption film is corrected using a focused ion beam (FIB). Preferably, it has a thickness of 20 nm to 60 nm, and the focused ion beam (FIB) is not used to correct the pattern of the absorption film (to use an electron beam in an unexcited state and a fluorine-based gas (Xe 2 F, etc.) It is preferable to have a thickness of 5 nm to 15 nm when the defect is corrected (EB correction).

當緩衝膜307未形成於根據本發明的極紫外線微影用空白罩幕300中時,罩蓋膜306可被賦予緩衝膜307的功能。 When the buffer film 307 is not formed in the ultra-violet lithography blank mask 300 according to the present invention, the cover film 306 can be imparted with the function of the buffer film 307.

圖8為展示根據本發明的第六例示性實施例的極紫外線微影用空白罩幕的橫截面圖。 FIG. 8 is a cross-sectional view showing a blank mask for extreme ultraviolet lithography according to a sixth exemplary embodiment of the present invention.

參看圖8,根據本發明的極紫外線微影用空白罩幕300可更包含提供於透明基板302的後表面中的導電膜309。導電膜309可選擇性地形成於低熱膨脹材料基板的後表面上。在此狀況下,導電膜309可在多層反射膜304、罩蓋膜306以及吸收膜312形成於低熱膨脹材料基板上之後形成於低熱膨脹材料基板的後表面上,或可在多層反射膜304、罩蓋膜306以及吸收膜312形成於低熱膨脹材料基板上之前優先地形成於低熱膨脹材料基板的後表面上。導電膜309用來幫助靜電夾盤(electrostatic chuck)與極紫外線微影用空白罩幕的結合,且具有低薄片電阻(sheet resistance)以改良對靜電夾盤的緊密吸附性。導電膜309用來藉由改良極紫外線微影用空白罩幕對靜電夾盤的緊密吸附性來防止歸因於靜電夾盤與導電膜之間的摩擦而在導電膜中形成粒子。因此,導電膜具有100Ω/□或小於100Ω/□的薄片電阻值,較佳地具有50Ω/□或小於50Ω/□的薄片電阻值,且更佳地具有20Ω/□或小於20Ω/□的薄片電阻值。 Referring to FIG. 8, the blank mask 300 for extreme ultraviolet lithography according to the present invention may further include a conductive film 309 provided in the rear surface of the transparent substrate 302. The conductive film 309 is selectively formed on the rear surface of the substrate of the low thermal expansion material. In this case, the conductive film 309 may be formed on the rear surface of the low thermal expansion material substrate after the multilayer reflective film 304, the cover film 306, and the absorption film 312 are formed on the low thermal expansion material substrate, or may be on the multilayer reflective film 304, The cover film 306 and the absorption film 312 are preferentially formed on the rear surface of the low thermal expansion material substrate before being formed on the low thermal expansion material substrate. The conductive film 309 is used to assist in the combination of an electrostatic chuck and an ultra-violet lithography with a blank mask, and has a low sheet resistance to improve the adhesion to the electrostatic chuck. The conductive film 309 is used to prevent particles from being formed in the conductive film due to friction between the electrostatic chuck and the conductive film by improving the close adsorption of the ultra-violet lithography to the electrostatic chuck by the blank mask. Therefore, the conductive film has a sheet resistance value of 100 Ω / □ or less, preferably 50 Ω / □ or less than 50 Ω / □, and more preferably 20 Ω / □ or less than 20 Ω / □ resistance.

導電膜309包含選自由鈦(Ti)、鉬(Mo)、鉭(Ta)、釩(V)、鈷(Co)、鎳(Ni)、鋯(Zr)、鈮(Nb)、鈀(Pd)、鋅(Zn)、 鉻(Cr)、鋁(Al)、錳(Mn)、鎘(Cd)、鎂(Mg)、鋰(Li)、硒(Se)、銅(Cu)、鉿(Hf)、鎢(W)以及矽(Si)組成的群組的至少一材料,或除了包含材料以外亦更包含選自由氧(O)、氮(N)、碳(C)以及硼(B)組成的群組的至少一材料。 The conductive film 309 is selected from the group consisting of titanium (Ti), molybdenum (Mo), tantalum (Ta), vanadium (V), cobalt (Co), nickel (Ni), zirconium (Zr), niobium (Nb), palladium (Pd). , zinc (Zn), Chromium (Cr), aluminum (Al), manganese (Mn), cadmium (Cd), magnesium (Mg), lithium (Li), selenium (Se), copper (Cu), hafnium (Hf), tungsten (W), and At least one material of the group consisting of cerium (Si), or in addition to the material comprising at least one material selected from the group consisting of oxygen (O), nitrogen (N), carbon (C), and boron (B) .

導電膜309具有70奈米或小於70奈米的厚度,且可以由單層組成的單膜的形式、以由單層組成的連續膜的形式或以多層膜的形式而形成。導電膜309在193奈米至257奈米的波長下具有30%或小於30%的反射率。舉例而言,導電膜309是可由作為主組分而包含的鉻(Cr)形成。當導電膜309是以兩個層的多層膜的形式而形成時,導電膜309可被形成為使得下部層包含鉻(Cr)以及氮(N),且上部層包含鉻(Cr)、氮(N)以及氧(O)。在此狀況下,導電膜309具有使得鉻(Cr)與輕元素(氧(O)、氮(N)、碳(C)以及硼(B)的含量總和)的比率可在8:2至2:8的範圍內的成分比率。 The conductive film 309 has a thickness of 70 nm or less and may be formed in the form of a single film composed of a single layer, in the form of a continuous film composed of a single layer, or in the form of a multilayer film. The conductive film 309 has a reflectance of 30% or less at a wavelength of 193 nm to 257 nm. For example, the conductive film 309 can be formed of chromium (Cr) contained as a main component. When the conductive film 309 is formed in the form of a two-layered multilayer film, the conductive film 309 may be formed such that the lower layer contains chromium (Cr) and nitrogen (N), and the upper layer contains chromium (Cr), nitrogen ( N) and oxygen (O). In this case, the conductive film 309 has a ratio such that the ratio of chromium (Cr) to light elements (the sum of oxygen (O), nitrogen (N), carbon (C), and boron (B)) is 8:2 to 2 A ratio of components within the range of :8.

另外,儘管未圖示,但根據本發明的極紫外線微影用空白罩幕可包含所有緩衝膜、導電膜以及含矽高分子化合物,或可視情況包含緩衝膜、導電膜以及含矽高分子化合物。 In addition, although not shown, the blank mask for extreme ultraviolet lithography according to the present invention may include all buffer films, conductive films, and ruthenium containing polymer compounds, or may optionally include a buffer film, a conductive film, and a ruthenium containing polymer compound. .

另外,可視情況使多層反射膜、罩蓋膜、吸收膜、功能膜、緩衝膜以及導電膜經受熱處理(thermal treatment),且可使用選自由快速熱製程(rapid thermal process,RTP)、真空熱板烘烤(vacuum hot-plate baking)、電漿製程(plasma process)以及熔爐製程(furnace process)組成的群組的至少一方法來執行熱處理製程。 In addition, the multilayer reflective film, the cover film, the absorption film, the functional film, the buffer film, and the conductive film may be subjected to thermal treatment as the case may be, and may be selected from a rapid thermal process (RTP), a vacuum hot plate. At least one of a group consisting of a vacuum hot-plate baking, a plasma process, and a furnace process performs a heat treatment process.

在下文中,將進一步詳細地描述根據本發明的例示性實 施例的極紫外線微影用空白罩幕。 Hereinafter, an exemplary embodiment in accordance with the present invention will be described in further detail. The extreme ultraviolet lithography of the example uses a blank mask.

實例Instance 具有包含鎳(Ni)形成於其中的吸收膜的極紫外線微影用空白罩幕的評估Evaluation of a blank mask with extreme ultraviolet lithography containing an absorbing film in which nickel (Ni) is formed

為了製造極紫外線微影用空白罩幕,製備尺寸為6吋×6吋×0.25吋以及平坦度(總指示讀數值)控制為60奈米或小於60奈米且由SiO2-TiO組分形成的低熱膨脹材料(LTEM)基板作為基板。 In order to manufacture a UV mask for ultra-violet lithography, the preparation size is 6吋×6吋×0.25吋 and the flatness (total reading value) is controlled to 60 nm or less and formed of SiO 2 -TiO component. A low thermal expansion material (LTEM) substrate is used as the substrate.

使用DC磁控管反應濺鍍系統(magnetron reactive sputtering system)來將包含鉻(Cr)作為主組分的導電膜形成於低熱膨脹材料基板的後表面上。導電膜具有形成有氮化鉻(CrN;下部層)以及氮氧化鉻(CrON;上部層)的雙層結構。導電膜的上部層以及下部層兩者是由鉻(Cr)標靶形成,藉由以Ar:N2=5sccm:5sccm的流量比率注入製程氣體且施加1.4kW的處理功率來形成導電膜的下部層作為厚度為42奈米的氮化鉻(CrN)膜。再者,藉由以Ar:N2:NO=7sccm:7sccm:7sccm的流量比率注入製程氣體且施加1.4kW的處理功率來形成導電膜的上部層作為厚度為24奈米的氮氧化鉻(CrON)膜。最終,導電膜被形成為具有66奈米的厚度,且使用四點探針來量測所形成的導電膜的薄片電阻。結果,確認導電膜具有16.5Ω/□的薄片電阻值,且因此不存在與靜電夾盤的結合(E夾定)相關的問題。 A conductive film containing chromium (Cr) as a main component is formed on the rear surface of the substrate of the low thermal expansion material using a DC magnetron reactive sputtering system. The conductive film has a two-layer structure in which chromium nitride (CrN; lower layer) and chromium oxynitride (CrON; upper layer) are formed. The upper layer and the lower layer of the conductive film are formed of a chromium (Cr) target, and a lower portion of the conductive film is formed by injecting a process gas at a flow ratio of Ar:N 2 =5 sccm:5 sccm and applying a processing power of 1.4 kW. The layer was a chromium nitride (CrN) film having a thickness of 42 nm. Further, an upper layer of a conductive film was formed by injecting a process gas at a flow rate ratio of Ar:N 2 :NO=7 sccm:7 sccm:7 sccm and applying a treatment power of 1.4 kW as chromium oxynitride (CrON) having a thickness of 24 nm. )membrane. Finally, the conductive film was formed to have a thickness of 66 nm, and a four-point probe was used to measure the sheet resistance of the formed conductive film. As a result, it was confirmed that the conductive film had a sheet resistance value of 16.5 Ω/□, and thus there was no problem associated with the bonding (E-clamping) of the electrostatic chuck.

藉由使用離子束沈積低缺陷密度(ion beam deposition-low defect density)(在下文中被稱作「IBD-LDD」)系統而在低熱膨脹材料基板的整個表面上交替地形成40個鉬(Mo) 層與矽(Si)層,使得鉬(Mo)層以及矽(Si)層分別具有4.8奈米以及2.2奈米的厚度,以形成多層反射膜。使用極紫外線反射計來量測多層反射膜的反射率。量測結果揭示多層反射膜在13.5奈米的波長下具有67.8%的反射率,且在193奈米的波長下具有64.66%的反射率。接著,使用原子力顯微法(atomic force microscopy,AFM)系統來量測多層反射膜的表面粗糙度。量測結果揭示多層反射膜具有0.12奈米均方根的表面粗糙度,且當極紫外線曝光光線在多層反射膜上反射時歸因於表面粗糙度而稍微發生極紫外線曝光光線的漫反射。再者,使用超平坦系統來量測多層反射膜的142平方毫米區的平坦度。由結果知多層反射膜具有54奈米的總指示讀數值,此情形指示出圖案的位置失真是受到反射膜些微影響。 40 molybdenum (Mo) are alternately formed on the entire surface of the low thermal expansion material substrate by using an ion beam deposition-low defect density (hereinafter referred to as "IBD-LDD") system. The layer and the bismuth (Si) layer are such that the molybdenum (Mo) layer and the bismuth (Si) layer have a thickness of 4.8 nm and 2.2 nm, respectively, to form a multilayer reflective film. The reflectance of the multilayer reflective film was measured using an extreme ultraviolet reflectometer. The measurement revealed that the multilayer reflective film had a reflectance of 67.8% at a wavelength of 13.5 nm and a reflectance of 64.66% at a wavelength of 193 nm. Next, the surface roughness of the multilayer reflective film was measured using an atomic force microscopy (AFM) system. The measurement results revealed that the multilayer reflective film had a surface roughness of 0.12 nm root mean square, and a diffuse reflection of the extreme ultraviolet exposure light slightly occurred due to the surface roughness when the extreme ultraviolet exposure light was reflected on the multilayer reflective film. Furthermore, an ultra-flat system was used to measure the flatness of the 142 mm square region of the multilayer reflective film. From the results, it was found that the multilayer reflective film had a total indication reading value of 54 nm, which indicates that the positional distortion of the pattern was slightly affected by the reflection film.

藉由使用IBD-LDD系統來將釕(Ru)堆疊至多層反射膜上達2.5奈米的厚度而形成罩蓋膜。在形成罩蓋膜之後,以與多層反射膜中相同的方式來量測罩蓋膜的反射率。結果揭示罩蓋膜在13.5奈米的波長下具有65.8%的反射率,且因此相對於為多層反射膜的67.8%的反射率不存在變化。接著,在193奈米的波長下量測罩蓋膜的反射率。結果揭示罩蓋膜具有55.43%的反射率。再者,以與上文所描述的方式相同的方式來量測罩蓋膜的表面粗糙度以及平坦度。結果確認罩蓋膜具有0.13奈米均方根的表面粗糙度值,且因此相對於多層反射膜不存在變化,且罩蓋膜亦具有54奈米的總指示讀數值,且因此相對於多層反射膜不存在變化。 A cover film was formed by stacking ruthenium (Ru) onto a multilayer reflective film to a thickness of 2.5 nm using an IBD-LDD system. After the cap film was formed, the reflectance of the cap film was measured in the same manner as in the multilayer reflective film. The results revealed that the cover film had a reflectance of 65.8% at a wavelength of 13.5 nm, and thus there was no change with respect to the reflectance of 67.8% which is a multilayer reflective film. Next, the reflectance of the cover film was measured at a wavelength of 193 nm. The results revealed that the cover film had a reflectance of 55.43%. Again, the surface roughness and flatness of the cover film were measured in the same manner as described above. As a result, it was confirmed that the cover film had a surface roughness value of 0.13 nm root mean square, and thus there was no change with respect to the multilayer reflective film, and the cover film also had a total indication reading value of 54 nm, and thus relative to the multilayer reflection There is no change in the membrane.

使用DC磁控管反應濺鍍系統來將具有吸收層以及抗反射層的雙層結構的鎳(Ni)吸收膜形成於罩蓋膜上。吸收膜的兩 個層是由鎳(Ni)標靶形成,且藉由以Ar:N2=8sccm:2sccm的流量比率注入製程氣體且施加1.0kW的處理功率來形成厚度為30奈米的氮化鎳(NiN)層作為下部吸收層。在此狀況下,揭示出下部吸收層在13.5奈米的曝光波長下具有1.6%的反射率。 A nickel magnetron reactive sputtering system having a double layer structure having an absorption layer and an antireflection layer was formed on the cover film using a DC magnetron reactive sputtering system. The two layers of the absorbing film were formed of a nickel (Ni) target, and nitrogen was formed to a thickness of 30 nm by injecting a process gas at a flow ratio of Ar:N 2 =8 sccm:2 sccm and applying a processing power of 1.0 kW. A nickel (NiN) layer is used as the lower absorption layer. Under this circumstance, it was revealed that the lower absorption layer had a reflectance of 1.6% at an exposure wavelength of 13.5 nm.

藉由以Ar:N2:NO=5sccm:5sccm:3sccm的流量比率注入製程氣體且施加1.0kW的處理功率來形成上部抗反射層作為厚度為12奈米的氮氧化鎳(NiON)層。類似於在吸收層中,在13.5奈米的曝光波長下量測上部抗反射層的反射率。量測結果揭示出上部抗反射層具有0.9%的反射率,且亦在193奈米的波長下具有22.3%的反射率,此情形指示出上部抗反射層在檢測波長下展現極佳反射率。 The upper anti-reflection layer was formed as a nickel oxynitride (NiON) layer having a thickness of 12 nm by injecting a process gas at a flow rate ratio of Ar:N 2 :NO=5 sccm:5 sccm:3 sccm and applying a treatment power of 1.0 kW. The reflectance of the upper anti-reflective layer was measured similarly in the absorption layer at an exposure wavelength of 13.5 nm. The measurement revealed that the upper antireflection layer had a reflectance of 0.9% and also had a reflectance of 22.3% at a wavelength of 193 nm, which indicates that the upper antireflection layer exhibited excellent reflectance at the detection wavelength.

使用超平坦系統來量測包含鎳(Ni)的吸收膜的平坦度。結果揭示出吸收膜具有70奈米的總指示讀數值,此情形指示出觀測到相比於在形成罩蓋膜後就量測的總指示讀數值為16奈米的總指示讀數值的稍微高變化,但當使用總指示讀數值的變化來計算薄膜應力時,吸收膜具有大約150百萬帕斯卡的正常薄膜應力。 The flatness of the absorption film containing nickel (Ni) was measured using an ultra-flat system. The results revealed that the absorbing film had a total indicator reading of 70 nm, which indicates a slight increase in the total indication reading value of 16 nm compared to the total indicated reading value measured after forming the hood film. The change, but when using the change in the total indicated reading value to calculate the film stress, the absorbent film has a normal film stress of about 150 megapascals.

再者,使用AES系統來分析根據吸收膜的深度的成分比率。結果揭示出在上部抗反射層的狀況下,鎳(Ni)以及輕元素(O、N)是以4:6的成分比率存在,且在下部吸收層的狀況下,鎳(Ni)以及輕元素(N)是以8:2的成分比率而存在。 Furthermore, the AES system was used to analyze the composition ratio according to the depth of the absorbing film. As a result, it was revealed that nickel (Ni) and light elements (O, N) were present in a ratio of 4:6 in the case of the upper antireflection layer, and nickel (Ni) and light elements in the case of the lower absorption layer. (N) exists in a composition ratio of 8:2.

具有包含形成有鎳(Ni)以及鉭(Ta)的吸收膜的極紫外線微影用空白罩幕的評估Evaluation of a blank mask with extreme ultraviolet lithography containing an absorbing film formed of nickel (Ni) and tantalum (Ta)

以與上文在具有包含形成有鎳(Ni)作為主組分的吸收膜的極紫外線微影用空白罩幕中描述的方式相同的方式來評估具 有包含形成有鎳(Ni)以及鉭(Ta)作為主組分的吸收膜的極紫外線微影用空白罩幕。此處,除了吸收膜以外的下部膜具有與具有包含形成有鎳(Ni)作為主組分的吸收膜的上述極紫外線微影用空白罩幕的構形相同的組態。 Evaluating the tool in the same manner as described above in the blank mask having an ultra-violet lithography comprising an absorbing film formed with nickel (Ni) as a main component There is a blank mask for extreme ultraviolet lithography containing an absorbing film formed with nickel (Ni) and tantalum (Ta) as main components. Here, the lower film other than the absorption film has the same configuration as that of the above-described ultra-violet lithography blank mask having an absorption film formed of nickel (Ni) as a main component.

使用DC磁控管反應濺鍍系統來將吸收膜形成於包含鎳鉭(NiTa)的雙層結構中。吸收膜的兩個層兩者是由鎳鉭(NiTa)標靶形成(Ni:Ta=90原子%:10原子%、70原子%:30原子%、50原子%:50原子%或10原子%:90原子%的成分比率)。在此狀況下,藉由以Ar:N2=8sccm:2sccm的流量比率注入製程氣體且施加1.0kW的處理功率來形成厚度為31奈米的氮化鎳鉭(NiTaN)層作為下部吸收層。接著,藉由以Ar:N2:NO=5sccm:5sccm:3sccm的流量比率注入製程氣體且施加1.0kW的處理功率來形成厚度為14奈米的氮氧化鎳鉭(NiTaON)層作為上部抗反射層。 A DC magnetron reactive sputtering system was used to form the absorption film in a two-layer structure containing nickel niobium (NiTa). Both layers of the absorbing film are formed by a nickel ruthenium (NiTa) target (Ni: Ta = 90 atom%: 10 atom%, 70 atom%: 30 atom%, 50 atom%: 50 atom% or 10 atom% : composition ratio of 90 atom%). In this case, a Ni-NiN layer having a thickness of 31 nm was formed as a lower absorption layer by injecting a process gas at a flow rate ratio of Ar:N 2 =8 sccm:2 sccm and applying a treatment power of 1.0 kW. Next, a NiTaON layer having a thickness of 14 nm was formed as an upper anti-reflection by injecting a process gas at a flow rate ratio of Ar:N 2 :NO=5 sccm:5 sccm:3 sccm and applying a treatment power of 1.0 kW. Floor.

使用極紫外線反射計來量測吸收膜的每一層的反射率。量測結果揭示出吸收膜層在13.5奈米的曝光波長下具有0.9%至1.0%的反射率,且在193奈米的檢測波長下具有19.5%至21.2%的反射率。 The reflectance of each layer of the absorbing film was measured using an extreme ultraviolet reflectometer. The measurement revealed that the absorbing film layer had a reflectance of 0.9% to 1.0% at an exposure wavelength of 13.5 nm and a reflectance of 19.5% to 21.2% at a detection wavelength of 193 nm.

具有包含形成有鉭(Ta)作為主組分的吸收膜的極紫外線微影用空白罩幕的比較Comparison of a blank mask with extreme ultraviolet lithography containing an absorbing film formed with ruthenium (Ta) as a main component

在比較例1中,製造具有包含形成有鉭(Ta)作為主組分的吸收膜的極紫外線微影用空白罩幕,且比較極紫外線微影用空白罩幕的性質與具有包含形成有鎳(Ni)或鎳鉭(NiTa)作為主組分的吸收膜的上述極紫外線微影用空白罩幕的性質。此處,除了吸收膜以外,下部膜具有與具有包含形成有鎳(Ni)作為主 組分的吸收膜的上述極紫外線微影用空白罩幕的構形相同的構形。 In Comparative Example 1, a blank mask having an ultraviolet ray lithography including an absorbing film formed with ruthenium (Ta) as a main component was produced, and the properties of the blank mask for the extreme ultraviolet lithography were compared with the inclusion of nickel formed therein. The above-mentioned extreme ultraviolet lithography of the absorbing film of (Ni) or nickel lanthanum (NiTa) as a main component is a property of a blank mask. Here, in addition to the absorption film, the lower film has and contains nickel (Ni) as a main component The above-described extreme ultraviolet lithography of the absorbing film of the component is configured in the same configuration as the blank mask.

使用DC磁控管反應濺鍍系統來將吸收膜形成於包含鉭(Ta)的雙層結構中。吸收膜的兩個層兩者是由組(Ta)標靶形成。在此狀況下,藉由以Ar:N2=8sccm:2sccm的流量比率注入製程氣體且施加1.0kW的處理功率來形成氮化鉭(TaN)層作為下部吸收層。接著,在13.5奈米的曝光波長下量測反射率為1.5%的下部吸收層的一區的厚度。結果揭示出下部吸收層具有55奈米的厚度。接著,藉由以Ar:N2:NO=5sccm:5sccm:3sccm的流量比率注入製程氣體且施加1.0kW的處理功率來形成氮氧化鉭(TaON)層作為上部抗反射層。結果揭示出在13.5奈米的曝光波長下具有1.0%的反射率的上部抗反射層的區具有15奈米的厚度。因此,可看出吸收膜的整個厚度為70奈米,此厚度厚於根據本發明的吸收膜的厚度。 A DC magnetron reactive sputtering system is used to form the absorption film in a two-layer structure comprising tantalum (Ta). Both layers of the absorbing film are formed from a group (Ta) target. In this case, a tantalum nitride (TaN) layer was formed as a lower absorption layer by injecting a process gas at a flow rate ratio of Ar:N 2 =8 sccm:2 sccm and applying a treatment power of 1.0 kW. Next, the thickness of a region of the lower absorption layer having a reflectance of 1.5% was measured at an exposure wavelength of 13.5 nm. The results revealed that the lower absorbent layer had a thickness of 55 nm. Next, a ruthenium oxynitride (TaON) layer was formed as an upper anti-reflection layer by injecting a process gas at a flow rate ratio of Ar:N 2 :NO=5 sccm:5 sccm:3 sccm and applying a treatment power of 1.0 kW. The results revealed that the region of the upper antireflection layer having a reflectance of 1.0% at an exposure wavelength of 13.5 nm had a thickness of 15 nm. Therefore, it can be seen that the entire thickness of the absorbent film is 70 nm, which is thicker than the thickness of the absorbent film according to the present invention.

以下表1中列出輕元素對金屬的膜成分比率、包含鎳(Ni)與鎳鉭(NiTa)以及鉭(Ta)的上述吸收膜的厚度以及反射率。 The film component ratio of the light element to the metal, the thickness and the reflectance of the above-mentioned absorption film containing nickel (Ni), nickel lanthanum (NiTa), and tantalum (Ta) are listed in Table 1 below.

如表1所列出,可看出當吸收膜是由鎳(Ni)或鎳鉭(NiTa)形成(如上文在實例1至5中所描述)時,滿足相對於波長為13.5奈米以及檢測波長為193奈米的光的相同反射率所需要的吸收膜的厚度小於由鉭(Ta)形成的習知吸收膜(比較例1)的厚度。 As listed in Table 1, it can be seen that when the absorbing film is formed of nickel (Ni) or nickel lanthanum (NiTa) (as described above in Examples 1 to 5), it satisfies the relative wavelength of 13.5 nm and is detected. The thickness of the absorption film required for the same reflectance of light having a wavelength of 193 nm is smaller than the thickness of a conventional absorption film (Comparative Example 1) formed of tantalum (Ta).

包含第一功能膜的極紫外線微影用空白罩幕的製造以及評估Manufacture and evaluation of blank masks for extreme UV lithography containing the first functional film

以與極紫外線微影用空白罩幕中描述的方式相同的方式來將導電膜、多層反射膜、罩蓋膜以及包含鎳(Ni)作為主組分的吸收膜形成於低熱膨脹材料基板上,且接著使用DC磁控管反應濺鍍系統來將第一功能膜形成於吸收膜上。藉由使用摻雜有硼(B)的矽(Si)標靶(Si:B=98:2至80:20的成分比率)以Ar:N2:NO=5sccm:3sccm:2sccm的流量比率注入製程氣體且施加0.6kW的處理功率來形成第一功能膜作為厚度為4奈米的氮氧化矽硼(silicon boron oxynitride,SiBON)膜。 The conductive film, the multilayer reflective film, the cover film, and the absorption film containing nickel (Ni) as a main component are formed on the substrate of the low thermal expansion material in the same manner as described in the blank mask of the extreme ultraviolet lithography, A DC magnetron reactive sputtering system is then used to form the first functional film on the absorbent film. By using a cerium (Si) target doped with boron (B) (component ratio of Si:B=98:2 to 80:20), a flow ratio of Ar:N 2 :NO=5sccm:3sccm:2sccm is injected. The process gas was applied and a processing power of 0.6 kW was applied to form a first functional film as a silicon nanotube oxynitride (SiBON) film having a thickness of 4 nm.

在此狀況下,揭示出第一功能膜在13.5奈米的曝光波長下具有0.85%的反射率。接著,使用超平坦系統來量測第一功能膜的平坦度。結果揭示出第一功能膜具有77奈米的總指示讀數值。再者,使用AES系統來分析第一功能膜的成分比率。結果揭示出第一功能膜具有Si:B:O:N=72原子%:3原子%:10原子%:15原子%的成分比率。 Under this circumstance, it was revealed that the first functional film had a reflectance of 0.85% at an exposure wavelength of 13.5 nm. Next, the flatness of the first functional film is measured using an ultra-flat system. The results revealed that the first functional film had a total indicator reading of 77 nm. Furthermore, the AES system was used to analyze the composition ratio of the first functional film. As a result, it was revealed that the first functional film had a composition ratio of Si:B:O:N=72 atom%: 3 atom%: 10 atom%: 15 atom%.

隨後,將含矽高分子化合物摻雜有六甲基二矽烷以改良對第一功能膜的抗蝕劑膜的吸附,且將化學增幅型抗蝕劑膜形成為具有80奈米的厚度以製造極紫外線微影用空白罩幕。 Subsequently, the ruthenium containing polymer compound is doped with hexamethyldioxane to improve the adsorption of the resist film of the first functional film, and the chemically amplified resist film is formed to have a thickness of 80 nm to be manufactured. Extreme UV lithography with a blank mask.

包含第一功能膜的極紫外線微影用光罩的製造以及評估Manufacture and evaluation of reticle for ultra-violet lithography containing first functional film

使用極紫外線微影用空白罩幕來製造以及評估極紫外線 微影用光罩,其中使用第一功能膜作為蝕刻罩幕。 Use UV lithography to create and evaluate extreme UV rays with a blank mask A lithography reticle in which a first functional film is used as an etch mask.

使用50keV書寫機(writing machine)來將極紫外線微影用空白罩幕曝光,且經由曝光後烘烤(post-exposure baking,PEB)以及顯影而將圖案形成於抗蝕劑膜上。此後,用蝕刻氣體經由抗蝕劑膜的圖案來蝕刻由氮氧化矽硼(SiBON)形成的功能膜歷時30秒(在考慮到過度蝕刻的情況下的時間),蝕刻氣體包含為氟(F)基氣體的SF6氣體。在此狀況下,量測殘餘抗蝕劑膜的厚度。結果揭示出殘餘抗蝕劑膜具有30奈米的厚度,且因此有效地作為蝕刻罩幕。 A 50 keV writing machine was used to expose the extreme ultraviolet lithography with a blank mask, and the pattern was formed on the resist film via post-exposure baking (PEB) and development. Thereafter, the functional film formed of boron oxynitride (SiBON) is etched by the etching gas through the pattern of the resist film for 30 seconds (in consideration of the time in the case of over etching), and the etching gas contains fluorine (F) Base gas SF 6 gas. In this case, the thickness of the residual resist film was measured. The results revealed that the residual resist film had a thickness of 30 nm and thus effectively served as an etching mask.

接下來,移除殘餘抗蝕劑膜,且用包含氯(Cl)的蝕刻氣體經由用作蝕刻罩幕的形成有圖案的第一功能膜來蝕刻吸收膜。在蝕刻之後,量測第一功能膜的厚度。結果揭示出第一功能膜具有3.0奈米的厚度,且因此具有20或大於20的蝕刻選擇比,此情形指示出蝕刻選擇比為1:50(功能膜:吸收膜)。 Next, the residual resist film is removed, and the absorbing film is etched through the patterned first functional film serving as an etching mask using an etching gas containing chlorine (Cl). After the etching, the thickness of the first functional film is measured. As a result, it was revealed that the first functional film had a thickness of 3.0 nm, and thus had an etching selection ratio of 20 or more, which indicates an etching selectivity ratio of 1:50 (functional film: absorption film).

隨後,移除第一功能膜以製造極紫外線微影用光罩。 Subsequently, the first functional film is removed to manufacture a photomask for extreme ultraviolet lithography.

使用臨界尺寸掃描電子顯微法(scanning electron microscopy,SEM)來量測根據本發明的極紫外線微影用光罩的解析度。結果揭示出同空間圖案(iso-space pattern)被界定為40奈米的深度。接著,在60奈米至1,000奈米的範圍內量測極紫外線微影用光罩的臨界尺寸線性。結果揭示出極紫外線微影用光罩分別在同線圖案(iso-line pattern)、線與空間圖案以及同空間圖案的狀況下具有2.3奈米、3.0奈米以及3.2奈米的高臨界尺寸線性值。 The resolution of the reticle for extreme ultraviolet lithography according to the present invention was measured using a scanning electron microscopy (SEM). The results revealed that the iso-space pattern was defined as a depth of 40 nm. Next, the critical dimension linearity of the reticle for the extreme ultraviolet lithography was measured in the range of 60 nm to 1,000 nm. The results reveal that the ultra-violet lithography mask has a high critical dimension linearity of 2.3 nm, 3.0 nm, and 3.2 nm in the same pattern of iso-line pattern, line and space pattern, and the same spatial pattern. value.

不具有功能膜的極紫外線微影用空白罩幕以及使用極紫外線微影用空白罩幕的極紫外線微影用光罩的製造以及評估Manufacture and evaluation of a mask for extreme ultraviolet lithography without a functional film and a mask for extreme ultraviolet lithography using a blank mask for extreme ultraviolet lithography

在比較例1中,製造具有包含形成有鉭(Ta)作為主組分的吸收膜的極紫外線微影用空白罩幕,且比較極紫外線微影用空白罩幕的性質與根據本發明的形成有吸收膜以及第一功能膜的極紫外線微影用空白罩幕的性質。此處,吸收膜包含鎳(Ni)或鎳鉭(NiTa)作為主組分,且第一功能膜作為蝕刻罩幕。 In Comparative Example 1, a blank mask having an ultraviolet ray lithography comprising an absorbing film formed with ruthenium (Ta) as a main component was produced, and the properties of a blank mask for extreme ultraviolet lithography and formation according to the present invention were compared. There is a property of a blank mask with an absorbing film and an extreme ultraviolet lithography of the first functional film. Here, the absorbing film contains nickel (Ni) or nickel lanthanum (NiTa) as a main component, and the first functional film serves as an etching mask.

為了在具有包含形成有鉭(Ta)作為主組分的吸收膜的極紫外線微影用空白罩幕中滿足在13.5奈米以及193奈米的曝光波長下的曝光以及檢測條件,藉由形成吸收層作為厚度為55奈米的氮化鉭(TaN)層且形成抗反射層作為厚度為15奈米的氮氧化鉭(TaON)層來將吸收膜形成為具有70奈米的總厚度,如上文在比較例1中所描述。 In order to satisfy the exposure and detection conditions at an exposure wavelength of 13.5 nm and 193 nm in a blank mask having an ultraviolet lithography containing an absorbing film formed with ruthenium (Ta) as a main component, by forming an absorption The layer was formed as a tantalum nitride (TaN) layer having a thickness of 55 nm and an antireflection layer was formed as a lanthanum oxynitride (TaON) layer having a thickness of 15 nm to form the absorption film to have a total thickness of 70 nm, as above It is described in Comparative Example 1.

接下來,將化學增幅型抗蝕劑膜塗佈至80奈米的厚度,使用電子束書寫機來將化學增幅型抗蝕劑膜曝光,且接著使化學增幅型抗蝕劑膜經受曝光後烘烤以及顯影以形成抗蝕劑膜的圖案。此後,運用SF6氣體經由用作蝕刻罩幕的抗蝕劑膜的圖案來蝕刻吸收膜中由氮氧化鉭(TaON)形成的上部抗反射層,且運用Cl2氣體來蝕刻由氮化鉭(TaN)形成的下部吸收層。接著,量測殘餘抗蝕劑膜的厚度。結果揭示出未觀測到殘餘抗蝕劑膜,且吸收膜的圖案的上部部分因蝕刻而受到損害。隨後,將化學增幅型抗蝕劑膜塗佈至120奈米的厚度,且以與上文所描述的方式相同的方式來蝕刻吸收膜。由結果可看出殘餘抗蝕劑膜具有20奈米的厚度,此情形指示出在無損害的情況下形成吸收膜的圖案。 Next, a chemically amplified resist film was applied to a thickness of 80 nm, an electron beam type resist film was exposed using an electron beam writer, and then the chemically amplified resist film was subjected to post-exposure baking. Bake and develop to form a pattern of the resist film. Thereafter, the upper anti-reflection layer formed of tantalum oxynitride (TaON) in the absorption film is etched by using SF 6 gas through a pattern of a resist film used as an etching mask, and etching is performed using tantalum nitride using Cl 2 gas ( TaN) forms a lower absorbent layer. Next, the thickness of the residual resist film was measured. As a result, it was revealed that no residual resist film was observed, and the upper portion of the pattern of the absorption film was damaged by etching. Subsequently, the chemically amplified resist film was applied to a thickness of 120 nm, and the absorption film was etched in the same manner as described above. From the results, it can be seen that the residual resist film has a thickness of 20 nm, which indicates a pattern in which the absorption film is formed without damage.

隨後,使用臨界尺寸掃描電子顯微法來量測極紫外線微影用光罩的解析度。結果揭示出同空間圖案被界定為60奈米的深 度。接著,在60奈米至1,000奈米的範圍內量測極紫外線微影用光罩的臨界尺寸線性。結果揭示出極紫外線微影用光罩分別在同線圖案、線與空間圖案以及同空間圖案的狀況下具有4.5奈米、7.5奈米以及5.2奈米的高臨界尺寸線性值,此等臨界尺寸線性值的結果次於根據本發明的極紫外線微影用光罩的結果。 Subsequently, critical-scale scanning electron microscopy was used to measure the resolution of the reticle for extreme ultraviolet lithography. The results reveal that the same spatial pattern is defined as a depth of 60 nm. degree. Next, the critical dimension linearity of the reticle for the extreme ultraviolet lithography was measured in the range of 60 nm to 1,000 nm. The results reveal that the extreme ultraviolet lithography mask has a high critical dimension linear value of 4.5 nm, 7.5 nm, and 5.2 nm in the same line pattern, line and space pattern, and the same spatial pattern, respectively. The result of the linear value is inferior to the result of the reticle for the extreme ultraviolet lithography according to the present invention.

根據構成材料的第一功能膜的物理性質以及化學性質的評估Evaluation of the physical properties and chemical properties of the first functional film based on the constituent materials

在根據本發明的極紫外線微影用空白罩幕的製造中,評估根據構成第一功能膜的構成材料的第一功能膜的物理性質以及化學性質。 In the manufacture of the blank mask for extreme ultraviolet lithography according to the present invention, the physical properties and chemical properties of the first functional film according to the constituent materials constituting the first functional film are evaluated.

以與上文在具有包含形成有氮氧化矽硼(SiBON)的第一功能膜的極紫外線微影用空白罩幕的製造以及評估中描述的方式相同的方式來執行第一功能膜的評估,且藉由以Ar:N2:NO=6至10sccm:4至6sccm:0至4sccm的流量比率注入製程氣體且施加0.6至1.0kW的製程功率來形成第一功能膜的兩個層作為功能膜。 Performing the evaluation of the first functional film in the same manner as described above in the fabrication and evaluation of a blank mask having an extremely ultraviolet lithography comprising a first functional film formed with boron oxynitride (SiBON), And forming two layers of the first functional film as a functional film by injecting a process gas at a flow ratio of Ar:N 2 :NO=6 to 10 sccm:4 to 6 sccm:0 to 4 sccm and applying a process power of 0.6 to 1.0 kW .

以下表2中列出藉由比較根據構成材料以及成分的第一功能膜的厚度以及蝕刻選擇性而獲得的評估結果。 The evaluation results obtained by comparing the thickness of the first functional film according to the constituent materials and the composition and the etching selectivity are listed in Table 2 below.

如表2所列出,可看出實例中製備的所有第一功能膜相對於吸收膜具有20或大於20的蝕刻選擇性以及3奈米至4奈米 的厚度,且因此有效地作為蝕刻罩幕。自藉由使用超平坦系統來量測每一功能膜的平坦度而獲得的結果揭示出功能膜具有75奈米至80奈米的總指示讀數值,此情形指示出功能膜未嚴重地受到薄膜應力影響。 As listed in Table 2, it can be seen that all of the first functional films prepared in the examples have an etch selectivity of 20 or more with respect to the absorbing film and 3 nm to 4 nm. The thickness, and therefore effectively, acts as an etch mask. The results obtained by measuring the flatness of each functional film by using an ultra-flat system revealed that the functional film has a total indication reading value of 75 nm to 80 nm, which indicates that the functional film is not severely affected by the film. Stress effects.

具有作為蝕刻罩幕以及抗反射層的第二功能膜的極紫外線微影用空白罩幕的製造以及評估Fabrication and evaluation of blank masks for extreme ultraviolet lithography with a second functional film as an etch mask and an anti-reflective layer

在根據本發明的極紫外線微影用空白罩幕的製造中,製造以及評估具有作為蝕刻罩幕以及抗反射層的第二功能膜的極紫外線微影用空白罩幕。 In the manufacture of a blank mask for extreme ultraviolet lithography according to the present invention, a blank mask for extreme ultraviolet lithography having a second functional film as an etching mask and an antireflection layer was fabricated and evaluated.

以與上文在具有包含形成有氮氧化矽硼(SiBON)的第一功能膜的極紫外線微影用空白罩幕的製造以及評估中描述的方式相同的方式來製備透明基板、多層反射膜以及罩蓋膜,且形成吸收膜的除了最上部抗反射層以外的吸收層。 A transparent substrate, a multilayer reflective film, and the like are prepared in the same manner as described above in the fabrication and evaluation of a blank mask having an extremely ultraviolet lithography including a first functional film formed with boron oxynitride (SiBON). The cover film is formed, and an absorbing layer other than the uppermost anti-reflective layer of the absorbing film is formed.

使用DC磁控管反應濺鍍系統來量測吸收膜,且吸收膜是由鎳(Ni)標靶形成。再者,藉由以Ar:N2=8sccm:2sccm的流量比率注入製程氣體且施加1.0kW的處理功率來形成吸收層作為厚度為35奈米的氮化鎳(NiN)層。 The absorbing film was measured using a DC magnetron reactive sputtering system, and the absorbing film was formed from a nickel (Ni) target. Further, an absorption layer was formed as a nickel nitride (NiN) layer having a thickness of 35 nm by injecting a process gas at a flow rate ratio of Ar:N 2 =8 sccm:2 sccm and applying a treatment power of 1.0 kW.

接下來,使用DC磁控管反應濺鍍系統來將第二功能膜形成於吸收膜上。藉由以Ar:N2:NO=6至10sccm:4至6sccm:0至4sccm的流量比率注入製程氣體且施加0.6kW至1.0kW的製程功率來形成第二功能膜作為功能膜。 Next, a DC magnetron reactive sputtering system is used to form a second functional film on the absorbing film. The second functional film is formed as a functional film by injecting a process gas at a flow ratio of Ar:N 2 :NO=6 to 10 sccm:4 to 6 sccm:0 to 4 sccm and applying a process power of 0.6 kW to 1.0 kW.

以下表3中列出根據第二功能膜的構成材料、成分比率以及厚度在每一波長下的反射率的評估結果。 The evaluation results of the reflectance at each wavelength according to the constituent materials, component ratios, and thicknesses of the second functional film are listed in Table 3 below.

表3table 3

如表3所列出,揭示出,第二功能膜分別在曝光波長(13.5奈米)以及檢測波長(193奈米)下具有1.0%至1.2%以及18.5%至21.0%的反射率,此情形指示出第二功能膜的光學性質是與形成有抗反射層的上述吸收膜的光學性質相似。 As listed in Table 3, it is revealed that the second functional film has a reflectance of 1.0% to 1.2% and 18.5% to 21.0% at the exposure wavelength (13.5 nm) and the detection wavelength (193 nm), respectively. It is indicated that the optical properties of the second functional film are similar to those of the above-described absorbing film formed with the antireflection layer.

因此,確認極佳評估結果,此是因為在維持光學性質的同時維持對吸收膜的蝕刻選擇性。 Therefore, an excellent evaluation result was confirmed because the etching selectivity to the absorption film was maintained while maintaining optical properties.

使用第三功能膜作為蝕刻罩幕的極紫外線微影用空白罩幕的製造以及評估Manufacture and evaluation of blank masks for extreme ultraviolet lithography using a third functional film as an etch mask

在根據本發明的極紫外線微影用空白罩幕的製造中,製造以及評估具有作為蝕刻罩幕以及抗反射層以圖案化吸收層的第二功能膜以及用作蝕刻罩幕以圖案化第二功能膜的第三功能膜的極紫外線微影用空白罩幕。 In the manufacture of a blank mask for extreme ultraviolet lithography according to the present invention, a second functional film having an etch mask and an anti-reflective layer to pattern the absorbing layer is fabricated and evaluated and used as an etch mask to pattern the second The extreme ultraviolet lithography of the third functional film of the functional film is covered with a blank mask.

以與上文在實例中描述的方式相同的方式來形成第二功能膜,且使用DC磁控管反應濺鍍系統來形成第三功能膜,且第三功能膜是由鉻(Cr)標靶形成。接著,藉由以Ar=8sccm的速率注入製程氣體且施加0.7kW的處理功率來將第三功能膜形成為具有4奈米的厚度。此後,在真空快速熱製程系統中在350℃下對第三功能膜進行表面處理歷時20分鐘,以形成厚度為80奈米的化學增幅型抗蝕劑膜。 Forming a second functional film in the same manner as described above in the examples, and forming a third functional film using a DC magnetron reactive sputtering system, and the third functional film is targeted by chromium (Cr) form. Next, the third functional film was formed to have a thickness of 4 nm by injecting a process gas at a rate of Ar = 8 sccm and applying a processing power of 0.7 kW. Thereafter, the third functional film was subjected to surface treatment at 350 ° C for 20 minutes in a vacuum rapid thermal processing system to form a chemically amplified resist film having a thickness of 80 nm.

接下來,使用50keV書寫機來將已製造的極紫外線微影用空白罩幕曝光至光,且經由曝光後烘烤(PEB)以及顯影而將圖案形成於抗蝕劑膜上。此後,運用含氯(Cl)蝕刻氣體經由抗蝕劑膜的圖案來蝕刻由鉻(Cr)形成的第三功能膜歷時150秒(在考慮到過度蝕刻的情況下的時間)。在此狀況下,量測殘餘抗蝕劑膜的厚度。結果,揭示出,殘餘抗蝕劑膜具有23奈米的厚度,且因此有效地作為蝕刻罩幕。隨後,移除殘餘抗蝕劑膜,且運用蝕刻氣體經由用作蝕刻罩幕的形成有圖案的第三功能膜來蝕刻第二功能膜,蝕刻氣體包含為氟(F)基氣體的SF6氣體。再者,運用含有氯(Cl)的蝕刻氣體來蝕刻由氮化鎳(NiN)形成的吸收層。在此狀況下,亦移除由鉻(Cr)形成的第三功能膜以形成吸收膜的最終圖案。 Next, a 50 keV writing machine was used to expose the manufactured extreme ultraviolet lithography to light with a blank mask, and a pattern was formed on the resist film via post exposure bake (PEB) and development. Thereafter, the third functional film formed of chromium (Cr) was etched through the pattern of the resist film using a chlorine (Cl) etching gas for 150 seconds (in the case of considering excessive etching). In this case, the thickness of the residual resist film was measured. As a result, it was revealed that the residual resist film had a thickness of 23 nm, and thus was effectively used as an etching mask. Subsequently, the residual resist film is removed, and the second functional film is etched using an etching gas via a patterned third functional film serving as an etching mask, the etching gas containing SF 6 gas which is a fluorine (F)-based gas . Further, an absorbing gas formed of nickel nitride (NiN) is etched using an etching gas containing chlorine (Cl). In this case, the third functional film formed of chromium (Cr) is also removed to form the final pattern of the absorbing film.

使用臨界尺寸掃描電子顯微法來量測根據本發明的極紫外線微影用光罩的解析度。結果揭示出同空間圖案被界定為40奈米的深度。接著,在60奈米至1,000奈米的範圍內量測極紫外線微影用光罩的臨界尺寸線性。結果揭示出極紫外線微影用光罩分別在同線圖案、線與空間圖案以及同空間圖案的狀況下具有1.8奈米、2.5奈米以及2.8奈米的高臨界尺寸線性值。 The resolution of the reticle for extreme ultraviolet lithography according to the present invention was measured using a critical dimension scanning electron microscopy. The results revealed that the same spatial pattern was defined as a depth of 40 nm. Next, the critical dimension linearity of the reticle for the extreme ultraviolet lithography was measured in the range of 60 nm to 1,000 nm. As a result, it was revealed that the extreme ultraviolet lithography mask has a high critical dimension linear value of 1.8 nm, 2.5 nm, and 2.8 nm in the same line pattern, line and space pattern, and the same space pattern, respectively.

根據本發明,藉由調整構成吸收膜的金屬與輕元素之間的成分比率,可確保吸收膜的所要光學性質且亦可實現吸收膜的薄化。再者,根據本發明,因為亦可使用相比於吸收膜具有不同蝕刻性質的功能膜作為用於蝕刻吸收膜的蝕刻罩幕來實現抗蝕劑膜的薄化,所以高品質極紫外線微影用光罩在形成次解析度特徵尺寸(SRFS)為14奈米或小於14奈米(尤其是10奈米或小於 10奈米)的圖案後就展示極佳圖案準確度。 According to the present invention, by adjusting the composition ratio between the metal constituting the absorbing film and the light element, the desired optical properties of the absorbing film can be ensured and the thinning of the absorbing film can also be achieved. Furthermore, according to the present invention, since a functional film having different etching properties compared to the absorbing film can also be used as an etching mask for etching the absorbing film to achieve thinning of the resist film, high-quality extreme ultraviolet lithography Use a reticle to form a sub-resolution feature size (SRFS) of 14 nm or less (especially 10 nm or less) The pattern of 10 nm) shows excellent pattern accuracy.

對於本領域中具有知識者而言將應顯而易見,可在不脫離本發明的範疇的情況下對本發明的上述例示性實施例進行各種修改。因此,本發明意欲涵蓋所有此等修改,其限制條件為所有此等修改屬於隨附申請專利範圍以及其等效者的範疇。 It will be apparent to those skilled in the art that various modifications of the above-described exemplary embodiments of the invention can be made without departing from the scope of the invention. Accordingly, the present invention is intended to cover all such modifications, and the scope of the appended claims

300‧‧‧極紫外線微影用空白罩幕 300‧‧‧Very UV lithography with blank mask

302‧‧‧透明基板 302‧‧‧Transparent substrate

304‧‧‧多層反射膜 304‧‧‧Multilayer Reflective Film

306‧‧‧罩蓋膜 306‧‧‧ Cover film

308‧‧‧吸收層 308‧‧‧Absorbent layer

310‧‧‧抗反射層 310‧‧‧Anti-reflective layer

312‧‧‧吸收膜 312‧‧‧Absorbing film

318‧‧‧抗蝕劑膜 318‧‧‧resist film

Claims (18)

一種極紫外線微影用空白罩幕,包括皆順序地堆疊於透明基板上的多層反射膜、罩蓋膜、吸收膜以及抗蝕劑膜,其中所述吸收膜包括鎳(Ni)以及鎳鉭(NiTa)中的至少一者以及選自由氧(O)、氮(N)、碳(C)以及硼(B)組成的群組的至少一輕元素,且所述輕元素對所述鎳(Ni)或所述鎳鉭(NiTa)的成分比率是在99原子%:1原子%至20原子%:80原子%的範圍內。 A blank mask for extreme ultraviolet lithography, comprising a multilayer reflective film, a cover film, an absorption film and a resist film which are sequentially stacked on a transparent substrate, wherein the absorption film comprises nickel (Ni) and nickel ruthenium ( At least one of NiTa) and at least one light element selected from the group consisting of oxygen (O), nitrogen (N), carbon (C), and boron (B), and the light element is opposite to the nickel (Ni Or the composition ratio of the nickel lanthanum (NiTa) is in the range of 99 atom%: 1 atom% to 20 atom%: 80 atom%. 一種極紫外線微影用空白罩幕,包括皆順序地堆疊於透明基板上的反射膜、罩蓋膜、吸收膜、第一功能膜以及抗蝕劑膜,其中所述吸收膜包括鎳(Ni)以及鎳鉭(NiTa)中的至少一者以及選自由氧(O)、氮(N)、碳(C)以及硼(B)組成的群組的至少一輕元素,所述輕元素對所述鎳(Ni)或所述鎳鉭(NiTa)的成分比率是在99原子%:1原子%至20原子%:80原子%的範圍內,且所述第一功能膜作為用於圖案化所述吸收膜的蝕刻罩幕。 A blank mask for extreme ultraviolet lithography, comprising a reflective film, a cover film, an absorption film, a first functional film and a resist film which are sequentially stacked on a transparent substrate, wherein the absorption film comprises nickel (Ni) And at least one of nickel lanthanum (NiTa) and at least one light element selected from the group consisting of oxygen (O), nitrogen (N), carbon (C), and boron (B), said light element A composition ratio of nickel (Ni) or the nickel lanthanum (NiTa) is in a range of 99 at%: 1 at% to 20 at%: 80 at%, and the first functional film is used as a pattern for patterning An etch mask for the absorbing film. 如申請專利範圍第2項所述的極紫外線微影用空白罩幕,其中所述第一功能膜包括選自由鉻(Cr)、鉭(Ta)、鉬(Mo)以及矽(Si)組成的群組的至少一材料,或除了包括所述材料以外更包括選自由氧(O)、氮(N)、碳(C)、硼(B)以及氫(H)組成的群組的至少一輕元素,且所述輕元素對所述材料的成分比率是在100原子%:0原子%至20原子%:80原子%的範圍內。 The blank mask for extreme ultraviolet lithography according to claim 2, wherein the first functional film comprises a layer selected from the group consisting of chromium (Cr), tantalum (Ta), molybdenum (Mo), and bismuth (Si). At least one material of the group, or in addition to the material, at least one light selected from the group consisting of oxygen (O), nitrogen (N), carbon (C), boron (B), and hydrogen (H) An element, and the composition ratio of the light element to the material is in the range of 100 atom%: 0 atom% to 20 atom%: 80 atom%. 如申請專利範圍第2項所述的極紫外線微影用空白罩幕,其中所述第一功能膜具有1奈米至10奈米的厚度。 The blank mask for extreme ultraviolet lithography according to claim 2, wherein the first functional film has a thickness of from 1 nm to 10 nm. 一種極紫外線微影用空白罩幕,包括皆順序地堆疊於透明基板上的反射膜、罩蓋膜、包含吸收層以及第二功能膜的吸收膜,以及抗蝕劑膜,其中所述吸收層包括鎳(Ni)以及鎳鉭(NiTa)中的至少一者以及選自由氧(O)、氮(N)、碳(C)以及硼(B)組成的群組的至少一輕元素,所述輕元素對所述鎳(Ni)或所述鎳鉭(NiTa)的成分比率是在99原子%:1原子%至20原子%:80原子%的範圍內,且所述第二功能膜作為經配置以圖案化所述吸收層的蝕刻罩幕,且在所述第二功能膜保留於所述吸收層上時作為抗反射層。 A blank mask for extreme ultraviolet lithography, comprising a reflective film sequentially stacked on a transparent substrate, a cover film, an absorption film including an absorption layer and a second functional film, and a resist film, wherein the absorption layer At least one of nickel (Ni) and nickel lanthanum (NiTa) and at least one light element selected from the group consisting of oxygen (O), nitrogen (N), carbon (C), and boron (B), The composition ratio of the light element to the nickel (Ni) or the nickel lanthanum (NiTa) is in the range of 99 atom%: 1 atom% to 20 atom%: 80 atom%, and the second functional film acts as a An etch mask configured to pattern the absorbing layer and as an anti-reflective layer when the second functional film remains on the absorbing layer. 如申請專利範圍第5項所述的極紫外線微影用空白罩幕,其中所述吸收膜以及所述第二功能膜具有30奈米至70奈米的堆疊厚度。 The blank mask for extreme ultraviolet lithography according to claim 5, wherein the absorbing film and the second functional film have a stack thickness of 30 nm to 70 nm. 一種極紫外線微影用空白罩幕,包括皆順序地堆疊於透明基板上的反射膜、罩蓋膜、包含吸收層以及第二功能膜的吸收膜、第三功能膜,以及抗蝕劑膜,其中所述吸收層包括鎳(Ni)以及鎳鉭(NiTa)中的至少一者以及選自由氧(O)、氮(N)、碳(C)以及硼(B)組成的群組的至少一輕元素,所述輕元素對所述鎳(Ni)或所述鎳鉭(NiTa)的成分比率是在99原子%:1原子%至20原子%:80原子%的範圍內,所述第二功能膜作為經配置以圖案化所述吸收層的蝕刻罩幕,且在所述第二功能膜保留於所述吸收層上時作為抗反射層,且 所述第三功能膜作為經配置以圖案化所述第二功能膜的蝕刻罩幕。 A blank mask for extreme ultraviolet lithography, comprising a reflective film, a cover film, an absorbing film comprising an absorbing layer and a second functional film, a third functional film, and a resist film, which are sequentially stacked on a transparent substrate, Wherein the absorption layer comprises at least one of nickel (Ni) and nickel lanthanum (NiTa) and at least one selected from the group consisting of oxygen (O), nitrogen (N), carbon (C), and boron (B) a light element having a composition ratio of the nickel (Ni) or the nickel niobium (NiTa) in a range of 99 atom%: 1 atom% to 20 atom%: 80 atom%, the second The functional film acts as an etch mask configured to pattern the absorbing layer and as an anti-reflective layer when the second functional film remains on the absorbing layer, and The third functional film acts as an etch mask configured to pattern the second functional film. 如申請專利範圍第5項或第7項所述的極紫外線微影用空白罩幕,其中當所述吸收層被形成為包括所述鎳鉭(NiTa)時,鎳鉭(NiTa)標靶的成分比率是在Ni:Ta=5原子%至95原子%:95原子%至5原子%的範圍內。 A blank mask for extreme ultraviolet lithography as described in claim 5 or 7, wherein the nickel iridium (NiTa) target is used when the absorbing layer is formed to include the nickel lanthanum (NiTa) The composition ratio is in the range of Ni:Ta = 5 at% to 95 at%: 95 at% to 5 at%. 如申請專利範圍第5項或第7項所述的極紫外線微影用空白罩幕,其中所述第二功能膜包括選自由鉻(Cr)、鉭(Ta)、鉬(Mo)以及矽(Si)組成的群組的至少一材料,或除了包括所述材料以外更包括選自由氧(O)、氮(N)、碳(C)、硼(B)以及氫(H)組成的群組的至少一輕元素,且所述輕元素對所述材料的成分比率是在100原子%:0原子%至20原子%:80原子%的範圍內。 The blank mask for extreme ultraviolet lithography according to claim 5 or 7, wherein the second functional film comprises a layer selected from the group consisting of chromium (Cr), tantalum (Ta), molybdenum (Mo), and tantalum ( At least one material of the group consisting of, or comprising, in addition to the material, a group selected from the group consisting of oxygen (O), nitrogen (N), carbon (C), boron (B), and hydrogen (H) At least one light element, and the composition ratio of the light element to the material is in the range of 100 atom%: 0 atom% to 20 atom%: 80 atom%. 如申請專利範圍第7項所述的極紫外線微影用空白罩幕,其中所述第三功能膜具有1奈米至10奈米的厚度。 The blank mask for extreme ultraviolet lithography according to claim 7, wherein the third functional film has a thickness of from 1 nm to 10 nm. 如申請專利範圍第5項或第7項所述的極紫外線微影用空白罩幕,其中所述第二功能膜具有5奈米至20奈米的厚度。 The blank mask for extreme ultraviolet lithography according to claim 5 or 7, wherein the second functional film has a thickness of 5 nm to 20 nm. 如申請專利範圍第1、2、5以及7項中任一項所述的極紫外線微影用空白罩幕,其中所述吸收膜相對於波長為13.5奈米的極紫外線曝光光線具有小於10%的反射率。 The blank mask for extreme ultraviolet lithography according to any one of claims 1, 2, 5, and 7, wherein the absorbing film has less than 10% with respect to extreme ultraviolet exposure light having a wavelength of 13.5 nm. Reflectivity. 如申請專利範圍第1、2、5以及7項中任一項所述的極紫外線微影用空白罩幕,其中所述吸收膜在193奈米的檢測波長下具有小於30%的反射率。 The blank mask for extreme ultraviolet lithography according to any one of claims 1, 2, 5, and 7, wherein the absorbing film has a reflectance of less than 30% at a detection wavelength of 193 nm. 如申請專利範圍第7項所述的極紫外線微影用空白罩幕,其中所述第三功能膜包括鉻(Cr),或除了包括所述鉻(Cr) 以外更包括選自由氧(O)、氮(N)、碳(C)、硼(B)以及氫(H)組成的群組的至少一輕元素,且所述輕元素對所述鉻的成分比率是在100原子%:0原子%至20原子%:80原子%的範圍內。 The blank mask for extreme ultraviolet lithography according to claim 7, wherein the third functional film comprises chromium (Cr), or in addition to the chromium (Cr) Further comprising at least one light element selected from the group consisting of oxygen (O), nitrogen (N), carbon (C), boron (B), and hydrogen (H), and the composition of the light element to the chromium The ratio is in the range of 100 atom%: 0 atom% to 20 atom%: 80 atom%. 如申請專利範圍第1、2、5以及7項中任一項所述的極紫外線微影用空白罩幕,更包括配置於所述罩蓋膜與所述吸收膜之間的緩衝膜。 The blank mask for extreme ultraviolet lithography according to any one of claims 1, 2, 5, and 7, further comprising a buffer film disposed between the cover film and the absorbing film. 如申請專利範圍第1、2、5以及7項中任一項所述的極紫外線微影用空白罩幕,更包括提供於所述透明基板的後表面中的導電膜。 The blank mask for extreme ultraviolet lithography according to any one of claims 1, 2, 5 and 7, further comprising a conductive film provided in a rear surface of the transparent substrate. 如申請專利範圍第1、2、5以及7項中任一項所述的極紫外線微影用空白罩幕,更包括配置於所述抗蝕劑膜與安置於所述抗蝕劑膜下方的膜之間的含矽高分子化合物。 The blank mask for extreme ultraviolet lithography according to any one of claims 1, 2, 5, and 7, further comprising: disposed on the resist film and disposed under the resist film A bismuth-containing polymer compound between the membranes. 一種光罩,是藉由在如申請專利範圍第1、2、5以及7項中任一項所述的極紫外線微影用空白罩幕上形成圖案而獲得。 A reticle is obtained by forming a pattern on a blank mask for extreme ultraviolet lithography as described in any one of claims 1, 2, 5 and 7.
TW103110205A 2013-11-15 2014-03-19 Blankmask for extreme ultra-violet lithography and photomask using the same TWI579639B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20130138710 2013-11-15
KR20140001987 2014-01-07
KR1020140026715A KR101567057B1 (en) 2013-11-15 2014-03-06 Blankmask for Extreme Ultra-Violet Lithography and Photomask using the same

Publications (2)

Publication Number Publication Date
TW201518855A TW201518855A (en) 2015-05-16
TWI579639B true TWI579639B (en) 2017-04-21

Family

ID=53391749

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103110205A TWI579639B (en) 2013-11-15 2014-03-19 Blankmask for extreme ultra-violet lithography and photomask using the same

Country Status (2)

Country Link
KR (1) KR101567057B1 (en)
TW (1) TWI579639B (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101772943B1 (en) * 2015-08-17 2017-09-12 주식회사 에스앤에스텍 Blankmask for Extreme Ultra-Violet Lithography and Photomask using the same
JP6862703B2 (en) * 2016-07-21 2021-04-21 凸版印刷株式会社 Manufacturing method of reflective mask and reflective mask
TWI774375B (en) 2016-07-27 2022-08-11 美商應用材料股份有限公司 Extreme ultraviolet mask blank with multilayer absorber and method of manufacture
TWI763686B (en) * 2016-07-27 2022-05-11 美商應用材料股份有限公司 Extreme ultraviolet mask blank with alloy absorber, method of manufacturing extreme ultraviolet mask blank, and extreme ultraviolet mask blank production system
WO2018074512A1 (en) * 2016-10-21 2018-04-26 Hoya株式会社 Reflective mask blank, reflective mask production method, and semiconductor device production method
JP7082606B2 (en) * 2017-03-02 2022-06-08 Hoya株式会社 Reflective mask blank, reflective mask and its manufacturing method, and semiconductor device manufacturing method
EP3454119B1 (en) 2017-09-09 2023-12-27 IMEC vzw Euv absorbing alloys
US10802393B2 (en) * 2017-10-16 2020-10-13 Globalfoundries Inc. Extreme ultraviolet (EUV) lithography mask
TWI835896B (en) * 2018-10-26 2024-03-21 美商應用材料股份有限公司 Extreme ultraviolet mask with backside coating
TW202026770A (en) 2018-10-26 2020-07-16 美商應用材料股份有限公司 Ta-cu alloy material for extreme ultraviolet mask absorber
TWI845579B (en) 2018-12-21 2024-06-21 美商應用材料股份有限公司 Extreme ultraviolet mask absorber and processes for manufacture
TW202035792A (en) 2019-01-31 2020-10-01 美商應用材料股份有限公司 Extreme ultraviolet mask absorber materials
TWI828843B (en) 2019-01-31 2024-01-11 美商應用材料股份有限公司 Extreme ultraviolet (euv) mask blanks and methods of manufacturing the same
US11249390B2 (en) 2019-01-31 2022-02-15 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
JP7313166B2 (en) * 2019-03-18 2023-07-24 Hoya株式会社 Mask blank, method for manufacturing transfer mask, and method for manufacturing semiconductor device
TW202104667A (en) 2019-05-22 2021-02-01 美商應用材料股份有限公司 Extreme ultraviolet mask absorber materials
TW202104617A (en) * 2019-05-22 2021-02-01 美商應用材料股份有限公司 Extreme ultraviolet mask absorber materials
TWI836073B (en) 2019-05-22 2024-03-21 美商應用材料股份有限公司 Extreme ultraviolet (euv) mask blank and method of manufacturing the same
TW202104666A (en) 2019-05-22 2021-02-01 美商應用材料股份有限公司 Extreme ultraviolet mask absorber materials
TWI845677B (en) 2019-05-22 2024-06-21 美商應用材料股份有限公司 Extreme ultraviolet mask absorber materials
TWI836072B (en) 2019-05-22 2024-03-21 美商應用材料股份有限公司 Extreme ultraviolet mask with embedded absorber layer
US11385536B2 (en) 2019-08-08 2022-07-12 Applied Materials, Inc. EUV mask blanks and methods of manufacture
KR102511751B1 (en) * 2019-11-05 2023-03-21 주식회사 에스앤에스텍 Blankmask and Photomask for Extreme Ultra-Violet Lithography
KR102285099B1 (en) * 2020-01-08 2021-08-04 주식회사 에스앤에스텍 Reflective type Blankmask and Photomask for EUV
US11630385B2 (en) 2020-01-24 2023-04-18 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
TW202129401A (en) 2020-01-27 2021-08-01 美商應用材料股份有限公司 Extreme ultraviolet mask blank hard mask materials
TW202131087A (en) 2020-01-27 2021-08-16 美商應用材料股份有限公司 Extreme ultraviolet mask absorber materials
TWI817073B (en) * 2020-01-27 2023-10-01 美商應用材料股份有限公司 Extreme ultraviolet mask blank hard mask materials
TW202141165A (en) * 2020-03-27 2021-11-01 美商應用材料股份有限公司 Extreme ultraviolet mask absorber materials
TWI836207B (en) 2020-04-17 2024-03-21 美商應用材料股份有限公司 Extreme ultraviolet mask absorber materials
US11300871B2 (en) 2020-04-29 2022-04-12 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
US11294271B2 (en) * 2020-04-30 2022-04-05 Taiwan Semiconductor Manufacturing Co., Ltd. Mask for extreme ultraviolet photolithography
TW202202641A (en) 2020-07-13 2022-01-16 美商應用材料股份有限公司 Extreme ultraviolet mask absorber materials
KR102525928B1 (en) * 2020-09-02 2023-04-28 주식회사 에스앤에스텍 Reflective type Blankmask for EUV, and Method for manufacturing the same
US11609490B2 (en) 2020-10-06 2023-03-21 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
US11513437B2 (en) 2021-01-11 2022-11-29 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
US11592738B2 (en) 2021-01-28 2023-02-28 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
WO2024204068A1 (en) * 2023-03-31 2024-10-03 Agc株式会社 Reflective mask blank, method for producing reflective mask blank, reflective mask, and method for producing reflective mask

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008095663A1 (en) * 2007-02-05 2008-08-14 Carl Zeiss Smt Ag Multilayer reflective optical element for euv lithography devices comprising first and second additional intermediate layers
WO2010007955A1 (en) * 2008-07-14 2010-01-21 旭硝子株式会社 Reflective mask blank for euv lithography and reflective mask for euv lithography
TWI379354B (en) * 2006-09-15 2012-12-11 Applied Materials Inc Method of etching extreme ultraviolet light(euv) photomasks
TW201321888A (en) * 2011-09-28 2013-06-01 Toppan Printing Co Ltd Reflective mask blank for exposure and reflective mask for exposure
TW201344342A (en) * 2012-02-10 2013-11-01 Hoya Corp Substrate having multilayer reflection film, reflective mask blank, mask blank, method for manufacturing same, reflective mask, and mask
TW201344371A (en) * 2012-04-20 2013-11-01 Taiwan Semiconductor Mfg Mask, extreme ultraviolet mask and method for fabricating the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5381441B2 (en) 2009-07-16 2014-01-08 旭硝子株式会社 Method for manufacturing a reflective mask blank for EUV lithography

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI379354B (en) * 2006-09-15 2012-12-11 Applied Materials Inc Method of etching extreme ultraviolet light(euv) photomasks
WO2008095663A1 (en) * 2007-02-05 2008-08-14 Carl Zeiss Smt Ag Multilayer reflective optical element for euv lithography devices comprising first and second additional intermediate layers
WO2010007955A1 (en) * 2008-07-14 2010-01-21 旭硝子株式会社 Reflective mask blank for euv lithography and reflective mask for euv lithography
TW201321888A (en) * 2011-09-28 2013-06-01 Toppan Printing Co Ltd Reflective mask blank for exposure and reflective mask for exposure
TW201344342A (en) * 2012-02-10 2013-11-01 Hoya Corp Substrate having multilayer reflection film, reflective mask blank, mask blank, method for manufacturing same, reflective mask, and mask
TW201344371A (en) * 2012-04-20 2013-11-01 Taiwan Semiconductor Mfg Mask, extreme ultraviolet mask and method for fabricating the same

Also Published As

Publication number Publication date
KR101567057B1 (en) 2015-11-09
KR20150056435A (en) 2015-05-26
TW201518855A (en) 2015-05-16

Similar Documents

Publication Publication Date Title
TWI579639B (en) Blankmask for extreme ultra-violet lithography and photomask using the same
JP7047046B2 (en) A method for manufacturing a mask blank substrate, a substrate with a multilayer reflective film, a reflective mask blank and a reflective mask, and a semiconductor device.
TWI620977B (en) Blankmask for extreme ultra-violet lithography and photomask using the same
TWI810176B (en) Reflective photomask substrate, reflective photomask and manufacturing method thereof, and semiconductor device manufacturing method
US10347485B2 (en) Reflective mask blank, method for manufacturing same, reflective mask, method for manufacturing same, and method for manufacturing semiconductor device
TWI657481B (en) Substrate with multilayer reflective film, reflective reticle substrate for EUV lithography, reflective reticle for EUV lithography, method of manufacturing the same, and method of manufacturing semiconductor device
TWI638223B (en) Substrate with multilayer reflective film, reflective reticle substrate for EUV lithography, reflective reticle for EUV lithography, method of manufacturing the same, and method of manufacturing semiconductor device
TW201827916A (en) Reflective mask blank, reflective mask production method, and semiconductor device production method
US11256167B2 (en) Substrate with a multilayer reflective film, reflective mask blank, reflective mask, and semiconductor device manufacturing method
TW202205004A (en) Multilayer-reflective-film-equipped substrate, reflective mask blank, reflective mask, and method for producing semiconductor device
JP6425951B2 (en) Reflective mask blank and method of manufacturing the same, method of manufacturing a reflective mask, and method of manufacturing a semiconductor device
US11467485B2 (en) Blankmask and photomask for extreme ultraviolet lithography
TW202038001A (en) Reflective mask blank, reflective mask, method for producing same, and method for producing semiconductor device
TW202117439A (en) Substrate having multilayer reflective film, reflective mask blank, reflective mask, and method for producing semiconductor device
KR20160016098A (en) Blankmask for Extreme Ultra-Violet Lithography and Photomask using the same
JP2022159362A (en) Substrate with multilayer reflective film, reflective type mask blank and reflective type mask, and method for manufacturing semiconductor device
TW202240277A (en) Multilayer reflective film-equipped substrate, reflective mask blank, reflective mask, and method for producing semiconductor device
KR101615890B1 (en) Blankmask for Extreme Ultra-Violet Lithography and Photomask using the same
CN111752085A (en) Substrate with multilayer reflective film, reflective mask blank, reflective mask, and method for manufacturing semiconductor device
KR20190129661A (en) Blankmask and Photomask for Extreme Ultra-Violet Lithography and method for fabricating of the same
KR20210022479A (en) Blankmask for EUV, and Photomask manufactured with the same
TW202122907A (en) Substrate with electroconductive film, reflective mask blank, reflective mask, and method for producing semiconductor device