JPH08230008A - Method and device for estimating warping deformation of injection molded article - Google Patents

Method and device for estimating warping deformation of injection molded article

Info

Publication number
JPH08230008A
JPH08230008A JP7041713A JP4171395A JPH08230008A JP H08230008 A JPH08230008 A JP H08230008A JP 7041713 A JP7041713 A JP 7041713A JP 4171395 A JP4171395 A JP 4171395A JP H08230008 A JPH08230008 A JP H08230008A
Authority
JP
Japan
Prior art keywords
shrinkage
plane
resin
flow
predicting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7041713A
Other languages
Japanese (ja)
Inventor
Maki Saito
真樹 斎藤
Juichi Morinaga
寿一 森永
Hiroaki Yamagata
弘明 山縣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7041713A priority Critical patent/JPH08230008A/en
Publication of JPH08230008A publication Critical patent/JPH08230008A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE: To make it possible to exactly estimate warping deformation even in the case of a thin-wall molded article by a method wherein in-plane shrinkage factor is calculated by introducing specified formulae for calculating. CONSTITUTION: In a thin-wall molded article, in which the anisotropic behavior of plastic resin is remarkable, in-plane shrinkage factor is calculated by introducing the equations on the basis of the formulae I (the formulae representing shrinkage anisotropy) or the formulae II (the formulae representing the shrinkage anisotropy of fiber-filled material) so as to estimate warpage in order to realize more accurate warp estimate. An analyzing device consists of a resin data base comprizing a data inputting device such as a key board and the like, a built-in hard disk device and the like, a molding condition inputting parts, inputted data part for temporarily storing, an analytical calculating device for performing analytical calculation and a result outputting device comprizing displaying or printing device. In the formulae, εz, εp and ev are shrinkage factors in the direction of the thickness, in in-plane direction and in volume, A and B are coefficients of shrinkage, εL and εT are shrinkage factors in in-plane flow direction and in the direction normal to in-plane flow direction and αL and αT are coefficients of thermal expansion in flow direction and in the direction normal to flow direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は射出成形品のそり変形予
測方法及びその装置に係り、例えばプラスチックの射出
成形法においてプラスチックの樹脂の金型内での挙動か
ら、取り出し後のプラスチック成形品においてそりが生
じるまでを予測するシミュレーションプログラムに特に
好適に展開されるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for predicting warpage deformation of an injection-molded article and an apparatus therefor, for example, in the injection-molding method of a plastic, from the behavior of the resin of the plastic in the mold, the plastic-molded article after being taken out. It is particularly suitable for a simulation program for predicting the occurrence of warpage.

【0002】[0002]

【従来の技術】従来より、射出成形によるプラスチック
の樹脂の挙動やプラスチック成形品のそり変形を予測す
るシミュレーションプログラムにおいては、プラスチッ
ク樹脂が金型キャビティ内を充填する過程において、運
動方程式、エネルギー保存の式、連続の式を有限要素法
に定式化して、溶融状態にあるプラスチック樹脂の挙動
を予測する一方、キャビティ内において樹脂が充填され
た後の保圧・冷却過程においては、更に樹脂の圧縮性を
考慮するため、圧力(P)、温度(T)の変化と共に、
比容積(V)の関係式を考慮して、体積収縮率まで求め
て、板厚・面内各3方向に等分に収縮率を求めている。
2. Description of the Related Art Conventionally, in a simulation program for predicting the behavior of a plastic resin by injection molding and the warp deformation of a plastic molded product, in the process of filling the mold cavity with the plastic resin, a motion equation and energy conservation Formulas of continuous and continuous equations are formulated to the finite element method to predict the behavior of the plastic resin in the molten state, while the compressibility of the resin is further increased in the pressure holding / cooling process after the resin is filled in the cavity. In order to take into account the change of pressure (P) and temperature (T),
In consideration of the relational expression of the specific volume (V), the volume contraction rate is calculated, and the contraction rate is equally calculated in each of the three directions of plate thickness and in-plane.

【0003】そして、最終的に求められた面内の収縮率
分布を初期ひずみとして設定して、射出成形によって得
られたプラスチック成形品のそり変形を予測するように
している。ここで、樹脂挙動、そり予測の計算を行なう
に当たって、プラスチック成形品のモデル形状を作成し
て、有限要素法の計算が行なえるようにメッシュ分割を
行ない、境界条件としての成形条件を与え、樹脂の物性
データを与えるようにしている。
Then, the in-plane shrinkage distribution finally obtained is set as an initial strain to predict the warp deformation of a plastic molded product obtained by injection molding. Here, in calculating the resin behavior and warpage prediction, a model shape of a plastic molded product is created, mesh division is performed so that calculation by the finite element method can be performed, and molding conditions as boundary conditions are given. I am trying to give the physical property data.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、プラス
チック樹脂の成形品の大きな特徴として、収縮率の異方
性が挙げられる。即ち、成形品が薄肉である場合には、
板厚方向と面内方向で収縮挙動は異なることが知られて
いる。また更に、繊維により強化された樹脂の射出成形
品においては、面内方向の樹脂の流れ方向とこの流れに
直角となる方向において各収縮挙動が異なることが知ら
れている。
However, an important feature of the plastic resin molded product is the anisotropy of the shrinkage ratio. That is, when the molded product is thin,
It is known that the shrinkage behavior differs between the thickness direction and the in-plane direction. Furthermore, it is known that in an injection-molded product of a fiber-reinforced resin, each shrinkage behavior differs in the in-plane flow direction of the resin and the direction perpendicular to this flow.

【0005】また、従来のそり予測方法においては、こ
のような収縮率の異方性の挙動を明らかにしておらず、
単純に体積収縮率を3等分して板厚・面内のそれぞれの
方向に振り分けるようにしてから収縮率を求めて、面内
方向の収縮率を初期ひずみとして射出成形品のそり変形
を予測している。このために、成形品が薄肉である場合
において、正確なそり予測ができない問題点があった。
Further, in the conventional warpage prediction method, such an anisotropic behavior of shrinkage has not been clarified,
Simply divide the volume contraction rate into three equal parts and distribute to the respective directions of plate thickness and in-plane, then calculate the contraction rate, and use the contraction rate in the in-plane direction as the initial strain to predict warpage deformation of the injection molded product. are doing. Therefore, there is a problem in that accurate warpage cannot be predicted when the molded product is thin.

【0006】したがって、本発明は上述の問題点に鑑み
てなされたものであり、成形品が薄肉である場合であっ
ても、正確なそり予測ができる射出成形品のそり変形予
測方法及びその装置の提供を目的とする。
Accordingly, the present invention has been made in view of the above-mentioned problems, and a method and apparatus for predicting warpage deformation of an injection-molded product capable of accurately predicting warpage even when the molded product is thin. For the purpose of providing.

【0007】[0007]

【課題を解決するための手段】及び[Means for Solving the Problems] and

【作用】上述の課題を解決し、目的を達成するために、
本発明においては、プラスチック樹脂の異方性挙動が薄
肉成形品において、下記の(収縮異方性の式)(更に繊
維入りの材料の場合の収縮異方性の式)に基づく関係式
を計算に導入して、面内の収縮率を求め、そり変形の予
測を行なうことで、より高精度なそり予測を達成する。
In order to solve the above-mentioned problems and achieve the object,
In the present invention, the relational expression based on the following (formula of contraction anisotropy) (formula of contraction anisotropy in the case of a material containing fibers) is calculated in the case where the anisotropic behavior of the plastic resin is a thin-walled molded product. Introduced into, the in-plane shrinkage ratio is calculated and the warp deformation is predicted, thereby achieving more accurate warp prediction.

【0008】[0008]

【数5】(Equation 5)

【0009】(収縮異方性の式) εz=A+B・ev εp=(ev−εz)/2 εz:板厚方向の収縮率, εp:面内方向の収縮率 ev:体積収縮率, A,B:収縮係数(Expression of shrinkage anisotropy) εz = A + B · ev εp = (ev−εz) / 2 εz: Shrinkage ratio in the plate thickness direction, εp: Shrinkage ratio in the in-plane direction ev: Volume shrinkage ratio, A, B: Shrinkage coefficient

【0010】[0010]

【数6】[Equation 6]

【0011】 (更に繊維入りの材料の場合の収縮異方性の式) εL=(ev−εz)・αL/(αL+αT) εT=(ev−εz)・αT/(αL+αT) εL:面内流れ方向の収縮率, εT面内流れと直角方向
の収縮率 αL:流れ方向の熱膨張係数, αT:流れと直角方向の
熱膨張係数
(Formula of shrinkage anisotropy in the case of a material containing fibers) εL = (ev−εz) · αL / (αL + αT) εT = (ev−εz) · αT / (αL + αT) εL: in-plane flow Shrinkage, εT Shrinkage in the direction perpendicular to the in-plane flow αL: Thermal expansion coefficient in the flow direction αT: Thermal expansion coefficient in the direction perpendicular to the flow

【実施例】以下に本発明の好適な実施例について、添付
図面を参照して述べる。先ず、図1は解析装置の全体構
成を示した概略構成図であって、このシステム構成にお
いて作動する解析計算システムの一構成例を示したもの
である。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. First, FIG. 1 is a schematic configuration diagram showing the overall configuration of an analysis apparatus, and shows one configuration example of an analysis calculation system operating in this system configuration.

【0012】本図において、図中の一点鎖線で囲って示
したものがパソコン等から構成される解析装置の部分で
ある。この解析装置は、キーボード等のデータ入力装置
1と内蔵のハードデスク装置等からなる樹脂データベー
ス2と、成形条件入力部3と入力データを一時保存する
入力データ部4と、この入力データに基づき解析計算を
行う解析計算装置5と、デスプレイまたはプリンタ装置
からなる結果出力装置6とから構成されている。以上の
構成の解析装置を用いて、初めに、解析計算の対象とな
るプラスチック成形品の解析計算が可能となる様に、入
力データとしての形状作成、モデル化を行なう。
In the figure, what is shown surrounded by the one-dot chain line in the figure is the part of the analysis device composed of a personal computer or the like. This analysis device includes a data input device 1 such as a keyboard and a resin database 2 including a built-in hard disk device, a molding condition input unit 3, an input data unit 4 for temporarily storing input data, and an analysis based on the input data. It is composed of an analysis calculation device 5 that performs calculation and a result output device 6 that is a display or printer device. First, using the analysis apparatus having the above-described configuration, a shape is created and modeled as input data so that the analysis calculation of the plastic molded product that is the target of the analysis calculation can be performed.

【0013】この形状作成、モデル化のために解析装置
には、CAD11がローカルエリアネットワークLAN
を介して接続されており、CAD11で作成された2次
元形状を流用して、データ入力装置1で入力データの作
成を行なうか、あるいは上記のデータ入力装置1におい
て、最初から入力データの作成を行なうようにしてい
る。また、CAD11で作成された2次元形状をそのま
ま流用する場合には、その形状を解析装置へ転送してか
ら、引き続き3次元形状の作成後にさらに要素分割を行
なうか、光磁気ディスク、磁気テープなどからなる外部
入力装置12を介して、解析装置へデータを転送して、
引き続き、形状データの作成を行なう。
In order to create and model this shape, the CAD 11 is a local area network LAN in the analysis device.
Connected via the two-dimensional shape created by the CAD 11, the input data is created by the data input device 1 or the input data is created by the data input device 1 from the beginning. I am trying to do it. When the two-dimensional shape created by the CAD 11 is used as it is, the shape is transferred to the analysis device, and then the three-dimensional shape is created and then further element division is performed, or a magneto-optical disk, a magnetic tape, or the like is used. Data is transferred to the analysis device via the external input device 12 consisting of
Subsequently, shape data is created.

【0014】一方、データ入力装置1では、形状並びに
要素作成ツールソフトに従い、モデル対象となるすべて
の箇所に対して、要素作成を行なう。このようにして要
素作成が行なわれた形状に対して、樹脂データベース2
から解析対称とする樹脂を選択して読み込んでから、入
力データとしての樹脂データを設定する。
On the other hand, in the data input device 1, elements are created for all locations to be modeled according to the shape and element creation tool software. The resin database 2 for the shape for which the element is created in this way
After selecting and reading the resin to be analyzed symmetrically from, the resin data as the input data is set.

【0015】更に、計算を行なうそれぞれの過程に対し
て、成形条件入力3からの読み込みを行い必要条件を入
力する。
Further, for each process of calculation, the necessary conditions are input by reading from the molding condition input 3.

【0016】図2は、図1の解析装置において実行され
る処理内容を示したフローチャートである。本図におい
て、データ入力装置1には上記の樹脂データベース2か
らの樹脂条件と成形条件3に加えて、形状データ101
と成形品に加わる荷重及び拘束条件102が入力され
る。また、解析計算装置5においては溶融プラスチック
樹脂の金型への充填挙動を予測する流動解析過程501
と、樹脂を金型内に充填した後に、ある一定の圧力を型
内の樹脂にかける保圧解析過程502と、金型から成形
品を取り出すまでの型内の冷却過程を予測する冷却解析
過程503と、また、対象のプラスチック樹脂にガラス
繊維が含まれている場合には、その繊維の流動・保圧時
の配向(繊維の向きなど)を予測するための配向解析過
程504と、成形金型の型開き後に、外部に取り出され
た成形品が室温まで冷却される間にどれだけ変形するか
を予測する変形解析過程505の5つの各過程が考慮さ
れて計算される。
FIG. 2 is a flow chart showing the contents of processing executed in the analyzing apparatus of FIG. In the figure, in addition to the resin conditions and the molding conditions 3 from the resin database 2 described above, the data input device 1 has shape data 101
The load applied to the molded product and the constraint condition 102 are input. Further, in the analysis calculation device 5, a flow analysis process 501 for predicting the filling behavior of the molten plastic resin into the mold.
And a holding pressure analysis process 502 in which a certain pressure is applied to the resin in the mold after the resin is filled in the mold, and a cooling analysis process for predicting the cooling process in the mold until the molded product is taken out from the mold. 503, and if the target plastic resin contains glass fibers, an orientation analysis process 504 for predicting the orientation of the fibers when flowing and holding pressure (the orientation of the fibers, etc.); After the mold is opened, five processes of the deformation analysis process 505 for predicting how much the molded product taken out to the outside will be deformed while being cooled to room temperature are considered and calculated.

【0017】以上のように、データ入力装置1と解析計
算装置5において形状並びに条件を入力して解析計算の
ための入力データが作成される。また、図1の解析計算
装置5で行われる計算は、図2に示したように流動解析
5においてプラスチック樹脂の金型内へ流れ込む過程
を、条件で指定した時間履歴ごとに、樹脂がその時間ま
で流れ込んだ位置と、その時間での速度分布、樹脂の各
位置の圧力分布、温度分布の算出を行なう。
As described above, the input data for the analytical calculation is created by inputting the shape and the conditions in the data input device 1 and the analytical calculation device 5. In addition, the calculation performed by the analysis calculation device 5 of FIG. 1 is such that, as shown in FIG. 2, the process of flowing the plastic resin into the mold in the flow analysis 5 is performed according to the time history specified by the condition. The position where the resin has flown up to, the velocity distribution at that time, the pressure distribution at each position of the resin, and the temperature distribution are calculated.

【0018】次に、流動解析の結果に基づき樹脂の圧縮
性を考慮した保圧過程の樹脂の挙動を保圧解析502に
おいて計算し、更に、その後の冷却段階での樹脂挙動を
冷却解析503において計算する。これらの保圧・冷却
過程の樹脂挙動の予測においても、流動解析と同様に求
める結果は、圧力分布、温度分布などと同じものである
が、更に、保圧過程に生じる密度変化を把握するための
収縮率分布も求まることになる。
Next, on the basis of the result of the flow analysis, the behavior of the resin in the pressure-holding process in consideration of the compressibility of the resin is calculated in the pressure-holding analysis 502, and the resin behavior in the subsequent cooling stage is further measured in the cooling analysis 503. calculate. In the prediction of resin behavior during these pressure-holding / cooling processes, the results obtained in the same way as in the flow analysis are the same as those for pressure distribution, temperature distribution, etc., but in order to understand the density changes that occur during the pressure-holding process. The contraction rate distribution of is also obtained.

【0019】保圧・冷却過程の圧縮性を考慮するため
に、次式のP−V−Tの関係式を導入する。
In order to consider the compressibility of the pressure holding / cooling process, the following P-V-T relational expression is introduced.

【0020】[0020]

【数7】(Equation 7)

【0021】(P+W)(V−V0)=R・T P:圧力、T:温度、V:比容積、W,V0,R:定数 この式は、圧力(P)、温度(T)の変化と共に、比容
積(V)も変化することを示している。上記式を導入す
ることにより、求めた各位置の比容積Vと室温T、大気
圧での比容積から成形品の各位置での体積収縮率を次式
の体積収縮率の算出式に従い求める。
(P + W) (V-V0) = R.T P: Pressure, T: Temperature, V: Specific volume, W, V0, R: Constant This equation is a change in pressure (P) and temperature (T). At the same time, the specific volume (V) also changes. By introducing the above equation, the volumetric shrinkage rate at each position of the molded product is obtained from the obtained specific volume V, room temperature T, and specific volume at atmospheric pressure according to the following equation for calculating volumetric shrinkage rate.

【0022】[0022]

【数8】(Equation 8)

【0023】体積収縮率ev=(V0− V)/V V:収縮開始時の比容積、V0:室温 ,大気圧での比容
積、 この計算に続き、更に異方性収縮の関係式である次式に
より板厚方向の収縮率と面内方向の収縮率を求める。
Volume contraction rate ev = (V0-V) / VV: Specific volume at the start of contraction, V0: Specific volume at room temperature and atmospheric pressure. Following this calculation, there is a relational expression of anisotropic contraction. The shrinkage rate in the plate thickness direction and the shrinkage rate in the in-plane direction are calculated by the following equations.

【0024】[0024]

【数9】[Equation 9]

【0025】(収縮異方性の式) εz=A+B・ev εp=(ev−εz)/2 εz:板厚方向の収縮率, εp:面内方向の収縮率 ev:体積収縮率, A,B:収縮係数 また、繊維強化された樹脂を用いる場合は、次式によ
り、面内流れ方向と流れに直角方向の収縮率を求める。
(Expression of shrinkage anisotropy) εz = A + B · ev εp = (ev−εz) / 2 εz: Shrinkage ratio in the plate thickness direction, εp: Shrinkage ratio in the in-plane direction ev: Volume shrinkage ratio, A, B: Shrinkage coefficient When a fiber-reinforced resin is used, the shrinkage rates in the in-plane flow direction and the direction perpendicular to the flow are calculated by the following equation.

【0026】[0026]

【数10】[Equation 10]

【0027】 (更に繊維入りの材料の場合の収縮異方性の式) εL=(ev−εz)・αL/(αL+αT) εT=(ev−εz)・αT/(αL+αT) εL:面内流れ方向の収縮率, εT面内流れと直角方向
の収縮率 αL:流れ方向の熱膨張係数, αT:流れと直角方向の
熱膨張係数 以上の結果、冷却解析が終了後、繊維強化された樹脂を
用いる場合は、成形品における樹脂の中の繊維の配向状
況を予測するために配向解析504を行なう。そして最
後に、以上の金型内での樹脂の予測された挙動を基に、
型から取り出された後の、成形品のそり変形を求めるた
めの変形解析505を行なう。
(Formula of shrinkage anisotropy in the case of a material containing fibers) εL = (ev−εz) · αL / (αL + αT) εT = (ev−εz) · αT / (αL + αT) εL: in-plane flow Shrinkage in the direction, εT Shrinkage in the direction perpendicular to the in-plane flow αL: Thermal expansion coefficient in the flow direction αT: Thermal expansion coefficient in the direction perpendicular to the flow As a result of the above, the fiber-reinforced resin was If used, orientation analysis 504 is performed to predict the orientation of the fibers in the resin in the molded article. And finally, based on the predicted behavior of the resin in the mold above,
A deformation analysis 505 for determining the warp deformation of the molded product after being taken out from the mold is performed.

【0028】このようにしてそり変形を求める計算に当
たっては、図3において示した釣り合い方程式と、図4
の応力−歪み関係式と図5の変位−歪み関係式を基礎式
として、与えられた境界条件のもとでFEMの定式化に
基づき、計算を行なう。
In calculating the warp deformation in this way, the balance equation shown in FIG.
The calculation is performed based on the FEM formulation under the given boundary conditions, with the stress-strain relational expression of 1 and the displacement-strain relational expression of FIG. 5 as basic expressions.

【0029】そして、図6に示した関係式では、上記の
各計算によって求めた面内の収縮率を分割された要素ご
とに収縮歪みとして求めて、それを初期歪みとして与え
ることにより、計算を行なう。以上の計算を行なうこと
により、成形品の各部位のそり変形、応力などが計算さ
れる。
Then, in the relational expression shown in FIG. 6, the in-plane shrinkage rate obtained by each of the above calculations is obtained as a shrinkage strain for each divided element, and given as the initial strain, the calculation is performed. To do. By performing the above calculation, warp deformation, stress, etc. of each part of the molded product are calculated.

【0030】以上、それぞれの計算過程で求まった計算
結果、圧力分布、温度分布、収縮率分布、そり変形グラ
フなどは、図1における結果出力装置6により表示され
ることになる。
The calculation results, pressure distributions, temperature distributions, shrinkage ratio distributions, warp deformation graphs, etc., obtained in the above respective calculation processes are displayed by the result output device 6 in FIG.

【0031】続いて、収縮異方性の式と、さらに繊維入
りの収縮異方性の式の誘導方法について詳しく述べる
と、図7は平板形状試験片の平面図と側面図をそれぞれ
示したものであり、図8の成形条件表に示すような成形
条件によりサンプリングしたものを得てから、図7中に
示された各測定点P1〜P9におけるピン跡間の寸法を
サンプリングするものである。このために、実際の金型
のP1〜P9のピン位置をあらかじめ測定しておく。
Next, the contraction anisotropy formula and the method for deriving the contraction anisotropy formula containing fibers will be described in detail. FIG. 7 shows a plan view and a side view of a flat plate-shaped test piece, respectively. That is, the dimension between the pin marks at each of the measurement points P1 to P9 shown in FIG. 7 is sampled after a sample obtained under the molding conditions shown in the molding condition table of FIG. 8 is obtained. Therefore, the actual pin positions of P1 to P9 of the mold are measured in advance.

【0032】通常、プラスチック成形品は、金型からの
取り出し時においては、温度がまだ高い状態で、その
後、室温まで冷却される間に収縮が発生することがほと
んどである。そこで、実際の金型とサンプリングされた
成形品のピン位置間を測ることにより、面内方向の収縮
率を算出することができる。そこで、例えば、P6−P
5の位置の金型での距離をM65、サンプリングした成形
品の距離をS65とすると、(M65−S65)/M65が求め
る収縮率となり、P6−P5方向は、樹脂の流れ方向に
位置するので、求めた収縮率は流れ方向の収縮率とな
る。
In general, the plastic molded product is in a state where the temperature is still high at the time of taking it out of the mold, and then shrinkage occurs in most cases while it is cooled to room temperature. Therefore, the shrinkage ratio in the in-plane direction can be calculated by measuring the distance between the pin positions of the actual mold and the sampled molded product. So, for example, P6-P
If the distance in the mold at the position 5 is M65 and the distance of the sampled molded product is S65, the shrinkage ratio obtained is (M65-S65) / M65, and the P6-P5 direction is located in the resin flow direction. The obtained shrinkage ratio is the shrinkage ratio in the flow direction.

【0033】同様にして、各位置の収縮率を求めると、
P3−P2、P9−P8、P5−P4各点の測定により
樹脂流れ方向の収縮率が、またP6−P3、P6−P
9、P5−P8各点の測定により樹脂流れに直角方向の
収縮率が求まることになる。
Similarly, when the contraction rate at each position is obtained,
By measuring P3-P2, P9-P8, and P5-P4 points, the shrinkage rate in the resin flow direction is also P6-P3, P6-P.
9, the shrinkage ratio in the direction perpendicular to the resin flow can be obtained by measuring each point P5-P8.

【0034】次に、図7に示すH1〜H4の位置の板厚
を測定する。金型寸法はキャビティ制作時に予め分かっ
ているので、同様の方法でH1〜H4までの板厚方向の
収縮率が算出できる。そこで、すでに求めた各ピン位置
間の収縮率でH1〜H4までそれぞれの位置を囲む位置
の収縮率を用い、それぞれH1〜H4の位置での面内の
収縮率とする。
Next, the plate thickness at the positions H1 to H4 shown in FIG. 7 is measured. Since the mold size is known in advance when the cavity is manufactured, the shrinkage ratios in the plate thickness direction from H1 to H4 can be calculated by the same method. Therefore, the contraction ratios between positions H1 to H4 are used as the contraction ratios between the pin positions that have already been obtained, and the in-plane contraction ratios at the positions H1 to H4 are used.

【0035】例えば、H1はP2−P5−P4−P1に
囲まれているので、P2−P1とP5−P4の収縮率の
平均値をH1の位置での流れ方向の収縮率として、また
P5−P2とP4−P1の収縮率の平均値をH1位置に
おける面内の収縮率とする。その他の各点H2、H3、
H4位置でも同様にして、各位置での3方向それぞれの
収縮率が求まるので、図6の式より、H1〜H4各位置
での体積収縮率を求めて図9に示された実測値と解析値
の収縮率比較表を得る。のH1〜H4の位置にて収縮率
を比較しているが、その結果を表3に示す。この図9の
表において、それぞれH1〜H4の位置において、板
厚,流れ,直角の3方向の収縮率を上段は、すでに述べ
た方法による、各位置での収縮率の実測値を示し、中段
は、異方性収縮の関係式を用いたときの、収縮率の結果
を、そして更に下段は、等方性収縮とした時の収縮率の
結果を示している。この表から、等方性収縮を考慮して
求めた場合の収縮率の結果と比べ、面内の収縮率(流れ
方向,直角方向)の精度が向上していることが分かる。
ここで、面内方向の収縮率の精度向上は、特に重要で、
面内方向の収縮率を用いて、冷却解析後のそり変形解析
を行なうことは、すでに述べた通りである。
For example, since H1 is surrounded by P2-P5-P4-P1, the average value of the contraction rates of P2-P1 and P5-P4 is taken as the contraction rate in the flow direction at the position of H1, and P5- The average value of the shrinkage rates of P2 and P4-P1 is taken as the in-plane shrinkage rate at the H1 position. Other points H2, H3,
Similarly, at the H4 position, the shrinkage rate in each of the three directions at each position is obtained. Therefore, the volume shrinkage rate at each of the positions H1 to H4 is obtained from the formula in FIG. 6 and the measured values and the analysis shown in FIG. 9 are analyzed. A shrinkage rate comparison table of values is obtained. The shrinkage rates are compared at positions H1 to H4 in Table 3, and the results are shown in Table 3. In the table of FIG. 9, the contraction rates in the three directions of the plate thickness, the flow, and the right angle at the positions H1 to H4 are shown in the upper row, and the actual values of the contraction rates at the respective positions are shown in the middle row. Shows the result of the shrinkage ratio when the relational expression of anisotropic shrinkage was used, and the lower part shows the result of the shrinkage ratio when the isotropic shrinkage was used. From this table, it is understood that the accuracy of the in-plane shrinkage rate (flow direction, right-angle direction) is improved as compared with the result of the shrinkage rate obtained in consideration of isotropic shrinkage.
Here, it is particularly important to improve the accuracy of the shrinkage ratio in the in-plane direction,
As described above, the warpage analysis after the cooling analysis is performed using the shrinkage ratio in the in-plane direction.

【0036】以上の様にして、サンプリングした試験片
の各位置での体積収縮率と3方向の収縮率を求め、体積
収縮率とそれぞれの方向の収縮率の関係をグラフ上にプ
ロットすると、ポリカーボネイトPCの樹脂の収縮率の
関係のグラフを図10〜図14にそれぞれ示す。
As described above, the volumetric shrinkage at each position of the sampled test piece and the shrinkage in three directions are obtained, and the relationship between the volumetric shrinkage and the shrinkage in each direction is plotted on a graph. Graphs of the shrinkage ratio of the resin of PC are shown in FIGS. 10 to 14, respectively.

【0037】先ず、図10の体積収縮率と板厚方向の収
縮率の関係のグラフを見ると、両者の関係がほぼ1次の
直線上に示されていることが確認される。図10中にお
いて一点鎖線で示された線は、体積収縮率に対して、体
積収縮率の1/3の値を単純に直線で結んだ線である
が、この線は板厚方向の収縮率が体積収縮率の1/3つ
まり3方向に等分に収縮した場合(等方性収縮の場合)
の値を示している。この直線に対して、図中の実線で示
される実際の収縮直線は、より勾配が大きくなってい
る。このことは、体積収縮率に対して、板厚方向の収縮
率の占める割合が非常に大きいことを示している。
First, looking at the graph of the relationship between the volume contraction rate and the contraction rate in the plate thickness direction of FIG. 10, it is confirmed that the relationship between the two is shown on a substantially linear line. The dashed line in FIG. 10 is a line obtained by simply connecting the volume contraction rate to 1/3 of the volume contraction rate with a straight line. This line is the contraction rate in the plate thickness direction. Is 1/3 of the volumetric shrinkage, that is, it shrinks equally in 3 directions (in the case of isotropic shrinkage)
Indicates the value of. In contrast to this line, the actual contraction line shown by the solid line in the figure has a larger gradient. This indicates that the ratio of the shrinkage ratio in the plate thickness direction to the volume shrinkage ratio is very large.

【0038】以上から、体積収縮率と板厚方向の収縮率
はεz=A+B・ev (収縮異方性の式)で示される様
に、1次式で示されることが分かる。また、収縮異方性
の式でA,Bは樹脂の種類によって異なる物性値であ
り、図10にプロットされたそれぞれの数値データを用
い、最小自乗法による計算により求められるものであ
る。それぞれの求められた物性値は、図1の樹脂D/B
2に登録される。
From the above, it can be seen that the volume shrinkage ratio and the shrinkage ratio in the plate thickness direction are expressed by linear expressions as shown by εz = A + B · ev (expression of shrinkage anisotropy). Further, in the equation of shrinkage anisotropy, A and B are physical property values that differ depending on the type of resin, and are calculated by the least square method using the respective numerical data plotted in FIG. Each physical property value obtained is the resin D / B of FIG.
Registered in 2.

【0039】次に、図11、12において、流れ方向の
収縮率、流れに直角方向の収縮率が体積収縮率に対し
て、ほぼ同じ勾配の1次の直線に乗ることが確認でき
る。これにより体積収縮率と面内の収縮率がεp=(ev
−εz)/2 の関係式で示される。
Next, in FIGS. 11 and 12, it can be confirmed that the contraction rate in the flow direction and the contraction rate in the direction perpendicular to the flow are on the first-order straight line having substantially the same gradient with respect to the volume contraction rate. As a result, the volume shrinkage rate and the in-plane shrinkage rate are εp = (ev
It is shown by the relational expression of −εz) / 2.

【0040】このような傾向は、PCに限らず、ほかの
樹脂においても確認されている。
This tendency has been confirmed not only in PC but also in other resins.

【0041】以上により、異方性収縮の関係式が導き出
される。
From the above, the relational expression of anisotropic shrinkage is derived.

【0042】更に、PCのガラス繊維が30%含まれた
樹脂の結果を図13、14に示す。図13の体積収縮率
に対する板厚方向の収縮率は、εz=A+B・ev に示
されるような関係が認められるが、図14の面内方向の
収縮率は、流れ方向と流れに直角方向で異方性が見られ
る。そこで、両方向の線膨張係数を用いて、 εL=
(ev−εz)・αL/(αL+αT)、εT=(ev−εz)
・αT/(αL+αT)の各式に示した様な直線をグラフ
上に引くと、両方向の収縮率がそれぞれの直線上に、ほ
ぼ乗ることが確認できる。以上の現象から、異方性収縮
の関係式が導き出されることになる。
Further, the results of the resin containing 30% of PC glass fiber are shown in FIGS. The contraction rate in the plate thickness direction with respect to the volume contraction rate in FIG. 13 has a relationship as shown by εz = A + B · ev, but the contraction rate in the in-plane direction in FIG. 14 is in the direction perpendicular to the flow direction and the flow direction. Anisotropy is seen. Therefore, using the linear expansion coefficients in both directions, εL =
(Ev-εz) · αL / (αL + αT), εT = (ev-εz)
-By drawing the straight lines shown in each equation of αT / (αL + αT) on the graph, it can be confirmed that the contraction rates in both directions are almost on the respective straight lines. From the above phenomenon, the relational expression of anisotropic contraction is derived.

【0043】次に図15に示すような平板形状試験片を
用いて、実際の成形品を測定した収縮率の結果と解析の
結果の比較を示す。まず平板形状試験片を解析可能な様
に、モデル形状を作成し、メッシュ分割する。成形条件
は、実際の成形を行なった条件と同様の条件を設定し、
更にデータベース2から樹脂を選択し、プラスチック樹
脂の物性データを入力する。ここでは樹脂はPCの繊維
入りの材料を用いている。物性データに関しては、収縮
率の異方性を考慮した収縮係数の値も含まれている。
Next, a comparison between the result of the shrinkage ratio of the actual molded product measured by using the flat plate-shaped test piece as shown in FIG. 15 and the result of the analysis is shown. First, create a model shape and divide it into meshes so that the flat plate test piece can be analyzed. For molding conditions, set the same conditions as the actual molding conditions,
Further, the resin is selected from the database 2 and the physical property data of the plastic resin is input. Here, the resin is a material containing PC fibers. Regarding the physical property data, the value of the shrinkage coefficient considering the anisotropy of the shrinkage rate is also included.

【0044】以上の条件を設定した後、計算を図2の解
析の流れに従って、流動から保圧・冷却段階へと行なっ
ていく。また、保圧・冷却段階においては、異方性収縮
を考慮した計算を行ない、成形品の各位置での収縮率を
求める。
After setting the above conditions, the calculation is performed from the flow to the pressure holding / cooling stage in accordance with the analysis flow of FIG. In the pressure holding / cooling stage, the shrinkage rate at each position of the molded product is obtained by performing the calculation in consideration of anisotropic shrinkage.

【0045】この設計例では、材料を繊維入りの材料を
用いているので、異方性収縮の上記の各関係式を用い
て、収縮率の計算を行なう。
In this design example, since a material containing fibers is used, the shrinkage ratio is calculated using the above-mentioned relational expressions of anisotropic shrinkage.

【0046】図16は図15に示されている測定位置2
の変形量の実測値と解析結果の比較を示している。図1
6において、測定位置2の変形量が実測値(図16の破
線)と解析結果(図16の実線)との比較において、か
なり高い精度で近似して予測されていることが分かる。
FIG. 16 shows the measurement position 2 shown in FIG.
It shows a comparison between the measured value of the deformation amount and the analysis result. FIG.
6, it can be seen that the deformation amount at the measurement position 2 is approximated and predicted with considerably high accuracy in comparison between the actual measurement value (broken line in FIG. 16) and the analysis result (solid line in FIG. 16).

【0047】次ぎに、図17、図18に示したカメラ本
体の成形品において、このシミュレーションシステムを
適用し、設計にフィードバックした事例を示す。
Next, an example of applying this simulation system to the molded product of the camera body shown in FIGS. 17 and 18 and feeding back to the design is shown.

【0048】図18(モデル名:F12)のモデルは図
17(モデル名:F1)のモデル形状の背面にリブを付
け加えたモデルである。両者にシミュレーションを適用
し、どちらが成形後のそり変形が少ないかを比較し、形
状を決定し、設計にフィードバックする。また図19は
成形条件であって、図2に示した様な一連の流れに従っ
て、形状作成からそり変形までを行ない、それぞれの結
果を得る。
The model of FIG. 18 (model name: F12) is a model in which ribs are added to the back surface of the model shape of FIG. 17 (model name: F1). The simulation is applied to both of them, and which one has less warp deformation after forming, the shape is determined, and feedback is given to the design. Further, FIG. 19 shows the molding conditions, and from the formation of the shape to the warp deformation, the respective results are obtained in accordance with the series of flow as shown in FIG.

【0049】図20,図21にそれぞれのモデルのレー
ル面の変形結果を示す。両者の結果を比較すると、図2
1のモデルが変形量が少ないことが確認される。以上の
結果を踏まえて、成形品の形状を決定し、設計にフィー
ドバックする。この設計へのフィードバックは、リブ形
状の追加がそり変形に有効か否かの判断を支援したもの
だが、このほかに、この解析システムを用いて、実際の
設計・成形に適用し、フィードバックするパラメータ例
はリブの強化,追加、板厚の変更(偏肉の影響など)、
比較材料、最適成形条件の探索、水管位置の追加,変更
等があり、以上により、製品設計,型設計,成形などへ
の展開がなされることになり、図1の全体構成におい
て、最適製品形状条件8のフィードバックがなされる一
方、成形の最適成形条件9が決定されて成形機10の設
定がされて所望の成形品の成形に役立てるようにでき
る。特に、カメラボデイのように感光面の平面度が要求
されるものを成形品として得るためには、好適な解析ツ
ールをなる。
20 and 21 show the results of deformation of the rail surface of each model. Comparing the results of both, Fig. 2
It is confirmed that the model 1 has a small amount of deformation. Based on the above results, the shape of the molded product is determined and fed back to the design. The feedback to this design assisted in determining whether the addition of rib shape is effective for warpage deformation.In addition to this, parameters to be applied and fed back to the actual design and molding using this analysis system Examples are strengthening ribs, adding ribs, changing the thickness (effect of uneven thickness, etc.),
There are comparison materials, search for optimum molding conditions, addition and modification of water pipe positions, etc., and as a result, development into product design, mold design, molding, etc. will be done, and the optimum product shape in the overall configuration of FIG. While the condition 8 is fed back, the optimum molding condition 9 for molding is determined and the molding machine 10 is set so as to be useful for molding a desired molded product. In particular, it is a suitable analysis tool for obtaining a molded product such as a camera body that requires a flatness of the photosensitive surface.

【0050】[0050]

【発明の効果】以上のように本発明によれば、成形品が
薄肉である場合であっても、正確なそり予測ができる射
出成形品のそり変形予測方法及びその装置の提供でき
る。
As described above, according to the present invention, it is possible to provide a warp deformation prediction method for injection molded products and an apparatus therefor, which can accurately predict warpage even when the molded product is thin.

【0051】[0051]

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例になる解析装置の全体構成の概略構成図
である。
FIG. 1 is a schematic configuration diagram of an overall configuration of an analysis apparatus according to an embodiment.

【図2】図1の解析装置のフローチャートである。FIG. 2 is a flowchart of the analysis device of FIG.

【図3】釣り合い方程式(運動法定式)である。FIG. 3 is a balance equation (kinetic method formula).

【図4】構成方程式(応力−歪関係式)である。FIG. 4 is a constitutive equation (stress-strain relational expression).

【図5】変位−歪関係式である。FIG. 5 is a displacement-strain relational expression.

【図6】体積収縮率算出式である。FIG. 6 is a volume contraction rate calculation formula.

【図7】試験片の平面図、側面図である。FIG. 7 is a plan view and a side view of a test piece.

【図8】成形条件表である。FIG. 8 is a molding condition table.

【図9】収縮率比較表である。FIG. 9 is a contraction rate comparison table.

【図10】板厚方向の収縮率と体積収縮率の関係図であ
る。
FIG. 10 is a relationship diagram of the shrinkage rate in the plate thickness direction and the volumetric shrinkage rate.

【図11】樹脂流れ方向の収縮率と体積収縮率の関係図
である。
FIG. 11 is a relationship diagram of a shrinkage rate in the resin flow direction and a volumetric shrinkage rate.

【図12】樹脂流れ直角方向の収縮率と体積収縮率の関
係図である。
FIG. 12 is a relationship diagram of the shrinkage ratio and the volumetric shrinkage ratio in the direction perpendicular to the resin flow.

【図13】ガラス繊維入り樹脂の板厚方向の収縮率と体
積収縮率の関係図である。
FIG. 13 is a diagram showing the relationship between the shrinkage ratio and the volume shrinkage ratio of the glass fiber-containing resin in the plate thickness direction.

【図14】ガラス繊維入りの樹脂の面内方向の収縮率と
体積収縮歪みの関係図である。
FIG. 14 is a diagram showing the relationship between the in-plane shrinkage rate and the volumetric shrinkage strain of resin containing glass fiber.

【図15】サンプル(シート送りガイド)の外観斜視図
である。
FIG. 15 is an external perspective view of a sample (sheet feed guide).

【図16】図15の位置別変形量の関係図である。FIG. 16 is a relationship diagram of the amount of deformation for each position in FIG. 15.

【図17】サンプル(カメラボデイ)のモデル図であ
る。
FIG. 17 is a model diagram of a sample (camera body).

【図18】サンプル(カメラボデイ)のモデル図であ
る。
FIG. 18 is a model diagram of a sample (camera body).

【図19】図17、18のサンプル(カメラボデイ)の
解析条件表である。
FIG. 19 is an analysis condition table for the samples (camera bodies) of FIGS.

【図20】図17のサンプル(カメラボデイ)の解析結
果図である。
20 is an analysis result diagram of the sample (camera body) in FIG.

【図21】図18のサンプル(カメラボデイ)の解析結
果図である。
FIG. 21 is an analysis result diagram of the sample (camera body) of FIG. 18.

【符号の説明】[Explanation of symbols]

1 データ入力装置 2 樹脂データベース 3 成形条件入力 5 解析計算装置 1 data input device 2 resin database 3 molding condition input 5 analysis calculation device

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年6月1日[Submission date] June 1, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例になる解析装置の全体構成の概略構成図
である。
FIG. 1 is a schematic configuration diagram of an overall configuration of an analysis apparatus according to an embodiment.

【図2】図1の解析装置のフローチャートである。FIG. 2 is a flowchart of the analysis device of FIG.

【図3】釣り合い方程式(運動法定式)である。FIG. 3 is a balance equation (kinetic method formula).

【図4】構成方程式(応力−歪関係式)である。FIG. 4 is a constitutive equation (stress-strain relational expression).

【図5】変位−歪関係式である。FIG. 5 is a displacement-strain relational expression.

【図6】体積収縮率算出式である。FIG. 6 is a volume contraction rate calculation formula.

【図7】試験片の平面図、側面図である。FIG. 7 is a plan view and a side view of a test piece.

【図8】成形条件の図表である。FIG. 8 is a table of molding conditions.

【図9】収縮率比較の図表である。FIG. 9 is a chart for comparison of shrinkage rates.

【図10】板厚方向の収縮率と体積収縮率の関係図であ
る。
FIG. 10 is a relationship diagram of the shrinkage rate in the plate thickness direction and the volumetric shrinkage rate.

【図11】樹脂流れ方向の収縮率と体積収縮率の関係図
である。
FIG. 11 is a relationship diagram of a shrinkage rate in the resin flow direction and a volumetric shrinkage rate.

【図12】樹脂流れ直角方向の収縮率と体積収縮率の関
係図である。
FIG. 12 is a relationship diagram of the shrinkage ratio and the volumetric shrinkage ratio in the direction perpendicular to the resin flow.

【図13】ガラス繊維入り樹脂の板厚方向の収縮率と体
積収縮率の関係図である。
FIG. 13 is a diagram showing the relationship between the shrinkage ratio and the volume shrinkage ratio of the glass fiber-containing resin in the plate thickness direction.

【図14】ガラス繊維入りの樹脂の面内方向の収縮率と
体積収縮歪みの関係図である。
FIG. 14 is a diagram showing the relationship between the in-plane shrinkage rate and the volumetric shrinkage strain of resin containing glass fiber.

【図15】サンプル(シート送りガイド)の外観斜視図
である。
FIG. 15 is an external perspective view of a sample (sheet feed guide).

【図16】図15の位置別変形量の関係図である。FIG. 16 is a relationship diagram of the amount of deformation for each position in FIG. 15.

【図17】サンプル(カメラボデイ)のモデル図であ
る。
FIG. 17 is a model diagram of a sample (camera body).

【図18】サンプル(カメラボデイ)のモデル図であ
る。
FIG. 18 is a model diagram of a sample (camera body).

【図19】図17、18のサンプル(カメラボデイ)の
解析条件の図表である。
FIG. 19 is a chart of analysis conditions of the samples (camera bodies) of FIGS.

【図20】図17のサンプル(カメラボデイ)の解析結
果図である。
20 is an analysis result diagram of the sample (camera body) in FIG.

【図21】図18のサンプル(カメラボデイ)の解析結
果図である。
FIG. 21 is an analysis result diagram of the sample (camera body) of FIG. 18.

【符号の説明】 1 データ入力装置 2 樹脂データベース 3 成形条件入力 5 解析計算装置[Explanation of symbols] 1 data input device 2 resin database 3 molding condition input 5 analysis calculation device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 有限要素法により定式化された基礎式に
より充填、保圧、冷却過程の金型内でのプラスチック樹
脂の挙動を予測し、その後のプラスチック成形品のそり
変形を予測する射出成形品のそり変形予測方法であっ
て、 特に、異方性挙動が顕著な薄肉成形品において、 【数1】(収縮異方性の式) εz=A+B・ev εp=(ev−εz)/2 εz:板厚方向の収縮率, εp:面内方向の収縮率 ev:体積収縮率, A,B:収縮係数 【数2】 (更に繊維入りの材料の場合の収縮異方性の式) εL=(ev−εz)・αL/(αL+αT) εT=(ev−εz)・αT/(αL+αT) εL:面内流れ方向の収縮率, εT面内流れと直角方向
の収縮率 αL:流れ方向の熱膨張係数, αT:流れと直角方向の
熱膨張係数 の関係式を計算に導入して、面内の収縮率を求め、そり
変形の予測を行なうことを特徴とする射出成形品のそり
変形予測方法。
1. Injection molding for predicting the behavior of plastic resin in a mold during a filling, holding, and cooling process by a basic formula formulated by the finite element method, and for predicting subsequent warpage deformation of the plastic molded product. A method for predicting warpage deformation of a product, particularly for a thin-walled molded product having a remarkable anisotropic behavior, ## EQU1 ## (Expression of shrinkage anisotropy) εz = A + B · ev εp = (ev−εz) / 2 εz: Shrinkage in the plate thickness direction, εp: Shrinkage in the in-plane direction, ev: Volume shrinkage, A, B: Shrinkage coefficient [Equation 2] (Expression of shrinkage anisotropy in the case of a material containing fibers) εL = (Ev−εz) ・ αL / (αL + αT) εT = (ev−εz) ・ αT / (αL + αT) εL: Shrinkage in the in-plane flow direction, εT Shrinkage in the direction perpendicular to the in-plane flow αL: Flow direction Thermal expansion coefficient, αT: Introducing the relational expression of thermal expansion coefficient in the direction perpendicular to the flow into the calculation to obtain the in-plane shrinkage ratio Warpage prediction method of an injection molded article and performing prediction.
【請求項2】 有限要素法により定式化された基礎式に
より充填、保圧、冷却過程の金型内でのプラスチック樹
脂の挙動を予測し、その後のプラスチック成形品のそり
変形を予測する射出成形品のそり変形予測装置であっ
て、 特に、異方性挙動が顕著な薄肉成形品において、 【数3】(収縮異方性の式) εz=A+B・ev εp=(ev−εz)/2 εz:板厚方向の収縮率, εp:面内方向の収縮率 ev:体積収縮率, A,B:収縮係数 【数4】 (更に繊維入りの材料の場合の収縮異方性の式) εL=(ev−εz)・αL/(αL+αT) εT=(ev−εz)・αT/(αL+αT) εL:面内流れ方向の収縮率, εT面内流れと直角方向
の収縮率 αL:流れ方向の熱膨張係数, αT:流れと直角方向の
熱膨張係数 の関係式を計算に導入する解析計算手段を具備してな
り、面内の収縮率を求め、そり変形の予測を行なうこと
を特徴とする射出成形品のそり変形予測装置。
2. Injection molding for predicting the behavior of the plastic resin in the mold during the filling, holding and cooling processes by the basic formula formulated by the finite element method, and for predicting the subsequent warpage deformation of the plastic molded product. An apparatus for predicting warpage deformation of a product, particularly in a thin-walled molded product with remarkable anisotropic behavior, ## EQU3 ## (equation of shrinkage anisotropy) εz = A + B · ev εp = (ev−εz) / 2 εz: Shrinkage ratio in the thickness direction, εp: Shrinkage ratio in the in-plane direction, ev: Volume shrinkage ratio, A, B: Shrinkage coefficient [Equation 4] (Formula of shrinkage anisotropy in the case of a material containing fibers) εL = (Ev−εz) ・ αL / (αL + αT) εT = (ev−εz) ・ αT / (αL + αT) εL: Shrinkage in the in-plane flow direction, εT Shrinkage in the direction perpendicular to the in-plane flow αL: Flow direction Thermal expansion coefficient, αT: equipped with analytical calculation means for introducing the relational expression of the thermal expansion coefficient in the direction perpendicular to the flow into the calculation, Determined shrinkage of the inner, injection-molded articles of warpage deformation prediction apparatus and performing prediction of warpage.
JP7041713A 1995-03-01 1995-03-01 Method and device for estimating warping deformation of injection molded article Pending JPH08230008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7041713A JPH08230008A (en) 1995-03-01 1995-03-01 Method and device for estimating warping deformation of injection molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7041713A JPH08230008A (en) 1995-03-01 1995-03-01 Method and device for estimating warping deformation of injection molded article

Publications (1)

Publication Number Publication Date
JPH08230008A true JPH08230008A (en) 1996-09-10

Family

ID=12616073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7041713A Pending JPH08230008A (en) 1995-03-01 1995-03-01 Method and device for estimating warping deformation of injection molded article

Country Status (1)

Country Link
JP (1) JPH08230008A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083602A (en) * 2005-09-22 2007-04-05 Sanko Gosei Ltd Method for forecasting molding shrinkage rate of injection-molded article
JP2008008333A (en) * 2006-06-27 2008-01-17 Nsk Ltd Method of producing cage for radial roller bearing
JP2009271781A (en) * 2008-05-08 2009-11-19 Canon Inc Method and apparatus for predicting deformed shape of molding, program for predicting deformed shape, and medium storing the same
JP2017164919A (en) * 2016-03-14 2017-09-21 ダイハツ工業株式会社 Method for setting fiber concentration
CN110919459A (en) * 2019-12-06 2020-03-27 沈阳航空航天大学 Method for detecting influence of clamping force on machining deformation of thin-wall part

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083602A (en) * 2005-09-22 2007-04-05 Sanko Gosei Ltd Method for forecasting molding shrinkage rate of injection-molded article
JP2008008333A (en) * 2006-06-27 2008-01-17 Nsk Ltd Method of producing cage for radial roller bearing
JP2009271781A (en) * 2008-05-08 2009-11-19 Canon Inc Method and apparatus for predicting deformed shape of molding, program for predicting deformed shape, and medium storing the same
JP2017164919A (en) * 2016-03-14 2017-09-21 ダイハツ工業株式会社 Method for setting fiber concentration
CN110919459A (en) * 2019-12-06 2020-03-27 沈阳航空航天大学 Method for detecting influence of clamping force on machining deformation of thin-wall part
CN110919459B (en) * 2019-12-06 2020-10-16 沈阳航空航天大学 Method for detecting influence of clamping force on machining deformation of thin-wall part

Similar Documents

Publication Publication Date Title
Hentati et al. Optimization of the injection molding process for the PC/ABS parts by integrating Taguchi approach and CAE simulation
JP3501486B2 (en) Method and apparatus for estimating deformation of injection-molded article
Parvez et al. Gas-assisted injection molding: the effects of process variables and gas channel geometry
US20100036646A1 (en) Analytical model preparation method, and simulation system method for predicting molding failure
Fu et al. A method to predict early-ejected plastic part air-cooling behavior towards quality mold design and less molding cycle time
Moayyedian et al. Gate design and filling process analysis of the cavity in injection molding process
US9862133B1 (en) Molding system for preparing an injection molded fiber reinforced composite article
JP5241310B2 (en) Method and apparatus for predicting deformed shape of molded product, program for predicting deformed shape and storage medium thereof
JPH08230008A (en) Method and device for estimating warping deformation of injection molded article
JP2009233882A (en) Void generation prediction method of resin molded article
Wavare et al. Parametric investigation for PP homopolymer (1110MAS) in plastic injection molding process using Taguchi method
JP2007083602A (en) Method for forecasting molding shrinkage rate of injection-molded article
JP4378011B2 (en) Mold design equipment and mold shape design method
JPH11224275A (en) Designing method for molding
Li et al. Modelling and simulation of residual stress and warpage in injection moulding
Islam et al. Injection moulding simulation and validation of thin wall components for precision applications
Lin Optimum gate design of freeform injection mould using the abductive network
Shen et al. An improved algorithm for the simulation of injection-molding filling process
JP2000289076A (en) Method for simulating resin molding
Hohlweck et al. Validation of an extended objective function for the thermal optimisation of injection moulds
Magid et al. Analysis of the main factors affecting mass production in the plastic molding process by using the finite element method
JP2002219739A (en) Method for estimating amount of change in shape of injection-molded article
JPH0655597A (en) Injection-molding process simulation method and device thereof
JP2001246655A (en) Method and apparatus for estimating behavior during injection molding and mold design method
JP2013176929A (en) Apparatus, method and program for forecasting warping deformation of molding

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060612