TWI619596B - Cross-machine injection molding parameter conversion method and system - Google Patents

Cross-machine injection molding parameter conversion method and system Download PDF

Info

Publication number
TWI619596B
TWI619596B TW105100617A TW105100617A TWI619596B TW I619596 B TWI619596 B TW I619596B TW 105100617 A TW105100617 A TW 105100617A TW 105100617 A TW105100617 A TW 105100617A TW I619596 B TWI619596 B TW I619596B
Authority
TW
Taiwan
Prior art keywords
machine
parameters
value
parameter
compensation function
Prior art date
Application number
TW105100617A
Other languages
Chinese (zh)
Other versions
TW201725107A (en
Inventor
xin-hong Chen
Jia-Hong Shi
rui-wen Zhang
Original Assignee
Prec Machinery Research&Development Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prec Machinery Research&Development Center filed Critical Prec Machinery Research&Development Center
Priority to TW105100617A priority Critical patent/TWI619596B/en
Publication of TW201725107A publication Critical patent/TW201725107A/en
Application granted granted Critical
Publication of TWI619596B publication Critical patent/TWI619596B/en

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

一種跨機台射出成型參數轉換系統,其所執行的參數轉換方法包含有以下步驟:取得轉出機台與轉入機台的模具參數、材料參數、機台參數,以及製程參數,之後選擇其中一個製程參數,並設定轉出機台與轉入機台對應的多個設定值,並分別就設定值在轉出機台與轉入機台進行實際作業以取得對應的實際作業值,進而計算出設定值與實際作業值之間的補償函式,讓使用者可以利用補償函式將轉出機台的原始製程參數轉換到轉入機台的轉換後製程參數,藉此更準確地計算出轉入機台正確的製程參數,並縮短試模調機時間。 A cross-machine injection molding parameter conversion system, wherein the parameter conversion method performed comprises the following steps: obtaining mold parameters, material parameters, machine parameters, and process parameters of the transfer machine and the transfer machine, and then selecting the same a process parameter, and set a plurality of set values corresponding to the transfer machine and the transfer machine, and perform actual operations on the transfer machine and the transfer machine to obtain the corresponding actual work values, and then calculate The compensation function between the set value and the actual work value allows the user to use the compensation function to convert the original process parameters transferred out of the machine to the converted process parameters transferred to the machine, thereby calculating more accurately Transfer the correct process parameters to the machine and shorten the test mode adjustment time.

Description

跨機台射出成型參數轉換方法與系統 Cross-machine injection molding parameter conversion method and system

本發明係與射出成型機的製程參數有關,特別是有關於在換線生產時,模具轉出的射出機與模具轉入的射出機之間製程參數的轉換方法與系統。 The invention relates to the process parameters of the injection molding machine, in particular to a method and system for converting process parameters between the injection machine from which the mold is transferred and the injection machine into which the mold is transferred during the production of the change line.

射出成型機進行換線生產時,將相同模具由所轉出的機台移動到所轉入的機台都需要重新試模,試模成功後才能生產出合格的產品。傳統上,在試模過程中多是憑藉調機師傅的經驗來進行射出成形機與模具等各項製程參數的調整,然而所需要調整的製程參數相當多,不同型號的射出機的各項規格與機台參數也多半不同,單憑調機師傅的經驗來進行參數調整恐怕容易出現誤差,調機時間過長,而且也會有經驗難以傳承的問題。 When the injection molding machine is used for line change production, the same mold is moved from the machine to the machine that is transferred to the machine to be transferred, and the mold is re-tested. After the test is successful, a qualified product can be produced. Traditionally, in the trial-testing process, the adjustment of various process parameters such as injection molding machine and mold has been carried out by the experience of the master. However, the process parameters that need to be adjusted are quite numerous, and the specifications of different types of injection machines are required. It is also quite different from the parameters of the machine. It is easy to make errors due to the adjustment of the parameters of the master. The adjustment time is too long, and there will be problems that are difficult to pass on.

大陸第103085231號發明專利提供了一種射出成形機的調機方式,其作法是先將模具的模具參數、材料參數,以及已調試好的射出機的製程參數先轉換成一標準工藝參數,之後再將轉換後的標準工藝參數再對應地轉換為適用於相同模具的被調試射出機的各項參數,最後再依據這些參數來進行調機。然而,此專利只單純考慮到不同射出機之間的標準規格與機器參數,並沒有考慮到射出機在長時間使用後可以產生的誤差問 題,導致所轉換出來的製程參數通常還是需要多次調機,使用上仍存在相當多的困擾。 The invention patent No. 103085231 provides an adjustment method of the injection molding machine, which firstly converts the mold parameters, material parameters of the mold, and the process parameters of the debugged injection machine into a standard process parameter, and then The converted standard process parameters are then correspondingly converted to various parameters of the debugged injection machine applicable to the same mold, and finally adjusted according to these parameters. However, this patent only considers the standard specifications and machine parameters between different injection machines, and does not take into account the error that the injection machine can produce after prolonged use. The problem that causes the converted process parameters usually still requires multiple adjustments, and there are still considerable problems in use.

相較之下,本發明提供了一種嶄新的且用於射出成形參數的轉換方法,可以在換線生產時,更準確地計算出模具所轉入機台的製程參數。 In contrast, the present invention provides a novel conversion method for injection molding parameters that can more accurately calculate process parameters for the mold to be transferred into the machine during line change production.

為了達成上述目的,本發明提供了一種跨機台射出成型參數轉換方法,其係為用來將一轉出機台的原始製程參數轉換成另一轉入機台的轉換後製程參數,上述的參數轉換方法包含有以下步驟:首先取得轉出機台與轉入機台的複數個模具參數、複數個材料參數、複數個機台參數,以及複數個製程參數。 In order to achieve the above object, the present invention provides a cross-machine injection molding parameter conversion method, which is used to convert a raw process parameter of a transfer machine into another converted process parameter transferred to the machine, the above The parameter conversion method includes the following steps: first, obtaining a plurality of mold parameters, a plurality of material parameters, a plurality of machine parameters, and a plurality of process parameters of the transfer machine and the transfer machine.

選擇其中一個製程參數,並且依據上述所選擇的製程參數在轉出機台設定複數個第一設定值,並且在轉入機台設定複數個第二設定值。 One of the process parameters is selected, and a plurality of first set values are set on the transfer machine according to the selected process parameters, and a plurality of second set values are set on the transfer machine.

將每一個第一設定值在轉出機台實際進行作業以取得一第一實際作業值,並將每一個第二設定值在轉入機台實際進行作業以取得對應的一第二實際作業值。取得第一實際作業值與第二實際作業值後,再依據第一設定值與第一實際作業值來計算二者之間關係的一第一補償函式,且依據第二設定值與第二實際作業值計算一第二補償函式。 Each of the first set values is actually operated on the transfer machine to obtain a first actual work value, and each of the second set values is actually transferred to the machine to obtain a corresponding second actual work value. . After obtaining the first actual working value and the second actual working value, calculating a first compensation function according to the first set value and the first actual working value, and according to the second set value and the second The actual job value calculates a second compensation function.

之後,依據所取得的轉出機台與轉入機台的模具參數、材料參數與機台參數,使用計算出來的第一補償函式將轉出的製程參數轉換出一初始作業值,並使用第二補償函式將上述得到的初始作業值再轉換出待轉入的製程參數。 Then, according to the obtained mold parameters, material parameters and machine parameters of the transfer machine and the transfer machine, the calculated first compensation function is used to convert the transferred process parameters into an initial work value, and use The second compensation function converts the initial job value obtained above into the process parameter to be transferred.

藉此,本發明透過補償函式,能夠更準確地將原本在轉出機台所使用的原始製程參數轉換成轉入機台的轉換後製程參數,減少射出成型產品的誤差。 Thereby, the present invention can more accurately convert the original process parameters originally used in the transfer machine into the converted process parameters transferred to the machine through the compensation function, thereby reducing the error of the injection molding product.

本發明還提供一種跨機台射出成型參數轉換系統,能夠執行前述的參數轉換方法,包含有一輸入裝置以輸入模具參數、材料參數、機台參數與製程參數,並能取得轉出機台與轉入機台的第一實際作業值與第二實際作業值;一計算裝置,能根據第一設定值與第一實際作業值的關係計算求得第一補償函式,並根據第二設定值與第二實際作業值的關係計算求得第二補償函式;以及一輸出裝置,用以顯示該轉換後製程參數。 The invention also provides a cross-machine injection molding parameter conversion system capable of performing the foregoing parameter conversion method, comprising an input device for inputting mold parameters, material parameters, machine parameters and process parameters, and obtaining the transfer machine and the transfer a first actual working value of the entering station and a second actual working value; a computing device capable of calculating a first compensation function according to a relationship between the first set value and the first actual working value, and according to the second set value The relationship between the second actual job values is calculated to obtain a second compensation function; and an output device is configured to display the converted process parameters.

較佳的情況是,輸入裝置是以有線或無線方式連接轉出機台與轉入機台,並透過通訊界面取得第一實際作業值與第二實際作業值。 Preferably, the input device is connected to the transfer machine and the transfer machine in a wired or wireless manner, and obtains the first actual work value and the second actual work value through the communication interface.

S1-S10‧‧‧步驟 S1-S10‧‧‧ steps

a,b,a1,a2,b1,b2‧‧‧項目 a, b, a1, a2, b1, b2‧‧‧ projects

第1圖為本發明的步驟流程圖。 Figure 1 is a flow chart of the steps of the present invention.

第2圖為實際進行作業時射出速度與逆流量的關係圖。 Fig. 2 is a graph showing the relationship between the injection speed and the reverse flow rate when the work is actually performed.

第3圖為實際進行作業時射出速度與速度誤差的關係圖。 Fig. 3 is a graph showing the relationship between the injection speed and the speed error when the work is actually performed.

第4圖為實際進行作業時的保壓壓力與逆流量的關係圖。 Fig. 4 is a graph showing the relationship between the holding pressure and the reverse flow at the time of actual work.

第5圖為實際進行作業時保壓壓力與模內最大壓力的關係圖。 Figure 5 is a graph showing the relationship between the holding pressure and the maximum pressure in the mold during actual operation.

為了能更瞭解本發明之特點所在,本發明提供了二個實施例並配合圖式說明如下,請首先參考第1圖的步驟流程圖。本發明是用於射出成型技術,主要是用來將一模具所轉出的射出成型機台(以下簡稱”轉出機 台”)的一原始製程參數轉換為另一個模具所轉入的射出成型機台(以下簡稱”轉入機台”)的轉換後製程參數,以下將對本發明的各個步驟進行詳細說明。 In order to better understand the features of the present invention, the present invention provides two embodiments and is described below in conjunction with the drawings. Referring first to the flowchart of the steps of FIG. The invention is used for injection molding technology, and is mainly used for injection molding machine (hereinafter referred to as "returning machine" for transferring a mold. The original process parameters of the table "" are converted into the post-conversion process parameters of the injection molding machine (hereinafter referred to as "transfer machine") to which another mold is transferred. The respective steps of the present invention will be described in detail below.

步驟S1:首先取得轉出機台與轉入機台的多個模具參數、材料參數、機台參數以及製程參數。其中,模具參數包含但不限於模具之規格;材料參數包含但不限於塑料的材質;機台參數包含但不限於射出成型機的螺桿直徑(mm)、最大射出壓力(kgf/cm2)與系統壓力(kgf/cm2);製程參數包含但不限於塑料溫度(℃)、射出速度(mm/s)、保壓壓力(kgf/cm2)、射出行程(mm)與計量行程(mm)。 Step S1: First, obtain a plurality of mold parameters, material parameters, machine parameters, and process parameters of the transfer machine and the transfer machine. Wherein, the mold parameters include, but are not limited to, the specifications of the mold; the material parameters include, but are not limited to, the material of the plastic; the machine parameters include, but are not limited to, the screw diameter (mm) of the injection molding machine, the maximum injection pressure (kgf/cm 2 ), and the system. Pressure (kgf/cm 2 ); process parameters include, but are not limited to, plastic temperature (°C), injection speed (mm/s), holding pressure (kgf/cm 2 ), injection stroke (mm), and metering stroke (mm).

步驟S2:選擇其中一個製程參數,依據所選擇的製程參數設計一實施參數表,規劃在轉出機台上所能設定的複數個第一設定值,以及在轉入機台上所能設定的複數個第二設定值,以便執行後續的量測。 Step S2: selecting one of the process parameters, designing an implementation parameter table according to the selected process parameters, planning a plurality of first set values that can be set on the transfer machine, and settingtable on the transfer machine A plurality of second set values are used to perform subsequent measurements.

步驟S3:選擇要使用的塑料,並將塑料進行乾燥。 Step S3: Select the plastic to be used and dry the plastic.

步驟S4:將檢測用的載具進行安裝,載具至少包含有壓力感測器,用以量測保壓壓力、模內壓力等數據。 Step S4: installing the detecting vehicle, the vehicle includes at least a pressure sensor for measuring the pressure of the holding pressure, the pressure inside the mold, and the like.

量測的項目可區分為射出階段a的數據量測以及保壓階段b的數據量測,其中射出階段的量測項目至少包含有射出逆流量a1與射出速度a2,保壓階段的量測項目至少包含有保壓壓力b1與保壓逆流量b2。 The measured items can be divided into a data measurement of the injection stage a and a data measurement of the pressure holding stage b, wherein the measurement item of the injection stage includes at least the measurement item of the injection reverse flow a1 and the injection speed a2, and the pressure holding stage. At least the holding pressure b1 and the holding pressure reverse flow b2 are included.

步驟S3與步驟S4完成後,便可進入步驟S5,依照實施參數表,依據步驟S2所選擇的製程參數,將其中一第一設定值設定到轉出機台,設定完成後進入步驟S6。 After step S3 and step S4 are completed, the process proceeds to step S5. According to the process parameter table, one of the first set values is set to the transfer machine according to the process parameters selected in step S2, and after the setting is completed, the process proceeds to step S6.

在步驟S6中,將使用轉出機台並依照第一設定值,在射出 階段與保壓階段分別實際進行樣品射出,其中步驟S6還可分為4個子步驟來取得第一實際作業值。 In step S6, the use of the transfer machine and the injection according to the first set value will be used. The sample is actually taken out at the stage and the pressure holding stage, wherein the step S6 can be further divided into four sub-steps to obtain the first actual working value.

步驟S6.1:取得在射出階段時,控制不同的射出速度所製成的射出樣品;步驟S6.2:取得在射出階段時,所量測的射出速度的數據;步驟S6.3:取得保壓階段時,保壓壓力與對應的模內壓力的數據;步驟S6.4:取得在保壓階段時,控制不同的保壓壓力所製成的射出樣品。 Step S6.1: obtaining an injection sample prepared by controlling different injection speeds during the injection phase; and step S6.2: obtaining data of the measured injection speed at the injection stage; and step S6.3: obtaining the insurance During the pressing phase, the holding pressure and the corresponding in-mold pressure data; Step S6.4: Obtaining the injection sample prepared by controlling different holding pressures during the holding phase.

在步驟S6.1-S6.4取得相關數據之後,進入步驟S7。在步驟S7中,將改變第一設定值並重新設定轉出機台,之後重複進行步驟S5與步驟S6,逐一地對每一個第一設定值。當所有的上述第一設定值都已設定並量測完畢,便回到步驟S5開始使用第二設定值設定於轉入機台,並如同轉出機台一樣地將所有第二設定值進行樣品生產與數據量測完畢之後(即步驟S6~S7),便結束步驟S5至步驟S7的迴圈而進入步驟S8.1與步驟S8.2。值得一提的是,實際測試也可以先進行轉出機台的試產與量測,之後再進行轉入機台的部分。 After the relevant data is acquired in steps S6.1-S6.4, the process proceeds to step S7. In step S7, the first set value is changed and the transfer machine is reset, and then steps S5 and S6 are repeated, one by one for each of the first set values. When all the above first set values have been set and measured, return to step S5 to start setting the second set value to the transfer machine, and sample all the second set values as if the machine is turned out. After the production and data measurement are completed (ie, steps S6 to S7), the loop of steps S5 to S7 is ended and the process proceeds to steps S8.1 and S8.2. It is worth mentioning that the actual test can also be carried out before the trial production and measurement of the machine, and then transferred to the machine part.

在執行步驟S8.1時,量測步驟S6.1與步驟S6.4所取得的射出樣品與保壓樣品的重量,以分別取得射出階段與保壓階段的逆流量等實際作業值;在執行步驟S8.2時,依據步驟S6.2與步驟S6.3取得的數據,計算出速度誤差與模內最大壓力的實際作業值。 When step S8.1 is performed, the weights of the injected sample and the pressure holding sample obtained in step S6.1 and step S6.4 are measured to obtain actual working values such as the reverse flow rate in the injection phase and the pressure maintaining phase, respectively; In step S8.2, based on the data obtained in step S6.2 and step S6.3, the actual operation value of the speed error and the maximum pressure in the mold is calculated.

之後執行步驟S9,取得每一個第一設定值與對應的第一實 際作業值,以及每一個第二設定值與對應的第二實際作業值後,製作關係圖(例如第2至5圖),並接著進行曲線擬合求得轉出機台的第一補償函式與轉入機台的第二補償函式。 Then, step S9 is executed to obtain each first set value and the corresponding first real After the work value, and each second set value and the corresponding second actual work value, a relationship diagram (for example, Figures 2 to 5) is created, and then curve fitting is performed to obtain the first compensation letter of the transfer machine. And the second compensation function that is transferred to the machine.

之後在步驟S10中,便可依據轉出機台與轉入機台的模具參數、材料參數、機台參數與製程參數,使用第一補償函式將轉出機台的原始製程參數先轉換成一初始作業值,之後再使用第二補償函式將上述初始作業值再轉換成轉換後製程參數。 Then in step S10, according to the mold parameters, material parameters, machine parameters and process parameters of the transfer machine and the transfer machine, the first compensation function is used to convert the original process parameters of the transfer machine into one. The initial job value is then converted to the post-conversion process parameter using the second compensation function.

本發明參數轉換的步驟流程已說明完畢,以下將說明在實際進行射出階段與保壓階段時,所量測實際作業值及其所擬合的補償函式,請參考第2圖至第5圖。 The flow of the steps of the parameter conversion of the present invention has been described. The actual operation value and the compensation function fitted in the actual injection phase and the pressure holding phase will be described below. Please refer to FIG. 2 to FIG. 5 . .

請先參考第2圖與第3圖,其分別為在射出階段時調整不同塑料溫度而量測到的逆流量對射出速度的關係圖,以及速度誤差對射出速度的關係圖。將第2圖所量測到的數據曲線以二次多項式進行擬合,所擬合出來的補償函式如下:190℃:y=0.00042x2-0.11668x+25.40985 Please refer to Fig. 2 and Fig. 3 first, which are the relationship between the reverse flow rate and the injection speed measured by adjusting the plastic temperature during the injection phase, and the relationship between the speed error and the injection speed. The data curve measured in Fig. 2 is fitted with a quadratic polynomial, and the fitted compensation function is as follows: 190 ° C: y = 0.00042 x 2 - 0.11668 x + 25.40985

210℃:y=0.00026x2-0.11482x+30.19122 210°C: y=0.00026x 2 -0.11482x+30.19122

230℃:y=0.00001x2-0.02144x+27.86373 230°C: y=0.00001x 2 -0.02144x+27.86373

其中上述補償函式中,x為射出速度,y為逆流量。 In the above compensation function, x is the injection speed and y is the reverse flow.

另將第3圖的數據曲線進行擬合,由於所測得的速度誤差與射出速度之間的關係大致呈常數,因此計算曲線平均值的方式得到補償函式如下:190℃:y=2.2 In addition, the data curve of Fig. 3 is fitted. Since the relationship between the measured velocity error and the injection velocity is substantially constant, the compensation function is calculated as follows: 190 ° C: y = 2.2

210℃:y=1 210 ° C: y = 1

230℃:y=1 230 ° C: y = 1

其中上述補償函式中,x為射出速度,y為速度誤差。 In the above compensation function, x is the injection speed and y is the speed error.

請接著參考第4圖與第5圖,其分別為在保壓階段時調整不同塑料溫度而量測到的逆流量對保壓壓力的關係圖,以及模內最大壓力對保壓壓力的關係圖。其中,將第4圖的數據曲線以二次多項式進行擬合,所擬合出來的補償函式如下:190℃:y=1E-07x2+0.0026x+2.2314 Please refer to Fig. 4 and Fig. 5 respectively, which are the relationship between the reverse flow rate and the holding pressure measured by adjusting the plastic temperature during the holding phase, and the relationship between the maximum pressure in the mold and the holding pressure. . Among them, the data curve of Fig. 4 is fitted with a quadratic polynomial, and the fitted compensation function is as follows: 190 °C: y=1E-07x 2 +0.0026x+2.2314

210℃:y=-2E-06x2+0.0077x+0.7572 210°C: y=-2E-06x 2 +0.0077x+0.7572

230℃:y=-4E-06x2+0.0131x-0.8739 230°C: y=-4E-06x 2 +0.0131x-0.8739

其中上述補償函式中,x為保壓壓力,y為逆流量。 In the above compensation function, x is the holding pressure and y is the reverse flow.

另將第5圖的數據曲線以一次多項式進行擬合,所擬合出來的補償函式如下:190℃:y=0.76867x-96.4 In addition, the data curve of Fig. 5 is fitted with a polynomial, and the fitted compensation function is as follows: 190 °C: y=0.76867x-96.4

210℃:y=0.81724x-78.54286 210°C: y=0.81724x-78.54286

230℃:y=0.85367x-71.93333 230 ° C: y = 0.85367x - 71.93333

其中上述補償函式中,x為保壓壓力,y為模內最大壓力。 In the above compensation function, x is the holding pressure and y is the maximum pressure in the mold.

以下將提出二個實施例說明如何使用本發明的方法進行參數轉換。 Two embodiments will be set forth below to illustrate how to perform parameter conversion using the method of the present invention.

第一實施例: First embodiment:

假設想要使用相同的塑料並使用相同的模具,而將模具從一轉出機台裝設到一轉入機台,假設轉出機台與轉入機台的機台參數與製程 參數表列如下,想要將轉出機台的原始製程參數(包含射出速度與保壓壓力)轉換成用於轉入機台的轉換後製程參數。 Suppose you want to use the same plastic and use the same mold, and install the mold from a transfer machine to a transfer machine, assuming the machine parameters and process of the transfer machine and the transfer machine The parameter list is as follows, and you want to convert the original process parameters (including the injection speed and the holding pressure) that are transferred out of the machine into the converted process parameters for transferring to the machine.

如果沒有使用補償函式,則轉入機台的射出速度應為: ,其中轉出機台的螺桿半徑為11(mm),轉 入機台的螺桿半徑為12.5(mm),轉出機台的射出速度為70(mm/s)。 If the compensation function is not used, the exit speed of the transfer to the machine should be: The screw radius of the machine is 11 (mm), the screw radius of the machine is 12.5 (mm), and the exit speed of the machine is 70 (mm/s).

假設在塑料溫度210℃下關於速度誤差(y)對射出速度(x),所計算的轉出機台的第一補償函式以及轉入機台的第二補償函式如下:第一補償函式:y=1(mm/s) Assuming that the speed error (y) versus the injection speed (x) at the plastic temperature of 210 ° C, the calculated first compensation function of the transfer machine and the second compensation function of the transfer machine are as follows: First compensation letter Type: y = 1 (mm / s)

第二補償函式:y=5(mm/s) The second compensation function: y=5 (mm/s)

轉入機台在使用補償函式後所計算的射出速度應為: The injection speed calculated after transferring to the machine after using the compensation function shall be:

可以看到,若調機師傅使用本發明的參數轉換方法,可以減少參數轉換過程中的誤差4(mm/s),使調機的結果更為準確。 It can be seen that if the tuning master uses the parameter conversion method of the present invention, the error 4 (mm/s) in the parameter conversion process can be reduced, and the result of the tuning is more accurate.

另一方面,若轉出機台的保壓壓力是指螺桿前端,轉入機台保壓壓力是指系統壓力。在沒有使用補償函式的情況下,轉入機台的保壓壓力應為: ,其中轉出機台的保壓壓力為800(kgf/cm2),轉入機台的最大射出壓力為2017(kgf/cm2),轉入機台的系統油壓為170(kgf/cm2) On the other hand, if the pressure of the pressure that is transferred out of the machine refers to the front end of the screw, the pressure of the pressure that is transferred to the machine refers to the system pressure. In the case where the compensation function is not used, the holding pressure to be transferred to the machine should be: The pressure of the pressure-receiving machine is 800 (kgf/cm 2 ), the maximum injection pressure into the machine is 2017 (kgf/cm 2 ), and the system oil pressure transferred to the machine is 170 (kgf/cm). 2 )

假設在塑料溫度210℃下關於模內最大壓力(y)對保壓壓力(x)所計算的轉出機台的第一補償函式以及轉入機台的第二補償函式如下:第一補償函式:y=0.81724x-78.54286 Assume that the first compensation function of the transfer machine calculated on the maximum pressure (y) of the mold at the plastic temperature of 210 ° C and the second compensation function of the transfer machine is as follows: Compensation function: y=0.81724x-78.54286

第二補償函式:y=0.83097x-71.66667 The second compensation function: y=0.83097x-71.66667

轉入機台在使用補償函式所計算的保壓壓力應為: The holding pressure calculated into the machine using the compensation function shall be:

可以看到,若調機師傅使用轉換後的保壓壓力,其調機的結果將更為準確。 It can be seen that if the tuning master uses the converted holding pressure, the result of the tuning will be more accurate.

本發明再提供一第二實施例:假設想要使用相同的塑料並使用相同的模具,而將模具從轉出機台裝設到轉入機台,假設轉出機台與轉入機台的機台參數與製程參數表列如下,想要將轉出機台的原始製程參數(包含射出行程與計量行程)轉換成用於轉入機台的轉換後製程參數。 The present invention further provides a second embodiment: suppose that it is intended to use the same plastic and use the same mold, and the mold is installed from the transfer machine to the transfer machine, assuming that the machine is transferred to the machine. The machine parameters and process parameters are listed below. It is necessary to convert the original process parameters (including the injection stroke and the metering stroke) of the transfer machine into the converted process parameters for transfer to the machine.

如果沒有使用補償函式,則轉入機台的射出行程應為: If the compensation function is not used, the injection path to the machine should be:

假設在塑料溫度210℃下關於逆流量(y)對射出速度(x)所計算的轉出機台的第一補償函式以及轉入機台的第二補償函式如下:第一補償函式:y=0.00026x2-0.11482x+30.19122 Assume that the first compensation function of the transfer machine calculated with respect to the reverse flow rate (y) versus the injection speed (x) at the plastic temperature of 210 ° C and the second compensation function transferred to the machine are as follows: First compensation function :y=0.00026x 2 -0.11482x+30.19122

第二補償函式:y=0.00074x2-0.19133x+32.89798 The second compensation function: y=0.00074x 2 -0.19133x+32.89798

在轉出機台射出速度為70(mm/s)時,代入第一補償函式取得逆流量約為23.4%;在轉入機台射出速度為50(mm/s)時,代入第二補償函式取得逆流量約為25.2%。 When the exit speed of the transfer machine is 70 (mm/s), the reverse flow is obtained by substituting the first compensation function to be about 23.4%; when the injection speed of the transfer machine is 50 (mm/s), the second compensation is substituted. The function achieves a reverse flow of approximately 25.2%.

所以,在考慮補償函式下,轉入機台的射出行程應為: Therefore, in consideration of the compensation function, the injection stroke to the machine should be:

另一方面,假設沒有使用補償函式,則轉入機台的計量行程應為: On the other hand, assuming that no compensation function is used, the measurement stroke to be transferred to the machine should be:

假設在塑料溫度210℃下關於逆流量(y)對保壓壓力(x)所計算的轉出機台的第一補償函式以及轉入機台的第二補償函式如下:第一補償函式:y=-2E-06x2+0.0077x+0.7572 Assume that the first compensation function of the transfer machine calculated with respect to the counter flow (y) versus the holding pressure (x) at the plastic temperature of 210 ° C and the second compensation function of the transfer machine are as follows: First compensation letter Equation: y=-2E-06x 2 +0.0077x+0.7572

第二補償函式:y=-2E-05x3-0.2257x2+0.4459x-6.9743 The second compensation function: y=-2E-05x 3 -0.2257x 2 +0.4459x-6.9743

在轉出機台保壓壓力為800(kgf/cm2)時,代入第一補償函式取得的逆流量約為5.6%;在轉入機台保壓壓力為65(kgf/cm2)時,代入第二 補償函式取得的逆流量約為3.4%。 When the pressure of the transfer machine is 800 (kgf/cm 2 ), the reverse flow rate obtained by substituting the first compensation function is about 5.6%; when the pressure of the transfer machine is 65 (kgf/cm 2 ) The reverse flow obtained by substituting the second compensation function is about 3.4%.

所以,在考慮補償函式下,轉入機台的計量行程應為: Therefore, under the consideration of the compensation function, the measurement stroke transferred to the machine should be:

同樣地可以看到,若使用本發明的方法,是有助於更為準確地進行調機,減少射出成型產品的誤差。 Similarly, it can be seen that the use of the method of the present invention facilitates more accurate tuning and reduces errors in injection molded products.

最後,必須再次說明的是,本發明於前述實施例中所揭露的實施方式僅為舉例說明,並非用來限制本案之範圍,舉凡其他可能的步驟變化,亦應為本案之申請專利範圍所涵蓋。 Finally, it should be noted that the embodiments of the present invention disclosed in the foregoing embodiments are merely illustrative and are not intended to limit the scope of the present invention. Any other possible step changes should also be covered by the scope of the patent application of the present application. .

Claims (8)

一種跨機台射出成型參數轉換方法,係用以將一轉出機台的一原始製程參數轉換成一轉入機台的一轉換後製程參數,該參數轉換方法包含有以下步驟:取得該轉出機台與該轉入機台的複數個模具參數、複數個材料參數與複數個機台參數,以及複數個製程參數;選擇該等製程參數其中之一,依據選擇的該製程參數在該轉出機台設定複數個第一設定值,並在該轉入機台設定複數個第二設定值;將各該第一設定值與各該第二設定值分別在該轉出機台與該轉入機台實際進行作業以分別取得對應的一第一實際作業值與一第二實際作業值,依據該等第一設定值與該等第一實際作業值的關係計算求得一第一補償函式,依據該等第二設定值與該等第二實際作業值的關係計算求得一第二補償函式;依據該轉出機台與該轉入機台的該等模具參數、該等材料參數、該等機台參數與該等製程參數,使用該第一補償函式將該原始製程參數計算一初始作業值,並使用該第二補償函式將該初始作業值轉換出該轉換後製程參數。 A cross-machine injection molding parameter conversion method is used for converting a raw process parameter of a transfer machine into a converted process parameter transferred to the machine. The parameter conversion method comprises the following steps: obtaining the roll-out a plurality of mold parameters, a plurality of material parameters and a plurality of machine parameters, and a plurality of process parameters of the machine and the transfer machine; selecting one of the process parameters, and transferring the process parameters according to the selected process parameter The machine sets a plurality of first set values, and sets a plurality of second set values on the transfer machine; and each of the first set values and each of the second set values are respectively at the transfer machine and the transfer The machine actually performs an operation to respectively obtain a corresponding first actual work value and a second actual work value, and calculates a first compensation function according to the relationship between the first set value and the first actual work value. Calculating a second compensation function according to the relationship between the second set value and the second actual working value; and according to the mold parameters of the transfer machine and the transfer machine, the material parameters These machines Such parameters and process parameters, the first compensation function using the original process parameter calculating an initial value of the job, and the second compensation function using a conversion process that converts the initial parameter values of the job. 如請求項1所述的參數轉換方法,其中該等機台參數至少包含有射出成型機的螺桿直徑,至於該原始製程參數、該轉換後製程參數與該所選擇的製程參數均為射出成形機的射出速度,並且該第一實際作業值與該第二實際作業值為速度誤差。 The parameter conversion method according to claim 1, wherein the machine parameters include at least a screw diameter of the injection molding machine, and the original process parameters, the converted process parameters, and the selected process parameters are injection molding machines. The injection speed, and the first actual job value and the second actual job value are speed errors. 如請求項1所述的參數轉換方法,其中該等機台參數至少包含有射出成 型機的最大射出壓力與系統壓力,至於該原始製程參數、該轉換後製程參數與該所選擇的製程參數均為保壓壓力,並且該第一實際作業值與該第二實際作業值為模內最大壓。 The parameter conversion method of claim 1, wherein the machine parameters include at least an injection The maximum injection pressure of the machine and the system pressure, wherein the original process parameter, the converted process parameter and the selected process parameter are pressure holding pressure, and the first actual working value and the second actual working value are modulo The maximum pressure inside. 如請求項1所述的參數轉換方法,其中該等機台參數至少包含有射出成型機的螺桿直徑,至於該原始製程參數與該轉換後製程參數為射出成形機的射出行程,該所選擇的製程參數為射出成形機的射出速度,並且該第一實際作業值與該第二實際作業值為逆流量。 The parameter conversion method according to claim 1, wherein the machine parameters include at least a screw diameter of the injection molding machine, and the original process parameter and the converted process parameter are an injection stroke of the injection molding machine, and the selected The process parameter is an injection speed of the injection molding machine, and the first actual work value and the second actual work value are reverse flow rates. 如請求項1所述的參數轉換方法,其中該等機台參數至少包含有射出成型機的螺桿直徑,至於該原始製程參數與該轉換後製程參數為射出成形機的計量行程,該所選擇的製程參數為保壓壓力,並且該第一實際作業值與該第二實際作業值為逆流量。 The parameter conversion method according to claim 1, wherein the machine parameters include at least a screw diameter of the injection molding machine, and the original process parameter and the converted process parameter are a metering stroke of the injection molding machine, the selected one The process parameter is a holding pressure, and the first actual working value and the second actual working value are reverse flow. 如請求項1至5任一項所述的參數轉換方法,其中該第一補償函式與該第二補償函式為一多項式或一常數。 The parameter conversion method according to any one of claims 1 to 5, wherein the first compensation function and the second compensation function are a polynomial or a constant. 一種跨機台射出成型參數轉換系統,用來執行如請求項1所述的參數轉換方法,其包含有:一輸入裝置,用以輸入一轉出機台與一轉入機台的複數個模具參數、複數個材料參數與複數個機台參數,以及複數個製程參數,並且能夠輸入在該轉出機台與該轉入機台實際進行作業所取得的複數個第一實際作業值與複數個第二實際作業值;一計算裝置,根據使用者所選擇的複數個第一設定值與該等第一實際作業值的關係計算求得一第一補償函式,並依據使用者所選擇的複數個第二設定值與該等第二實際作業值的關係計算求得一第二補償函式;最後 依據該轉出機台與該轉入機台的該等模具參數、該等材料參數、該等機台參數與該等製程參數,使用該第一補償函式將該原始製程參數計算一初始作業值,並使用該第二補償函式將該初始作業值轉換出該轉換後製程參數;以及一顯示裝置,用以顯示該轉換後製程參數。 A cross-machine injection molding parameter conversion system for performing the parameter conversion method according to claim 1, comprising: an input device for inputting a plurality of molds of the transfer machine and a transfer machine a parameter, a plurality of material parameters and a plurality of machine parameters, and a plurality of process parameters, and capable of inputting a plurality of first actual work values and a plurality of values obtained by actually operating the transfer machine and the transfer machine a second actual work value; a computing device, calculating a first compensation function according to a relationship between the plurality of first set values selected by the user and the first actual work values, and according to the plural selected by the user Calculating a relationship between the second set value and the second actual work value to obtain a second compensation function; Determining the original process parameters using the first compensation function according to the mold parameters of the transfer machine and the transfer machine, the material parameters, the machine parameters, and the process parameters a value, and using the second compensation function to convert the initial job value out of the converted process parameter; and a display device for displaying the converted process parameter. 如請求項7所述的參數轉換系統,其中該輸入裝置是以有線或無線方式連接該轉出機台與該轉入機台,並透過一通訊界面取得該等第一實際作業值與該等第二實際作業值。 The parameter conversion system of claim 7, wherein the input device is connected to the transfer machine and the transfer machine in a wired or wireless manner, and obtains the first actual work value and the same through a communication interface. The second actual job value.
TW105100617A 2016-01-08 2016-01-08 Cross-machine injection molding parameter conversion method and system TWI619596B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105100617A TWI619596B (en) 2016-01-08 2016-01-08 Cross-machine injection molding parameter conversion method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105100617A TWI619596B (en) 2016-01-08 2016-01-08 Cross-machine injection molding parameter conversion method and system

Publications (2)

Publication Number Publication Date
TW201725107A TW201725107A (en) 2017-07-16
TWI619596B true TWI619596B (en) 2018-04-01

Family

ID=60047439

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105100617A TWI619596B (en) 2016-01-08 2016-01-08 Cross-machine injection molding parameter conversion method and system

Country Status (1)

Country Link
TW (1) TWI619596B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02227230A (en) * 1989-02-28 1990-09-10 Toshiba Mach Co Ltd Motor-driven injection molding machine
JPH04122618A (en) * 1990-09-14 1992-04-23 Tdk Corp Injection molding device
TW490383B (en) * 1999-10-08 2002-06-11 Netstal Ag Maschf Giesserei Method for injection moulding and injection unit
TW201504025A (en) * 2013-07-22 2015-02-01 Hwa Chin Machinery Factory Co A type of ejection forming machine with touch panel ejection parameter regulating method and regulating system
TWM504984U (en) * 2015-02-04 2015-07-11 Multiplas Enginery Co Ltd Computer-aided injection molding parameter setting system
TW201532379A (en) * 2014-02-07 2015-08-16 Tatung Co Optimization method of closed-loop parameters and injection molding apparatus using the same
TW201541211A (en) * 2014-04-23 2015-11-01 Ningbo Techmation Co Ltd Injection molding machine of control systems has service of a server and a control method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02227230A (en) * 1989-02-28 1990-09-10 Toshiba Mach Co Ltd Motor-driven injection molding machine
JPH04122618A (en) * 1990-09-14 1992-04-23 Tdk Corp Injection molding device
TW490383B (en) * 1999-10-08 2002-06-11 Netstal Ag Maschf Giesserei Method for injection moulding and injection unit
TW201504025A (en) * 2013-07-22 2015-02-01 Hwa Chin Machinery Factory Co A type of ejection forming machine with touch panel ejection parameter regulating method and regulating system
TW201532379A (en) * 2014-02-07 2015-08-16 Tatung Co Optimization method of closed-loop parameters and injection molding apparatus using the same
TW201541211A (en) * 2014-04-23 2015-11-01 Ningbo Techmation Co Ltd Injection molding machine of control systems has service of a server and a control method
TWM504984U (en) * 2015-02-04 2015-07-11 Multiplas Enginery Co Ltd Computer-aided injection molding parameter setting system

Also Published As

Publication number Publication date
TW201725107A (en) 2017-07-16

Similar Documents

Publication Publication Date Title
JP3161921B2 (en) Product quality influence factor analysis method and equipment, molding condition adjustment method, product quality judgment item selection method
JP3018957B2 (en) Optimal molding condition setting system for injection molding machines
Tosello et al. High precision validation of micro injection molding process simulations
JP6779316B2 (en) Molding condition estimation method for injection molding machine
CN102754040B (en) For regulating the method for injection moulding process
JP3824503B2 (en) Injection molding machine molding condition setting method
CN113524604B (en) Method for comparing a simulation with an actual process
CN102333631B (en) Synchronized control of hot-runners for multi-cavity injection molding
CN106393617A (en) Injection molding process parameter self-adaptive system
CN107533324B (en) Production information collection system
CN101685475A (en) Analytical model preparation method, and simulation system method for predicting molding failure
CN110726475A (en) Infrared temperature measurement calibration method and device, infrared thermal imaging equipment and storage device
CN109614651A (en) A kind of high-precision evaluation method of moulding machined parameters and deformation relationship
US10515725B2 (en) Health assessment method and health assessment device for workpiece processing apparatus
TWI619596B (en) Cross-machine injection molding parameter conversion method and system
JP2019181801A (en) Shrinkage rate prediction device, shrinkage rate prediction model learning device, and program
JP5241310B2 (en) Method and apparatus for predicting deformed shape of molded product, program for predicting deformed shape and storage medium thereof
CN101698350A (en) Technology for holding pressure control according to melting body temperature as injection molding machine
JP3613764B2 (en) Program for converting molding conditions in injection molding machines
US11230043B2 (en) Method for setting molding conditions of injection-molding equipment
CN112659496B (en) Method and molding machine for determining the position of the actual molding compound front
JPH08230008A (en) Method and device for estimating warping deformation of injection molded article
TWI588006B (en) Injection molding machine clamping force setting method and system
CN103955554A (en) Method for processing mold by using reverse shape-correcting technology
JP2002328710A (en) Die working system