WO2024053634A1 - Reflective mask blank, reflective mask, reflective mask blank manufacturing method, and reflective mask manufacturing method - Google Patents

Reflective mask blank, reflective mask, reflective mask blank manufacturing method, and reflective mask manufacturing method Download PDF

Info

Publication number
WO2024053634A1
WO2024053634A1 PCT/JP2023/032335 JP2023032335W WO2024053634A1 WO 2024053634 A1 WO2024053634 A1 WO 2024053634A1 JP 2023032335 W JP2023032335 W JP 2023032335W WO 2024053634 A1 WO2024053634 A1 WO 2024053634A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
phase shift
reflective mask
mask blank
reflective
Prior art date
Application number
PCT/JP2023/032335
Other languages
French (fr)
Japanese (ja)
Inventor
大二郎 赤木
健 岡東
啓明 岩岡
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2024053634A1 publication Critical patent/WO2024053634A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof

Definitions

  • the present disclosure relates to a reflective mask blank, a reflective mask, a method for manufacturing a reflective mask blank, and a method for manufacturing a reflective mask.
  • EUVL EUV lithography
  • EUV includes soft X-rays and vacuum ultraviolet rays, and specifically refers to light with a wavelength of about 0.2 nm to 100 nm.
  • EUV with a wavelength of about 13.5 nm is mainly being considered.
  • a reflective mask is used in EUV lithography.
  • a reflective mask is known to have a structure including a substrate such as a glass substrate, a multilayer reflective film that reflects EUV light, a protective film that protects the multilayer reflective film, and an absorption film that absorbs EUV light in this order. It is being An opening pattern is formed in the absorption film by etching or the like, and the opening pattern is transferred to a target substrate such as a semiconductor substrate.
  • the absorption film may be a phase shift film that shifts EUV light.
  • Patent Document 1 discloses a reflective mask blank equipped with an absorption film mainly composed of chromium (Cr)
  • Patent Document 2 discloses a reflective mask blank equipped with an absorption film mainly composed of tantalum (Ta). Blanks are listed.
  • an object of one embodiment of the present disclosure is to provide a configuration including a phase shift film that can transfer a high-contrast pattern to a target substrate and has excellent processability.
  • a reflective mask blank includes: A reflective mask blank comprising, in this order, a substrate, a multilayer reflective film that reflects EUV light, a protective film that protects the multilayer reflective film, and a phase shift film that shifts the phase of the EUV light.
  • the phase shift film is made of an Os-based material containing 35 atomic % or more of Os, and has a refractive index n of 0.940 or less and an extinction coefficient k of 0.025 or more with respect to the EUV light. mold mask blank.
  • FIG. 1 is a cross-sectional view showing a reflective mask blank according to one embodiment.
  • FIG. 1 is a cross-sectional view showing a reflective mask according to one embodiment.
  • 3 is a cross-sectional view showing an example of EUV light reflected by the reflective mask of FIG. 2.
  • FIG. It is a figure showing an example of a refractive index and an extinction coefficient of each substance.
  • 1 is a flowchart illustrating a method for manufacturing a reflective mask blank according to an embodiment.
  • 1 is a flowchart illustrating a method for manufacturing a reflective mask according to an embodiment.
  • the X-axis direction, the Y-axis direction, and the Z-axis direction are directions that are orthogonal to each other.
  • the Z-axis direction is a direction perpendicular to the upper surface 10a of the substrate 10.
  • the X-axis direction is a direction perpendicular to the incident plane of EUV light (the plane including the incident light beam and the reflected light beam).
  • the more the incident ray goes in the negative direction of the Z-axis the more it tilts in the positive direction of the Y-axis, and the more the reflected ray goes in the positive direction of the Z-axis, the more it tilts in the positive direction of the Y-axis. do.
  • the reflective mask blank 1 includes at least a substrate 10, a multilayer reflective film 11, a protective film 12, a phase shift film 13, and an etching mask film 14 in this order from bottom to top.
  • the reflective mask blank 1 may further include a functional film not shown in FIG.
  • the reflective mask blank 1 may have a conductive film on the lower side.
  • the conductive film may be formed on the bottom surface 10b of the substrate 10, which is the surface opposite to the top surface 10a. The conductive film is used, for example, to attract the reflective mask 2 to an electrostatic chuck of an exposure device.
  • the reflective mask blank 1 may have a buffer film between the protective film 12 and the phase shift film 13.
  • the buffer film protects the protective film 12 from the etching gas that forms the opening pattern 13a in the phase shift film 13.
  • the buffer film is etched more slowly than the phase shift film 13.
  • the buffer film ultimately has the same opening pattern as the opening pattern 13a of the phase shift film 13.
  • the reflective mask 2 includes, for example, the phase shift film 13 in the reflective mask blank 1 shown in FIG. 1, in which an opening pattern 13a corresponding to a desired semiconductor device pattern is formed. Note that the etching mask film 14 shown in FIG. 1 is removed after the opening pattern 13a is formed in the phase shift film 13. In EUVL, the opening pattern 13a of the phase shift film 13 is transferred to a target substrate such as a semiconductor substrate. Transferring includes reducing and transferring.
  • the substrate 10, multilayer reflective film 11, protective film 12, phase shift film 13, and etching mask film 14 will be explained.
  • the substrate 10 is, for example, a glass substrate.
  • the material of the substrate 10 is preferably silica glass containing TiO 2 .
  • Quartz glass has a smaller coefficient of linear expansion and less dimensional change due to temperature changes than common soda lime glass.
  • the quartz glass may contain 80% to 95% by weight of SiO 2 and 4% to 17% by weight of TiO 2 . When the TiO 2 content is 4% by mass to 17% by mass, the coefficient of linear expansion near room temperature is approximately zero, and almost no dimensional change occurs near room temperature.
  • the quartz glass may contain a third component or impurity other than SiO 2 and TiO 2 . Note that the material of the substrate 10 may be crystallized glass with ⁇ -quartz solid solution precipitated thereon, silicon, metal, or the like.
  • the multilayer reflective film 11 and the like are formed on the upper surface 10a of the substrate 10.
  • the size of the substrate 10 in plan view is, for example, 152 mm in length and 152 mm in width.
  • the vertical dimension and the horizontal dimension may be 152 mm or more.
  • the upper surface 10a and the lower surface 10b of the substrate 10 each have, for example, a quality assurance area in the center.
  • the size of the quality assurance area is, for example, 142 mm in length and 142 mm in width.
  • the quality assurance area of the upper surface 10a preferably has a root mean square roughness Rq of 0.15 nm or less and a flatness of 100 nm or less. Moreover, it is preferable that the quality assurance area of the upper surface 10a does not have defects that cause phase defects.
  • the multilayer reflective film 11 is a film that reflects EUV light, and is, for example, a film in which high refractive index layers and low refractive index layers are alternately laminated.
  • the material of the high refractive index layer is, for example, silicon (Si), and the material of the low refractive index layer is, for example, molybdenum (Mo). Therefore, a Mo/Si multilayer reflective film can be used as the multilayer reflective film.
  • Ru/Si multilayer reflective film Mo/Be multilayer reflective film, Mo compound/Si compound multilayer reflective film, Si/Mo/Ru multilayer reflective film, Si/Mo/Ru/Mo multilayer reflective film, Si/Ru/Mo /Ru multilayer reflective film, Si/Ru/Mo multilayer reflective film, etc. can also be used as the multilayer reflective film 11.
  • each layer constituting the multilayer reflective film 11 and the number of repeating units in the layer can be appropriately selected depending on the material of each layer and the reflectance to EUV light.
  • the thickness must be 2.3 ⁇ to achieve a reflectance of 60% or more for EUV light with an incident angle ⁇ (FIG. 3) of 6°.
  • a 0.1 nm Mo layer and a 4.5 ⁇ 0.1 nm thick Si layer may be laminated so that the number of repeating units is 30 or more and 60 or less.
  • the multilayer reflective film 11 preferably has a reflectance of 60% or more for EUV light with an incident angle ⁇ of 6°. The reflectance is more preferably 65% or more.
  • the method for forming each layer constituting the multilayer reflective film 11 is, for example, a DC sputtering method, a magnetron sputtering method, or an ion beam sputtering method.
  • a Mo/Si multilayer reflective film using the ion beam sputtering method an example of the film forming conditions for each of the Mo layer and the Si layer is as follows.
  • Si Sputter gas Ar Gas pressure: 1.3 ⁇ 10 -2 Pa to 2.7 ⁇ 10 -2 Pa Ion acceleration voltage: 300V to 1500V Film formation rate: 0.030nm/sec to 0.300nm/sec Thickness of Si layer: 4.5 ⁇ 0.1nm ⁇ Mo layer deposition conditions>
  • Mo Sputter gas Ar Gas pressure: 1.3 ⁇ 10 -2 Pa to 2.7 ⁇ 10 -2 Pa Ion acceleration voltage: 300V to 1500V Film formation rate: 0.030nm/sec to 0.300nm/sec Mo layer thickness: 2.3 ⁇ 0.1nm ⁇ Repeating unit of Si layer and Mo layer> Number of repeating units: 30-60 (preferably 40-50).
  • the protective film 12 is a film that is formed between the multilayer reflective film 11 and the phase shift film 13 and has the function of protecting the multilayer reflective film 11.
  • the protective film 12 protects the multilayer reflective film 11 from the etching gas that forms the opening pattern 13a (FIGS. 2 and 3) in the phase shift film 13. Further, the protective film 12 is not removed during manufacturing of the reflective mask 2, but remains on the multilayer reflective film 11.
  • the protective film 12 does not prevent reflection of EUV light by the multilayer reflective film 11, or minimizes a decrease in reflectance.
  • the material constituting the protective film 12 is not particularly limited, it is preferable that the protective film contains at least one element selected from, for example, Ru, Rh, and Si.
  • the protective film 12 may contain only Rh, or it may contain an Rh compound.
  • the Rh compound may contain at least one element selected from the group consisting of Ru, Nb, Mo, Ta, Ir, Pd, Zr, Y, and Ti.
  • the Rh compound may contain at least one element selected from the group consisting of N, O, C, and B. These elements reduce the resistance of the protective film 12 to the first etching gas, but on the other hand, they improve the smoothness of the protective film 12 by reducing the crystallinity of the protective film 12.
  • the Rh compound has an amorphous structure or a microcrystalline structure, the X-ray diffraction profile of the Rh compound does not have a clear peak.
  • the protective film 12 is a single layer film in this embodiment, it may be a multilayer film having a lower layer and an upper layer.
  • the lower layer of the protective film 12 is a layer formed in contact with the uppermost surface of the multilayer reflective film 11.
  • the upper layer of the protective film 12 is in contact with the lowermost surface of the phase shift film 13.
  • the upper layer of the protective film 12 preferably contains at least one element selected from Ru and Rh, more preferably contains Rh, and even more preferably contains an Rh compound.
  • the lower layer of the protective film 12 preferably contains at least one element selected from Ru, Rh, Nb, Mo, Zr, Y, and Si, and more preferably contains Ru. Further, the lower layer of the protective film 12 preferably contains at least one element selected from C, N, and B in addition to the above-mentioned at least one element in order to suppress the crystallinity of the protective film 12.
  • the thickness of the protective film 12 described below means the total film thickness of the multilayer film. Note that a mixing layer formed by mixing components contained in the multilayer reflective film 11 and components contained in the lower layer of the protective film 12 may be formed between the multilayer reflective film 11 and the lower layer of the protective film 12.
  • the thickness of the protective film 12 is preferably 1.0 nm to 4.0 nm, more preferably 2.0 nm to 3.5 nm, and even more preferably 2.5 nm to 3.0 nm. If the thickness of the protective film 12 is 1.0 nm or more, the etching resistance is good. Further, when the thickness of the protective film 12 is 4.0 nm or less, the reflectance for EUV light is good.
  • the density of the protective film 12 is preferably 10.0 g/cm 3 to 14.0 g/cm 3 . If the density of the protective film 12 is 10.0 g/cm 3 or more, the etching resistance is good. Further, if the density of the protective film 12 is 14.0 g/cm 3 or less, a decrease in reflectance to EUV light can be suppressed.
  • a method for forming the protective film 12 is, for example, a DC sputtering method, a magnetron sputtering method, or an ion beam sputtering method.
  • a Rh film formation conditions is as follows.
  • Rh Sputter gas Ar Gas pressure: 1.0 ⁇ 10 ⁇ 2 Pa to 1.0 ⁇ 10 0 Pa
  • N 2 gas or a mixed gas of Ar gas and N 2 may be used as the sputtering gas.
  • the volume ratio (N 2 /(Ar+N 2 )) of N 2 gas in the sputtering gas is 0.05 or more and 1.0 or less.
  • the phase shift film 13 is a film on which an opening pattern 13a (FIGS. 2 and 3) is formed.
  • the opening pattern 13a is not formed in the manufacturing process of the reflective mask blank 1, but is formed in the manufacturing process of the reflective mask 2.
  • the phase shift film 13 not only absorbs EUV light but also shifts the phase of the EUV light. For example, the phase shift film shifts the phase of the second EUV light L2 with respect to the first EUV light L1 shown in FIG.
  • the first EUV light L1 is light that passes through the opening pattern 13a without passing through the phase shift film 13, is reflected by the multilayer reflective film 11, and passes through the opening pattern 13a again without passing through the phase shift film 13.
  • the second EUV light L2 is light that is transmitted through the phase shift film 13 while being absorbed by the phase shift film 13, reflected by the multilayer reflective film 11, and transmitted through the phase shift film 13 while being absorbed by the phase shift film 13 again.
  • the phase difference ( ⁇ 0) between the first EUV light L1 and the second EUV light L2 is, for example, 170° to 250°.
  • the phase of the first EUV light L1 may lead or lag the phase of the second EUV light L2.
  • the phase shift film 13 improves the contrast of the transferred image by utilizing interference between the first EUV light L1 and the second EUV light L2.
  • the transferred image is an image obtained by transferring the opening pattern 13a of the phase shift film 13 onto the target substrate.
  • the shadowing effect is caused by the fact that the incident angle ⁇ of the EUV light is not 0° (for example, 6°), and a region is created near the sidewall of the aperture pattern 13a where the sidewall blocks the EUV light, resulting in a transferred image. This refers to the occurrence of positional or dimensional deviations.
  • it is effective to reduce the height of the side wall of the opening pattern 13a, and it is effective to reduce the thickness of the phase shift film 13.
  • the thickness of the phase shift film 13 is, for example, 60 nm or less, preferably 50 nm or less, in order to reduce the shadowing effect.
  • the thickness of the phase shift film 13 is preferably 20 nm or more, more preferably 30 nm or more in order to ensure a phase difference between the first EUV light L1 and the second EUV light L2.
  • the phase shift film 13 is made of an Os-based material containing 35 atomic % or more of Os.
  • Os is a material with a small refractive index n and a large extinction coefficient k (FIG. 4)
  • the refractive index n of the phase shift film 13 can be reduced and eliminated.
  • the attenuation coefficient k can be increased. This increases the difference between the reflectance of EUV light on the phase shift film 13 and the reflectance from the underlying multilayer reflective film 11 (or from the lower layer including the protective film 12 if the protective film 12 is included).
  • the contrast of the transferred pattern can be improved. Further, since the phase shift film 13 can be made thinner while ensuring a desired phase difference, the above-mentioned shadowing effect is reduced. Therefore, the edges of the optical image pattern to be transferred are not blurred, and high contrast can be obtained even at the edges.
  • the phase shift film 13 made of an Os-based material containing 35 atomic % or more of Os has excellent optical properties similar to Os (the refractive index n is It is easier to process by etching etc. (high processability) compared to other materials such as Ir and Pd (having a small extinction coefficient k and a large extinction coefficient k). Therefore, the phase shift film 13 in this embodiment can be patterned more quickly and with high precision.
  • the content of Os in the phase shift film 13 is preferably such that osmium (Os) is the main component.
  • containing a predetermined element as a main component refers to containing the predetermined element in an amount of 51 atomic % or more. That is, the phase shift film 13 made of an Os-based material containing Os as a main component contains Os at 51 atomic % to 100 atomic %.
  • the content of Os in the phase shift film 13 may be more preferably 60 atomic % or more, still more preferably 70 atomic % or more, and particularly preferably 80 atomic % or more.
  • the etching gas for forming the opening pattern 13a in the phase shift film 13 may be, for example, an oxygen-based gas, a halogen-based gas, or a mixed gas thereof.
  • oxygen-based gas include O 2 gas, O 3 gas, CO 2 gas, NO 2 gas, SO 2 gas, H 2 O gas, or a mixed gas thereof.
  • halogen gas include chlorine gas and fluorine gas.
  • the chlorine-based gas is, for example, Cl 2 gas, SiCl 4 gas, CHCl 3 gas, CCl 4 gas, BCl 3 gas, or a mixed gas thereof.
  • the fluorine-based gas is, for example, CF 4 gas, CHF 3 gas, SF 6 gas, BF 3 gas, XeF 2 gas, or a mixed gas thereof.
  • a mixed gas of an oxygen-based gas and a halogen-based gas particularly a mixed gas of an oxygen-based gas and a chlorine-based gas, is preferred.
  • the mixed gas of oxygen-based gas and halogen-based gas is capable of etching the Os-based material containing Os as a main component according to this embodiment at a high etching rate.
  • the ratio (ER2/ER1) of the etching rate ER2 of the phase shift film 13 to the etching rate ER1 of the protective film 12 is also referred to as the selectivity ratio (ER2/ER1).
  • the selectivity ratio (ER2/ER1) is preferably 5.0 or more, more preferably 10 or more, and still more preferably 30 or more.
  • the selectivity ratio (ER2/ER1) is preferably 200 or less, more preferably 100 or less.
  • the phase shift film 13 may contain only Os, or may contain a metal element, a nonmetal element, or both in addition to Os.
  • the additional element that the phase shift film 13 contains in addition to Os is at least one selected from the group consisting of Ta, Cr, Mo, W, Re, Si, Hf, Ru, O, B, C, and N. It is preferable that there is one.
  • the content of such additional elements in the phase shift film 13 is 1 atomic % to 49 atomic %.
  • phase shift film 13 containing at least one element selected from the group consisting of Ta, Si, and Ru.
  • the content is preferably 1 atomic % to 49 atomic %, and 5 atomic % to 45 atomic %. It is more preferably 5 at % to 40 at %, particularly preferably 5 at % to 35 at %, and most preferably 5 at % to 30 at %.
  • the phase shift film 13 contains at least one element selected from the group consisting of Cr, W, Re, and Ru
  • the optical properties At least the refractive index (n) and/or the extinction coefficient (k) can be adjusted, which can contribute to improving the contrast during pattern transfer as described above.
  • the content is preferably 1 atomic % to 49 atomic %, and 5 atomic % to 45 atomic %. It is more preferably atomic %, further preferably 5 atomic % to 40 atomic %, particularly preferably 5 atomic % to 30 atomic %.
  • the phase shift film 13 contains at least one element selected from the group consisting of O, B, C, and N, crystallization can be suppressed while suppressing deterioration of optical properties, and the opening pattern The roughness of the side wall of 13a can be reduced.
  • the content is preferably 1 atomic % to 20 atomic %, and preferably 2 atomic %. It is more preferable that the content is between 15 at % and 3 at % and even more preferably 10 at %.
  • the refractive index n of the phase shift film 13 is preferably 0.940 or less, more preferably 0.930 or less, and even more preferably 0.920. It is particularly preferably 0.910 or less. The smaller the refractive index n of the phase shift film 13, the thinner the phase shift film 13 can be. Note that the refractive index n of the phase shift film 13 is preferably 0.885 or more. In this specification, the refractive index n is the refractive index for EUV light (for example, light with a wavelength of 13.5 nm).
  • the extinction coefficient k of the phase shift film 13 is preferably 0.025 or more, more preferably 0.030 or more, still more preferably 0.032 or more, and particularly preferably 0.035 or more. be.
  • the extinction coefficient k of the phase shift film 13 is preferably 0.055 or less.
  • the extinction coefficient k is an extinction coefficient for EUV light (for example, light with a wavelength of 13.5 nm).
  • the refractive index n and extinction coefficient k of films such as the phase shift film 13 are obtained from values in the database of Center for X-Ray Optics, Lawrence Berkeley National Laboratory, or from the "incidence angle dependence" of reflectance below. It can be a calculated value.
  • the incident angle ⁇ of the EUV light, the reflectance R for the EUV light, the refractive index n of the film, and the extinction coefficient k of the film satisfy the following formula (1).
  • the refractive index n and the extinction coefficient k can be calculated by the least squares method so that the error between the plurality of measurement data and equation (1) is minimized.
  • the method for forming the phase shift film 13 is, for example, a DC sputtering method, a magnetron sputtering method, an ion beam sputtering method, a plasma CVD method, or the like.
  • the phase shift film 13 additionally contains O
  • the oxygen content of the phase shift film 13 can be controlled by the content of O 2 gas in the sputtering gas.
  • the phase shift film 13 additionally contains N
  • the nitrogen content of the phase shift film 13 can be controlled by the content of N 2 gas in the sputtering gas.
  • an example of film forming conditions is as follows. ⁇ Os film formation conditions> Target: Os Sputter gas: Ar Gas pressure: 0.2Pa Target power density: 1.0W/cm 2 ⁇ 7.0W/cm 2 Film formation rate: 0.020nm/sec to 0.060nm/sec Film thickness: 20nm to 60nm.
  • An etching mask film 14 may be formed on the phase shift film 13. Etching mask film 14 is used to form opening pattern 13a in phase shift film 13. A resist film (not shown) is provided on the etching mask film 14. In the manufacturing process of the reflective mask 2, first a first opening pattern is formed in the resist film, then a second opening pattern is formed in the etching mask film 14 using the first opening pattern, and then a second opening pattern is formed in the etching mask film 14. A third opening pattern 13a is formed in the phase shift film 13 using the following method. The first aperture pattern, the second aperture pattern, and the third aperture pattern 13a have the same dimensions and the same shape in a plan view (as viewed in the Z-axis direction). The etching mask film 14 allows the resist film to be made thinner.
  • the etching mask film 14 contains at least one element selected from the group consisting of Al, Hf, Cr, Nb, Ti, Mo, Ta, and Si.
  • the etching mask film 14 may contain at least one element selected from the group consisting of O, N, and B in addition to the above elements.
  • the thickness of the etching mask film 14 is preferably 1 nm or more and 30 nm or less, more preferably 2 nm or more and 25 nm or less, and even more preferably 2 nm or more and 10 nm or less.
  • a method for forming the etching mask film 14 is, for example, a DC sputtering method, a magnetron sputtering method, or an ion beam sputtering method.
  • one embodiment of the present disclosure includes, in this order, a substrate, a multilayer reflective film that reflects EUV light, a protective film that protects the multilayer reflective film, and a phase shift film that shifts the phase of EUV light.
  • a method for manufacturing a reflective mask blank which includes forming a multilayer reflective film, a protective film, and a phase shift film in this order on a substrate, the phase shift film containing 35 Os atoms. % or more, and has a refractive index n of 0.940 or less and an extinction coefficient k of 0.025 or more with respect to EUV light.
  • the method for manufacturing the reflective mask blank 1 includes steps S101 to S105 shown in FIG. 5, for example.
  • step S101 the substrate 10 is prepared.
  • step S102 a multilayer reflective film 11 is formed on the upper surface 10a of the substrate 10.
  • step S103 a protective film 12 is formed on the multilayer reflective film 11.
  • step S104 the phase shift film 13 is formed on the protective film 12.
  • step S105 an etching mask film 14 is formed on the phase shift film 13.
  • the method for manufacturing the reflective mask blank 1 only needs to include at least steps S101 to S104.
  • the method for manufacturing the reflective mask blank 1 may further include a step of forming a functional film not shown in FIG.
  • one aspect of the present disclosure may be a method for manufacturing a reflective mask, which includes preparing a reflective mask blank and forming an opening pattern in a phase shift film in the reflective mask blank.
  • the method for manufacturing the reflective mask 2 includes steps S201 to S204 shown in FIG.
  • step S201 a reflective mask blank 1 is prepared.
  • step S202 the etching mask film 14 is processed.
  • a resist film (not shown) is provided on the etching mask film 14.
  • step S203 a third opening pattern 13a is formed in the phase shift film 13 using the second opening pattern.
  • step S203 the phase shift film 13 is etched using an etching gas.
  • the resist film and etching mask film 14 are removed.
  • a sulfuric acid-hydrogen peroxide mixture (SPM cleaning solution) is used to remove the resist film.
  • an etching gas is used to remove the etching mask film 14.
  • the etching gas used in step S204 may be the same type of etching gas used in step S203 (formation of opening pattern 13a). Note that the method for manufacturing the reflective mask 2 only needs to include at least steps S201 and S203.
  • Example 1 is an example, and Examples 2 and 3 are comparative examples.
  • Example 1 A reflective mask blank including a substrate, a multilayer reflective film, a protective film, and a phase shift film was manufactured.
  • a substrate a SiO 2 -TiO 2 -based glass substrate (outer size: 6 inches (152 mm) square, thickness: 6.3 mm) was prepared.
  • This glass substrate has a thermal expansion coefficient of 0.02 ⁇ 10 ⁇ 7 /°C at 20°C, a Young's modulus of 67 GPa, a Poisson's ratio of 0.17, and a specific stiffness of 3.07 ⁇ 10 7 m. 2 / s2 .
  • the quality assurance area on the surface (upper surface) of the substrate had a root mean square roughness Rq of 0.15 nm or less and a flatness of 100 nm or less by polishing.
  • a Cr film with a thickness of 100 nm was formed on the back surface (lower surface) of the substrate using a magnetron sputtering method.
  • the sheet resistance of the Cr film was 100 ⁇ / ⁇ .
  • a Mo/Si multilayer reflective film was formed as the multilayer reflective film.
  • the Mo/Si multilayer reflective film is produced by fixing the obtained substrate to a flat electrostatic chuck with the Cr film on the back side facing, and depositing a Si layer (film) on the surface of the substrate using an ion beam sputtering method.
  • the film was formed by repeating 40 times the formation of a Mo layer (thickness: 4.5 nm) and the Mo layer (thickness: 2.3 nm).
  • the total film thickness of the Mo/Si multilayer reflective film was 272 nm ((4.5 nm+2.3 nm) ⁇ 40).
  • a Rh film (thickness: 2.5 nm) was formed as a protective film on the multilayer reflective film.
  • the Rh film was formed using a DC sputtering method.
  • an Os film (thickness: 35 nm) was formed as a phase shift film on the protective film using a DC sputtering method.
  • Example 2 A reflective mask blank was produced in the same manner as in Example 1, except that an Ir film (thickness: 35 nm) was formed in place of the Os film as the phase shift film.
  • Example 3 A reflective mask blank was produced in the same manner as in Example 1, except that a Pd film (thickness: 35 nm) was formed in place of the Os film as the phase shift film.
  • Table 1 shows the reflective mask blanks of Examples 1 to 3 with different types of phase shift films and their characteristics.
  • ⁇ Refractive index n and extinction coefficient k> The refractive index n and extinction coefficient k of the phase shift film shown in Table 1 are the values in the database of the Center for X-Ray Optics, Lawrence Berkeley National Laboratory, or the values calculated from the dependence of the reflectance on the angle of incidence described below. did.
  • the incident angle ⁇ of EUV light, the reflectance R for EUV light, the refractive index n of the phase shift film, and the extinction coefficient k of the phase shift film satisfy the following formula (1).
  • R
  • a plurality of combinations of the incident angle ⁇ and the reflectance R were measured, and the refractive index n and extinction coefficient k were calculated by the least squares method so that the error between the plurality of measurement data and equation (1) was minimized.
  • etching speed The phase shift film was dry etched using a mixed gas of Cl 4 gas and O 2 gas as an etching gas, and the etching rate was measured.
  • ICP inductively coupled plasma
  • the conditions of the apparatus were as follows. ICP antenna bias: 200W Substrate bias: 40W Etching pressure: 3.5Pa Etching gas: Mixed gas of Cl 2 gas and O 2 gas Flow rate of Cl 2 gas: 10 sccm O2 gas flow rate: 10 sccm.
  • the materials of the phase shift films used in Examples 1 to 3 were all materials exhibiting a low refractive index n and a high extinction coefficient k. However, it was found that the phase shift film made of Os (Example 1) can be etched at a higher rate and has higher workability than the phase shift films made of Ir or Pd (Examples 2 and 3).
  • reflective mask blanks were prepared and evaluated in the same manner as in Examples 1 to 3, except that the phase shift film was directly formed on the multilayer reflective film without forming a protective film. Similarly to Example 3, the evaluation results showed that the Os phase shift film was superior.
  • reflective mask blanks were fabricated and evaluated in the same manner as in Examples 1 to 3, except that a silicon wafer was used as the substrate. As in Examples 1 to 3, the Os phase shift film was superior. The evaluation results were as follows.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

This reflective mask blank comprises a substrate, a multilayer reflective film that reflects EUV light, a protective film that protects the multilayer reflective film, and a phase shift film that shifts the phase of the EUV light in this order, wherein the phase shift film comprises an Os-based material containing 35 atom% or more of Os, a refractive index n with respect to the EUV light is 0.940 or less, and an extinction coefficient k is 0.025 or more.

Description

反射型マスクブランク、反射型マスク、反射型マスクブランクの製造方法、及び反射型マスクの製造方法Reflective mask blank, reflective mask, method for manufacturing reflective mask blank, and method for manufacturing reflective mask
 本開示は、反射型マスクブランク、反射型マスク、反射型マスクブランクの製造方法、及び反射型マスクの製造方法に関する。 The present disclosure relates to a reflective mask blank, a reflective mask, a method for manufacturing a reflective mask blank, and a method for manufacturing a reflective mask.
 近年、半導体デバイスの微細化に伴い、極端紫外線(Extreme Ultra-Violet:EUV)を用いた露光技術であるEUVリソグラフィー(EUVL)が開発されている。EUVとは、軟X線及び真空紫外線を含み、具体的には波長が0.2nm~100nm程度の光のことである。現時点では、13.5nm程度の波長のEUVが主に検討されている。 In recent years, with the miniaturization of semiconductor devices, EUV lithography (EUVL), which is an exposure technology using extreme ultraviolet (EUV), has been developed. EUV includes soft X-rays and vacuum ultraviolet rays, and specifically refers to light with a wavelength of about 0.2 nm to 100 nm. At present, EUV with a wavelength of about 13.5 nm is mainly being considered.
 EUVリソグラフィーには、反射型マスクが用いられる。反射型マスクとしては、ガラス基板等の基板と、EUV光を反射する多層反射膜と、多層反射膜を保護する保護膜と、EUV光を吸収する吸収膜と、をこの順で有する構成が知られている。吸収膜には、エッチング等により開口パターンが形成されており、当該開口パターンを半導体基板等の対象基板に転写する。吸収膜は、EUV光をシフトさせる位相シフト膜であってもよい。 A reflective mask is used in EUV lithography. A reflective mask is known to have a structure including a substrate such as a glass substrate, a multilayer reflective film that reflects EUV light, a protective film that protects the multilayer reflective film, and an absorption film that absorbs EUV light in this order. It is being An opening pattern is formed in the absorption film by etching or the like, and the opening pattern is transferred to a target substrate such as a semiconductor substrate. The absorption film may be a phase shift film that shifts EUV light.
 吸収膜若しくは位相シフト膜の材料として様々な材料が検討されている。例えば、対象基板への高コントラストのパターン転写を実現することを目的として、複屈折率の虚数部の絶対値(消衰係数)が大きい物質を含む材料を利用することが知られている。特許文献1には、クロム(Cr)を主成分とする吸収膜を備えた反射型マスクブランクスが、また特許文献2には、タンタル(Ta)を主成分とした吸収膜を備えた反射型マスクブランクスが記載されている。 Various materials are being considered as materials for absorption films or phase shift films. For example, it is known to use a material containing a substance with a large absolute value of the imaginary part of the birefringence (extinction coefficient) in order to transfer a pattern with high contrast to a target substrate. Patent Document 1 discloses a reflective mask blank equipped with an absorption film mainly composed of chromium (Cr), and Patent Document 2 discloses a reflective mask blank equipped with an absorption film mainly composed of tantalum (Ta). Blanks are listed.
特開2007-273656号公報Japanese Patent Application Publication No. 2007-273656 特開2007-273678号公報Japanese Patent Application Publication No. 2007-273678
 しかしながら、消衰係数が大きい材料、特に消衰係数が大きく且つ屈折率が小さい材料には、開口パターンの形成時の加工性が十分でないものもある。そのため、加工条件等によっては、パターンの精度が十分でない、パターン加工時間が長くなってしまう等の不都合が生じることがある。 However, some materials with a large extinction coefficient, particularly materials with a large extinction coefficient and a small refractive index, do not have sufficient workability when forming an aperture pattern. Therefore, depending on processing conditions and the like, problems such as insufficient pattern accuracy and increased pattern processing time may occur.
 よって、本開示の一態様は、対象基板への高コントラストのパターン転写が可能であり、且つ加工性に優れた位相シフト膜を備えた構成を提供することを課題とする。 Therefore, an object of one embodiment of the present disclosure is to provide a configuration including a phase shift film that can transfer a high-contrast pattern to a target substrate and has excellent processability.
 本開示の一態様に係る反射型マスクブランクは、
 基板と、EUV光を反射する多層反射膜と、前記多層反射膜を保護する保護膜と、前記EUV光の位相をシフトさせる位相シフト膜と、をこの順で有する、反射型マスクブランクであって、前記位相シフト膜は、Osを35原子%以上含むOs系材料からなり、前記EUV光に対して屈折率nが0.940以下であり且つ消衰係数kが0.025以上である、反射型マスクブランク。
A reflective mask blank according to one aspect of the present disclosure includes:
A reflective mask blank comprising, in this order, a substrate, a multilayer reflective film that reflects EUV light, a protective film that protects the multilayer reflective film, and a phase shift film that shifts the phase of the EUV light. , the phase shift film is made of an Os-based material containing 35 atomic % or more of Os, and has a refractive index n of 0.940 or less and an extinction coefficient k of 0.025 or more with respect to the EUV light. mold mask blank.
 本開示の一態様によれば、対象基板への高コントラストのパターン転写が可能であり、且つ加工性に優れた位相シフト膜を備えた構成を提供できる。 According to one aspect of the present disclosure, it is possible to provide a configuration including a phase shift film that enables high-contrast pattern transfer to a target substrate and has excellent processability.
一実施形態に係る反射型マスクブランクを示す断面図である。FIG. 1 is a cross-sectional view showing a reflective mask blank according to one embodiment. 一実施形態に係る反射型マスクを示す断面図である。FIG. 1 is a cross-sectional view showing a reflective mask according to one embodiment. 図2の反射型マスクで反射されるEUV光の一例を示す断面図である。3 is a cross-sectional view showing an example of EUV light reflected by the reflective mask of FIG. 2. FIG. 各物質の屈折率及び消衰係数の例を示す図である。It is a figure showing an example of a refractive index and an extinction coefficient of each substance. 一実施形態に係る反射型マスクブランクの製造方法を示すフローチャートである。1 is a flowchart illustrating a method for manufacturing a reflective mask blank according to an embodiment. 一実施形態に係る反射型マスクの製造方法を示すフローチャートである。1 is a flowchart illustrating a method for manufacturing a reflective mask according to an embodiment.
 以下、本開示を実施するための形態について図面を参照して説明する。各図面において同一の又は対応する構成には同一の符号を付し、説明を省略することがある。明細書中、数値範囲を示す「~」は、その前後に記載された数値を下限値及び上限値として含むことを意味する。 Hereinafter, embodiments for carrying out the present disclosure will be described with reference to the drawings. In each drawing, the same or corresponding configurations are denoted by the same reference numerals, and explanations may be omitted. In the specification, "~" indicating a numerical range means that the numerical values written before and after it are included as lower and upper limits.
 図1~図3において、X軸方向とY軸方向とZ軸方向は互いに直交する方向である。Z軸方向は、基板10の上面10aに対して垂直な方向である。X軸方向は、EUV光の入射面(入射光線と反射光線を含む面)に直交する方向である。図3に示すように、X軸方向から見たときに、入射光線はZ軸負方向に向かうほどY軸正方向に傾斜し、反射光線はZ軸正方向に向かうほどY軸正方向に傾斜する。 In FIGS. 1 to 3, the X-axis direction, the Y-axis direction, and the Z-axis direction are directions that are orthogonal to each other. The Z-axis direction is a direction perpendicular to the upper surface 10a of the substrate 10. The X-axis direction is a direction perpendicular to the incident plane of EUV light (the plane including the incident light beam and the reflected light beam). As shown in Figure 3, when viewed from the X-axis direction, the more the incident ray goes in the negative direction of the Z-axis, the more it tilts in the positive direction of the Y-axis, and the more the reflected ray goes in the positive direction of the Z-axis, the more it tilts in the positive direction of the Y-axis. do.
 図1を参照して、一実施形態に係る反射型マスクブランク1について説明する。反射型マスクブランク1は、少なくとも、基板10と、多層反射膜11と、保護膜12と、位相シフト膜13と、エッチングマスク膜14と、を下から上へこの順番で有する。 With reference to FIG. 1, a reflective mask blank 1 according to an embodiment will be described. The reflective mask blank 1 includes at least a substrate 10, a multilayer reflective film 11, a protective film 12, a phase shift film 13, and an etching mask film 14 in this order from bottom to top.
 反射型マスクブランク1は、図1に図示しない機能膜を更に有してもよい。例えば、反射型マスクブランク1は、下側に導電膜を有してもよい。例えば、導電膜は、基板10の上面10aと反対側の面である下面10bに形成され得る。導電膜は、例えば反射型マスク2を露光装置の静電チャックに吸着するのに用いられる。 The reflective mask blank 1 may further include a functional film not shown in FIG. For example, the reflective mask blank 1 may have a conductive film on the lower side. For example, the conductive film may be formed on the bottom surface 10b of the substrate 10, which is the surface opposite to the top surface 10a. The conductive film is used, for example, to attract the reflective mask 2 to an electrostatic chuck of an exposure device.
 反射型マスクブランク1は、図示しないが、保護膜12と位相シフト膜13との間にバッファ膜を有してもよい。バッファ膜は、位相シフト膜13に開口パターン13aを形成するエッチングガスから、保護膜12を保護する。バッファ膜は、位相シフト膜13よりも緩やかにエッチングされる。バッファ膜は、保護膜12とは異なり、最終的に位相シフト膜13の開口パターン13aと同一の開口パターンを有することになる。 Although not shown, the reflective mask blank 1 may have a buffer film between the protective film 12 and the phase shift film 13. The buffer film protects the protective film 12 from the etching gas that forms the opening pattern 13a in the phase shift film 13. The buffer film is etched more slowly than the phase shift film 13. Unlike the protective film 12, the buffer film ultimately has the same opening pattern as the opening pattern 13a of the phase shift film 13.
 次に、図2及び図3を参照して、一実施形態に係る反射型マスク2について説明する。反射型マスク2は、例えば、図1に示す反射型マスクブランク1における位相シフト膜13に、所望される半導体デバイスのパターンに対応する開口パターン13aが形成されたものである。なお、図1に示すエッチングマスク膜14は、位相シフト膜13に開口パターン13aを形成した後に除去される。EUVLでは、位相シフト膜13の開口パターン13aが、半導体基板等の対象基板に転写される。転写することは、縮小して転写することを含む。 Next, a reflective mask 2 according to an embodiment will be described with reference to FIGS. 2 and 3. The reflective mask 2 includes, for example, the phase shift film 13 in the reflective mask blank 1 shown in FIG. 1, in which an opening pattern 13a corresponding to a desired semiconductor device pattern is formed. Note that the etching mask film 14 shown in FIG. 1 is removed after the opening pattern 13a is formed in the phase shift film 13. In EUVL, the opening pattern 13a of the phase shift film 13 is transferred to a target substrate such as a semiconductor substrate. Transferring includes reducing and transferring.
 以下、基板10、多層反射膜11、保護膜12、位相シフト膜13、及びエッチングマスク膜14について説明する。 Hereinafter, the substrate 10, multilayer reflective film 11, protective film 12, phase shift film 13, and etching mask film 14 will be explained.
 基板10は、例えばガラス基板である。基板10の材質は、TiOを含有する石英ガラスが好ましい。石英ガラスは、一般的なソーダライムガラスに比べて、線膨張係数が小さく、温度変化による寸法変化が小さい。石英ガラスは、SiOを80質量%~95質量%、TiOを4質量%~17質量%含んでよい。TiO含有量が4質量%~17質量%であると、室温付近での線膨張係数が略ゼロであり、室温付近での寸法変化がほとんど生じない。石英ガラスは、SiO及びTiO以外の第三成分又は不純物を含んでもよい。なお、基板10の材質は、β石英固溶体を析出した結晶化ガラス、シリコン、又は金属等であってもよい。 The substrate 10 is, for example, a glass substrate. The material of the substrate 10 is preferably silica glass containing TiO 2 . Quartz glass has a smaller coefficient of linear expansion and less dimensional change due to temperature changes than common soda lime glass. The quartz glass may contain 80% to 95% by weight of SiO 2 and 4% to 17% by weight of TiO 2 . When the TiO 2 content is 4% by mass to 17% by mass, the coefficient of linear expansion near room temperature is approximately zero, and almost no dimensional change occurs near room temperature. The quartz glass may contain a third component or impurity other than SiO 2 and TiO 2 . Note that the material of the substrate 10 may be crystallized glass with β-quartz solid solution precipitated thereon, silicon, metal, or the like.
 上述のように、基板10の上面10aには、多層反射膜11等が形成される。平面視(Z軸方向視)にて基板10のサイズは、例えば縦152mm、横152mmである。縦寸法及び横寸法は、152mm以上であってもよい。基板10の上面10a及び下面10bは、各々の中央に、例えば品質保証領域を有する。品質保証領域のサイズは、例えば縦142mm、横142mmである。上面10aの品質保証領域は、0.15nm以下の二乗平均平方根粗さRqと、100nm以下の平坦度とを有することが好ましい。また、上面10aの品質保証領域は、位相欠陥を生じさせる欠点を有しないことが好ましい。 As described above, the multilayer reflective film 11 and the like are formed on the upper surface 10a of the substrate 10. The size of the substrate 10 in plan view (viewed in the Z-axis direction) is, for example, 152 mm in length and 152 mm in width. The vertical dimension and the horizontal dimension may be 152 mm or more. The upper surface 10a and the lower surface 10b of the substrate 10 each have, for example, a quality assurance area in the center. The size of the quality assurance area is, for example, 142 mm in length and 142 mm in width. The quality assurance area of the upper surface 10a preferably has a root mean square roughness Rq of 0.15 nm or less and a flatness of 100 nm or less. Moreover, it is preferable that the quality assurance area of the upper surface 10a does not have defects that cause phase defects.
 多層反射膜11は、EUV光を反射する膜であり、例えば高屈折率層と低屈折率層とを交互に積層したものである。高屈折率層の材質は例えばシリコン(Si)であり、低屈折率層の材質は例えばモリブデン(Mo)である。よって、多層反射膜としては、Mo/Si多層反射膜を用いることができる。なお、Ru/Si多層反射膜、Mo/Be多層反射膜、Mo化合物/Si化合物多層反射膜、Si/Mo/Ru多層反射膜、Si/Mo/Ru/Mo多層反射膜、Si/Ru/Mo/Ru多層反射膜、Si/Ru/Mo多層反射膜等も、多層反射膜11として使用可能である。 The multilayer reflective film 11 is a film that reflects EUV light, and is, for example, a film in which high refractive index layers and low refractive index layers are alternately laminated. The material of the high refractive index layer is, for example, silicon (Si), and the material of the low refractive index layer is, for example, molybdenum (Mo). Therefore, a Mo/Si multilayer reflective film can be used as the multilayer reflective film. In addition, Ru/Si multilayer reflective film, Mo/Be multilayer reflective film, Mo compound/Si compound multilayer reflective film, Si/Mo/Ru multilayer reflective film, Si/Mo/Ru/Mo multilayer reflective film, Si/Ru/Mo /Ru multilayer reflective film, Si/Ru/Mo multilayer reflective film, etc. can also be used as the multilayer reflective film 11.
 多層反射膜11を構成する各層の厚み及び層の繰り返し単位の数は、各層の材質、及びEUV光に対する反射率に応じて適宜選択できる。多層反射膜11は、Mo/Si多層反射膜である場合、入射角θ(図3)が6°であるEUV光に対して60%以上の反射率を達成するには、厚み2.3±0.1nmのMo層と、厚み4.5±0.1nmのSi層とを繰り返し単位数が30以上60以下になるように積層すればよい。多層反射膜11は、入射角θが6°であるEUV光に対して60%以上の反射率を有することが好ましい。反射率は、より好ましくは65%以上である。 The thickness of each layer constituting the multilayer reflective film 11 and the number of repeating units in the layer can be appropriately selected depending on the material of each layer and the reflectance to EUV light. When the multilayer reflective film 11 is a Mo/Si multilayer reflective film, the thickness must be 2.3± to achieve a reflectance of 60% or more for EUV light with an incident angle θ (FIG. 3) of 6°. A 0.1 nm Mo layer and a 4.5±0.1 nm thick Si layer may be laminated so that the number of repeating units is 30 or more and 60 or less. The multilayer reflective film 11 preferably has a reflectance of 60% or more for EUV light with an incident angle θ of 6°. The reflectance is more preferably 65% or more.
 多層反射膜11を構成する各層の成膜方法は、例えば、DCスパッタリング法、マグネトロンスパッタリング法、又はイオンビームスパッタリング法などである。イオンビームスパッタリング法を用いてMo/Si多層反射膜を形成する場合、Mo層とSi層の各々の成膜条件の一例は下記の通りである。
<Si層の成膜条件>
ターゲット:Si
スパッタガス:Ar
ガス圧:1.3×10-2Pa~2.7×10-2Pa
イオン加速電圧:300V~1500V
成膜速度:0.030nm/sec~0.300nm/sec
Si層の厚み:4.5±0.1nm
<Mo層の成膜条件>
ターゲット:Mo
スパッタガス:Ar
ガス圧:1.3×10-2Pa~2.7×10-2Pa
イオン加速電圧:300V~1500V
成膜速度:0.030nm/sec~0.300nm/sec
Mo層の厚み:2.3±0.1nm
<Si層とMo層の繰り返し単位>
繰り返し単位数:30~60(好ましくは40~50)。
The method for forming each layer constituting the multilayer reflective film 11 is, for example, a DC sputtering method, a magnetron sputtering method, or an ion beam sputtering method. When forming a Mo/Si multilayer reflective film using the ion beam sputtering method, an example of the film forming conditions for each of the Mo layer and the Si layer is as follows.
<Si layer deposition conditions>
Target: Si
Sputter gas: Ar
Gas pressure: 1.3×10 -2 Pa to 2.7×10 -2 Pa
Ion acceleration voltage: 300V to 1500V
Film formation rate: 0.030nm/sec to 0.300nm/sec
Thickness of Si layer: 4.5±0.1nm
<Mo layer deposition conditions>
Target: Mo
Sputter gas: Ar
Gas pressure: 1.3×10 -2 Pa to 2.7×10 -2 Pa
Ion acceleration voltage: 300V to 1500V
Film formation rate: 0.030nm/sec to 0.300nm/sec
Mo layer thickness: 2.3±0.1nm
<Repeating unit of Si layer and Mo layer>
Number of repeating units: 30-60 (preferably 40-50).
 保護膜12は、多層反射膜11と位相シフト膜13の間に形成され、多層反射膜11を保護する機能を有する膜である。保護膜12は、位相シフト膜13に開口パターン13a(図2及び図3)を形成するエッチングガスから多層反射膜11を保護する。また、保護膜12は、反射型マスク2の製造の際に除去されず、多層反射膜11の上に留まるものである。保護膜12は、多層反射膜11によるEUV光の反射を妨げないか、反射率の低下を最小限に抑える。 The protective film 12 is a film that is formed between the multilayer reflective film 11 and the phase shift film 13 and has the function of protecting the multilayer reflective film 11. The protective film 12 protects the multilayer reflective film 11 from the etching gas that forms the opening pattern 13a (FIGS. 2 and 3) in the phase shift film 13. Further, the protective film 12 is not removed during manufacturing of the reflective mask 2, but remains on the multilayer reflective film 11. The protective film 12 does not prevent reflection of EUV light by the multilayer reflective film 11, or minimizes a decrease in reflectance.
 保護膜12を構成する材料は特に限定されないが、保護膜は、例えばRu、Rh及びSiから選択される少なくとも1つの元素を含有すると好ましい。保護膜12は、Rhを含有する場合、Rhのみを含有してもよいが、Rh化合物を有してもよい。Rh化合物は、Rhに加えて、Ru、Nb、Mo、Ta、Ir、Pd、Zr、Y及びTiからなる群から選択される少なくとも1つの元素を含有してもよい。 Although the material constituting the protective film 12 is not particularly limited, it is preferable that the protective film contains at least one element selected from, for example, Ru, Rh, and Si. When the protective film 12 contains Rh, it may contain only Rh, or it may contain an Rh compound. In addition to Rh, the Rh compound may contain at least one element selected from the group consisting of Ru, Nb, Mo, Ta, Ir, Pd, Zr, Y, and Ti.
 Rh化合物は、Rhに加えて、N、O、C及びBからなる群から選択される少なくとも1つの元素を含有してもよい。これらの元素は、保護膜12の第1エッチングガスに対する耐性を低下させてしまう反面、保護膜12の結晶性を低下させることで保護膜12の平滑性を向上する。Rh化合物が非結晶構造、又は微結晶構造を有する場合、Rh化合物のX線回折プロファイルは明瞭なピークを有しない。 In addition to Rh, the Rh compound may contain at least one element selected from the group consisting of N, O, C, and B. These elements reduce the resistance of the protective film 12 to the first etching gas, but on the other hand, they improve the smoothness of the protective film 12 by reducing the crystallinity of the protective film 12. When the Rh compound has an amorphous structure or a microcrystalline structure, the X-ray diffraction profile of the Rh compound does not have a clear peak.
 保護膜12は、本実施形態では単一の層からなる膜であるが、下層及び上層を有する多層膜であってもよい。保護膜12の下層は、多層反射膜11の最上面に接触して形成された層である。保護膜12の上層は、位相シフト膜13の最下面に接触している。このように、保護膜12を複数層構造とすることで、所定の機能に優れた材料を各層に使用できるので、保護膜12全体の多機能化を図ることができる。 Although the protective film 12 is a single layer film in this embodiment, it may be a multilayer film having a lower layer and an upper layer. The lower layer of the protective film 12 is a layer formed in contact with the uppermost surface of the multilayer reflective film 11. The upper layer of the protective film 12 is in contact with the lowermost surface of the phase shift film 13. By making the protective film 12 have a multi-layer structure in this way, a material excellent in a predetermined function can be used for each layer, so that the entire protective film 12 can be made multifunctional.
 保護膜12の上層は、Ru及びRhから選択される少なくとも1つの元素を含むことが好ましく、Rhを含むことがより好ましく、Rh化合物を含むことがさらに好ましい。保護膜12の下層は、Ru、Rh、Nb、Mo、Zr、Y及びSiから選択される少なくとも1つの元素を含むことが好ましく、Ruを含むことがより好ましい。また、保護膜12の下層は、保護膜12の結晶性抑制のために、上記の少なくとも1つの元素に加えて、さらにC、N及びBから選択される少なくとも1つの元素を含むことが好ましい。保護膜12が多層膜である場合、下記の保護膜12の厚みとは多層膜の合計膜厚を意味する。なお、多層反射膜11と保護膜12の下層の間に、多層反射膜11に含まれる成分と保護膜12の下層に含まれる成分が混合し形成されたミキシング層が形成されてもよい。 The upper layer of the protective film 12 preferably contains at least one element selected from Ru and Rh, more preferably contains Rh, and even more preferably contains an Rh compound. The lower layer of the protective film 12 preferably contains at least one element selected from Ru, Rh, Nb, Mo, Zr, Y, and Si, and more preferably contains Ru. Further, the lower layer of the protective film 12 preferably contains at least one element selected from C, N, and B in addition to the above-mentioned at least one element in order to suppress the crystallinity of the protective film 12. When the protective film 12 is a multilayer film, the thickness of the protective film 12 described below means the total film thickness of the multilayer film. Note that a mixing layer formed by mixing components contained in the multilayer reflective film 11 and components contained in the lower layer of the protective film 12 may be formed between the multilayer reflective film 11 and the lower layer of the protective film 12.
 保護膜12の厚みは、好ましくは1.0nm~4.0nmであり、より好ましくは2.0nm~3.5nmであり、さらに好ましくは2.5nm~3.0nmである。保護膜12の厚みが1.0nm以上であれば、エッチング耐性が良好である。また、保護膜12の厚みが4.0nm以下であれば、EUV光に対する反射率が良好である。 The thickness of the protective film 12 is preferably 1.0 nm to 4.0 nm, more preferably 2.0 nm to 3.5 nm, and even more preferably 2.5 nm to 3.0 nm. If the thickness of the protective film 12 is 1.0 nm or more, the etching resistance is good. Further, when the thickness of the protective film 12 is 4.0 nm or less, the reflectance for EUV light is good.
 保護膜12の密度は、好ましくは10.0g/cm~14.0g/cmである。保護膜12の密度が10.0g/cm以上であれば、エッチング耐性が良い。また、保護膜12の密度が14.0g/cm以下であれば、EUV光に対する反射率の低下を抑制できる。 The density of the protective film 12 is preferably 10.0 g/cm 3 to 14.0 g/cm 3 . If the density of the protective film 12 is 10.0 g/cm 3 or more, the etching resistance is good. Further, if the density of the protective film 12 is 14.0 g/cm 3 or less, a decrease in reflectance to EUV light can be suppressed.
 保護膜12の成膜方法は、例えば、DCスパッタリング法、マグネトロンスパッタリング法又はイオンビームスパッタリング法などである。DCスパッタリング法を用いてRh膜を形成する場合、成膜条件の一例は下記の通りである。
<Rh膜の成膜条件>
ターゲット:Rh
スパッタガス:Ar
ガス圧:1.0×10-2Pa~1.0×10Pa
ターゲットの出力密度:1.0W/cm~8.5W/cm
成膜速度:0.020nm/sec~1.000nm/sec
膜厚:1nm~10nm。
A method for forming the protective film 12 is, for example, a DC sputtering method, a magnetron sputtering method, or an ion beam sputtering method. When forming a Rh film using the DC sputtering method, an example of film forming conditions is as follows.
<Rh film formation conditions>
Target: Rh
Sputter gas: Ar
Gas pressure: 1.0×10 −2 Pa to 1.0×10 0 Pa
Target power density: 1.0W/cm 2 ~8.5W/cm 2
Film formation rate: 0.020nm/sec to 1.000nm/sec
Film thickness: 1 nm to 10 nm.
 なお、Rh膜を形成する場合、スパッタガスとして、NガスまたはArガスとNの混合ガスを使用してもよい。スパッタガス中のNガスの体積比(N/(Ar+N))は0.05以上1.0以下である。 Note that when forming the Rh film, N 2 gas or a mixed gas of Ar gas and N 2 may be used as the sputtering gas. The volume ratio (N 2 /(Ar+N 2 )) of N 2 gas in the sputtering gas is 0.05 or more and 1.0 or less.
 位相シフト膜13は、開口パターン13a(図2及び図3)が形成される膜である。開口パターン13aは、反射型マスクブランク1の製造工程では形成されずに、反射型マスク2の製造工程で形成される。位相シフト膜13は、EUV光を吸収するだけではなく、EUV光の位相をシフトさせる。例えば、位相シフト膜は、図3に示す第1EUV光L1に対して、第2EUV光L2の位相をシフトさせる。 The phase shift film 13 is a film on which an opening pattern 13a (FIGS. 2 and 3) is formed. The opening pattern 13a is not formed in the manufacturing process of the reflective mask blank 1, but is formed in the manufacturing process of the reflective mask 2. The phase shift film 13 not only absorbs EUV light but also shifts the phase of the EUV light. For example, the phase shift film shifts the phase of the second EUV light L2 with respect to the first EUV light L1 shown in FIG.
 第1EUV光L1は、位相シフト膜13を透過することなく開口パターン13aを通過し、多層反射膜11で反射され、再び位相シフト膜13を透過することなく開口パターン13aを通過した光である。第2EUV光L2は、位相シフト膜13に吸収されながら位相シフト膜13を透過し、多層反射膜11で反射され、再び位相シフト膜13に吸収されながら位相シフト膜13を透過した光である。 The first EUV light L1 is light that passes through the opening pattern 13a without passing through the phase shift film 13, is reflected by the multilayer reflective film 11, and passes through the opening pattern 13a again without passing through the phase shift film 13. The second EUV light L2 is light that is transmitted through the phase shift film 13 while being absorbed by the phase shift film 13, reflected by the multilayer reflective film 11, and transmitted through the phase shift film 13 while being absorbed by the phase shift film 13 again.
 第1EUV光L1と第2EUV光L2の位相差(≧0)は、例えば170°~250°である。第1EUV光L1の位相が、第2EUV光L2の位相よりも、進んでいてもよいし、遅れていてもよい。位相シフト膜13は、第1EUV光L1と第2EUV光L2の干渉を利用して、転写像のコントラストを向上する。転写像は、位相シフト膜13の開口パターン13aを対象基板に転写した像である。 The phase difference (≧0) between the first EUV light L1 and the second EUV light L2 is, for example, 170° to 250°. The phase of the first EUV light L1 may lead or lag the phase of the second EUV light L2. The phase shift film 13 improves the contrast of the transferred image by utilizing interference between the first EUV light L1 and the second EUV light L2. The transferred image is an image obtained by transferring the opening pattern 13a of the phase shift film 13 onto the target substrate.
 EUVリソグラフィーにおいては、いわゆる射影効果(シャドーイング効果)が生じる。シャドーイング効果とは、EUV光の入射角θが0°ではない(例えば6°である)ことに起因して、開口パターン13aの側壁付近に、側壁によってEUV光を遮る領域が生じ、転写像の位置ずれまたは寸法ずれが生じることをいう。シャドーイング効果を低減するには、開口パターン13aの側壁の高さを低くすることが有効であり、位相シフト膜13の薄化が有効である。 In EUV lithography, a so-called projection effect (shadowing effect) occurs. The shadowing effect is caused by the fact that the incident angle θ of the EUV light is not 0° (for example, 6°), and a region is created near the sidewall of the aperture pattern 13a where the sidewall blocks the EUV light, resulting in a transferred image. This refers to the occurrence of positional or dimensional deviations. In order to reduce the shadowing effect, it is effective to reduce the height of the side wall of the opening pattern 13a, and it is effective to reduce the thickness of the phase shift film 13.
 位相シフト膜13の膜厚は、シャドーイング効果を低減すべく、例えば60nm以下であり、好ましくは50nm以下である。位相シフト膜13の膜厚は、第1EUV光L1と第2EUV光L2の位相差を確保すべく、好ましくは20nm以上であり、より好ましくは30nm以上である。 The thickness of the phase shift film 13 is, for example, 60 nm or less, preferably 50 nm or less, in order to reduce the shadowing effect. The thickness of the phase shift film 13 is preferably 20 nm or more, more preferably 30 nm or more in order to ensure a phase difference between the first EUV light L1 and the second EUV light L2.
 本実施形態では、位相シフト膜13は、Osを35原子%以上含むOs系材料からなる。 In this embodiment, the phase shift film 13 is made of an Os-based material containing 35 atomic % or more of Os.
 Osは、屈折率nが小さく且つ消衰係数kが大きい材料であるので(図4)、位相シフト膜13にOs系材料を利用することで、位相シフト膜13の屈折率nを小さく且つ消衰係数kを大きくすることができる。これにより、EUV光の位相シフト膜13での反射率と、その下層の多層反射膜11からの(保護膜12を含む場合には保護膜12を含む下層からの)反射率との差を大きくすることができ、転写されるパターンのコントラストを向上できる。また、所望の位相差を確保しつつ位相シフト膜13を薄化できるので、上述のシャドーイング効果が低減される。よって、転写される光学像パターンのエッジがぼかされることなく、エッジにおいても高いコントラストを得ることができる。 Since Os is a material with a small refractive index n and a large extinction coefficient k (FIG. 4), by using an Os-based material for the phase shift film 13, the refractive index n of the phase shift film 13 can be reduced and eliminated. The attenuation coefficient k can be increased. This increases the difference between the reflectance of EUV light on the phase shift film 13 and the reflectance from the underlying multilayer reflective film 11 (or from the lower layer including the protective film 12 if the protective film 12 is included). The contrast of the transferred pattern can be improved. Further, since the phase shift film 13 can be made thinner while ensuring a desired phase difference, the above-mentioned shadowing effect is reduced. Therefore, the edges of the optical image pattern to be transferred are not blurred, and high contrast can be obtained even at the edges.
 さらに、Osは、容易に揮発性化合物を形成できる材料であるため、Osを35原子%以上含むOs系材料からなる位相シフト膜13は、Osと同様に光学特性に優れた(屈折率nが小さく且つ消衰係数kが大きい)他の材料、例えばIr、Pd等と比較して、エッチング等による加工がしやすい(加工性が高い)。よって、本実施形態における位相シフト膜13は、より迅速で且つ高精度なパターン加工が可能である。 Furthermore, since Os is a material that can easily form volatile compounds, the phase shift film 13 made of an Os-based material containing 35 atomic % or more of Os has excellent optical properties similar to Os (the refractive index n is It is easier to process by etching etc. (high processability) compared to other materials such as Ir and Pd (having a small extinction coefficient k and a large extinction coefficient k). Therefore, the phase shift film 13 in this embodiment can be patterned more quickly and with high precision.
 位相シフト膜13中のOsの含有量は、オスミウム(Os)を主成分とすることが好ましい。本明細書において、「所定元素を主成分とする」とは、所定元素を51原子%以上で含有することを指す。すなわち、Osを主成分とするOs系材料からなる位相シフト膜13は、Osを51原子%~100原子%で含有するものである。 The content of Os in the phase shift film 13 is preferably such that osmium (Os) is the main component. In this specification, "containing a predetermined element as a main component" refers to containing the predetermined element in an amount of 51 atomic % or more. That is, the phase shift film 13 made of an Os-based material containing Os as a main component contains Os at 51 atomic % to 100 atomic %.
 また位相シフト膜13中のOsの含有量は、より好ましくは60原子%以上、さらに好ましくは70原子%以上、特に好ましくは80原子%以上であってよい。Osの含有量が多いほど、転写パターンのコントラストが高く、且つ加工性の高い構成を得ることができる。 Further, the content of Os in the phase shift film 13 may be more preferably 60 atomic % or more, still more preferably 70 atomic % or more, and particularly preferably 80 atomic % or more. The higher the content of Os, the higher the contrast of the transferred pattern and the higher the processability.
 位相シフト膜13における開口パターン13aを形成するためのエッチングガスは、例えば酸素系ガス、ハロゲン系ガス、又はこれらの混合ガスであってよい。酸素系ガスとしては、例えばOガス、Oガス、COガス、NOガス、SOガス、HOガス又はこれらの混合ガスが挙げられる。ハロゲン系ガスとしては、塩素系ガスと、フッ素系ガスと、が挙げられる。塩素系ガスは、例えばClガス、SiClガス、CHClガス、CClガス、BClガス又はこれらの混合ガスである。フッ素系ガスは、例えばCFガス、CHFガス、SFガス、BFガス、XeFガス又はこれらの混合ガスである。これらのうち、酸素系ガスとハロゲン系ガスとの混合ガス、特に酸素系ガスと塩素系ガスとの混合ガスが好ましい。酸素系ガスとハロゲン系ガスとの混合ガスは、本実施形態によるOsを主成分とするOs系材料に対し、高いエッチング速度でのエッチングが可能である。 The etching gas for forming the opening pattern 13a in the phase shift film 13 may be, for example, an oxygen-based gas, a halogen-based gas, or a mixed gas thereof. Examples of the oxygen-based gas include O 2 gas, O 3 gas, CO 2 gas, NO 2 gas, SO 2 gas, H 2 O gas, or a mixed gas thereof. Examples of the halogen gas include chlorine gas and fluorine gas. The chlorine-based gas is, for example, Cl 2 gas, SiCl 4 gas, CHCl 3 gas, CCl 4 gas, BCl 3 gas, or a mixed gas thereof. The fluorine-based gas is, for example, CF 4 gas, CHF 3 gas, SF 6 gas, BF 3 gas, XeF 2 gas, or a mixed gas thereof. Among these, a mixed gas of an oxygen-based gas and a halogen-based gas, particularly a mixed gas of an oxygen-based gas and a chlorine-based gas, is preferred. The mixed gas of oxygen-based gas and halogen-based gas is capable of etching the Os-based material containing Os as a main component according to this embodiment at a high etching rate.
 保護膜12のエッチング速度ER1に対する、位相シフト膜13のエッチング速度ER2の比(ER2/ER1)を、選択比(ER2/ER1)とも呼ぶ。選択比(ER2/ER1)が大きいほど、位相シフト膜13の加工性が良い。選択比(ER2/ER1)は、好ましくは5.0以上であり、より好ましくは10以上であり、さらに好ましくは30以上である。選択比(ER2/ER1)は、好ましくは200以下であり、より好ましくは100以下である。 The ratio (ER2/ER1) of the etching rate ER2 of the phase shift film 13 to the etching rate ER1 of the protective film 12 is also referred to as the selectivity ratio (ER2/ER1). The larger the selectivity ratio (ER2/ER1) is, the better the processability of the phase shift film 13 is. The selectivity ratio (ER2/ER1) is preferably 5.0 or more, more preferably 10 or more, and still more preferably 30 or more. The selectivity ratio (ER2/ER1) is preferably 200 or less, more preferably 100 or less.
 位相シフト膜13は、Osのみを含有していてもよいし、Osに加えて金属元素、非金属元素、又はその両方を含有していてもよい。位相シフト膜13が、Osに加えて含有する追加的な元素は、Ta、Cr、Mo、W、Re、Si、Hf、Ru、O、B、C、及びNからなる群から選択される少なくとも1つであると好ましい。このような追加的な元素の位相シフト膜13中の含有量は、1原子%~49原子%である。 The phase shift film 13 may contain only Os, or may contain a metal element, a nonmetal element, or both in addition to Os. The additional element that the phase shift film 13 contains in addition to Os is at least one selected from the group consisting of Ta, Cr, Mo, W, Re, Si, Hf, Ru, O, B, C, and N. It is preferable that there is one. The content of such additional elements in the phase shift film 13 is 1 atomic % to 49 atomic %.
 反射型マスクの製造工程においては、開口パターン13a(図2及び図3)が形成された後に、レジスト膜及びエッチングマスク膜の除去(後述のS204(図6))のために硫酸-過酸化水素水混合液(SPM洗浄液)等を用いて洗浄が行われる。このようなSPM洗浄液に対する耐性は、位相シフト膜13が、Ta、Si、及びRuからなる群から選択される少なくとも1つの元素を含有することで向上する。位相シフト膜13が、Ta、Si、及びRuからなる群から選択される少なくとも1つの元素を含有する場合、その含有量は、1原子%~49原子%が好ましく、5原子%~45原子%であるとより好ましく、5原子%~40原子%がさらに好ましく、5原子%~35原子%が特に好ましく、5原子%~30原子%が最も好ましい。 In the reflective mask manufacturing process, after the opening pattern 13a (FIGS. 2 and 3) is formed, sulfuric acid-hydrogen peroxide is used to remove the resist film and the etching mask film (S204 (FIG. 6) described later). Cleaning is performed using a mixed water solution (SPM cleaning solution) or the like. Such resistance to the SPM cleaning solution is improved by the phase shift film 13 containing at least one element selected from the group consisting of Ta, Si, and Ru. When the phase shift film 13 contains at least one element selected from the group consisting of Ta, Si, and Ru, the content is preferably 1 atomic % to 49 atomic %, and 5 atomic % to 45 atomic %. It is more preferably 5 at % to 40 at %, particularly preferably 5 at % to 35 at %, and most preferably 5 at % to 30 at %.
 また、位相シフト膜13が、Cr、W、Re、及びRuからなる群から選択される少なくとも1つの元素を含有することで、位相シフト膜13の加工性の低下を抑制しつつ、光学特性(少なくとも屈折率n及び/又は消衰係数k)の調整が可能となり、上述のようなパターン転写の際のコントラストの向上に寄与できる。位相シフト膜13が、Cr、W、Re、及びRuからなる群から選択される少なくとも1つの元素を含有する場合、その含有量は、1原子%~49原子%が好ましく、5原子%~45原子%であるとより好ましく、5原子%~40原子%がさらに好ましく、5原子%~30原子%が特に好ましい。 In addition, since the phase shift film 13 contains at least one element selected from the group consisting of Cr, W, Re, and Ru, the optical properties ( At least the refractive index (n) and/or the extinction coefficient (k) can be adjusted, which can contribute to improving the contrast during pattern transfer as described above. When the phase shift film 13 contains at least one element selected from the group consisting of Cr, W, Re, and Ru, the content is preferably 1 atomic % to 49 atomic %, and 5 atomic % to 45 atomic %. It is more preferably atomic %, further preferably 5 atomic % to 40 atomic %, particularly preferably 5 atomic % to 30 atomic %.
 さらに、位相シフト膜13が、O、B、C、及びNからなる群から選択される少なくとも1つの元素を含有することで、光学特性の低下を抑制しつつ、結晶化を抑制でき、開口パターン13aの側壁のラフネスを小さくできる。位相シフト膜13が、O、B、C、及びNからなる群から選択される少なくとも1つの元素を含有する場合、その含有量は、1原子%~20原子%であると好ましく、2原子%~15原子%であるとより好ましく、3原子%~10原子%であるとさらに好ましい。 Furthermore, since the phase shift film 13 contains at least one element selected from the group consisting of O, B, C, and N, crystallization can be suppressed while suppressing deterioration of optical properties, and the opening pattern The roughness of the side wall of 13a can be reduced. When the phase shift film 13 contains at least one element selected from the group consisting of O, B, C, and N, the content is preferably 1 atomic % to 20 atomic %, and preferably 2 atomic %. It is more preferable that the content is between 15 at % and 3 at % and even more preferably 10 at %.
 上述のようにOsに追加的に元素を含有させる場合であっても、位相シフト膜13の屈折率nは、好ましくは0.940以下、より好ましくは0.930以下、さらに好ましくは0.920以下、特に好ましくは0.910以下である。位相シフト膜13の屈折率nが小さいほど、位相シフト膜13を薄化できる。なお、位相シフト膜13の屈折率nは、好ましくは0.885以上である。本明細書において、屈折率nは、EUV光(例えば波長13.5nmの光)に対する屈折率である。 Even in the case where Os additionally contains an element as described above, the refractive index n of the phase shift film 13 is preferably 0.940 or less, more preferably 0.930 or less, and even more preferably 0.920. It is particularly preferably 0.910 or less. The smaller the refractive index n of the phase shift film 13, the thinner the phase shift film 13 can be. Note that the refractive index n of the phase shift film 13 is preferably 0.885 or more. In this specification, the refractive index n is the refractive index for EUV light (for example, light with a wavelength of 13.5 nm).
 また、位相シフト膜13の消衰係数kは、好ましくは0.025以上であり、より好ましくは0.030以上であり、さらに好ましくは0.032以上であり、特に好ましくは0.035以上である。位相シフト膜13の消衰係数kが大きいほど、薄い膜厚で所望の反射率を得ることが容易になる。なお、位相シフト膜13の消衰係数kは、好ましくは0.055以下である。本明細書において、消衰係数kは、EUV光(例えば波長13.5nmの光)に対する消衰係数である。 Further, the extinction coefficient k of the phase shift film 13 is preferably 0.025 or more, more preferably 0.030 or more, still more preferably 0.032 or more, and particularly preferably 0.035 or more. be. The larger the extinction coefficient k of the phase shift film 13, the easier it becomes to obtain a desired reflectance with a thin film thickness. Note that the extinction coefficient k of the phase shift film 13 is preferably 0.055 or less. In this specification, the extinction coefficient k is an extinction coefficient for EUV light (for example, light with a wavelength of 13.5 nm).
 なお、位相シフト膜13等の膜の屈折率n及び消衰係数kは、Center for X-Ray Optics,Lawrence Berkeley National Laboratoryのデータベースの値、又は下記の反射率の「入射角の依存性」から算出した値とすることができる。EUV光の入射角θと、EUV光に対する反射率Rと、膜の屈折率nと、膜の消衰係数kとは、下記の式(1)を満たす。
R=|(sinθ-((n+ik)2-cos2θ)1/2)/(sinθ+((n+ik)2-cos2θ)1/2)|・・・(1)
入射角θと反射率Rの組み合わせを複数測定し、複数の測定データと式(1)との誤差が最小になるように、最小二乗法で屈折率nと消衰係数kを算出できる。
Note that the refractive index n and extinction coefficient k of films such as the phase shift film 13 are obtained from values in the database of Center for X-Ray Optics, Lawrence Berkeley National Laboratory, or from the "incidence angle dependence" of reflectance below. It can be a calculated value. The incident angle θ of the EUV light, the reflectance R for the EUV light, the refractive index n of the film, and the extinction coefficient k of the film satisfy the following formula (1).
R=|(sinθ-((n+ik)2-cos2θ)1/2)/(sinθ+((n+ik)2-cos2θ)1/2)|...(1)
By measuring a plurality of combinations of the incident angle θ and the reflectance R, the refractive index n and the extinction coefficient k can be calculated by the least squares method so that the error between the plurality of measurement data and equation (1) is minimized.
 位相シフト膜13の成膜方法は、例えば、DCスパッタリング法、マグネトロンスパッタリング法、イオンビームスパッタリング法、又はプラズマCVD法等である。位相シフト膜13がOを追加的に含有する場合には、スパッタガス中のOガスの含有量によって、位相シフト膜13の酸素含有量を制御できる。また、位相シフト膜13がNを追加的に含有する場合には、スパッタガス中のNガスの含有量で、位相シフト膜13の窒素含有量を制御できる。 The method for forming the phase shift film 13 is, for example, a DC sputtering method, a magnetron sputtering method, an ion beam sputtering method, a plasma CVD method, or the like. When the phase shift film 13 additionally contains O, the oxygen content of the phase shift film 13 can be controlled by the content of O 2 gas in the sputtering gas. Furthermore, when the phase shift film 13 additionally contains N, the nitrogen content of the phase shift film 13 can be controlled by the content of N 2 gas in the sputtering gas.
 DCスパッタリング法を用いてオスミウム膜を形成する場合、成膜条件の一例は下記の通りである。
<Os膜の成膜条件>
ターゲット:Os
スパッタガス:Ar
ガス圧:0.2Pa
ターゲットの出力密度:1.0W/cm~7.0W/cm
成膜速度:0.020nm/sec~0.060nm/sec
膜厚:20nm~60nm。
When forming an osmium film using the DC sputtering method, an example of film forming conditions is as follows.
<Os film formation conditions>
Target: Os
Sputter gas: Ar
Gas pressure: 0.2Pa
Target power density: 1.0W/cm 2 ~7.0W/cm 2
Film formation rate: 0.020nm/sec to 0.060nm/sec
Film thickness: 20nm to 60nm.
 位相シフト膜13上にはエッチングマスク膜14が形成されていてもよい。エッチングマスク膜14は、位相シフト膜13に開口パターン13aを形成するために用いられる。エッチングマスク膜14の上には、不図示のレジスト膜が設けられる。反射型マスク2の製造工程では、先ずレジスト膜に第1開口パターンを形成し、次に第1開口パターンを用いてエッチングマスク膜14に第2開口パターンを形成し、次に第2開口パターンを用いて位相シフト膜13に第3開口パターン13aを形成する。第1開口パターンと第2開口パターンと第3開口パターン13aは、平面視(Z軸方向視)で同一の寸法及び同一の形状を有する。エッチングマスク膜14は、レジスト膜の薄膜化を可能にする。 An etching mask film 14 may be formed on the phase shift film 13. Etching mask film 14 is used to form opening pattern 13a in phase shift film 13. A resist film (not shown) is provided on the etching mask film 14. In the manufacturing process of the reflective mask 2, first a first opening pattern is formed in the resist film, then a second opening pattern is formed in the etching mask film 14 using the first opening pattern, and then a second opening pattern is formed in the etching mask film 14. A third opening pattern 13a is formed in the phase shift film 13 using the following method. The first aperture pattern, the second aperture pattern, and the third aperture pattern 13a have the same dimensions and the same shape in a plan view (as viewed in the Z-axis direction). The etching mask film 14 allows the resist film to be made thinner.
 エッチングマスク膜14は、Al、Hf、Cr、Nb、Ti、Mo、Ta及びSiからなる群から選択される少なくとも1つの元素を含むことが好ましい。エッチングマスク膜14は、上記の元素に加えて、O、N及びBからなる群から選択される少なくとも1つの元素を含んでもよい。 Preferably, the etching mask film 14 contains at least one element selected from the group consisting of Al, Hf, Cr, Nb, Ti, Mo, Ta, and Si. The etching mask film 14 may contain at least one element selected from the group consisting of O, N, and B in addition to the above elements.
 エッチングマスク膜14の膜厚は、1nm以上30nm以下が好ましく、2nm以上25nm以下がより好ましく、2nm以上10nm以下がさらに好ましい。エッチングマスク膜14の成膜方法は、例えば、DCスパッタリング法、マグネトロンスパッタリング法、又はイオンビームスパッタリング法等である。 The thickness of the etching mask film 14 is preferably 1 nm or more and 30 nm or less, more preferably 2 nm or more and 25 nm or less, and even more preferably 2 nm or more and 10 nm or less. A method for forming the etching mask film 14 is, for example, a DC sputtering method, a magnetron sputtering method, or an ion beam sputtering method.
 また、本開示の一態様は、基板と、EUV光を反射する多層反射膜と、多層反射膜を保護する保護膜と、EUV光の位相をシフトさせる位相シフト膜と、をこの順で有する、反射型マスクブランクの製造方法であって、基板の上に、多層反射膜と、保護膜と、位相シフト膜と、をこの順番で製膜することを含み、位相シフト膜は、Osを35原子%以上含むOs系材料からなり、EUV光に対して屈折率nが0.940以下であり且つ消衰係数kが0.025以上である、反射型マスクブランクの製造方法であってよい。 Further, one embodiment of the present disclosure includes, in this order, a substrate, a multilayer reflective film that reflects EUV light, a protective film that protects the multilayer reflective film, and a phase shift film that shifts the phase of EUV light. A method for manufacturing a reflective mask blank, which includes forming a multilayer reflective film, a protective film, and a phase shift film in this order on a substrate, the phase shift film containing 35 Os atoms. % or more, and has a refractive index n of 0.940 or less and an extinction coefficient k of 0.025 or more with respect to EUV light.
 図5を参照して、一実施形態に係る反射型マスクブランク1の製造方法について説明する。反射型マスクブランク1の製造方法は、例えば、図5に示すステップS101~S105を有する。ステップS101では、基板10を準備する。ステップS102では、基板10の上面10aに多層反射膜11を形成する。ステップS103では、多層反射膜11の上に保護膜12を形成する。ステップS104では、保護膜12の上に位相シフト膜13を形成する。ステップS105では、位相シフト膜13の上にエッチングマスク膜14を形成する。 With reference to FIG. 5, a method for manufacturing a reflective mask blank 1 according to an embodiment will be described. The method for manufacturing the reflective mask blank 1 includes steps S101 to S105 shown in FIG. 5, for example. In step S101, the substrate 10 is prepared. In step S102, a multilayer reflective film 11 is formed on the upper surface 10a of the substrate 10. In step S103, a protective film 12 is formed on the multilayer reflective film 11. In step S104, the phase shift film 13 is formed on the protective film 12. In step S105, an etching mask film 14 is formed on the phase shift film 13.
 なお、反射型マスクブランク1の製造方法は、少なくとも、ステップS101~S104を有していればよい。反射型マスクブランク1の製造方法は、図5に図示しない機能膜を形成するステップを更に有してもよい。 Note that the method for manufacturing the reflective mask blank 1 only needs to include at least steps S101 to S104. The method for manufacturing the reflective mask blank 1 may further include a step of forming a functional film not shown in FIG.
 さらに、本開示の一態様は、反射型マスクブランクを準備し、当該反射型マスクブランクにおける位相シフト膜に開口パターンを形成することを含む、反射型マスクの製造方法であってよい。 Furthermore, one aspect of the present disclosure may be a method for manufacturing a reflective mask, which includes preparing a reflective mask blank and forming an opening pattern in a phase shift film in the reflective mask blank.
 図6を参照して、一実施形態に係る反射型マスク2の製造方法について説明する。反射型マスク2の製造方法は、図6に示すステップS201~S204を有する。ステップS201では、反射型マスクブランク1を準備する。ステップS202では、エッチングマスク膜14を加工する。エッチングマスク膜14の上には、不図示のレジスト膜が設けられる。先ずレジスト膜に第1開口パターンを形成し、次に第1開口パターンを用いてエッチングマスク膜14に第2開口パターンを形成する。ステップS203では、第2開口パターンを用いて位相シフト膜13に第3開口パターン13aを形成する。ステップS203では、エッチングガスを用いて位相シフト膜13をエッチングする。ステップS204では、レジスト膜及びエッチングマスク膜14を除去する。レジスト膜の除去には、例えば硫酸-過酸化水素水混合液(SPM洗浄液)が用いられる。エッチングマスク膜14の除去には、例えばエッチングガスが用いられる。ステップS204(エッチングマスク膜14の除去)で用いられるエッチングガスは、ステップS203(開口パターン13aの形成)で用いられるエッチングガスと同種であってもよい。なお、反射型マスク2の製造方法は、少なくとも、ステップS201及びS203を有していればよい。 With reference to FIG. 6, a method for manufacturing the reflective mask 2 according to one embodiment will be described. The method for manufacturing the reflective mask 2 includes steps S201 to S204 shown in FIG. In step S201, a reflective mask blank 1 is prepared. In step S202, the etching mask film 14 is processed. A resist film (not shown) is provided on the etching mask film 14. First, a first opening pattern is formed in the resist film, and then a second opening pattern is formed in the etching mask film 14 using the first opening pattern. In step S203, a third opening pattern 13a is formed in the phase shift film 13 using the second opening pattern. In step S203, the phase shift film 13 is etched using an etching gas. In step S204, the resist film and etching mask film 14 are removed. For example, a sulfuric acid-hydrogen peroxide mixture (SPM cleaning solution) is used to remove the resist film. For example, an etching gas is used to remove the etching mask film 14. The etching gas used in step S204 (removal of etching mask film 14) may be the same type of etching gas used in step S203 (formation of opening pattern 13a). Note that the method for manufacturing the reflective mask 2 only needs to include at least steps S201 and S203.
 以下、実験データについて説明する。下記の例1が実施例であり、例2、3が比較例である。 The experimental data will be explained below. Example 1 below is an example, and Examples 2 and 3 are comparative examples.
 (例1)
 基板と多層反射膜と保護膜と位相シフト膜とを含む反射型マスクブランクを作製した。基板として、SiO-TiO系のガラス基板(外形6インチ(152mm)角、厚さが6.3mm)を準備した。このガラス基板は、20℃における熱膨張係数が0.02×10-7/℃であり、ヤング率が67GPaであり、ポアソン比が0.17であり、比剛性は3.07×10/sであった。基板の表面(上面)の品質保証領域は、研磨によって0.15nm以下の二乗平均平方根粗さRqと、100nm以下の平坦度と、を有していた。基板の裏面(下面)には、マグネトロンスパッタリング法を用いて厚さ100nmのCr膜を成膜した。Cr膜のシート抵抗は100Ω/□であった。
(Example 1)
A reflective mask blank including a substrate, a multilayer reflective film, a protective film, and a phase shift film was manufactured. As a substrate, a SiO 2 -TiO 2 -based glass substrate (outer size: 6 inches (152 mm) square, thickness: 6.3 mm) was prepared. This glass substrate has a thermal expansion coefficient of 0.02×10 −7 /°C at 20°C, a Young's modulus of 67 GPa, a Poisson's ratio of 0.17, and a specific stiffness of 3.07×10 7 m. 2 / s2 . The quality assurance area on the surface (upper surface) of the substrate had a root mean square roughness Rq of 0.15 nm or less and a flatness of 100 nm or less by polishing. A Cr film with a thickness of 100 nm was formed on the back surface (lower surface) of the substrate using a magnetron sputtering method. The sheet resistance of the Cr film was 100Ω/□.
 多層反射膜として、Mo/Si多層反射膜を形成した。Mo/Si多層反射膜は、得られた基板を平板状の静電チャックに裏面側のCr膜が対向するように固定し、該基板の表面上にイオンビームスパッタリング法を用いてSi層(膜厚4.5nm)の成膜とMo層(膜厚2.3nm)の成膜とを40回繰り返すことにより形成した。Mo/Si多層反射膜の合計膜厚は272nm((4.5nm+2.3nm)×40)であった。多層反射膜上には、保護膜としてRh膜(膜厚2.5nm)を形成した。Rh膜は、DCスパッタリング法を用いて形成した。 A Mo/Si multilayer reflective film was formed as the multilayer reflective film. The Mo/Si multilayer reflective film is produced by fixing the obtained substrate to a flat electrostatic chuck with the Cr film on the back side facing, and depositing a Si layer (film) on the surface of the substrate using an ion beam sputtering method. The film was formed by repeating 40 times the formation of a Mo layer (thickness: 4.5 nm) and the Mo layer (thickness: 2.3 nm). The total film thickness of the Mo/Si multilayer reflective film was 272 nm ((4.5 nm+2.3 nm)×40). A Rh film (thickness: 2.5 nm) was formed as a protective film on the multilayer reflective film. The Rh film was formed using a DC sputtering method.
 さらに、保護膜上に、位相シフト膜として、Os膜(膜厚35nm)を、DCスパッタリング法を用いて形成した。 Furthermore, an Os film (thickness: 35 nm) was formed as a phase shift film on the protective film using a DC sputtering method.
 (例2)
 位相シフト膜として、Os膜に代えてIr膜(膜厚35nm)を形成したこと以外は、例1と同様にして、反射型マスクブランクを作製した。
(Example 2)
A reflective mask blank was produced in the same manner as in Example 1, except that an Ir film (thickness: 35 nm) was formed in place of the Os film as the phase shift film.
 (例3)
 位相シフト膜として、Os膜に代えてPd膜(膜厚35nm)を形成したこと以外は、例1と同様にして、反射型マスクブランクを作製した。
(Example 3)
A reflective mask blank was produced in the same manner as in Example 1, except that a Pd film (thickness: 35 nm) was formed in place of the Os film as the phase shift film.
 表1に、異なる位相シフト膜種を備えた例1~例3の反射型マスクブランクの及びその特性を示す。 Table 1 shows the reflective mask blanks of Examples 1 to 3 with different types of phase shift films and their characteristics.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <屈折率n及び消衰係数k>
 表1に示す位相シフト膜の屈折率n及び消衰係数kは、Center for X-Ray Optics,Lawrence Berkeley National Laboratoryのデータベースの値、又は後述の反射率の入射角の依存性から算出した値とした。
<Refractive index n and extinction coefficient k>
The refractive index n and extinction coefficient k of the phase shift film shown in Table 1 are the values in the database of the Center for X-Ray Optics, Lawrence Berkeley National Laboratory, or the values calculated from the dependence of the reflectance on the angle of incidence described below. did.
 EUV光の入射角θと、EUV光に対する反射率Rと、位相シフト膜の屈折率nと、位相シフト膜の消衰係数kとは、下記の式(1)を満たす。
R=|(sinθ-((n+ik)-cosθ)1/2)/(sinθ+((n+ik)-cosθ)1/2)|・・・(1)
入射角θと反射率Rの組み合わせを複数測定し、複数の測定データと式(1)との誤差が最小になるように、最小二乗法で屈折率nと消衰係数kを算出した。
The incident angle θ of EUV light, the reflectance R for EUV light, the refractive index n of the phase shift film, and the extinction coefficient k of the phase shift film satisfy the following formula (1).
R=|(sinθ−((n+ik) 2 −cos 2 θ) 1/2 )/(sinθ+((n+ik) 2 −cos 2 θ) 1/2 ) |...(1)
A plurality of combinations of the incident angle θ and the reflectance R were measured, and the refractive index n and extinction coefficient k were calculated by the least squares method so that the error between the plurality of measurement data and equation (1) was minimized.
 <エッチング速度>
 エッチングガスとしてClガスとOガスとの混合ガスを用い、位相シフト膜をドライエッチングして、エッチング速度を測定した。エッチングには、誘導結合プラズマ(ICP:Inductively Coupled Plasma)エッチング装置を用いた。装置の条件は以下の通りとした。
ICPアンテナバイアス:200W
基板バイアス:40W
エッチング圧力:3.5Pa
エッチングガス:ClガスとOガスの混合ガス
Clガスの流量:10sccm
ガスの流量:10sccm。
<Etching speed>
The phase shift film was dry etched using a mixed gas of Cl 4 gas and O 2 gas as an etching gas, and the etching rate was measured. For etching, an inductively coupled plasma (ICP) etching device was used. The conditions of the apparatus were as follows.
ICP antenna bias: 200W
Substrate bias: 40W
Etching pressure: 3.5Pa
Etching gas: Mixed gas of Cl 2 gas and O 2 gas Flow rate of Cl 2 gas: 10 sccm
O2 gas flow rate: 10 sccm.
 表1に示すように、例1~例3で使用された位相シフト膜の材料はいずれも、低い屈折率n及び高い消衰係数kを示す材料であった。しかしながら、Osからなる位相シフト膜(例1)は、Ir又はPdからなる位相シフト膜(例2、例3)に比べ、高い速度でエッチングが可能であり、加工性が高いことが分かった。 As shown in Table 1, the materials of the phase shift films used in Examples 1 to 3 were all materials exhibiting a low refractive index n and a high extinction coefficient k. However, it was found that the phase shift film made of Os (Example 1) can be etched at a higher rate and has higher workability than the phase shift films made of Ir or Pd (Examples 2 and 3).
 なお、保護膜を形成せずに多層反射膜上に直接位相シフト膜を形成したこと以外は例1~例3と同様にして反射型マスクブランクをそれぞれ作製して評価したところ、例1~例3と同様に、Os位相シフト膜が優れていたとの評価結果が得られた。また、基板としてシリコンウエハを用いたこと以外は例1~例3と同様にして反射型マスクブランクをそれぞれ作製して評価したところ、例1~例3と同様に、Os位相シフト膜が優れていたとの評価結果が得られた。 Incidentally, reflective mask blanks were prepared and evaluated in the same manner as in Examples 1 to 3, except that the phase shift film was directly formed on the multilayer reflective film without forming a protective film. Similarly to Example 3, the evaluation results showed that the Os phase shift film was superior. In addition, reflective mask blanks were fabricated and evaluated in the same manner as in Examples 1 to 3, except that a silicon wafer was used as the substrate. As in Examples 1 to 3, the Os phase shift film was superior. The evaluation results were as follows.
 以上、本開示に係る反射型マスクブランク、反射型マスク、反射型マスクブランクの製造方法、及び反射型マスクの製造方法について説明したが、本開示は上記実施形態などに限定されない。特許請求の範囲に記載された範疇内において、各種の変更、修正、置換、付加、削除、及び組み合わせが可能である。それらについても当然に本開示の技術的範囲に属する。 Although the reflective mask blank, reflective mask, reflective mask blank manufacturing method, and reflective mask manufacturing method according to the present disclosure have been described above, the present disclosure is not limited to the above embodiments. Various changes, modifications, substitutions, additions, deletions, and combinations are possible within the scope of the claims. These naturally fall within the technical scope of the present disclosure.
 本出願は、2022年9月9日に出願された日本国特許出願2022-143964号に基づく優先権を主張するものであり、その全内容をここに援用する。 This application claims priority based on Japanese Patent Application No. 2022-143964 filed on September 9, 2022, and its entire content is incorporated herein.
1  反射型マスクブランク
2  反射型マスク
10 基板
11 多層反射膜
12 保護膜
13 位相シフト膜
13a 開口パターン
14  エッチングマスク膜

 
1 Reflective mask blank 2 Reflective mask 10 Substrate 11 Multilayer reflective film 12 Protective film 13 Phase shift film 13a Opening pattern 14 Etching mask film

Claims (11)

  1.  基板と、EUV光を反射する多層反射膜と、前記多層反射膜を保護する保護膜と、前記EUV光の位相をシフトさせる位相シフト膜と、をこの順で有する、反射型マスクブランクであって、
     前記位相シフト膜は、Osを35原子%以上含むOs系材料からなり、前記EUV光に対して屈折率nが0.940以下であり且つ消衰係数kが0.025以上である、反射型マスクブランク。
    A reflective mask blank comprising, in this order, a substrate, a multilayer reflective film that reflects EUV light, a protective film that protects the multilayer reflective film, and a phase shift film that shifts the phase of the EUV light. ,
    The phase shift film is a reflective type, which is made of an Os-based material containing 35 atomic % or more of Os, and has a refractive index n of 0.940 or less and an extinction coefficient k of 0.025 or more with respect to the EUV light. mask blank.
  2.  前記位相シフト膜は、Osを主成分として含む、請求項1記載の反射型マスクブランク。 The reflective mask blank according to claim 1, wherein the phase shift film contains Os as a main component.
  3.  前記Os系材料は、Osと、Ta、Cr、Mo、W、Re、Si、Hf、Ru、O、B、C、及びNからなる群から選択される少なくとも1つの元素を含む、請求項1又は2に記載の反射型マスクブランク。 1 . The Os-based material contains Os and at least one element selected from the group consisting of Ta, Cr, Mo, W, Re, Si, Hf, Ru, O, B, C, and N. Or the reflective mask blank according to 2.
  4.  前記Os系材料は、OsとRuを含む、請求項1又は2に記載の反射型マスクブランク。 The reflective mask blank according to claim 1 or 2, wherein the Os-based material contains Os and Ru.
  5.  前記位相シフト膜の膜厚が、20nm以上60nm以下である、請求項1又は2に記載の反射型マスクブランク。 The reflective mask blank according to claim 1 or 2, wherein the phase shift film has a thickness of 20 nm or more and 60 nm or less.
  6.  前記保護膜は、Ru、Rh及びSiからなる群から選択される少なくとも1つの元素を含む、請求項1又は2に記載の反射型マスクブランク。 The reflective mask blank according to claim 1 or 2, wherein the protective film contains at least one element selected from the group consisting of Ru, Rh, and Si.
  7.  前記位相シフト膜の上にエッチングマスク膜を有し、
     前記エッチングマスク膜は、Al、Hf、Cr、Nb、Ti、Mo、Ta及びSiからなる群から選択される少なくとも1つの元素を含む、請求項1又は2に記載の反射型マスクブランク。
    an etching mask film on the phase shift film;
    3. The reflective mask blank according to claim 1, wherein the etching mask film contains at least one element selected from the group consisting of Al, Hf, Cr, Nb, Ti, Mo, Ta, and Si.
  8.  前記エッチングマスク膜は、O、N及びBからなる群から選択される少なくとも1つの元素をさらに含む、請求項7に記載の反射型マスクブランク。 The reflective mask blank according to claim 7, wherein the etching mask film further contains at least one element selected from the group consisting of O, N, and B.
  9.  請求項1又は2に記載の反射型マスクブランクを備え、前記位相シフト膜に開口パターンを含む、反射型マスク。 A reflective mask comprising the reflective mask blank according to claim 1 or 2, wherein the phase shift film includes an opening pattern.
  10.  基板と、EUV光を反射する多層反射膜と、前記多層反射膜を保護する保護膜と、前記EUV光の位相をシフトさせる位相シフト膜と、をこの順で有する、反射型マスクブランクの製造方法であって、
     前記基板の上に、前記多層反射膜と、前記保護膜と、前記位相シフト膜と、をこの順番で製膜することを含み、
     前記位相シフト膜は、Osを35at%以上含むOs系材料からなり、前記EUV光に対して屈折率nが0.940以下であり且つ消衰係数kが0.025以上である、反射型マスクブランクの製造方法。
    A method for manufacturing a reflective mask blank comprising, in this order, a substrate, a multilayer reflective film that reflects EUV light, a protective film that protects the multilayer reflective film, and a phase shift film that shifts the phase of the EUV light. And,
    forming the multilayer reflective film, the protective film, and the phase shift film in this order on the substrate,
    The phase shift film is a reflective mask made of an Os-based material containing 35 at% or more of Os, and has a refractive index n of 0.940 or less and an extinction coefficient k of 0.025 or more with respect to the EUV light. How to make blanks.
  11.  請求項10に記載の製造方法を用いて製造した反射型マスクブランクを準備し、
     前記位相シフト膜に開口パターン形成することを含む、反射型マスクの製造方法。

     
    preparing a reflective mask blank manufactured using the manufacturing method according to claim 10,
    A method for manufacturing a reflective mask, the method comprising forming an opening pattern in the phase shift film.

PCT/JP2023/032335 2022-09-09 2023-09-05 Reflective mask blank, reflective mask, reflective mask blank manufacturing method, and reflective mask manufacturing method WO2024053634A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-143964 2022-09-09
JP2022143964 2022-09-09

Publications (1)

Publication Number Publication Date
WO2024053634A1 true WO2024053634A1 (en) 2024-03-14

Family

ID=90191228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032335 WO2024053634A1 (en) 2022-09-09 2023-09-05 Reflective mask blank, reflective mask, reflective mask blank manufacturing method, and reflective mask manufacturing method

Country Status (2)

Country Link
TW (1) TW202429187A (en)
WO (1) WO2024053634A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07114173A (en) * 1993-10-15 1995-05-02 Canon Inc Reflection mask for lithography and reduction stepper
KR20170021191A (en) * 2015-08-17 2017-02-27 주식회사 에스앤에스텍 Blankmask for Extreme Ultra-Violet Lithography and Photomask using the same
JP2021071685A (en) * 2019-11-01 2021-05-06 凸版印刷株式会社 Reflective mask and production method for reflective mask
WO2022138360A1 (en) * 2020-12-25 2022-06-30 Hoya株式会社 Reflective mask blank, reflective mask, and method for manufacturing semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07114173A (en) * 1993-10-15 1995-05-02 Canon Inc Reflection mask for lithography and reduction stepper
KR20170021191A (en) * 2015-08-17 2017-02-27 주식회사 에스앤에스텍 Blankmask for Extreme Ultra-Violet Lithography and Photomask using the same
JP2021071685A (en) * 2019-11-01 2021-05-06 凸版印刷株式会社 Reflective mask and production method for reflective mask
WO2022138360A1 (en) * 2020-12-25 2022-06-30 Hoya株式会社 Reflective mask blank, reflective mask, and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
TW202429187A (en) 2024-07-16

Similar Documents

Publication Publication Date Title
TWI835798B (en) Reflective mask substrate, reflective mask and manufacturing method thereof, and semiconductor device manufacturing method
TWI811369B (en) Reflective photomask base, reflective photomask, method for manufacturing reflective photomask and semiconductor device
JP7513164B2 (en) Reflective mask blank, reflective mask, manufacturing method of reflective mask blank, and manufacturing method of reflective mask
JP7478208B2 (en) Reflective mask, and method for manufacturing a reflective mask blank and a semiconductor device
WO2024053634A1 (en) Reflective mask blank, reflective mask, reflective mask blank manufacturing method, and reflective mask manufacturing method
JP7416342B1 (en) Reflective mask blank, reflective mask, reflective mask blank manufacturing method, and reflective mask manufacturing method
WO2024162084A1 (en) Reflection-type mask blank, reflection-type mask, reflection-type mask blank production method, and reflection-type mask production method
WO2024024513A1 (en) Reflection-type mask blank, reflection-type mask, reflection-type mask blank production method, and reflection-type mask production method
TWI855751B (en) Reflective mask base, reflective mask, method for manufacturing reflective mask base, and method for manufacturing reflective mask
TWI853742B (en) Reflective mask base, reflective mask, method for manufacturing reflective mask base, and method for manufacturing reflective mask
TWI851338B (en) Reflective mask substrate and reflective mask
JP7416343B2 (en) Reflective mask blank, reflective mask, method for manufacturing reflective mask blank, and method for manufacturing reflective mask
JP2024135147A (en) Reflective mask blank, reflective mask, manufacturing method of reflective mask blank, and manufacturing method of reflective mask
WO2023008435A1 (en) Reflective mask blank, reflective mask, reflective mask blank manufacturing method, and reflective mask manufacturing method
JP2024134752A (en) Reflective mask blank, reflective mask, manufacturing method of reflective mask blank, and manufacturing method of reflective mask
WO2024029409A1 (en) Reflective mask blank and reflective mask
JP2024135499A (en) Reflective mask blank, reflective mask, manufacturing method of reflective mask blank, and manufacturing method of reflective mask

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23863172

Country of ref document: EP

Kind code of ref document: A1